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1.0 INTRODUCTION 

Tetra Tech, Inc. (Tetra Tech) has prepared this technical memorandum to present an evaluation 

of monitoring data in support of vapor intrusion (VI) assessments for the Montrose and Del Amo 

Superfund Sites.  The Montrose and Del Amo Superfund Sites are located in the southwestern 

portion of Los Angeles County, between the cities of Torrance and Carson, California (Figure 1). 

This evaluation was conducted in response to a request from the U.S. Environmental Protection 

Agency (EPA) to gather current information from multiple published sources on groundwater 

monitoring and VI assessments conducted to date.  The VI pathways have been previously 

evaluated at some of the operable units (OUs) associated with the Montrose and Del Amo 

Superfund Sites.  The VI exposure pathway needs to be further assessed for OU-3 (termed “Dual 

Site Groundwater”) to addresses groundwater contamination for both the Montrose and Del Amo 

Superfund Sites.   

1.1 Purpose and Objectives 

The EPA’s Environmental Response Team (ERT) has planned for up to four phases of work for 

VI investigations at OU-3, including:   

(1) Gather current information from multiple groundwater monitoring sources and various 

assessment and modeling reports. 

(2) Perform the VI modeling and evaluate the results to provide an assessment of data gaps, 

uncertainty, and weaknesses in the ability to quantify the risks from this pathway. 

(3) Develop a detailed plan to collect specific information necessary to further evaluate the 

VI pathway.  

 

(4) Implement the plan and report the results with interpretation. 

This technical memorandum relates to the first phase.  The overall purpose of groundwater data 

evaluation is to support further VI assessment for OU-3.  The principal objectives are to: 

 Summarize current information relevant to VI evaluation based on the latest groundwater 

monitoring reports, previous VI assessments, and modeling (Figures 11-14); and 

 Identify areas with potentially complete VI exposure pathway above the commingled 

groundwater plumes downgradient from the Montrose and Del Amo Superfund Sites. 

The groundwater data evaluation presented in this report is not designed to draw conclusions on 

whether there are VI risks or a need for soil gas and indoor air sampling in select residential 

areas.  Rather, the information gathered and groundwater data evaluation will support selection 

of areas that may need further evaluation through a site-specific screening level VI modeling 

(second phase of work).   
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1.2 Site Background 

Uses and history of contaminant releases differ for the Montrose and Del Amo sites (EPA 1998; 

Dames and Moore 1998).  However, the groundwater impacts from both sites are addressed 

under OU-3, which also includes groundwater plumes of dissolved volatile organic compounds 

(VOCs) from the adjacent or upgradient sources.   

Table 1 briefly summarizes past and current uses for each site as well as historical releases of 

contaminants and media affected.  Also included is information for adjacent and upgradient sites 

that contributed contamination to groundwater. 

The Montrose Superfund Site is a former plant that manufactured technical grade dichloro-

diphenyl-trichloroethane (DDT) from 1947 to 1982.  As a result of industrial operations at the 

site, chemical impacts to soil and groundwater included VOCs, chlorobenzene, and non-volatile 

DDT (EPA 1998). 

The Del Amo Superfund Site is a former plant that manufactured synthetic rubber, styrene, and 

butadiene from 1943 until 1972.  As a result of large-scale industrial operations at the site, 

petroleum hydrocarbons were released to soil at multiple locations.  The primary dissolved VOC 

in groundwater is benzene (Dames and Moore 1998). 

1.3 Document Organization 

The subsequent sections are as follows: 

 Section 2.0 – briefly overviews the VI pathway and mechanisms and factors that 

influence soil gas movement, and summarizes vapor intrusion assessments conducted for 

the Montrose and Del Amo Superfund sites to date. 

 Section 3.0 – summarizes groundwater data evaluation used to support upcoming VI 

modeling and scoping of VI investigations for select residential areas. 

 Section 4.0 – discusses vapor intrusion modeling approach. 

 Section 5.0 – presents conclusions and recommendations. 

 Section 6.0 – provides a list of references. 
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2.0 VAPOR INTRUSION PATHWAY 

Vapor intrusion is the migration of volatile chemicals from the subsurface into overlying 

buildings (EPA 2002). Volatile chemicals may include VOCs, select semivolatile organic 

compounds, some inorganic analytes, and sometimes methane.  Vapors originating from 

subsurface contamination might migrate into residences and cause an immediate threat, or a 

chronic health risk if at lower, less detectable levels (EPA 2005). 

This section briefly overviews the vapor intrusion pathway as presented in the guideline 

document developed by the Interstate Technology & Regulatory Council (ITRC) Vapor Intrusion 

Team (ITRC 2007), including the processes and factors that influence movement of soil gas.  In 

addition, a brief summary of vapor intrusion evaluations conducted to date is provided. 

2.1 Conceptual Model for Vapor Intrusion 

Vapor intrusion can be conceptualized as shown on Figure 2 (ITRC 2007).  Chemicals volatilize 

from contaminated soil and/or groundwater beneath a building and diffuse toward regions of 

lower chemical concentration (for example, the atmosphere, conduits, or basements).  Soil gas 

can flow into a building due to a number of factors, including changes in barometric pressure, 

wind load, thermal currents, or depressurization from building exhaust fans.  The rate of 

movement of the vapors into the building is a difficult value to quantify and depends on soil 

type, chemical properties, building design and condition, and the pressure differential.  When it 

enters a structure, soil gas mixes with the existing air through the natural or mechanical 

ventilation of the building (ITRC 2007).   

Vapor sources, vapor migration pathways, and receptors are three main components of the VI 

conceptual model.  Buildings near primary release areas of VOCs may have multiple vapor 

sources such as free product (both light and dense non-aqueous phase liquids [LNAPL and 

DNAPL]) or contaminated soil and groundwater.  However, dissolved VOCs in shallow 

groundwater would be the only source of vapors for buildings located at a distance from a 

primary release.  

Figure 2 schematically depicts commercial/industrial buildings and houses.  However, of 

primary concern for the subsequent evaluation discussed in this technical memorandum is the 

potential for vapors to enter residences over the commingled groundwater plume southeast of the 

Montrose Site and south of the Del Amo Site.  Mechanisms of vapor migration from 

groundwater contamination through the vadose zone to buildings are discussed briefly below, 

including the factors to consider in vapor intrusion evaluations. 

2.2 Vapor Migration Mechanisms and Factors to Consider 

Figure 3 presents a generalized conceptual model of vapor migration from contaminated 

groundwater to buildings.  Both diffusion and advection are mechanisms of transport of 

subsurface soil gas into the indoor air environment.   

Diffusion is the mechanism by which soil gas moves from high concentration to low 

concentration as a result of a concentration gradient.  Advection is the transport mechanism by 

which soil gas moves because of differences in pressure.  These pressure differences can be 
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generated by changes in atmospheric pressure, temperature changes creating natural convection 

in the soil, or forced pressure changes created by building ventilation systems (ITRC 2007).   

Advective transport is likely to be the most significant in the region very close to a basement or a 

foundation, and soil gas velocities decrease rapidly with increasing distance from the structure.  

Once soil gases enter the “building zone of influence,” they are generally swept into the building 

through cracks in the foundation by advection caused by the indoor-outdoor building pressure 

differential.  The reach of the “building zone of influence” on soil gas flow is usually less than a 

few feet, vertically and horizontally (ITRC 2007). 

When the potential for the vapor intrusion pathway is assessed, it is important to consider the 

volatility of the contaminants, their potential for degradation and/or sorption in the vadose zone, 

and their concentrations.  Other factors to be considered include subsurface lithology, soil 

moisture, depth to groundwater, distance of a building from the contaminant source, the building 

structure (size and age), the competence of the foundation, and the presence of utilities and 

preferential pathways.  

Existing buildings within 100 feet of subsurface contamination are typically considered at risk 

for vapor intrusion (EPA 2002).  Accordingly, buildings within 100 feet of soil gas or 

groundwater plumes should be evaluated for vapor intrusion (DTSC 2011).  Buildings greater 

than 100 feet from a plume boundary are typically assumed not to be at risk if preferential 

pathways, either natural or anthropogenic, do not exist in the subsurface that link the buildings 

with the contaminant plume (EPA 2002; DTSC 2011). 

Petroleum hydrocarbons such as the benzene found at the Montrose and Del Amo Sites are 

expected to attenuate below levels of concern within shorter distances than 100 feet, mostly 

because petroleum hydrocarbons tend to degrade readily by microorganisms in the presence of 

oxygen.  In general, a distance of 100 feet for chlorinated solvents and 30 feet for petroleum 

hydrocarbons applied in both vertical and lateral directions is typically considered a threshold 

limit within which VI may require further evaluation (CH2MHILL 2012). 

A complicating factor in evaluating the potential risks from vapor intrusion is the presence of 

some of the same chemicals at or above background concentrations (from the ambient [outdoor] 

air and/or emission sources in the building, for example, household solvents, gasoline, cleaners) 

that may pose, separately or in combination with vapor intrusion, a significant human health risk 

(EPA 2002).  

With respect to a VI exposure scenario (residential or commercial structures), the screening 

levels are used to determine if there are potential VI risks.  The VI screening levels for protection 

of human health include indoor air screening levels for long-term exposures, which consider the 

potential for cancer and noncancer effects.  The VI screening levels for human health protection 

also include subsurface screening levels for comparison to sub-slab soil gas, “near-source” soil 

gas, and groundwater sampling results (EPA 2012c). 

2.3 Summary of Vapor Intrusion Evaluations to Date 

A detailed discussion of VI assessments conducted for the Montrose and Del Amo Sites was 

presented in the technical memorandum prepared by CH2MHILL in October 2012 (CH2MHILL 
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2012).  Areas where potential for VI had been previously assessed included Montrose OU-1, Del 

Amo OU-1 (soil and nonaqueous phase liquid [NAPL]) and OU-2 (Waste Pits), Montrose OU-7, 

and portion of OU-3, Dual Site Groundwater, as depicted on Figure 4.  Table 2 summarizes 

previous VI assessments conducted for the Montrose and Del Amo Sites. 

Operable units listed in Table 2 address the primary release areas and include several potential 

VI sources such as contaminated vadose zone soil, LNAPL and/or DNAPL, and contaminated 

groundwater.  VI impacts associated with OU-3 Dual Site Groundwater outside these primary 

release areas are limited to the dissolved VOC contamination at the water table.  The water table 

unit serves as a barrier to upward vertical migration of VOC vapors from deeper aquifer units 

(CH2MHILL 2012). 

Based on previous VI assessments, the following findings and conclusions were drawn: 

(1) Montrose OU-1:  On and Near-Property Soils and Montrose OU-3 (DNAPL): 

 Most frequently detected VOCs that exceeded risk-based screening levels were: 

chlorobenzene, chloroform, carbon tetrachloride, tetrachloroethylene (PCE), and 

trichloroethylene (TCE); 

 Preliminary results indicated no impacts to indoor air quality in excess of EPA’s 

acceptable health risk range. 

(2) Montrose OU-7 (Jones Chemical Industries): 

 Soil gas surveys detected high levels of PCE and other VOCs near the dry well, main 

yard sump, former PCE storage tank/ neutralization tank areas, and southwestern 

corner of the site; 

 Within commercial buildings, VOC concentrations in indoor air samples exceeded 

industrial screening criteria. 

(3) Del Amo OU-1 (Soil and NAPL): 

 Based on soil gas (exterior and subslab) and indoor air data, the target risk levels for 

PCE and TCE were exceeded in two buildings (URS 2009, 2010); 

 The OU-1 Record of Decision (ROD) (EPA 2011) provides mitigation for buildings 

and areas with potential VI risk, including areas under existing buildings that can be 

identified in the future. 

(4) Del Amo OU-2 (Waste Pits): 

 Vapors are not migrating from the Waste Pits area (EPA 2010a); 

 Ongoing source remediation and vapor monitoring are designed to detect any 

potential future vapor migration from the Waste Pits source. 
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(5) Montrose and Del Amo OU-3 (Dual Site Groundwater): 

 VOCs were either below the indoor air reference levels and/or below health 

comparison levels (Agency for Toxic Substances and Disease Registry [ATSDR] 

1995); 

 Estimates of indoor air levels for several VOCs in the western neighborhood 

indicated the groundwater does not pose a health hazard to residents; based on indoor 

air samples of a few homes in the eastern neighborhood, no health threat exists from 

the groundwater vapors (California Department of Health Services [CDHS] 2004). 

Overall, the prior studies showed that potential VI risks appear to have been sufficiently 

evaluated at the primary release areas of the Montrose and Del Amo Sites.  Further evaluation 

was recommended to evaluate potential VI impacts associated with the dissolved VOC 

contamination outside the primary release areas. This tech memo addresses that 

recommendation. 
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3.0 GROUNDWATER DATA EVALUATION 

This section summarizes information on site geology and hydrogeology, sources of groundwater 

contamination, and dissolved plumes of VOCs as it pertains to the VI assessment. 

3.1 Geology and Hydrogeology 

The Montrose and Del Amo Sites are located on the Torrance Plain, a physiographic province 

within the broad coastal plain of the greater Los Angeles area (EPA 1998; Dames and Moore 

1998). 

The hydrostratigraphic units beneath the Montrose and Del Amo Sites include the Bellflower 

Aquitard and the underlying Gage and Lynwood aquifers.  The Bellflower Aquitard is 

subdivided into the Upper Bellflower (UBF), Middle Bellflower B Sand (MBFB), Middle 

Bellflower Mud (MBFM), Middle Bellflower C Sand (MBFC) and the Lower Bellflower 

Aquitard (LBF).  Figure 5 illustrates the relative positions of the hydrostratigraphic units (URS 

2012).  

The main geologic units that make up the 55 to 60 feet thick unsaturated zone are shown on cross 

sections included as Figures 6 to 8.  Playa deposits that underlie the surficial soil and fill material 

(Figures 7 and 8) are mostly fine-grained (clayey silt to clay) and range in thickness from 7 to 27 

feet.  Palos Verdes Sand unit underlies the Playa deposits and consists of fine-grained sand and 

silty sand; its thickness ranges from 11 to 28 feet (EPA 1998).  The base of the fossiliferous sand 

of the Palos Verdes Sand marks the contact between the Palos Verdes Sand and the underlying 

UBF Aquitard.  The UBF Aquitard consists of interbedded silty sand, silt, and clay; saturated at 

approximately 60 feet below ground surface (bgs).  

As shown on Figure 5, the water table currently lies within the UBF to the east of Normandie 

Avenue (see Figure 1), and within the MBFB to the west because of the slight northeasterly dip 

of the hydrostratigraphic units and the groundwater gradient.  Figure 9 shows contours for 

February 2012 groundwater elevations of the UBF (URS 2012). 

Many existing water table wells located to the west of Normandie Avenue are screened across 

the basal portion of the UBF and extend into the MBFB because of the proximity of the water 

table to the UBF/MBFB contact (URS 2012).  However, the screened intervals of some of the 

wells that originally straddled the water table became fully submerged as a result of rising 

groundwater levels. 

It has been reported by the Water Replenishment District (WRD) that groundwater levels have 

been rising in the basin since management of the resource was initiated in the 1960s (WRD 

2004).  The water level in the region in general has been rising at an annual rate of 

approximately 1 foot per year (ft/yr) for the last 30 years (Dames & Moore 1998).  Groundwater 

model projections by the U.S. Geological Survey (USGS) indicate that groundwater levels are 

likely to continue to rise in the future before they stabilize near sea level (USGS 2003).  As 

illustrated on cross sections (Figures 7 and 8), the water level rose approximately 10 feet from 

1997 to 2002.  The rising trend of the water level is consistent with hydrographs for wells 

screened in the UBF beneath the sites (see Figure 10).   
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Based on February 2012 measurements (URS 2012), water table elevations within the dual site 

ranged from a high of -3.87 feet mean sea level (msl) to a low of -10.04 feet msl (see Figure 9).  

Interpretive groundwater elevation contours for the water table indicate a southwesterly flow 

direction.  However, the water table surface appears variable, with local areas of mounding in the 

vicinity of the Waste Pit area and near the southeastern corner of the Del Amo Site.  This 

mounding is likely caused by artificial recharge from anthropogenic sources.  The direction of 

groundwater flow as a whole is similar to that reported for the previous 2006 monitoring event 

(URS 2012). 

Configurations of some of the groundwater plumes indicate southeasterly components of the 

groundwater flow.  For example, the chlorobenzene plume in the water table zone of the UBF 

(see Section 3.3) emanating from the Montrose Site appears to be expanding in the southeastern 

direction (see Figure 11).  

3.2 Sources of Groundwater Contamination 

As summarized in Table 1, sources of VOC contamination in groundwater are associated with 

the former Montrose and Del Amo facilities, Jones, as well as some upgradient sites including 

former Boeing facility, APC, PACCAR, International Light Metals, and others. 

In its 35 years of operation, the Montrose facility released hazardous substances into the 

surrounding environment, including surface soil, groundwater, stormwater drainage ditches and 

sewers, and sanitary sewers.  The VOCs such as chlorobenzene entered the ground within the 

former plant property as a result of leaks from valves or clogged lines and other elements of the 

DDT manufacturing process (CH2MHILL 2012).  Soil and groundwater beneath the former 

plant property also contains a DNAPL that consists of chlorobenzene and DDT.  The 

approximate DNAPL-contaminated area on the plant property is shown on Figure 4.  

Over nearly 30 years of large-scale industrial operations, the Del Amo plant released petroleum 

hydrocarbons as LNAPL to soil and groundwater at multiple locations.  The primary dissolved 

VOC encountered in groundwater beneath the former plant property is benzene (Dames and 

Moore 1998). 

Chemical manufacturing and storage operations at a 5-acre Jones site adjacent to the Montrose 

plant property have resulted in releases of chlorinated VOCs.  PCE and TCE were identified in 

soil and groundwater beneath the site.  The plume of dissolved TCE, originating at Jones and 

upgradient sources such as the former Boeing facility, APC, PACCAR and others, is 

commingled with the groundwater contamination from the Montrose and Del Amo Superfund 

Sites (EPA 1998; Dames and Moore 1998; CH2MHILL 2012). 

The commingled plumes of chlorobenzene, benzene, TCE and other VOCs originating at the 

Montrose and Del Amo Superfund Sites as well as at the adjacent and upgradient sites are 

addressed under OU-3 Dual Site Groundwater.  As presented in the groundwater ROD (EPA 

1999), the selected OU-3 Dual Site Groundwater remedy includes containment of the source 

areas with DNAPL and LNAPL occurrence and prevention of migration of dissolved 

contaminants into the Montrose and Del Amo Superfund Sites from other adjacent and 

upgradient areas. 
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The following sections provide details on the main dissolved plumes of VOCs in the UBF 

Aquitard (also referred to as the water table zone).   

3.3 Chlorobenzene Plume 

The chlorobenzene plume emanating from the DNAPL source at the former Montrose plant 

property is present in multiple aquifer units.  It extends approximately 900 feet from the 

southeastern corner of the property (see Figure 11) in the water table zone of the UBF, with its 

400-foot-long leading edge portion under the residential area.  In deeper units, it extends for 

more than 1.5 miles southeast of the property.  This plume is commingled with the benzene and 

TCE plumes (see Section 3.6).  The benzene plume originates at the Del Amo Site, while TCE 

plume is associated with source areas at Jones and other upgradient properties (see Section 3.5). 

Based on both historical and recent data, most of the chlorobenzene concentrations above in situ 

groundwater standards of 70 micrograms per liter (μg/L) (CH2MHILL 2012) in the water table 

zone of the UBF occur beneath the Montrose plant property.  Elevated chlorobenzene 

concentrations of up to 160 μg/L occur west of the Montrose plant property in a commercial and 

industrial business area and are reportedly attributed to transport via a 10-inch-diameter sewer 

line, which Montrose used for wastewater discharge prior to 1953.  

Most recently the chlorobenzene concentrations increased in well SWL0049 from 2,900 μg/L in 

February 2012 (AECOM 2012c) to 5,000 μg/L (AECOM 2013), which are above the historical 

range of 8 to 1,900 μg/L.  The well is located in the residential area (Figure 11) southeast of the 

Montrose plant property (at West 204
th

 Street near Normandie Avenue) and is screened in the 

sandy interval of the UBF (see well construction details and the boring log in Attachment 1). 

3.4 Benzene Plume 

Multiple source areas at the Del Amo Site and surrounding vicinity produced commingled 

benzene plumes.  However, majority of these plumes remain within the containment area (see 

Figure 12) defined in the groundwater ROD (EPA 1999).   

Figure 12 shows benzene distribution for the water table zone of UBF based on 2012 monitoring 

data (URS 2012).  The highest concentrations of benzene of up to 610,000 μg/L occur near the 

source areas at the Del Amo Site.  Historically high concentrations of benzene (greater than 

1,000 μg/L) were also detected near the southwestern corner of Jones (abandoned well XMW-7) 

and near a source located south of the Waste Pits (abandoned well XP-01). 

The 2012 benzene concentrations significantly decreased relative to previous monitoring events 

for several wells in the vicinity of the waste pits at the southern end of the plant site.  For 

example, benzene concentrations in well PZL0020 decreased from a maximum of 510,000 μg/L 

in 2004 to 190,000 μg/L in 2012.  Likewise, benzene concentrations in well SWL0044 decreased 

from a maximum of 56,000 μg/L in 2006 to 0.82 μg/L in 2012.  The above reductions in benzene 

concentrations likely resulted from the active soil vapor extraction system at the Waste Pit area 

that has been operating since 2006, in conjunction with natural attenuation (URS 2012).  Based 

on historical and most recent data, the majority of the wells exhibited decreasing trends in the 

benzene concentrations (URS 2012). 
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3.5 TCE Plume 

Figure 13 shows the most recent TCE distribution based on 2012 monitoring results (URS 2012).  

Based on historical data, maximum TCE concentrations (up to 46,000 μg/L) were detected west 

of the Del Amo Site, in the vicinity of PACCAR property wells XMW-04T and XMW-05T.  

Additional local concentration maxima occur to the west of the Del Amo Site at well 

IRZMW001A (16,000 μg/L) and near the southwestern corner of the plant site at XMW-13 

(810 μg/L) (URS 2012). 

Elevated TCE concentrations were also encountered in groundwater beneath the Del Amo Site, 

where the TCE plume is commingled with the benzene plume, and in the area south of Jones, 

where TCE concentrations range from 530 μg/L (near the southern boundary of the Jones 

property) to 270 μg/L at a distance of about 1,100 feet south of Jones.  Low concentrations of 

TCE (around 10 μg/L) were also detected south of the southeastern corner of the Del Amo Site, 

where a landfill was formerly located.  Substantial portions of the TCE plume west and 

southwest of the plant site are outside of the containment zone. (CH2MHILL 2012).  

Based on historical and most recent data, the majority of the wells exhibited decreasing TCE 

concentration trends (URS 2012).  However, TCE concentrations in well SWL0049 increased 

from non-detected in March 1996 to 91 μg/L in February 2012.  The well is located in the 

residential area (Figure 13) southeast of the Montrose plant property and is screened in the sandy 

interval of the UBF. 

3.6 Commingled Plumes Underneath Residences 

Figure 14 presents the extents of commingled plumes of chlorobenzene, benzene, and TCE in the 

water table zone of the UBF.  As discussed in Section 3.2, the plumes originate from multiple 

sources at the Montrose and Del Amo Superfund Sites as well as at the adjacent and upgradient 

sites.   

The extensive data presented above provides information for conservative VI screening to 

identify areas where further site-specific evaluations may be warranted.  The screening process 

that includes comparison of the dissolved VOC concentrations to the EPA’s groundwater-to-

indoor-air screening levels is intended to evaluate a potential VI risk.  The VI screening levels 

are based on a number of conservative assumptions. In addition, predicting indoor area 

concentrations using groundwater data is subject to many uncertainties.  Therefore, the 

exceedance of a groundwater-to-indoor-air screening level does not necessarily translate into an 

unacceptable vapor exposure or risk.  

There are several areas recommended for further evaluation, including occupied residential and 

commercial buildings that overlie the commingled plumes of VOCs: (1) the residential area 

southeast of the Montrose Site (with elevated concentrations of chlorobenzene and TCE); (2) 

commercial/industrial area with elevated TCE concentrations south of the Montrose and Jones 

sites; and (3) residences south of the Waste Pits (with historic detections of TCE; see Figures 12 

and 13).  These areas are shown on Figure 14.   

Area 1: The residential area southeast of the Montrose Site is an area that would require site-

specific screening evaluation of potential VI risks for the following reasons: 
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(1) Based on most recent data, concentrations of chlorobenzene and TCE in the water table 

zone of the UBF (well SWL0049) are increasing and currently exceed the EPA’s 

groundwater-to-indoor-air screening levels of 410 μg/L for chlorobenzene and 1.1 μg/L 

for TCE; 

(2) The water table continues to rise, which would result in shrinking of the vadose zone; 

thus, the VI potential may increase.  (Theoretically, the water table can go up 

approximately 5 to 10 feet in the next decade or so; thus, the vadose zone thickness at the 

location of well SWL0049 would decrease from the current depth of approximately 

42 feet bgs to less than 40 feet bgs.)  

(3) Per the boring log for well SWL0049 (Dames and Moore 1998) included in 

Attachment 1, the vadoze zone is composed predominantly of fine sand, which would 

tend to favor migration of vapors upward. 

 

On behalf of Montrose Chemical Corporation of California (Montrose), AECOM (2013) 

conducted a vapor intrusion evaluation for chlorobenzene impacts to groundwater at monitoring 

well SWL0049.  AECOM used the results of Johnson & Ettinger vapor intrusion model (GW-

ADV, Version 3.1, dated February 2004) that were obtained by Exponent (2013) to evaluate the 

potential for vapor intrusion from groundwater to indoor air in the vicinity of this monitoring 

well.   

Based on model results, the concentrations of chlorobenzene detected in groundwater at 

monitoring well SWL0049 were not found to pose an increased or unacceptable non-

carcinogenic vapor intrusion health risk to residents.  However, the evaluation did not consider 

other VOCs such as TCE in the commingled plume at location of well SWL0049, nor did it 

account for the likelihood of an increase in chlorobenzene concentrations and a decrease in the 

vadoze zone thickness in future.  

The groundwater-to-indoor-air screening values are from the VISL (EPA, 2013c) based on a 

conservative attenuation factor of 0.001.  The use of the EPA GW-ADV spreadsheet will refine 

the attenuation factor, supporting more realistic decisions for public protection.   

Area 2: Commercial/Industrial Area with elevated TCE concentrations south of the Montrose 

and Jones sites would require site-specific screening evaluation of potential VI risks because:  

(1) TCE concentrations historically detected in wells XMW-06 and XMW-16 (see Figure 13) 

exceeded the EPA’s groundwater-to-indoor-air screening level of 1.1 μg/L; 

(2) At locations of these wells the vadoze zone thickness is expected to be between 48 and 

58 feet and may decrease in future as a result of the water table rise; 

(3) The cross sections for the Montrose Site (see Figures 7 and 8) indicate that upper 25 feet 

of the vadose zone soil in the area south of the Montrose and Jones sites is composed of 

clayey silt and silt, while the remaining 30 or so feet of soil consists mostly of fine-

grained sand. 

Note that TCE concentrations in groundwater beneath this area range from 270 to 530 μg/L 

(wells XMW-16 and XMW-06 shown on Figure 13) and are similar to those detected near the 
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western border of the Del Amo Site (for example, in wells SWL0002 and SWL0004 (Figure 13).  

Wells SWL0002 and SWL0004 are close to the leading edge of the large TCE plume that 

appears to originate west of the Del Amo property boundary.  As discussed in Section 2.3 and 

detailed in Table 2 for the Del Amo OU-1 (Soil and NAPL), TCE concentrations in soil gas 

(exterior and subslab) and indoor air exceeded the target risk levels in two buildings (URS 2009, 

2010).  The parcels which include these two buildings are shown with yellow boxes on Figure 

15.  Both parcels overlie the eastern “nose” of the TCE plume shown on Figure 13. 

Area 3: Residences south of the Waste Pits overlie a southern portion of the 400-foot-long 

commingled TCE and benzene plume.  Historically, LNAPL was measured in well XP-01 (see 

Figure 12). Concentrations of TCE measured in wells SWL008 and SWL0051 (see Figure 13) 

ranged from 5.3 to 9.1 μg/L, which exceed the EPA’s groundwater-to-indoor-air screening level 

for TCE of 1.1 μg/L. 

Soil gas and indoor air sampling conducted in 1995 in residential areas south of the Waste Pits 

(ASTDR 1995), estimates of indoor air levels for several VOCs in the western neighborhood, 

and indoor air samples of a few homes in the eastern neighborhood (CDHS 2004) did not 

indicate health threats from the VI exposure pathway.  However, community representatives 

have expressed concern. Therefore, additional site-specific screening evaluation of current 

conditions will focus on TCE and take into account potentially decreasing thickness of the 

vadose zone and its lithological makeup.  

It is recommended that more rigorous tools for site-specific screening, such as VI modeling, 

using the most current data, be used to further evaluate the three areas identified above. 
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4.0 VAPOR INTRUSION ASSESSMENT APPROACH 

This section briefly discusses an approach for conducting additional site-specific screening 

evaluation of potential VI risks from groundwater in select areas.  In general, the VI assessment 

will follow multiple lines of evidence approach (with modeling used as one line of evidence) and 

will include the following steps: 

 Compile historic and most recent data for preliminary screening evaluation  

 Perform more rigorous evaluation of recommended areas using historic and current site 

specific information (e.g., VI modeling). 

 Assess data gaps, uncertainties and limitations in evaluating VI pathway for 

recommended areas.  

 Develop a detailed plan to collect specific information necessary to further evaluate the 

VI pathway.  

 

Selecting appropriate model and input data are important for implementation of the VI 

assessment approach as discussed in the following sections.  

4.1 Selected Vapor Intrusion Model  

The Johnson and Ettinger (J&E) model (1991) was selected for the site-specific screening 

evaluation of potential VI risks for the residential areas identified in Section 3.6.  EPA has 

identified the J&E model as a commonly used model for evaluating indoor air exposure (EPA 

2004).  It is a screening-level model that incorporates both convective and diffusive mechanisms 

for estimating the transport of contaminant vapors emanating from either subsurface soils or 

groundwater into indoor spaces located above the source of contamination (EPA 2002). EPA 

programmed the J&E model into Microsoft EXCEL™ and added a health risk component that 

calculates the risk from inhaling a specific chemical at the concentration estimated in indoor air 

(EPA 2004). 

The J&E model provides an estimated attenuation coefficient or factor (denoted with symbol α) 

that relates the vapor concentration in the indoor space to the vapor concentration at the source of 

contamination (EPA 2002).  The vapor attenuation factor is an inverse measurement of the 

overall dilution that occurs as vapors migrate from a subsurface source into a building.  Lower 

attenuation factor values indicate lower vapor intrusion impacts and greater dilution; higher 

values indicate greater vapor intrusion impacts and less dilution (EPA 2012a, b). 

The J&E model uses the conservation of mass principle and a number of simplifying 

assumptions.  It cannot evaluate preferential migration pathways or address highly variable and 

heterogeneous subsurface conditions. 

4.2 Model Input Data 

Inputs to the J&E model include chemical properties of the contaminant, properties of saturated 

and unsaturated soils, and structural properties of the building.  Current EPA chemical-specific 

properties and toxicity values (EPA 2012a, c) for the COPCs will be used in the model.  
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Data on site-specific physical and geotechnical parameters (for example, soil type, depth to 

groundwater, average groundwater temperature, porosity, and permeablility) have been compiled 

from the RI (EPA 1998, Dames and Moore 1998), geotechnical (EarthTech AECOM 2008), and 

groundwater monitoring reports (AECOM 2012c, URS 2012).  If not available for some of the 

areas, conservative default parameters will be used. 

Table 3 summarizes model input parameters for site-specific screening evaluations (DTSC 2011) 

for soils properties and structural properties of the building.  The basis for each individual 

parameter is provided in the last column of the table. 
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5.0 CONCLUSIONS AND RECOMMENDATIONS 

Based on conservative screening evaluations using current information gathered from multiple 

sources on groundwater monitoring and VI assessments at Montrose and Del Amo Superfund 

Sites, several areas with occupied buildings (residential or commercial) were selected for further 

evaluation.  These areas overlie commingled plumes of VOCs in groundwater (Figure 14) and 

include the following: 

 

(1) The residential area southeast of the Montrose Site (with elevated concentrations of 

chlorobenzene and TCE);  

 

(2) Commercial/Industrial area with elevated TCE concentrations south of the Montrose and 

Jones sites; and 

 

(3) Residential area south of the Waste Pits (with historic TCE detections and expressed 

community interest). 

 

It is recommended that more rigorous tools for site-specific screening, such as VI modeling, 

using the most current data, be used to further evaluate the three areas identified above. 
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Table 1.  Site Uses and Media Affected 

Site Name  

(Area) 

Years of 

Operation Past Uses Current Uses Historical Releases Media Affected 

Del Amo  

Superfund Site 

(280 acres) 

1943-1972 

Large-Scale Industrial 

Operations 

(Styrene Plant/Butadiene 

Plant/Synthetic Rubber Plant 

Industrial Park 

(Developed  since 

1972) 

LNAPL  

(Benzene) 
Soil and Groundwater 

Montrose 

Superfund Site 

(13 acres) 

1947-1982 Pesticide DDT Plant 
None 

(Demolished 1983) 

DNAPL 

(Chlorobenzene, 

DDT) 

Surface soil, groundwater, 

stormwater drainage 

ditches and sewers, 

sanitary sewers 

Jones Chemicals 

Industries 

(5 acres) 

1940s -1968 

Sulfuric Acid Manufacturing 

Plant (1940s-1952) 

Water Treatment Chemicals 

Manufacturing, Storage  

(1963-1968) 

Manufacturing/ 

Repackaging (sodium 

hypochlorite, sodium 

bisulfate,  

other chemicals) 

PCE, TCE Soil and Groundwater 

Other Sites - 

Former Boeing 

Facility, APC, 

PACCAR 

-- Industrial Operations -- TCE Soil and Groundwater 

 

Notes:  

DDT         Dichloro-diphenyl-trichloroethane          PCE          Tetrachlorothylene 

DNAPL Dense Non-Aqueous Phase Liquid          TCE          Trichloroethylene 

LNAPL Light Non-Aqueous Phase Liquid            --               Not available 
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Table 2.  Summary of Previous Vapor Intrusion Assessments 

Operable  

Unit 

Primary Release 

Areas 

Vapor 

Sources 

Vapor 

Migration 

Vapor 

Receptors 

Vapor Intrusion 

Assessments 

Montrose OU-1:  

On and Near-

Property Soils  

and 

Montrose OU-3:  

DNAPL 

Central Process 

Area (CPA) 

 Contaminated vadose 

zone soil, 

 DNAPL, and 

 Dissolved VOCs in 

groundwater: primarily 

chlorobenzene (small 

percentage of other 

VOCs) 

Soil vapor 

concentrations 

exceeding industrial 

screening levels 

detected in the 

shallow subsurface 

along the northern 

property boundary  

Three occupied 

commercial warehouse 

buildings (GLJ Holdings 

Property) north of the 

property line; no 

occupied structures on 

the plant property. 

- 2003 onsite soil vapor survey (Earth Tech 2004); 

- 2010 shallow soil vapor survey along the northern 

property boundary and around commercial 

warehouse buildings offsite to the north (AECOM 

2012a);  

- December 2010, building evaluations, followed up 

in 2011 with air sampling at the three warehouse 

buildings (AECOM 2012b). 

Montrose OU-7:  

Jones Chemical 

Industries 

The dry well main 

yard sump, former 

PCE storage tank/ 

neutralization tank 

areas, former drum 

storage areas, and 

other processes 

 Contaminated vadose 

zone soil, 

 Dissolved VOCs in 

groundwater: primarily 

PCE, TCE and 10 other 

VOCs above screening 

criteria. 

Benzene, carbon 

tetrachloride, 

chloroform and PCE 

in indoor air samples 

exceeded screening 

criteria within 

buildings on the 

Jones property 

Several existing 

occupied buildings 

(main offices, 

warehouse, 

manufacturing, 

repackaging facilities 

and other)  

- 1994-1994 soil gas sampling (EPA 1998); 

- 2011 and 2012 soil gas and indoor air sampling 

(Arcadis 2012a, b) 

 

Del Amo OU-1:  

Soil and NAPL 

Former plant site 

outside the Waste 

Pits Area (former 

styrene and 

butadiene plants) 

 Contaminated shallow 

and deep vadose zone 

soil, 

 LNAPL, and  

 dissolved VOCs in 

groundwater:  

primarily benzene (also 

toluene, ethyl-benzene, 

styrene, PCE, and TCE) 

VI/indoor air 

exposure pathway: 

target risk levels 

exceeded in two 

buildings (URS 

2010) 

Approximately 68 

commercial buildings, 

most of which occupied 

(used for logistics, 

manufacturing, and 

office purposes) 

- Shallow soil and soil vapor samples collected 

during RI activities between 1992 and  2003 (URS 

2007)   

- An indoor air study conducted 1993 – 1995 (URS 

2001) 

- Subslab samples collected at five occupied parcels 

in 2009 and confirmed the need for remedy to 

address potential VI at two buildings (URS 2009) 

Del Amo OU-2:  

Waste Pits 

Waste Pits and 

likely a petroleum 

pipeline directly 

south 

 Contaminated vadose 

zone soil, 

 LNAPL, and  

 dissolved VOCs in 

groundwater:   benzene 

and other petroleum 

related VOCs 

VI pathway 

associated with 

Waste Pits for nearby 

structures in 

residential area to the 

south. 

No occupied structures 

at the Waste Pits area 

and/or within 30 feet of 

the benzene 

contamination at  the 

Waste Pits 

- 1995 indoor air sampling (ASTDR 1995);  

- soil vapor sampling south of the Del Amo Waste 

Pits (CDHS  2004);  

- soil vapor monitoring began in 2003; 

- SVE/IBT system operates since 2006.                            
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Operable  

Unit 

Primary Release 

Areas 

Vapor 

Sources 

Vapor 

Migration 

Vapor 

Receptors 

Vapor Intrusion 

Assessments 

 

Montrose and 

Del Amo OU-3: 

Dual Site 

Groundwater 

 

Areas of former 

plants and 

industrial 

operations at  

Montrose and Del 

Amo Sites and 

several nearby 

source areas 

 

 Dissolved plumes 

outside the source 

areas: 

primarily benzene, 

chlorobenzene, and TCE 

(other VOCs: 

ethylbenzene, naphthalene, 

PCE, and DCE) 

 

VI pathway 

associated with OU-3 

groundwater outside 

source areas likely 

insignificant, except 

for a few areas with 

elevated 

concentrations of 

TCE and 

chlorobenzene 

beneath the 

residential land use 

areas. 

 

Occupied structures of 

various types in 

residential, commercial, 

and industrial areas.   

Residential areas 

include single-family 

detached houses and 

multiplex  apartment 

buildings 

 

- 1995 indoor air sampling in 25 houses south of the 

Del Amo Waste Pits (ASTDR 1995);  

- 2004 evaluation of indoor air effects for two 

regions of the neighborhood south of the Del Amo 

site (CDHS 2004): (1) high chlorobenzene and 

benzene concentrations in groundwater beneath the 

western neighborhood and (2) elevated benzene 

concentrations and other VOCs, including vinyl 

chloride and naphthalene (eastern neighborhood) 

 

Notes:  

DDT  Dichloro-diphenyl-trichloroethane  

DCE Dichloroethylene 

DNAPL Dense Non-Aqueous Phase Liquid  

LNAPL Light Non-Aqueous Phase Liquid  

  PCE Tetrachlorothylene 
  TCE Trichloroethylene 

  VOC Volatile Organic Compound  
- Not available 
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TABLE 3 - Input Parameters for Site-Specific Screening Evaluation 
 

Primary Input Parameters  
Site-Specific 

Evaluation  

Basis for Site-Specific Parameter  

Cs 
 Subsurface concentrations

1
  Statistical 

approximation
1
 

 Use ProUCL (EPA 2010b) 

θt  Soil total porosity
2
  Site-specific  Use ASTM D854  

θw  Soil volumetric water content
2
  Site-specific  Use ASTM D2216  

θa  Soil volumetric air content
2
  Site-specific  Calculate from θw  

ρs  Soil bulk density  Site-specific  Use ASTM 2937  

θtcap  Capillary zone total porosity  Site-specific  Use ASTM D854  
θwcap  Capillary zone volumetric water content  Site-specific  Calculate from EPA 2003  
θacap  Capillary zone volumetric air content  Site-specific  Calculate from θwcap  
Lcap  Thickness of the capillary fringe  Site-specific  Calculate from Fetter (2001)  
k  Soil permeability

3
  Site-specific  In-situ measurement  

foc  Soil fraction organic carbon  Site-specific  Use Walkley-Black method  
°T  Soil and groundwater temperature  Site-specific  Field measurement  

ΔP  Indoor – outdoor pressure differential  40 g/cm-s2  EPA 2002  
η  Crack-to-total area ratio  0.005  Johnson 2002  
Eb  Indoor air exchange rate – residential  0.5 / hour  EPA 1997 (California data)  
Eb  Indoor air exchange rate - commercial  1.0 / hour  CEC 2001  

Lcrack  Foundation slab thickness  Site-specific  - 

Lb,Wb,Hb  Building dimensions
4
  Site-specific  - 

Lf  

Foundation depth below grade – 

building with no basement  
15 cm  EPA 2002  

Foundation depth below grade – 

building with basement  
200 cm  EPA 2002  

Lt  Distance from foundation to source  Site-specific  - 

Lwt  
Distance from foundation to 

groundwater  
Site-specific  - 

Qsoil  Soil gas advection rate
5
  5 L/minute  EPA 2002  

 

CEC = California Energy Commission  

cm = centimeters  

g/cm-s
2
 = grams per centimeter – seconds squared  

L = liters  

 

Notes:  

 
1 
            For existing buildings use maximum concentrations unless a robust statistical data set is available; 

 

2 
            In-situ measurement of effective diffusion coefficient is recommended over inferring the input parameter from the soil’s 

water content, air content, and total porosity. 
 

3
             Use a soil gas advection rate (Qsoil) of 5 liters per minute with the default building size unless an in-situ measurement 

of air permeability of the shallow soil is available.  Hence, the EPA Vapor Intrusion Model should only calculate a site-

specific Qsoil when site-specific permeability measurements are available. 
 

4
          The default building size is 10 meters by 10 meters (EPA 2002). 

 

5 
            For structures larger than the default building size, the default value for Qsoil of 5 liters per minute should be  

 proportionally increased in a linear fashion as a function of the spatial footprint of the building.  For example, a          

building of 1,000 square meters will have, for modeling purposes, a soil gas advection rate of 50 liters per minute.     



Tetra Tech, Inc.          Groundwater Data Evaluation  September 2013 
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Montrose and Del Amo Superfund Sites
Torrance, California

Figure 2
Typical Conceptual Model 

of Vapor Intrusion
Source:  Interstate Technology & Regulatory Council (ITRC). 2007. Vapor Intrusion Pathway: A 
Practical Guideline. VI‐1. Washington, D.C.: ITRC, Vapor Intrusion Team. www.itrcweb.org. of Vapor Intrusion
Source:  Interstate Technology & Regulatory Council (ITRC). 2007. Vapor Intrusion Pathway: A 
Practical Guideline. VI‐1. Washington, D.C.: ITRC, Vapor Intrusion Team. www.itrcweb.org.



Montrose and Del Amo Superfund Sites
Torrance, California

Figure 3Source:  Interstate Technology & Regulatory 
Council (ITRC). 2007. Vapor Intrusion Pathway: 
A Practical Guideline VI‐1 Washington D C : Conceptual Site Model: Vapor Intrusion 

from Groundwater Contamination 

Source:  Interstate Technology & Regulatory 
Council (ITRC). 2007. Vapor Intrusion Pathway: 
A Practical Guideline. VI‐1. Washington, D.C.: 
ITRC, Vapor Intrusion Team. www.itrcweb.org.
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FIGURE 3-2
Areas of Previous Vapor Intrusion Assessment
Current Status of Vapor Intrusion Assessment, 
Montrose and Del Amo Superfund Sites, Torrance, California
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E l iExplanation

UBF:  Upper Bellflower Aquitard
MBFB: Middle Bellflower B Sand 
MBFM: Middle Bellflower Mud
MBFC: Middle Bellflower C Sand

Montrose and Del Amo Superfund Sites
Torrance, California

Figure 5
Hydrostratigraphic  Block Diagram

MBFB: Middle Bellflower B Sand 
MBFM: Middle Bellflower Mud
MBFC: Middle Bellflower C Sand
LBF:  Lower Bellflower Aquitard
Gage:  Gage Aquifer
GLA:  Gage‐Lynwood Aquitard
Lynwood:  Lynwood Aquifer

S URS 2012 G d t M it i R t D l Sit

Lynwood:  Lynwood Aquifer

Source:  URS 2012. Groundwater Monitoring Report, Dual Site 
Operable Unit. Original figure prepared by URS Corporation.  



Montrose and Del Amo Superfund Sites
Torrance, California

Figure 6Figure 6
Location of Cross Section Lines

Montrose Superfund SiteSource:  Hargis & Associates 1998.  Final Remedial Investigation Report for 
the Montrose Superfund Site, Los Angeles, California. 
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Montrose and Del Amo Superfund Sites
Torrance, California

Figure 7Figure 7
Cross Section A ‐ A'

Montrose Superfund SiteSource:  Hargis & Associates 1998.  Final Remedial Investigation Report for 
the Montrose Superfund Site, Los Angeles, California. 



2012

1997

2012

Montrose and Del Amo Superfund Sites
Torrance, California

Figure 8Figure 8
Cross Section B ‐ B'

Montrose Superfund SiteSource:  Hargis & Associates 1998.  Final Remedial Investigation Report for 
the Montrose Superfund Site, Los Angeles, California. 
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Montrose and Del Amo Superfund Sites
Torrance, California

Figure 10
Upper Bellflower Aquitard Source: AECOM 2012. Groundwater Monitoring Report, Upper Bellflower Aquitard 
Water Level Hydrographs

Source:  AECOM 2012. Groundwater Monitoring Report, 
Montrose Superfund Site. 
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SWL0068 (01/10)
150,000

CWL0051 (08/97)CWL0051 (08/97)
260,000260,000

(LNAPL 08/97)(LNAPL 08/97)

XMW-20XMW-20
(LNAPL 02/12)(LNAPL 02/12)

SWL0001SWL0001
(LNAPL 02/12)(LNAPL 02/12)

MWB020* (09/06)MWB020* (09/06)
<1<1

XMW-10* (10/06)XMW-10* (10/06)
<2<2

PZL0026 (10/06)PZL0026 (10/06)
9191

XP-01XP-01
LNAPLLNAPL

XMW-02* (04/88)XMW-02* (04/88)
<2,500<2,500

XUBT-03* (12/95)XUBT-03* (12/95)
230230 XMW-28 (10/06)XMW-28 (10/06)

44,00044,000

XMW-07* (04/90)XMW-07* (04/90)
27,00027,000

PZL0018PZL0018
1,7001,700

XMW-23* (01/96)XMW-23* (01/96)
<0.5<0.5

XMW-24XMW-24
<0.5<0.5

XMW-01HD (06/93)XMW-01HD (06/93)
860,000860,000

PZL0011 (10/06)PZL0011 (10/06)
8,1008,100

PZL0026 (10/06)PZL0026 (10/06)
9191

SWL0021SWL0021
0.570.57

SWL0051*SWL0051*
<0.5<0.5

PZL0020*PZL0020*
190,000190,000

XMW-29XMW-29
73,00073,000

PZL0006 (10/06)PZL0006 (10/06)
<2.1<2.1

PZL0009 (10/06)PZL0009 (10/06)
7272

PZL0016 (10/06)PZL0016 (10/06)
<30<30

PZL0003 (10/06)PZL0003 (10/06)
<0.5<0.5

SWL0007 (10/06)SWL0007 (10/06)
3

SWL0017 (10/06)SWL0017 (10/06)
3.23.2

SWL0004SWL0004
610,000610,000

SWL0049SWL0049
3939

SWL0008*SWL0008*
5252

SWL0044SWL0044
0.820.82

XMW-04HD (10/06)XMW-04HD (10/06)
430,000430,000

XMW-03HD (10/06)XMW-03HD (10/06)
3.33.3

SWL0009 (10/06)SWL0009 (10/06)
0.290.29

PZL0007 (10/06)PZL0007 (10/06)
<0.5<0.5

SWL0042SWL0042
1.11.1

SWL0028SWL0028
<0.5<0.5

SWL0057^SWL0057^
<0.5<0.5

XP-02*XP-02*
<0.8<0.8

SWL0006SWL0006
<0.5<0.5

PZL0014 (10/06)PZL0014 (10/06)
0.680.68

PZL0010 (10/06)PZL0010 (10/06)
<0.5<0.5

PZL0004 (10/06)PZL0004 (10/06)
<0.5<0.5

SWL0005SWL0005
<0.5<0.5

PZL0022*PZL0022*
<0.5<0.5

PZL0001PZL0001
<0.5<0.5

SWL0016SWL0016
<0.5<0.5XMW-21XMW-21

0.660.66

SWL0024SWL0024
<0.5<0.5

PZL0012 (10/06)PZL0012 (10/06)
<13<13

XMW-07T* (01/03)XMW-07T* (01/03)
<25<25

XMW-04T* (01/03)XMW-04T* (01/03)
<25<25

SWL0003 (10/06)SWL0003 (10/06)
170,000170,000

XMW-12* (02/96)XMW-12* (02/96)
580580

XMW-27* (10/06)XMW-27* (10/06)
<2<2

XMW-11* (01/04)XMW-11* (01/04)
5.25.2

XMW-14* (01/04)XMW-14* (01/04)
3,3003,300

XMW-01*XMW-01*
2,9002,900

XMW-06*XMW-06*
1717

XMW-03* (10/06)XMW-03* (10/06)
<2<2

XMW-04* (10/06)XMW-04* (10/06)
<100<100

XMW-10* (10/06)XMW-10* (10/06)
<2<2

XMW-22* (10/06)XMW-22* (10/06)
<2<2

XMW-26* (10/06)XMW-26* (10/06)
<2<2

XMW-30XMW-30
<0.5<0.5

XMW-25* (10/06)XMW-25* (10/06)
120120

XMW-17* (10/06)XMW-17* (10/06)
<2<2

XMW-05* (01/04)XMW-05* (01/04)
2.22.2

XMW-08* (01/04)XMW-08* (01/04)
<2<2

XMW-13*XMW-13*
5,2005,200

SWL0046 (10/06)SWL0046 (10/06)
<0.5<0.5

XMW-03T* (01/03)XMW-03T* (01/03)
<25<25

XMW-05T* (01/03)XMW-05T* (01/03)
5252

XMW-06T* (01/03)XMW-06T* (01/03)
<25<25 XMW-08T* (01/03)XMW-08T* (01/03)

<2.5<2.5

SWL0059 (10/06)SWL0059 (10/06)
9.39.3

SWL0002 (10/06)SWL0002 (10/06)
<19<19

XMW-16* (10/06)XMW-16* (10/06)
<4<4

CWL0022 (02/93)CWL0022 (02/93)
1.91.9

CWL0018 (02/93)CWL0018 (02/93)
<0.5<0.5

CWL0044 (03/93)CWL0044 (03/93)
0.60.6

CWL0017 (02/93)CWL0017 (02/93)
0.50.5

CWL0020 (02/93)CWL0020 (02/93)
0.50.5

CWL0045 (03/93)CWL0045 (03/93)
4.44.4

CWL0041 (03/93)CWL0041 (03/93)
4343

CWL0040 (03/93)CWL0040 (03/93)
0.620.62

CWL0037 (03/93)CWL0037 (03/93)
<0.5<0.5

CWL0029 (03/93)CWL0029 (03/93)
3131

CWL0028 (03/93)CWL0028 (03/93)
177,100177,100

CWL0027 (03/93)CWL0027 (03/93)
442,110442,110

XMW-02HD (08/00)XMW-02HD (08/00)
970970

CWL0025 (03/93)CWL0025 (03/93)
<0.5<0.5

CWL0032 (03/93)CWL0032 (03/93)
29.129.1

CWL0035 (03/93)CWL0035 (03/93)
3.33.3

CWL0019 (02/93)CWL0019 (02/93)
<0.5<0.5

WPL0001 (02/93)WPL0001 (02/93)
42,00042,000

WPL0002 (03/93)WPL0002 (03/93)
140,000140,000

CWL0012 (02/93)CWL0012 (02/93)
290,000290,000

SBL0493 (03/05)SBL0493 (03/05)
260,000260,000 

CWL0014 (02/93)CWL0014 (02/93)
3,0003,000

CWL0046 (03/93)CWL0046 (03/93)
1.21.2

CWL0048 (03/93)CWL0048 (03/93)
1.21.2

PZL0013 (07/00)PZL0013 (07/00)
300,000300,000

CWL0034 (03/93)CWL0034 (03/93)
14.914.9

CWL0042 (03/93)CWL0042 (03/93)
1.31.3

SWL0015 (02/96)SWL0015 (02/96)
2.92.9

XGW-07A (07/00)XGW-07A (07/00)
<0.5<0.5

PZL0005 (02/96)PZL0005 (02/96)
<0.5<0.5

PZL0019*PZL0019*
250,000250,000

PZL0024*PZL0024*
<0.5<0.5

PZL0025*PZL0025*
<0.5<0.5

PZL0002 (02/96)PZL0002 (02/96)
<0.5<0.5

PZL0017 (05/93)PZL0017 (05/93)
<0.5<0.5 SWL0045 (10/96)SWL0045 (10/96)

<0.5<0.5

SWL0039 (02/96)SWL0039 (02/96)
<0.5<0.5

SWL0038 (07/00)SWL0038 (07/00)
<1<1

PZL0015 (04/93)PZL0015 (04/93)
<0.5<0.5

PZL0008 (02/96)PZL0008 (02/96)
<0.5<0.5

SWL0012 (02/96)SWL0012 (02/96)
<0.5<0.5

PZL0021 (01/04)PZL0021 (01/04)
200,000200,000

XP-01XP-01
LNAPLLNAPL

TMW11* (10/06)TMW11* (10/06)
<1<1
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1010010100
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1010210102
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1010110101

1010210102

1010210102

1010210102

1010210102

101031010310103

10101
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10103

10101

10102

10103

10104101041010510105

1010410104

1010510105

1010510105

10100

1010310103

1010310103

10100

101001010010100

10105

101001010410104

10101

101011010110101

101011010110101

10101

10100

10100

1010110101

1010010100

1010110101

WCC-4S* (03/06)WCC-4S* (03/06)
<1<1

MWB003* (09/06)MWB003* (09/06)
6.36.3

MWB027* (09/06)MWB027* (09/06)
<1<1

MWB006* (09/06)MWB006* (09/06)
4949

WCC-03S* (03/06)WCC-03S* (03/06)
<200<200

IRZMW0004* (09/06)IRZMW0004* (09/06)
<10<10

IRZB0095* (09/06)IRZB0095* (09/06)
<4<4

IRZB0081* (09/06)IRZB0081* (09/06)
<10<10

IRZMW005* (09/06)IRZMW005* (09/06)
<5<5

IRZMW002A* (09/06)IRZMW002A* (09/06)
<20<20

IRZMW001A* (09/06)IRZMW001A* (09/06)
<20<20

IRZMW001B* (09/06)IRZMW001B* (09/06)
<2<2

IRZMW002B* (09/06)IRZMW002B* (09/06)
<1<1

IRZMW003B* (09/06)IRZMW003B* (09/06)
<1<1

MWB013* (09/06)MWB013* (09/06)
<1<1

MWB028* (09/06)MWB028* (09/06)
<1<1

TMW-08* (03/06)TMW-08* (03/06)
1212

WCC-06S* (03/06)WCC-06S* (03/06)
7474

MWB005* (03/06)MWB005* (03/06)
<5<5

TMW-04* (03/06)TMW-04* (03/06)
0.470.47

MWB014* (03/06)MWB014* (03/06)
<1<1

TMW-14* (09/06)TMW-14* (09/06)
<1<1

TMW-06* (03/06)TMW-06* (03/06)
<1<1

WCC-12S* (03/06)WCC-12S* (03/06)
<1<1

IRZMW003A* (09/06)IRZMW003A* (09/06)
<50<50

WCC-4S* (03/06)WCC-4S* (03/06)
<1<1MWB027* (09/06)MWB027* (09/06)

<1<1

MWB006* (09/06)MWB006* (09/06)
4949

WCC-03S* (03/06)WCC-03S* (03/06)
<200<200

IRZMW0004* (09/06)IRZMW0004* (09/06)
<10<10

IRZB0095* (09/06)IRZB0095* (09/06)
<4<4

IRZB0081* (09/06)IRZB0081* (09/06)
<10<10

IRZMW005* (09/06)IRZMW005* (09/06)
<5<5

IRZMW003A* (09/06)IRZMW003A* (09/06)
<50<50IRZMW002A* (09/06)IRZMW002A* (09/06)

<20<20

IRZMW001A* (09/06)IRZMW001A* (09/06)
<20<20

IRZMW001B* (09/06)IRZMW001B* (09/06)
<2<2

IRZMW002B* (09/06)IRZMW002B* (09/06)
<1<1

IRZMW003B* (09/06)IRZMW003B* (09/06)
<1<1

TMW-15* (09/06)TMW-15* (09/06)
<1<1

TMW-15* (09/06)TMW-15* (09/06)
<1<1

MWB013* (09/06)MWB013* (09/06)
<1<1

MWB028* (09/06)MWB028* (09/06)
<1<1

MWB003* (09/06)MWB003* (09/06)
6.36.3

TMW-08* (03/06)TMW-08* (03/06)
1212

WCC-06S* (03/06)WCC-06S* (03/06)
7474

MWB005* (03/06)MWB005* (03/06)
<5<5

TMW-04* (03/06)TMW-04* (03/06)
0.470.47

MWB014* (03/06)MWB014* (03/06)
<1<1

TMW-14* (09/06)TMW-14* (09/06)
<1<1

TMW-06* (03/06)TMW-06* (03/06)
<1<1

WCC-12S* (03/06)WCC-12S* (03/06)
<1<1

MWB019* (09/06)MWB019* (09/06)
<10<10

XMW-19* (10/06)XMW-19* (10/06)
<1<1

XMW-19* (10/06)XMW-19* (10/06)
<1<1

XMWB007* (09/06)XMWB007* (09/06)
0.410.41

XWCC05S* (09/06)XWCC05S* (09/06)
<1<1

WCC09S* (09/06)WCC09S* (09/06)
<1<1

TMW10* (09/06)TMW10* (09/06)
<1<1

MWB019* (09/06)MWB019* (09/06)
<10<10

WCC-7S* (03/06)WCC-7S* (03/06)
<1<1

WCC-7S* (03/06)WCC-7S* (03/06)
<1<1

MWB012* (03/06)MWB012* (03/06)
<1<1

MWB012* (03/06)MWB012* (03/06)
<1<1

TMW-0* (03/06)TMW-0* (03/06)
<1<1

TMW-0* (03/06)TMW-0* (03/06)
<1<1

XMW-09* (01/04)XMW-09* (01/04)
2.52.5

XMW-10* (10/06)XMW-10* (10/06)
<2<2

PZL0026 (10/06)PZL0026 (10/06)
9191

XP-01XP-01
(LNAPL 04/93)(LNAPL 04/93)

XMW-02* (04/88)
<2,500

XUBT-03* (12/95)
230 XMW-28 (10/06)

44,000

XMW-20
(LNAPL 02/12)

XMW-07* (04/90)
27,000

PZL0018
1,700

XMW-23* (01/96)
<0.5

XMW-24
<0.5

XMW-01HD (06/93)
860,000

PZL0011 (10/06)
8,100

PZL0026 (10/06)
91

SWL0021
0.57

SWL0051*
<0.5

PZL0020*
190,000

XMW-29
73,000

PZL0006 (10/06)
<2.1

PZL0009 (10/06)
72

PZL0016 (10/06)
<30

PZL0003 (10/06)
<0.5

SWL0007 (10/06)
3

SWL0017 (10/06)
3.2

SWL0004
610,000

SWL0049
39

SWL0008*
52

SWL0044
0.82

XMW-04HD (10/06)
430,000

XMW-03HD (10/06)
3.3

SWL0009 (10/06)
0.29

PZL0007 (10/06)
<0.5

SWL0042
1.1

SWL0028
<0.5

SWL0057^
<0.5

XP-02*
<0.8

SWL0006
<0.5

PZL0014 (10/06)
0.68

PZL0010 (10/06)
<0.5

PZL0004 (10/06)
<0.5

SWL0005
<0.5

PZL0022*
<0.5

PZL0001
<0.5

SWL0016
<0.5XMW-21

0.66

SWL0024
<0.5

PZL0012 (10/06)
<13

XMW-07T* (01/03)
<25

XMW-04T* (01/03)
<25

SWL0003 (10/06)
170,000

XMW-12* (02/96)
580

XMW-27* (10/06)
<2

XMW-11* (01/04)
5.2

XMW-14* (01/04)
3,300

XMW-01*
2,900

XMW-06*
17

XMW-03* (10/06)
<2

XMW-04* (10/06)
<100

XMW-10* (10/06)
<2

XMW-22* (10/06)
<2

XMW-26* (10/06)
<2

XMW-30
<0.5

XMW-25* (10/06)
120

XMW-17* (10/06)
<2

XMW-05* (01/04)
2.2

XMW-08* (01/04)
<2

XMW-13*
5,200

SWL0046 (10/06)
<0.5

PZL0005 (02/96)
<0.5

SWL0045 (10/96)
<0.5

XMW-03T* (01/03)
<25

XMW-05T* (01/03)
52

XMW-06T* (01/03)
<25 XMW-08T* (01/03)

<2.5

SWL0059 (10/06)
9.3

SWL0002 (10/06)
<19

XMW-16* (10/06)
<4

CWL0022 (02/93)
1.9

CWL0018 (02/93)
<0.5

CWL0044 (03/93)
0.6

CWL0017 (02/93)
0.5

CWL0020 (02/93)
0.5

CWL0045 (03/93)
4.4

CWL0041 (03/93)
43

CWL0040 (03/93)
0.62

CWL0037 (03/93)
<0.5

CWL0029 (03/93)
31

CWL0028 (03/93)
177,100

CWL0027 (03/93)
442,110

XMW-02HD (08/00)
970

CWL0025 (03/93)
<0.5

CWL0025 (03/93)
<0.5

CWL0032 (03/93)
29.1

CWL0035 (03/93)
3.3

CWL0019 (02/93)
<0.5

WPL0001 (02/93)
42,000

WPL0002 (03/93)
140,000

CWL0012 (02/93)
290,000

SBL0493 (03/05)
260,000

CWL0014 (02/93)
3,000

CWL0046 (03/93)
1.2

CWL0048 (03/93)
1.2

PZL0013 (07/00)
300,000

CWL0034 (03/93)
14.9

CWL0051 (08/97)
260,000

(LNAPL 08/97)

CWL0042 (03/93)
1.3

SWL0015 (02/96)
2.9

XGW-07A (07/00)
<0.5

PZL0005 (02/96)
<0.5

PZL0019*
250,000

PZL0024*
<0.5

PZL0025*
<0.5

PZL0002 (02/96)
<0.5

PZL0017 (05/93)
<0.5 SWL0045 (10/96)

<0.5

SWL0039 (02/96)
<0.5

SWL0038 (07/00)
<1

PZL0015 (04/93)
<0.5

PZL0008 (02/96)
<0.5

SWL0012 (02/96)
<0.5

PZL0021 (01/04)
200,000

XP-01
(LNAPL 04/93)

TMW11* (10/06)
<1

10100

1010010100

1010010105

1010110101

10101

10100

1010010100

10100100

10100100

10100100
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10102102
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10102102

10102102
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1010310103103
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1010410410105105
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?

??

??
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????

??

??

??
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10103103
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1010010100101001010010100100

1010010100100
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1010010104104

101

1010110101101
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101

100

100

SWL0001
(LNAPL 02/12)

10101101

10100100

10101101

?

WCC-4S* (03/06)WCC-4S* (03/06)
<1<1

MWB003* (09/06)MWB003* (09/06)
6.36.3

MWB027* (09/06)MWB027* (09/06)
<1<1

MWB006* (09/06)MWB006* (09/06)
4949

WCC-03S* (03/06)WCC-03S* (03/06)
<200<200

IRZMW0004* (09/06)IRZMW0004* (09/06)
<10<10

IRZB0095* (09/06)IRZB0095* (09/06)
<4<4

IRZB0081* (09/06)IRZB0081* (09/06)
<10<10

IRZMW005* (09/06)IRZMW005* (09/06)
<5<5

IRZMW002A* (09/06)IRZMW002A* (09/06)
<20<20

IRZMW001A* (09/06)IRZMW001A* (09/06)
<20<20

IRZMW001B* (09/06)IRZMW001B* (09/06)
<2<2

IRZMW002B* (09/06)IRZMW002B* (09/06)
<1<1

IRZMW003B* (09/06)IRZMW003B* (09/06)
<1<1

MWB013* (09/06)MWB013* (09/06)
<1<1

MWB028* (09/06)MWB028* (09/06)
<1<1

TMW-08* (03/06)TMW-08* (03/06)
1212

WCC-06S* (03/06)WCC-06S* (03/06)
7474

MWB005* (03/06)MWB005* (03/06)
<5<5

TMW-04* (03/06)TMW-04* (03/06)
0.470.47

MWB014* (03/06)MWB014* (03/06)
<1<1

TMW-14* (09/06)TMW-14* (09/06)
<1<1

TMW-06* (03/06)TMW-06* (03/06)
<1<1

WCC-12S* (03/06)WCC-12S* (03/06)
<1<1

IRZMW003A* (09/06)IRZMW003A* (09/06)
<50<50

WCC-4S* (03/06)
<1MWB027* (09/06)

<1

MWB006* (09/06)
49

WCC-03S* (03/06)
<200

IRZMW0004* (09/06)
<10

IRZB0095* (09/06)
<4

IRZB0081* (09/06)
<10

IRZMW005* (09/06)
<5

IRZMW003A* (09/06)
<50IRZMW002A* (09/06)

<20

IRZMW001A* (09/06)
<20

IRZMW001B* (09/06)
<2
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ATTACHMENT 1 
 

WELL CONSTRUCTION DETAILS AND BORING LOG OF WELL 
SWL0049 
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