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1 Introduction	

Benefit	cost	and	economic	impact	analyses	of	national	regulations	designed	to	improve	air	quality	require	
information	from	numerous	scientific	disciplines	and	sources	to	be	linked	and	assessed.	Each	component	
of	these	analyses	(e.g.,	engineering	assessment,	air	quality	modeling,	risk	assessment,	economic	analysis)	
may	be	subject	to	uncertainty	and	the	 linkages	between	these	components	may	act	to	compound	the	
uncertainty.	 A	 recent	National	 Academy	 of	 Sciences	 study	 on	making	 Environmental	 Decisions	Under	
Uncertainty	noted	 that	“informed	 identification	and	use	of	uncertainties	 in	 the	process	 is	an	essential	
feature	of	environmental	decision	making”	(NAS,	2013).	In	2002,	the	NAS	also	noted	that:	

“Even	great	uncertainty	does	not	imply	that	action	to	promote	or	protect	public	health	should	be	
delayed.	Decisions	about	whether	to	act,	when	to	act,	and	how	aggressively	to	act	can	only	be	
made	with	 some	 understanding	 of	 the	 likelihood	 and	 consequences	 of	 alternative	 courses	 of	
action.	 The	 potential	 for	 improving	 decisions	 through	 research	must	 be	 balanced	 against	 the	
public	 health	 costs	 incurred	 because	 of	 a	 delay	 in	 the	 implementation	 of	 controls.	 Complete	
certainty	is	an	unattainable	ideal.”	

The	NAS	Committee	in	2013	classified	uncertainties	according	to	three	types:	(1)	statistical	variability	and	
heterogeneity,	(2)	deep	uncertainty,	and	(3)	model	and	parameter	uncertainty.	Statistical	variability	and	
heterogeneity	refers	to	exogenous	sources	of	uncertainty	inherent	in	the	system	or	process	under	study.	
These	are	sources	of	uncertainty	that,	ex	ante,	cannot	be	reduced	through	additional	research	or	data	
collection,	for	example	stochasticity	in	dynamic	processes	whose	fundamentals	are	well	understood.	Deep	
uncertainty	refers	to	cases	where	there	is	a	lack	of	understanding,	or	notable	disagreement,	about	the	
fundamentals	of	underlying	processes	important	to	understanding	the	impact	of	an	intervention	in	the	
system	of	interest.	These	sources	of	uncertainty	are	characterized	by	cases	where	additional	research	or	
data	collection	are	unlikely	to	reduce	the	uncertainty	in	the	time	before	a	policy	maker	needs	to	select	a	
course	 of	 action.	Model	 and	 parameter	 uncertainty	 refers	 to	 uncertainty	 in	models	 that	 are	 used	 to	
represent	underlying	processes	relevant	to	understanding	the	impact	of	an	intervention	in	the	system	of	
interest,	where	a	model	is	defined	as	a	“simplification	of	reality	that	is	constructed	to	gain	insights	into	
select	attributes	of	a	particular	physical,	biologic,	economic,	or	social	system”	(NRC,	2009).	These	sources	
of	uncertainty	arise	due	to	current	limitations	of	scientific	and	economic	processes,	now	and	in	the	future,	
and	in	theory	could	be	reduced	by	additional	research	prior	to	making	a	decision.	

While	 all	 these	 sources	 of	 uncertainty	may	 be	 relevant	 for	 decision	making	 regarding	 environmental	
regulations	 designed	 to	 improve	 air	 quality,	 this	 paper	 focuses	 primarily	 on	 model	 and	 parameter	
uncertainty	 related	 to	 benefit	 cost	 analysis	 and	 the	 potential	 use	 of	 CGE	 models	 for	 economy-wide	
analysis.1	This	white	paper	introduces	some	of	the	key	sources	of	uncertainty	associated	with	benefit	cost	

																																																													
1	Just	as	uncertainty	may	affect	decisions	about	environmental	regulations,	uncertainty	may	affect	other	decisions	

in	the	economy.	While	outside	the	scope	of	this	paper,	dynamic	stochastic	general	equilibrium	(DSGE)	models	
can	 capture	 some	 aspects	 of	 decision	making	 under	 uncertainty	 by	 economic	 agents.	 For	 examples	 of	DSGE	
models	 applied	 to	 environmental	 issues	 see	 the	 white	 paper	 on	 Economy-Wide	 Modeling:	 Evaluating	 the	
Economic	Impacts	of	Air	Regulations.		
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analyses	of	air	 regulations	and	additional	sources	of	uncertainty	 that	may	arise	when	extending	 those	
analyses	to	include	an	economy-wide	assessment	using	CGE	models.	Given	these	sources	of	uncertainty,	
this	white	paper	discusses	a	number	of	analytical	approaches	that	may	be	used	to	provide	decision	makers	
and	stakeholders	with	additional	information	about	the	robustness	of	model	results.	These	approaches	
and	other	methods	of	model	validation	and	verification	can	help	provide	confidence	 in	the	qualitative	
conclusions	 of	 policy	 analysis	 based	 on	modeling	 results.	While	 the	 focus	 of	 the	 discussion	 is	 on	 the	
estimation	of	benefits	and	costs,	the	same	sources	of	uncertainty	can	also	affect	estimates	of	economic	
impacts.	

Specifically,	 the	 white	 paper	 begins	 with	 a	 brief	 description	 on	 uncertainties	 inherent	 in	 traditional	
engineering-based	cost	assessments	followed	by	uncertainties	that	may	be	associated	with	incorporating	
this	 information	 in	 a	 CGE	model.	 Subsequently,	 the	 paper	 provides	 a	 brief	 discussion	 of	 some	 of	 the	
uncertainties	 associated	with	 traditional	 benefits	 assessment	 for	 regulations	 designed	 to	 improve	 air	
quality.	The	white	paper	then	considers	sources	of	uncertainty	associated	with	CGE	modeling.	Following	
the	introductory	discussions	on	sources	of	uncertainty,	the	paper	considers	approaches	for	quantitatively	
assessing	the	impact	of	uncertainty	on	the	results	and	methods	for	presenting	those	results	in	a	manner	
that	appropriately	conveys	 the	 information	relevant	 for	decision	makers	and	stakeholders.	Finally,	 the	
paper	 considers	 approaches	 of	 model	 validation	 and	 verification	 for	 CGE	 models	 to	 further	 increase	
confidence	in	modeling	results	and	reduce	potential	sources	of	uncertainty.	

2 Uncertainty	in	Cost	Estimation	

Economy-wide	analysis	of	air	regulations	will	in	part	be	informed	by	traditional	engineering	cost	estimates	
of	pollution	abatement.	Uncertainty	in	the	results	of	these	engineering	analyses	will	influence	the	overall	
degree	of	uncertainty	in	the	results	of	economy-wide	analysis.	This	section	examines	uncertainties	arising	
from	the	estimation	of	engineering	costs	that	may	be	used	as	inputs	to	CGE	models,	when	CGE	models	
are	used	to	perform	regulatory	analysis.	This	section	begins	by	examining	uncertainty	in	the	cost	inputs	
from	the	perspective	of	the	cost	analyst	or	engineer	who	typically	develops	the	regulatory	cost	estimates	
used	in	regulatory	actions.	Subsequently,	the	section	discusses	uncertainties	that	may	arise	using	these	
estimates	to	introduce	a	regulatory	shock	into	a	CGE	model.	

2.1 Uncertainty	in	Regulatory	Cost	Estimates	

Entities	 affected	 by	 a	 regulation	may	 incur	 compliance	 costs	 in	 the	 process	 of	mitigating	 pollution	 to	
comply	with	 the	 regulation.	 The	 largest	 components	 of	 compliance	 costs	 are	 typically	 the	 capital	 and	
operating	 costs	 associated	 with	 pollution	 control	 equipment.	 Capital	 costs	 are	 often	 one-time	
expenditures	 related	 to	 the	 installation	 or	 retrofit	 of	 structures	 or	 equipment	 to	 reduce	 emissions.	
Operating	costs	are	recurring	annual	expenditures	associated	with	the	operation	and	maintenance	of	the	
pollution	control	equipment	and	will	often	include	monitoring,	reporting	and	recordkeeping	expenditures.	
Administrative	and	enforcement	costs	may	also	accrue	to	local,	state,	and	federal	regulatory	agencies.		

Analysts	typically	estimate	compliance	costs	expected	to	be	incurred	by	regulated	entities	before	the	rule	
is	 implemented.	 In	 many	 cases,	 these	 ex	 ante	 estimates	 of	 compliance	 costs	 are	 estimated	 by	 cost	



	
6	

engineers	and	policy	analysts	to	fulfill	statutory	obligations	outside	of	benefit	cost	analysis	or	purposes	of	
evaluating	 the	 national	 economic	 impacts	 of	 the	 regulation.	 As	 has	 been	 discussed	 by	 the	 National	
Academies	 of	 Science	 (NAS,	 2013),	 these	 ex	 ante	 estimates	 of	 compliance	 costs	 are	 often	 based	 on	
engineering	models	 in	which	 there	 is	 uncertainty	 over	 facility	 characteristics,	 the	 number	 of	 affected	
facilities,	and	the	degree	of	regulatory	compliance.	This	uncertainty	often	leads	to	cases	in	which	the	ex	
ante	estimates	of	compliance	costs	differ	from	the	ex	post	(realized)	compliance	costs.	

The	“Retrospective	Study	of	the	Costs	of	EPA	Regulation”	highlighted	a	number	of	reasons	that	ex	ante	
and	ex	post	compliance	costs	may	differ	(Kopits	et	al.,	2014).	For	example,	technological	innovation	and	
unforeseen	compliance	options	might	also	cause	ex	ante	costs	to	diverge	from	ex	post	compliance	costs.	
Unanticipated	changes	 in	other	exogenous	 factors,	 such	as	 changes	 in	energy	prices	or	demand	shifts	
independent	of	regulation,	may	also	cause	ex	post	compliance	costs	to	diverge	from	the	ex	ante	estimates.	
Furthermore,	strategic	behavior	by	firms	can	influence	ex	ante	compliance	cost	estimates,	as	much	of	the	
information	used	in	estimating	compliance	costs	comes	directly	from	industry.	

Since	EPA	compliance	cost	estimation	is	primarily	performed	by	cost	analysts	and	engineers,	it	is	useful	to	
review	 the	 framework	 developed	 by	 those	 professions	 to	 articulate	 the	 accuracy	 of	 engineering	 cost	
estimates.	For	example,	the	EPA	Air	Pollution	Control	Cost	Manual	(2002)	is	described	as	a	comprehensive	
set	of	“procedures	and	data	for	sizing	and	costing	control	equipment”	for	VOCs,	PM,	SO2,	NOx,	and	some	
acid	gases.	This	manual	as	well	as	the	AACE	International	Cost	Estimating	Classification	System2	have	been	
used	 to	 provide	 context	 for	 the	 uncertainty	 associated	 with	 pollution	 control	 cost	 estimates	 for	
compliance	with	National	Ambient	Air	Quality	Standards	(NAAQS).		

In	the	2015	Final	Ozone	NAAQS	Regulatory	Impact	Analysis	(RIA),	for	example,	EPA	stated	that	there	is	a	
range	of	 ±	 30	percent	 for	 non-electrical	 generating	unit	 point	 source	 control	 costs,	 citing	 the	 EPA	Air	
Pollution	Control	Cost	Manual	(2002).	This	level	of	accuracy	is	described	in	the	EPA	Air	Pollution	Control	
Cost	Manual	as	a	“study	estimate.”	According	to	the	Manual,	the	study	estimate	is	well	suited	for	use	in	
regulatory	 development	 because	 it	 does	 not	 require	 detailed	 site-specific	 information	 necessary	 for	
industry	level	analyses.	They	also	can	be	prepared	at	a	relatively	low	cost	with	relatively	minimal	data.	
While	information	that	is	more	detailed	may	be	available	to	the	EPA,	it	is	often	proprietary	and	considered	
confidential	business	information.		

In	 addition	 to	 the	 study	estimate,	 the	EPA	Air	Pollution	Control	Cost	Manual	discusses	other	 types	of	
estimates:	

• Order-of-magnitude:	This	estimate	provides	a	rule-of-thumb	procedure	applied	only	to	repetitive	
types	of	plant	installations	for	which	there	exists	good	cost	history.	Its	error	bounds	are	greater	
than	±	30	percent.	The	sole	input	required	for	making	this	level	of	estimate	is	the	control	system’s	
capacity.	

• Scope,	Budget	Authorization,	or	Preliminary:	This	estimate,	nominally	of	±	20%	accuracy,	
requires	more	detailed	knowledge	than	the	study	estimate	regarding	the	site,	flow	sheet,	

																																																													
2	AACE	International.	Recommended	Practice	No.	17R-97.	Cost	Estimate	Classification	System	–	Cost	Estimating	
and	Budgeting.	Revised	on	November	29,	2011.	Available	at	http://www.aacei.org/.	
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equipment,	buildings,	etc.	In	addition,	rough	specifications	for	the	insulation	and	
instrumentation	are	needed.	

• Project	Control	or	Definitive:	These	estimates,	accurate	to	within	±	10%,	yet	require	more	
information	than	the	scope	estimates,	especially	information	concerning	the	site,	equipment,	
and	electrical	requirements.	

• Firm,	Contractor,	or	Detailed:	This	is	the	most	accurate	type	of	estimate	(±	5%)	and	requires	
complete	drawings,	specifications,	and	site	surveys.	Consequently,	detailed	cost	estimates	are	
typically	not	available	until	right	before	construction	is	commenced.	

These	 levels	 of	 accuracy	 also	 correspond	 to	 those	 reported	 in	 Perry’s	 Chemical	 Engineers’	Handbook,	
another	important	reference	for	costs	engineers	and	analysts.		

The	type	of	ex	ante	compliance	cost	estimate	calculated	by	EPA	prior	to	a	rulemaking	will	be	regulation	
specific,	given	the	heterogeneity	 in	available	 information	and	scope	of	regulations.	For	example,	some	
rulemakings	may	affect	relatively	few	facilities,	and	detailed	information	on	facility	characteristics	may	be	
available	publically	or	through	formal	Information	Collection	Requests.	In	other	cases,	regulation	may	only	
affect	new	facilities	where	heterogeneity	in	facility	characteristics	that	would	affect	retrofit	costs	are	not	
a	 confounding	 factor.	 Compliance	 cost	 estimates	 for	 these	 actions	 may	 be	 more	 precise	 than	 for	
regulations	like	a	NAAQS,	where	the	illustrative	controls	strategies	examined	in	NAAQS	RIAs	may	require	
reducing	emissions	at	a	large	number	of	facilities	(potentially	in	the	thousands)	across	multiple	sectors	
over	relatively	long	time	horizon.	

In	 its	 air-related	 RIAs,	 the	 EPA	 has	 limited	 experience	with	 evaluating	 uncertainty	 in	 compliance	 cost	
estimates.	 However,	 some	 recent	 examples	 of	 where	 the	 Agency	 has	 examined	 the	 implication	 of	
uncertain	factors	on	compliance	costs	include:	

• The	 level	of	 voluntary	emissions	 reductions	versus	 regulatory	emissions	 reductions	 for	oil	 and	
natural	gas	emissions	sources	(EPA	2012);		

• whether	 states	would	 adopt	 a	 rate-based	 or	mass-based	 compliance	 approaches	 for	meeting	
requirements	of	the	Clean	Power	Plan	(EPA	2015a);		

• alternative	assumptions	on	the	costs	of	emissions	controls	for	NAAQS-related	cost	analysis	(EPA	
2015b);	

• and,	the	influence	of	important	cost	components	such	as	the	value	of	natural	gas	that	is	captured	
by	emissions	controls	and	routed	to	sales	lines	or	used	in	processes	to	offset	other	fuel	purchases	
(EPA	2012	and	EPA	2016).	

As	noted	in	the	“White	Paper	on	Using	CGE	Models	to	Evaluate	Social	Cost	of	Air	Regulations”,	regulatory	
analysis	 may	 also	 differ	 due	 to	 the	 available	 information	 on	 potential	 pollution	 control	 options.	 For	
example,	in	some	cases	pollution	control	equipment	may	already	be	in	use	within	parts	of	the	industry	or	
closely	related	industries.	In	other	cases,	there	may	be	uncertainty	in	how	states	or	local	governments	
may	implement	regulations	and	therefore	in	the	facilities	affected	and	the	pollution	control	equipment	
that	might	be	adopted.	For	example,	in	illustrative	attainment	analyses	conducted	for	some	NAAQS,	once	
all	identified	control	technologies	have	been	applied	some	areas	of	the	country	may	still	be	modeled	as	
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out	 of	 compliance	 with	 the	 air	 quality	 standard.	 In	 some	 cases,	 EPA	 has	 had	 to	 assume	 the	 per	 ton	
compliance	 costs	 for	 “unidentified	 controls”	 that	 reduce	 emissions	 sufficiently	 to	 bring	 areas	 into	
attainment	of	alternative	air	quality	standards.	When	considering	the	cost	of	unidentified	controls,	the	
EPA	has	traditionally	offered	sensitivity	analyses	with	a	less	expensive	and	a	more	expensive	cost	per	ton	
estimate.	However,	there	is	not	a	firm	analytical	basis	for	the	values	chosen	for	the	sensitivity	analyses;	
rather,	they	roughly	correspond	to	the	same	+/-	30	percent	range	assumed	for	identified	controls.		

2.2 Uncertainty	in	implementation	of	Regulatory	Costs	in	Economic	Models	

As	discussed	in	“Economy-Wide	Modeling:	Social	Cost	and	Welfare	White	Paper”,	there	are	few	examples	
in	which	a	CGE	model	has	been	used	to	estimate	the	costs	of	regulations	designed	to	improve	air	quality.	
In	the	cases	where	a	CGE	model	has	been	used	to	analyze	non-price	regulations,	such	as	the	emissions	
limit	and	air	quality	regulations	promulgated	by	the	EPA,	they	are	often	modeled	as	a	productivity	shock.	
Specifically,	compliance	with	the	regulation	creates	a	need	for	additional	inputs	to	produce	goods	in	the	
regulated	sector	along	with	pollution	abatement.	While	the	total	cost	of	these	additional	inputs	can	be	
derived	from	detailed	compliance	cost	estimates	from	an	engineering	or	partial	equilibrium	model,	it	is	
not	always	clear	how	to	allocate	the	total	cost	among	the	inputs	specified	in	the	CGE	model,	because	CGE	
models	are	by	their	nature	an	aggregated,	parsimonious	representation	of	the	economy.	One	frequently	
used	approach	is	to	allocate	the	abatement	costs	in	direct	proportion	to	the	inputs	(i.e.,	capital,	labor,	and	
intermediate	 goods)	 used	 in	 the	 regulated	 sector	 of	 the	 CGE	 model.	 In	 other	 words,	 regulatory	
requirements	do	not	 change	 the	proportion	of	 labor,	 capital,	 or	 other	 inputs	 in	 the	 firm’s	production	
function.	This	“Hicks-neutral”	allocation	is	the	approach	taken	by	Hazilla	and	Kopp	(1990)	and	Jorgenson	
and	Wilcoxen	(1990).	Ballard	and	Medema	(1993)	allocate	all	of	the	abatement	costs	to	capital	and	labor	
inputs	 only.	 There	 is	 inherent	 uncertainty	 associated	 with	 the	 decision	 to	 model	 the	 production	 of	
pollution	abatement	as	having	the	same	production	function	as	the	affected	industry.	Even	in	cases	where	
detailed	compliance	cost	estimates	provide	additional	information	as	to	the	shares	of	inputs	expected	to	
be	used	in	pollution	abatement	there	may	be	uncertainty	as	to	how	the	inputs	from	these	engineering	
cost	models	map	to	the	goods	within	a	CGE	model.	Furthermore,	there	may	be	uncertainty	as	to	how	the	
substitution	possibilities	between	inputs	to	production	in	the	regulated	sector	in	the	CGE	model	map	to	
substitution	 possibilities	 in	 pollution	 control	 options	 that	 may	 be	 adopted	 under	 non-price	 based	
regulations,	 or	 how	 future	 technology	 development	might	 be	 expected	 to	 change	 those	 substitution	
possibilities.	

It	is	also	important	to	consider	both	the	spatial	and	temporal	allocation	of	cost.	There	may	be	a	mismatch	
between	affected	facility	locations	within	input	and	output	markets	and	the	scale	of	the	economy-wide	
model,	which	is	typically	regional	or	national	in	scale.	That	is,	it	may	be	difficult	to	precisely	model	changes	
that	 affect	 specific	 areas	 of	 the	 country	 in	 an	 aggregated	model.	 As	 a	 result,	 this	may	 lead	 to	 some	
uncertainty	in	the	results	of	the	aggregate	model.		

Likewise,	costs	may	be	incurred	at	different	points	during	the	time	horizon	of	the	economy-wide	model.	
With	a	long	time	horizon,	it	is	necessary	to	consider	the	role	of	technological	change	and	its	impact	on	the	
prices	 of	 inputs	 over	 time.	 Recent	 NAAQS	 RIAs	 include	 discussions	 of	 how	 technological	 change	
(specifically,	innovation	in	control	technologies)	may	reduce	costs	over	time,	and	the	empirical	literature	
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also	has	noted	that	variable	costs	of	production	or	environmental	abatement	tend	to	decline	over	time	
with	cumulative	experience.	While	the	study	on	the	costs	and	benefits	of	the	Clean	Air	Act	from	1990	to	
2020	(EPA	2011)	accounted	for	“learning	curve”	effects	(or	the	extent	to	which	the	costs	of	a	technology	
decline	as	experience	with	that	technology	increases),	regulatory	analyses	often	do	not	attempt	to	adjust	
costs	 to	 account	 for	 different	 assumptions	 about	 technological	 change	or	 the	effect	 of	 experience	on	
control	 costs.3	 As	 a	 result,	 when	 incorporating	 compliance	 costs	 in	 a	 CGE	 model,	 any	 impact	 of	
technological	change	will	be	determined	by	the	representation	of	technological	change	that	exists	in	the	
model,	 rather	 than	assumptions	 that	 are	 incorporated	 in	 the	engineering	 cost	estimates.	As	noted	by	
Pindyck	(2007),	characterizing	the	uncertainty	over	technological	change	is	in	itself	difficult.		

3 Uncertainty	in	Benefits	Estimation	

As	would	 be	 the	 case	with	 entering	 costs	 into	 a	 CGE	model,	 uncertainty	 in	 any	 inputs	 related	 to	 the	
benefits	of	a	regulation	will	propagate	through	the	analysis	and	lead	to	some	uncertainty	with	respect	to	
results.	While	a	complete	discussion	of	 the	sources	of	uncertainty	 in	benefits	estimates	 is	beyond	the	
scope	of	this	paper,	this	section	provides	a	brief	summary	of	EPA’s	efforts	to	characterize	uncertainty	in	
the	benefits	estimates	in	recent	RIAs.		

3.1 Uncertainty	in	Regulatory	Benefits	Estimates	

In	any	complex	analysis	using	estimated	parameters	and	inputs	from	numerous	models,	there	are	likely	
to	be	many	sources	of	uncertainty.	EPA	benefits	analyses	include	inputs	from	many	data	sources,	including	
emissions	 inventories,	 air	 quality	 data	 from	 models	 (with	 their	 associated	 parameters	 and	 inputs),	
population	data,	population	estimates,	health	effect	estimates	from	epidemiology	studies,	economic	data	
and	 parameters	 for	 valuing	 benefits,	 and	 assumptions	 regarding	 the	 future	 state	 of	 the	 world	 (e.g.,	
regulations,	technology,	emissions,	and	human	behavior).	There	may	be	uncertainty	associated	with	each	
of	 these	 inputs.	 Understanding	 key	 uncertainties	 in	 each	 stage	 of	 the	 analysis,	 and	 how	 they	 might	
interact,	can	be	 important	 for	understanding	the	 information	contained	 in	the	total	quantified	benefit	
estimates.	

While	the	National	Research	Council	(NRC,	2002,	2009)	reviewed	EPA’s	methodology	for	calculating	the	
benefits	of	reducing	air	pollution	and	found	it	to	be	reasonable	and	informative,	they	also	highlighted	the	
need	 to	 conduct	 rigorous	quantitative	analyses	of	uncertainty	and	 to	present	estimates	 in	a	way	 that	
recognizes	 their	 inherent	 uncertainty.	 In	 response,	 EPA	 has	 continued	 to	 work	 to	 improve	 the	
characterization	of	uncertainty	 in	health	 incidence	and	benefits	estimates.	Quantitative	approaches	to	
uncertainty	analysis	for	benefits	assessment	in	RIAs	have	included:	

• Monte	Carlo	assessments	that	account	for	random	sampling	error	and	between	study	variability	
in	epidemiological	and	economic	valuation	studies	(for	pollutants	PM2.5	and	O3);	

																																																													
3	An	exception	to	this	is	recent	greenhouse	gas	emission	standards	for	light-duty	and	for	medium-	and	heavy-duty	

vehicles.	See	https://www3.epa.gov/otaq/climate/documents/420r12901.pdf		for	one	example	of	how	learning	
curves	have	been	applied	in	these	contexts.	
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• alternative	concentration-response	functions	(PM2.5	and	O3);		

• alternative	 income	 elasticities	 in	 the	 specification	 of	 willingness-to-pay	 functions	 used	 for	
mortality	and	morbidity	endpoints	(O3);	

• inclusion	of	thresholds	in	some	concentration-response	functions	(O3);		

• alternative	cessation	lags	for	long-term	mortality	(O3);	

• a	concentration	benchmark	assessment	characterizing	the	distribution	of	avoided	deaths	relative	
to	specific	concentrations	in	the	long-term	epidemiological	studies	used	to	estimate	PM2.5-related	
mortality	(PM2.5);	and	

• when	monetizing	climate	benefits,	the	use	of	four	possible	measures	for	the	social	cost	of	carbon	
(SC-CO2)	and	social	cost	of	methane	(SC-CH4),	reflecting	a	lack	of	consensus	on	the	appropriate	
discount	 rate	and	 to	account	 for	 the	possibility	of	higher-than-expected	 impacts	 from	climate	
change.		

While	such	techniques	can	provide	valuable	information	about	key	uncertainties	and	how	they	influence	
benefits	estimates,	these	approaches	may	still	face	challenges	in	accounting	for	the	role	of	uncertainty	in	
other	 input	 variables,	 including	 emissions	 and	 air	 quality	 modeling,	 baseline	 incidence	 rates,	 and	
population	 exposure	 estimates.	 Challenges	 also	 remain	 in	 addressing	 correlations	 between	 input	
parameters	and	fully	characterizing	input	distributions.	As	a	result,	reported	confidence	intervals	and	the	
range	of	estimates	may	present	only	a	partial	picture	of	the	overall	uncertainty	in	the	final	estimates.	

In	2009,	EPA	undertook	a	project	to	identify	the	input	parameters	and	assumptions	that	have	the	potential	
to	 be	 significant	 contributors	 to	 the	 uncertainty	 in	 the	 benefits	 estimates	 produced	 by	 BenMAP,	 the	
primary	tool	EPA	uses	to	estimate	the	human	health	impacts	and	economic	value	of	air	quality	changes.	
To	 assess	 the	 impact	 of	 uncertainty	 in	 these	 parameters	 and	 assumptions,	 sensitivity	 analysis	 was	
conducted	where	 a	 range	 of	 values	 for	 key	 parameters	was	 defined,	 and	 their	 effects	 on	 results	was	
calculated	while	holding	all	other	parameters	at	their	mid	values.	The	study	found	that	the	components	
of	 a	 PM2.5	 benefits	 analysis	 contributing	most	 to	 uncertainty	 of	 the	monetized	benefits	 and	mortality	
incidence	are	the	estimate	of	the	value	of	a	statistical	life,	the	choice	of	concentration-response	function	
for	mortality,	and	the	change	in	PM2.5	concentration	(Mansfield	et	al.,	2009).	

As	 noted	 in	 the	 “Economy-Wide	 Modeling:	 Benefits	 of	 Air	 Quality	 Improvements	 White	 Paper”,	 the	
benefits	of	regulations	can	vary	significantly	over	space	due	to	a	number	of	factors,	including	the	spatial	
heterogeneity	in	air	quality	impacts	and	the	spatial	variation	in	population	and	baseline	incidence	rates.	
A	number	of	studies	have	analyzed	the	sensitivity	of	benefits	estimates	to	the	resolution	of	the	air	quality	
inputs	and/or	underlying	population	and	incidence	rate	data.	They	have	found	that	differences	in	spatial	
resolution,	operationalized	 in	 the	studies	by	varying	the	size	of	 the	grid	cell	within	which	air	quality	 is	
assumed	to	be	homogenous,	can	lead	to	substantially	different	benefits	estimates	(De	Ridder	et	al.	2014,	
Fann	et	 al.	 2011,	 Kheirbek	 et	 al.	 2013,	 Li	 et	 al.	 2015,	 Punger	 and	West	 2013,	 Thompson	et	 al.	 2014).	
However,	the	studies	do	not	find	a	consistent	bias	in	the	results.	Punger	and	West	(2013)	found	that	very	
coarse	grid	resolutions	(>250km)	produce	mortality	estimates	that	are	biased	substantially	low	for	PM2.5,	



	
11	

but	they	find	that	the	mortality	estimates	for	both	PM2.5	and	O3	at	36km	resolution	are	slightly	higher	than	
the	results	modeled	at	12km	resolution.	Li	et	al.	(2015)	also	found	a	negative	bias	in	mortality	estimates	
at	very	coarse	resolutions.	De	Ridder	et	al.	(2014)	found	a	similar	negative	bias	in	exposure	to	NO2	when	
moving	from	a	finely	resolved	grid	(1km)	to	a	coarser	resolution	(64km).	Thompson	et	al.	(2014)	found	O3	
health	impacts	to	be	sensitive	to	resolution,	but	did	not	find	a	similar	pattern	with	PM2.5,	at	least	when	
comparing	36km	results	to	12km	results.	Fann	et	al.	 (2011)	and	Kheirbek	et	al.	 (2013)	 found	that	very	
spatially	resolved	data	allowed	for	better	identification	of	areas	of	high	vulnerability	within	cities.	

3.2 Uncertainty	in	Introducing	Air	Quality	Improvement	Benefits	in	Economic	Models	

Setting	aside	uncertainties	in	the	upstream	elements	affecting	benefits	estimates,	any	benefits	analysis	
will	 produce	 a	 set	 of	 estimates	 that	 may	 include	 confidence	 intervals	 for	 some	 endpoints,	 may	 not	
completely	account	 for	all	of	 the	benefits	 (or	disbenefits)	of	an	action,	and	which	may	not	be	directly	
translatable	 to	 the	 inputs	 needed	 for	 an	 economy-wide	 model.	 As	 discussed	 in	 the	 “Economy-Wide	
Modeling:	Benefits	of	Air	Quality	Improvements	White	Paper,”	challenges	remain	in	fully	implementing	
the	effect	of	air	quality	on	the	behavior	and	well-being	of	economic	agents	in	a	CGE	model.	To	date,	there	
has	 been	 some	 limited	 inclusion	 of	 air	 quality	 impacts	 in	 CGE	 models	 including	 changes	 in	 medical	
expenditures	and	effects	on	the	labor	force	through	a	change	in	the	time	endowment.	Expanding	those	
categories	of	benefits	or	 introducing	a	more	complete	 treatment	of	air	quality	may	represent	notable	
challenges	 and	 be	 associated	 with	 uncertainty	 surrounding	 the	 implementing	 methodology.	 In	 these	
cases,	 there	may	be	uncertainty	over	 the	 structure	of	 the	model,	or	at	 least	 the	 components	used	 to	
incorporate	the	additional	benefit	categories.		

As	was	the	case	when	considering	the	inclusion	of	costs	in	an	economic	model,	it	is	important	to	consider	
both	 the	 spatial	 and	 temporal	 allocation	 of	 benefits.	While	more	 spatially	 resolved	 data	may	 lead	 to	
different	benefits	estimates,	the	spatial	resolution	of	the	benefits	estimate	is	typically	much	finer	than	the	
spatial	resolution	of	any	CGE	model	into	which	it	may	serve	as	an	input.	As	a	result,	some	aggregation	of	
benefits	estimates	and/or	air	quality	modeling	will	be	necessary.	The	degree	to	which	this	aggregation	
influences	CGE	modeling	 results	 is	 an	 important	question.	 Likewise,	 the	 timing	of	 benefits	 affects	 the	
budget	constraint	and	time	endowment	available	to	households,	which	may	influence	the	results	from	a	
CGE	model.	

4 Uncertainty	in	CGE	Modeling	

Applied	GE	analysis,	including	with	CGE	models,	has	long	been	known	to	be	sensitive	to	both	structural	
and	parametric	assumptions.	In	some	cases,	these	uncertainties	may	be	important	for	the	interpretation	
of	policy	analysis	conducted	using	CGE	models.	Before	discussing	approaches	to	quantitatively	modeling	
and	presenting	uncertainty	over	policy	results,	this	section	discusses	types	of	uncertainty	related	to	CGE	
models.	

4.1 Parametric	Uncertainty	

The	CGE	models	currently	used	in	policy	analysis	often	contain	hundreds,	if	not	thousands,	of	parameters,	
including	 those	 that	 define	 production	 technologies,	 household	 preferences,	 benchmark	 economic	
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activity,	current	policies,	and	changes	in	technologies	and	factor	endowments	over	time.	This	parametric	
uncertainty	may	have	implications	for	the	type	of	analysis	conducted	and	the	interpretation	of	the	results.		

One	well	recognized	area	of	uncertainty	in	CGE	models	are	the	estimates	of	elasticities	that	help	define	
production	technologies	and	agent	preferences.	Uncertainty	around	elasticity	parameters	has	frequently	
been	 a	 focus	 of	 analysts	 as	 the	modeling	 results	 are	 often	 highly	 sensitive	 to	 these	 parameters	 (e.g.,	
Shoven	 and	 Whalley,	 1984).	 The	 sensitivity	 of	 results	 to	 elasticities	 has	 been	 the	 subject	 of	 much	
discussion	given	the	common	approach	of	selecting	the	values	through	a	calibration	process	as	opposed	
econometric	 estimation	 (Hansen	 and	 Heckman,	 1996).	 However,	 selecting	 econometrically	 estimated	
parameter	values	from	the	literature	is	not	without	its	own	concerns	due	to	inconsistencies	between	the	
empirical	 analyses	 and	 the	 structure	 of	 the	 CGE	model	 and	 a	 large	 range	of	 potentially	 contradictory	
studies	that	provide	elasticity	estimates	(Canova,	1995).	Beckman	et	al.	(2011)	demonstrated	that	use	of	
current	and	well-researched	 substitution	elasticities	 for	 calibrated	models	 can	be	crucial	 for	achieving	
defensible	 behavior	 of	 a	 CGE	 model,	 and	 demonstrated	 an	 approach	 for	 validating	 model	
behavior/parameterization	using	historical	observations.	Given	that	not	all	parameters	of	a	model	may	be	
necessarily	verified	in	such	a	process,	sensitivity	analysis	 is	one	means	of	trying	to	assess	a	reasonable	
range	for	the	modeling	results	of	interest	given	likely	ranges	of	the	input	parameters.		

The	sensitivity	of	CGE	results	to	assumptions	and/or	estimates	of	substitution	elasticities	has	been	well	
demonstrated.	For	example,	Fox	and	Fullerton	(1991)	find	that	estimates	of	welfare	changes	associated	
with	tax	reform	can	be	more	sensitive	to	assumptions	about	elasticity	parameters	than	the	actual	level	of	
detail	about	the	tax	system	included	in	the	model.	Elliot	et	al.	(2012a)	find	that	the	results	of	applied	CGE	
analyses	are	likely	far	more	sensitive	to	uncertainty	around	assumptions	about	elasticity	parameters	than	
other	data	inputs	such	as	the	benchmark	social	accounting	matrix.		

In	dynamic	models,	results	have	been	found	to	be	particularly	sensitive	to	additional	parameters	beyond	
the	substitution	elasticities.	For	example,	Webster	et	al.	(2001)	find	that	exogenous	temporal	projections,	
such	as	those	defining	labor	productivity	growth	and	autonomous	energy	efficiency	improvement	over	
the	models	 time	horizon,	notably	 influence	 results.	Additional	 studies	have	 found	model	 results	 to	be	
particularly	 sensitive	 to	assumptions	about	 future	 technology	availability,	when	 such	 technologies	 are	
directly	related	to	compliance	with	the	policy	being	analyzed	(e.g.,	Clarke	et	al.	(2014)).	

Previous	economy-wide	analyses	conducted	by	EPA	have	primarily	examined	the	sensitivity	of	results	to	
key	 policy	 parameters.	 For	 example,	 in	 2009	members	 of	 the	 United	 States	 Congress	 requested	 EPA	
conduct	an	analysis	of	House	Resolution	2454,	which	proposed	a	multi-sector	allowance-trading	program	
designed	 to	 reduce	 emissions	 of	 greenhouse	 gases.4	 In	 that	 analysis,	 EPA	 examined	 the	 sensitivity	 of	
results	 from	 two	 CGE	 models	 (ADAGE	 and	 IGEM)	 under	 a	 number	 of	 scenarios	 in	 which	 key	 policy	
parameters	(e.g.,	availability	of	offsets,	energy	efficiency	provisions)	were	varied	(EPA,	2010a).	However,	
in	that	analysis	and	a	supplementary	analysis	(EPA,	2010c),	EPA	also	examined	the	sensitivity	of	results	to	
key	assumptions	regarding	the	future	availability	of	certain	technologies	(e.g.,	new	nuclear	power	plants,	

																																																													
4	http://thomas.loc.gov/cgi-bin/bdquery/z?d111:H.R.2454:	
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carbon	capture	and	sequestration).	The	results	of	the	analysis	were	found	to	be	sensitive	to	exogenous	
assumptions	regarding	the	availability	of	technologies	in	the	future.	

4.2 Structural	Uncertainty	

The	development	of	any	CGE	model	involves	many	structural	choices	to	address	a	particular	question	or	
set	of	questions.	Common	high-level	structural	choices	 include	static	vs.	dynamic,	myopic	vs.	 forward-
looking,	the	degree	of	sectoral	and	regional	disaggregation,	and	closed	vs.	open	economy.	Other	examples	
of	structural	choices	include	the	trade	specification	(Armington,	Heckscher-Ohlin,	or	Melitz),	savings	and	
investment	closures,	departures	 from	the	full	employment	assumption,	CES	nesting	structure,	and	the	
form	of	the	utility	function	(e.g.,	Cobb-Douglas	or	Stone-Geary/Linear	Expenditure	System).	Banse	(2013)	
in	a	review	of	nine	global	CGE	models	used	for	agricultural	analysis	list	16	structural	specification	options	
for	labor	markets	and	25	options	for	capital	markets.		

In	general,	structural	testing	is	more	resource	intensive	than	parametric	sensitivity	testing,	though	this	
depends	upon	the	type	of	structural	change	and	the	range	of	parametric	uncertainty.	There	are	many	
examples	of	 single	model	 structural	 comparison	 testing	 in	 the	 literature.	An	 illustrative	 sample	of	 this	
literature	 follows.	 Balistreri	 and	 Rutherford	 (2012)	 examine	 the	 differences	 between	 Armington	 and	
Melitz	treatments	of	international	trade	in	a	study	of	border	carbon	adjustments.	They	find	higher	leakage	
rates	 and	 more	 effective	 border	 adjustments	 under	 the	 heterogeneous	 firm	 structure	 of	 a	 Melitz	
approach.	 Jacoby	 and	 Sue-Wing	 (1999)	 and	 McFarland	 et	 al.	 (2004)	 show	 that	 the	 incorporation	 of	
vintaged	 capital	 in	 a	CGE	model	 raises	 the	 costs	of	 reducing	 greenhouse	gas	emissions.	Babiker	 et	 al.	
(2009)	compares	forward-looking	and	recursive-dynamic	specifications	for	climate	policy	analysis.	They	
note	that	the	macro-economic	costs	are	 lower	 in	the	forward-looking	version	because	of	the	ability	to	
shift	 consumption	 optimally	 over	 time.	 However,	 the	 forward-looking	 model,	 due	 to	 computational	
limitations,	 also	 drops	 the	 full	 capital	 vintaging	 specification	 and	 contains	 fewer	 explicit	 emission	
reduction	technologies.	These	factors	likely	have	countervailing	influences	on	the	relative	macroeconomic	
costs.	 EPA	 addressed	 structural	 uncertainty	 in	 the	 aforementioned	 economy-wide	 analysis	 of	 House	
Resolution	 2454	 by	 using	 two	models:	 ADAGE	 and	 IGEM	 (EPA,	 2010a).	 The	models	 differ	 on	 several	
structural	fronts.	ADAGE	is	a	calibrated	model	and	IGEM	is	econometrically	estimated.	ADAGE	has	a	more	
detailed	representation	of	the	energy	sector	and	energy	sector	technologies;	IGEM	has	more	non-energy	
sector	detail.	

5 Analytical	Approaches	

Uncertainty	 associated	with	 engineering	 cost	 and	 health	 and	 environmental	 benefit	 inputs,	 analytical	
assumptions,	 and	model	 parameters	 and	 structure,	may	 in	 some	 cases	warrant	 additional	 analysis	 to	
better	explore	the	expected	impacts	of	a	policy.	In	some	cases,	the	specifics	of	the	regulation	in	question	
may	 inform	whether	 the	additional	 resources	required	to	perform	additional	uncertainty	analysis	 is	of	
sufficient	 value.	 For	 example,	 Circular	 A-4,	 which	 “provides	 the	 Office	 of	Management	 and	 Budget’s	
(OMB's)	 guidance	 to	 Federal	 agencies	 on	 the	 development	 of	 regulatory	 analysis,”	 suggests	 a	 formal	
quantitative	analysis	of	 relevant	uncertainties	be	conducted	for	major	rules	that	are	expected	to	have	
“annual	economic	effects	of	$1	billion	or	more”	(OMB,	2003).	This	section	considers	different	quantitative	
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approaches	 for	 considering	 uncertainty	 in	 policy	 analyses	 conducted	 using	 CGE	 models,	 including	
sensitivity	analysis,	formal	uncertainty	analysis,	and	inter-model	comparisons.	For	ease	of	exposition,	we	
delineate	 sensitivity	 analysis	 and	 formal	 uncertainty	 analysis,	 by	 defining	 the	 former	 as	 analyses	 that	
consider	scenarios	in	which	one	or	more	inputs	are	varied	outside	of	a	well-defined	probability	space	and	
the	latter	as	analyses	that	attempt	to	characterize	the	distribution	of	model	results.	

5.1 Sensitivity	Analysis	

The	most	common	approach	to	testing	the	robustness	of	modeling	results	is	to	vary	an	exogenous	variable	
or	 parameter	 and	 solve	 the	 model	 to	 obtain	 the	 new	 set	 of	 endogenous	 state	 variables	 under	 the	
alternative	 parameterization.	 In	 this	 paper,	 such	 an	 approach	 is	 defined	 as	 sensitivity	 analysis	 to	
distinguish	it	from	more	formal	uncertainty	analysis	(Section	5.2)	and	inter-model	comparisons	(Section	
5.3).	We	use	the	term	sensitivity	analysis	as	 inclusive	of	comparative	statics	and	dynamics,	along	with	
situations	in	which	the	models	allow	for	the	existence	of	temporary	disequilibrium.	

It	is	common	for	sensitivity	analysis	to	vary	a	single	parameter	in	the	alternative	scenarios	to	isolate	the	
impact	it	has	on	the	results	of	interest.	This	approach	allows	analysts	to	gather	information	about	how	
robust	qualitative	conclusions,	based	on	modeling	results,	are	with	respect	to	specific	assumptions	or	key	
parameters.	EPA’s	Guidelines	for	Preparing	Economic	Analysis	(2010b)	suggests	that	“[i]n	cases	where	the	
data	are	uncertain,	or	not	easily	quantified,	but	may	have	a	significant	influence	on	the	results,	the	analyst	
should	 describe	 the	 weaknesses	 in	 the	 data	 and	 assumptions,	 and	 include	 some	 type	 of	 sensitivity	
analysis.”		

Sensitivity	 analysis	 that	 varies	 only	 one,	 or	 a	 few,	 parameters	 at	 a	 time	 could	 potentially	 provide	 an	
incomplete	 characterization	 of	 the	 uncertainty	 surrounding	 the	 results	 due	 to	 important	 interactions	
between	parameters	within	complex	and	non-linear	CGE	models	(Abler	et	al.,	1999).	By	its	nature,	basic	
sensitivity	analysis	is	limited	by	the	fact	that	is	normally	conducted	outside	of	a	well-defined	probability	
space	 that	 guides	which	 parameters	 to	 vary,	 and	 the	magnitude	 by	which	 they	 should	 be	 perturbed.	
However,	in	cases	with	incomplete	information	about	the	complete	distributional	parameter	space	and/or	
limited	resources	and	time,	basic	sensitivity	analysis	may	provide	useful	information	as	to	the	robustness	
of	modeling	results	and	provide	valuable	information	for	decision	makers	(Pannell,	1997).	Furthermore,	
as	noted	by	OMB	(2003)	in	Circular	A-4:	

“In	some	cases,	the	level	of	scientific	uncertainty	may	be	so	large	that	you	can	only	present	discrete	
alternative	scenarios	without	assessing	the	relative	likelihood	of	each	scenario	quantitatively.	For	
instance,	in	assessing	the	potential	outcomes	of	an	environmental	effect,	there	may	be	a	limited	
number	of	scientific	studies	with	strongly	divergent	results.	In	such	cases,	you	might	present	results	
from	a	 range	of	 plausible	 scenarios,	 together	with	 any	 available	 information	 that	might	help	 in	
qualitatively	determining	which	scenario	is	most	likely	to	occur.”	

While	 this	 description	 reinforces	 the	 benefits	 of	 sensitivity	 analysis,	 it	 also	 highlights	 the	 challenges	
present	 in	 conducting	 sensitivity	 analysis,	 as	 concepts	 such	 as	 a	 range	 of	 plausible	 scenarios	 are	 not	
formally	defined.	However,	it	is	possible	to	bring	some	structure	to	sensitivity	analysis.	For	example,	the	
Congressional	Budget	Office	(CBO)	approaches	sensitivity	analysis	in	its	macroeconomic	estimates	using	
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a	 defined	 process	 to	 address	 the	 lack	 of	 structure.	 Specifically,	 in	 its	 dynamic	 scoring	 approach	 CBO	
determines	 the	 two	parameters	 in	 the	model	 to	which	 the	 results	 are	most	 sensitive.	 Then	 potential	
estimates	are	generated	by	examining	each	case	in	which	those	two	parameters	are	at	the	ends	of	their	
ranges	and	other	parameters	are	equal	to	central	estimates,	where	CBO	ultimately	reports	the	cases	that	
show	the	most	and	least	favorable	budgetary	outcomes.5	It	is	also	worth	noting	that	CBO	does	not	conduct	
a	quantitative	uncertainty	analysis	for	each	bill	considered	if	the	range	derived	from	the	analysis	could	
potentially	be	misinterpreted.	For	example,	in	cases	where	the	underlying	conventional	cost	estimate	is	
associated	 with	 significant	 uncertainty	 relative	 to	 the	 uncertainty	 in	 the	 macroeconomic	 model,	
conducting	sensitivity	analysis	over	only	the	parameters	in	the	macroeconomic	model	could	produce	a	
range	 of	 estimates	 that	 should	 not	 be	 interpreted	 as	 characterizing	 the	 full	 range,	 given	 significant	
additional	uncertainty	in	the	conventional	cost	estimate	(CBO,	2015).	

Sensitivity	analysis	may	also	be	used	to	examine	uncertainties	with	respect	to	the	structure	of	CGE	models	
and	how	that	may	affect	the	results	of	policy	analysis.	Unlike	parametric	sensitivity	analysis,	structural	
sensitivity	analysis	examines	the	effect	of	changes	to	the	underlying	equations	in	the	model.	This	type	of	
analysis	typically	takes	place	within	a	single	model.	In	general,	structural	testing	is	more	resource	intensive	
than	parametric	sensitivity	analysis,	though	this	depends	upon	the	type	of	structural	change	and	the	range	
of	parametric	uncertainty.		

5.2 Formal	Uncertainty	Analysis	

Sensitivity	analysis	of	a	few	select	parameters,	as	described	in	Section	Error!	Reference	source	not	found.,	
may	allow	an	analyst	to	get	a	general	sense	of	how	the	model’s	results	may	depend	on	key	parameter	
values.	 However,	 due	 to	 the	 lack	 of	 a	methodological	 structure,	 which	 leads	 the	 approach	 to	 ignore	
information	contained	in	the	covariance	of	uncertain	parameters,	this	approach	is	necessarily	imprecise	
(Bernheim	et	al.,	1989).	As	a	more	structured	alternative,	modelers	have	considered	formal	uncertainty	
analysis	that	takes	into	consideration	additional	information	about	the	uncertain	parameters.6		

The	current	class	of	applied	general	equilibrium	models	used	for	policy	analysis	have	hundreds	of	input	
parameters.	Even	for	a	relatively	small	model	with	eight	parameters	that	each	have	five	potential	values,	
if	the	model	took	one	minute	to	solve	and	save	the	results	a	complete	factorial	experiment	design	that	
considered	 every	 possible	 combination	 of	 parameters	would	 require	 nine	months	 of	 processing	 time	
(Pannell,	1997).	It	is	likely	that	with	modern	computing	resources	models	that	solve	in	one	minute	likely	
have	far	more	than	eight	uncertain	parameters	making	Pannell’s	example	even	more	apt.	It	is	also	likely	
that	parameters	are	more	appropriately	characterized	by	distributions	than	by	a	discrete	set,	as	 in	the	
example	set	 forth	by	Pannell	 (1997).	Therefore,	Gaussian	quadrature	 (e.g.,	Hertel	et	al.,	2007),	Monte	
Carlo	(e.g.,	Selin	et	al.	2009),	and	linearization	(e.g.,	Jorgeson	et	al.,	2013)	methods	are	more	commonly	
used	to	conduct	forms	of	probabilistic	analysis.	These	techniques	provide	ways	of	approximating	integrals	
over	uncertain	model	parameters	to	obtain	expected	values	and	confidence	intervals	for	model	results.	

																																																													
5	http://www.slideshare.net/cbo/dynamic-scoring-at-cbo-51635156	

6	Approaches	to	more	formal	and	structured	uncertainty	analysis	have	also	been	described	as	“systematic	sensitivity	
analysis.”	
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These	benefits	come	at	the	cost	of	additional	computation	and	need	to	define	probability	distributions	
over	 the	uncertain	models	 inputs	and/or	parameters.	This	 section	describes	 these	various	methods	of	
uncertainty	analysis	and	examples	in	which	they	have	been	applied.	

The	endogenous	variables,	Y,	in	a	CGE	model	may	be	represented	as	the	result	of	the	implicit	function	

( ), ,Y H X β θ= ,	 	 	 	 	 	 	 	 	 	 (1)	

where	 X 	are	exogenous	variables	and	known	parameters,	 including	policy	variables,	 β 	are	uncertain	

parameters	 of	 the	 model,	 excluding	 calibration	 parameters	 which	 are	 defined	 by	 θ .	 The	 calibration	

parameters,	θ ,	are	chosen	such	that	the	model	replicates	benchmark	conditions,	 0Y ,	such	that	

( )0 0, ,h X Yθ β= ,		 	 	 	 	 	 	 	 	 	 (2)	

where	

( )( )0 0 0 0, , , ,H X h XY Yβ β= .	 	 	 	 	 	 	 	 	 (3)	

In	most	cases,	the	goal	of	the	analyst	 is	to	determine	the	expected	change	in	endogenous	variables	of	

interest	given	a	change	in	policy	parameters,	represented	as	a	movement	from	 0X 	to 1X ,	and	uncertainty	

in	the	model’s	parameters β ,		

[ ] ( ) ( )
( )

1 0 1 0

1 0

, , , ,

, ,

E Y Y E H X H X

E H X Y

β θ β θ

β θ

− = −⎡ ⎤⎣ ⎦

= −⎡ ⎤⎣ ⎦
	.	 	 	 	 	 	 	 	(4)	

Given	the	nonlinear	nature	of	most	CGE	models	it	will	be	the	case	that		

( ) [ ]( )1 1, , , , ,E H X H X Eβ θ β θ≠⎡ ⎤⎣ ⎦ ,	 	 	 	 	 	 	 	 (5)		

such	 that	 evaluating	 the	 change	 in	 model	 output	 under	 the	 policy	 at	 the	 expected	 values	 of	 the	
parameters	will	 not	 be	 equal	 to	 expected	 change	when	 fully	 considering	 the	 parametric	 uncertainty.	
Probabilistic	 analysis	 allows	 analysts	 to	 provide	more	 robust	 assessments	 of	 the	 expected	 change	 in	

economic	variables	by	integrating	over	the	joint	distribution	of	the	uncertain	parameters,	 ( )g β ,	

[ ] ( ) ( )1 1 , ,E Y H X g dβ θ β β
Ω

= ∫ 		 	 	 	 	 	 	 	 (6)	

and	provide	a	variance	associated	with	model’s	results	by	evaluating	

[ ]( ) ( ) [ ]{ } ( )
2 2

1 1 1 1, ,E Y E Y H X E gY dβ θ β β
Ω

⎡ ⎤− = −
⎣ ⎦ ∫ .	 	 	 	 	 	 (7)	

Given	the	nature	of	applied	CGE	models,	analytical	solutions	for	(6)	and	(7)	do	not	exist	and	numerical	
approximations	are	required.	A	common	approach	for	numerically	approximating	a	sampling	distribution	

of	 1Y 	 from	which	 sample	moments	 can	 be	 calculated	 is	 a	Monte	 Carlo	 simulation.	 The	 basic	 process	



	
17	

involves	conducting	N 	simulations	of 1Y ,	where	each	time	a	new	set	of	parameters,	 ˆnβ ,	is	drawn	for	the	

joint	probability	distribution	 ( )g β .	The	expected	values	of	the	endogenous	variables	in	(6)	may	then	be	

estimated	by	the	sample	mean	

[ ] ( )1 1
1

1 ˆ, ,
N

n
n

E Y H X
N

β θ
=

≈ ∑ ,	 	 	 	 	 	 	 	 	 (8)	

with	the	variance	calculated	analogously.	The	accuracy	of	the	approximation	will,	in	part,	depend	on	the	

number	 of	 simulations	 conducted,	 with	 the	 error	 being	 of	 order	 1 N 	 and	 therefore	 requiring	 a	

potentially	large	number	of	simulations.		

In	cases	of	highly	complex	models,	or	relatively	scarce	computing	resources,	the	number	of	simulations	
required	to	get	reliable	estimates	of	the	moments	around	the	variables	of	interest	can	be	of	concern.	To	
address	 the	 computational	 burdens,	Harrison	 and	Vinod	 (1992)	 suggest	 approximating	 the	underlying	
probability	distribution	with	a	discrete	set	of	points	and	probabilities,	allowing	for	 faster	convergence.	
However,	 their	 approach	 of	 choosing	 the	 points	 for	 each	 parameter	 by	 dividing	 the	 support	 of	 the	
marginal	probability	distribution	into	a	finite	number	of	equi-probable	regions,	 is	known	to	understate	
the	variance	(and	all	other	higher	order	even	numbered	moments)	of	the	parameter	distribution	(Miller	
and	Rice,	1983).	This	behavior	is	inherited	by	the	approximate	joint	distribution	of	the	parameters	and	
when	used	in	the	Monte	Carlo	approach	will	bias	the	results	(De	Vuyst	and	Preckel,	1997).		

As	an	alternative	to	Monte	Carlo	simulations	with	CGE	models,	Ardnt	 (1996)	and	DeVuyst	and	Preckel	
(1997)	introduce	an	approach	based	on	the	Gaussian	Quadrature	to	approximate	the	integrals	in	(6)	and	
(7).	The	general	principle	is	to	carefully	choose	a	series	of	 J 	weights,	 jw 	,	each	associated	with	a	set	of	

parameters,	 jβ ,	from	the	joint	probability	distribution,	such	that	the	expectation	may	be	approximated	

as	

[ ] ( )1 1
1

, ,
J

j j
j

E Y w H X β θ
=

≈∑ ,	 	 (9)	

where	
1

1J
jj

w
=

=∑ (with	similar	approximations	holding	for	higher	order	moments).	By	carefully	selecting	

the	sets	of	parameters	and	corresponding	weights,	the	analyst	may,	in	some	cases,	be	able	to	approximate	
the	moments	around	the	model	outputs	with	far	fewer	model	runs	than	under	the	Monte	Carlo	approach,	
J N< .	In	general,	the	basis	for	selecting	the	weights	and	corresponding	parameters	is	to	ensure	that	the	
moments	about	zero,	up	to	a	given	order,	would	be	adequately	integrated	using	the	selected	values.	By	
using	 higher	 order	 quadrature	 techniques	 greater	 accuracy	 may	 be	 achieved	 when	 integrating	
complicated	systems	of	non-linear	equations,	such	as	a	CGE	model,	though	the	ability	to	approximate	the	
integral	depends	on	the	ability	of	a	polynomial	to	approximate	the	curvature	of	the	model.	

In	 their	 original	 application,	DeVuyst	 and	Preckel	 (1997)	 use	 a	 global,	 energy-explicit	 CGE	model	with	
uncertain	fossil	fuel	supply	elasticities	to	evaluate	the	impacts	of	a	carbon	tax.	The	authors	demonstrate	
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the	approach	with	six	uncertain	parameters	from	independent	distributions,	and	find	that	they	can	obtain	
a	reasonable	approximation	of	 the	mean	and	standard	deviation	of	 the	model’s	endogenous	variables	
with	relatively	few	model	runs.	Since	their	original	demonstration,	Gaussian	Quadrature	has	been	used	to	
estimate	 expected	 values	 and	 confidence	 intervals	 for	 key	 results	 from	CGE	models	 in	more	 complex	
contexts.	For	example,	Hertel	et	al.	(2007)	use	the	technique	to	derive	means	and	confidence	intervals	
from	a	global	CGE	model	with	dozens	of	uncertain	parameters,	when	studying	the	 impact	of	 reducing	
international	trade	barriers.	However,	to	apply	the	method	they	assume	that	all	uncertain	parameters	are	
normally	distributed	and	independent.	

For	common	distributions	and	in	the	case	of	independent	uncertain	parameters,	techniques	for	selecting	
weights	and	parametric	values	are	readily	available	(Miranda	and	Fackler,	2002).	The	original	application	
using	this	technique	with	CGE	models	focused	on	cases	with	symmetric	and	independent	distributions	for	
the	 uncertain	 parameters.	 For	 the	 case	 of	 the	 non-symmetric	 distributions,	 non-diagonal	 covariance	
matrices,	and/or	large	parameter	spaces	techniques	for	Gaussian	Quadrature	may	not	be	readily	available	
or	may	not	provide	the	same	computational	improvement	over	Monte	Carlo	simulations.	Such	limitations	
may	be	 important,	 as	 Jorgenson	et	al.	 (2013)	demonstrates	 that	assuming	 independence	of	uncertain	
parameters	 in	 a	 CGE	 model	 can	 significantly	 bias	 confidence	 intervals	 around	 endogenous	 variables	
downward.	 However,	 Horridge	 and	 Pearson	 (2011)	 demonstrate	 an	 approach	 to	 applying	 Gaussian	
Quadrature	 in	 the	 context	 of	 CGE	models	 in	 cases	 with	 non-diagonal	 covariance	matrices	 across	 the	
uncertain	parameters.	The	authors	demonstrate	the	feasibility	of	the	method	using	an	example	from	the	
Global	Trade	and	Analysis	Project.	

Another	alternative	to	Monte	Carlo	simulations	is	based	on	the	linearization	of	the	CGE	model	(e.g.,	Pagan	
and	 Shannon,	 1985;	Wigle,	 1991).	 This	 approach	 is	 sometimes	 referred	 to	 as	 the	 Delta	method.	 For	
example,	Bernheim	et	al.	(1989)	and	Tuladhar	and	Wilcoxen	(1998)	use	this	approach	to	derive	confidence	
intervals	around	endogenous	state	variables	 in	a	CGE	model.	The	method	seeks	to	provide	the	analyst	
with	 a	 confidence	 interval	 around	 the	 endogenous	 variable	 evaluated	 at	 the	 central	 tendency	 of	 the	
uncertain	 parameters.	 The	method	 is	 based	 on	 linearizing	 the	model	 using	 a	 first	 order	 Taylor	 series	
expansion	 around	 the	 endogenous	 variables	 with	 respect	 to	 the	 model’s	 parameters.7	 Under	 this	
approximation,	a	covariance	for	model’s	point	estimate	is	derived	as	the	product	of	the	model’s	Jacobian	
with	respect	to	its	parameters	and	the	covariance	matrix	for	the	parameters.	Using	the	notation	above,	
the	model	in	linearized	as		

[ ]( ) ( )1 1, , , ,H X E H X J Jβ β ββ θ β θ ʹ≈ + Σ ,	 	 	 	 	 	 	 (10)	

where	 Jβ 	 is	 the	 Jacobian	of	 the	CGE	model	with	 respect	 to	 the	uncertain	 parameters	 and	 βΣ 	 is	 the	

covariance	matrix	associated	with	the	uncertain	parameters.	The	second	term	in	(10)	provides	the	analyst	

																																																													
7	 Higher	 order	 approximations	may	 also	 be	 applied	 to	 cases	where	 there	 is	 significant	 curvature	 in	 the	 implicit	

function	relating	the	level	or	change	in	the	endogenous	variable	to	the	uncertain	parameters	(Bernheim	et	al.,	
1989).	
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with	a	covariance	for	the	endogenous	variables	based	on	the	model’s	sensitivity	to	those	parameters	and	
their	degree	of	uncertainty.		

Given	 the	 complexity	 of	most	 applied	 CGE	models,	 the	 Jacobian	 is	 computed	 by	means	 of	 numerical	
differentiation	and	in	most	cases	modelers	have	used	a	basic	forward	finite	difference	to	minimize	the	
number	of	model	solves	required	to	derive	the	Jacobian.	Jorgenson	et	al.	(2013)	have	shown	that,	even	in	
the	case	of	complex	dynamic	CGE	models,	the	method	can	provide	standard	errors	as	a	percentage	of	the	
model’s	endogenous	variables	that	are	reasonably	close	to	the	standard	errors	as	a	percentage	of	the	
expected	endogenous	variables	in	the	case	of	Monte	Carlo	simulations.	Their	results	suggest	that	in	some	
cases,	depending	on	the	model,	 the	Delta	method	may	be	able	to	derive	relative	standard	errors	with	
fewer	simulations	than	a	Monte	Carlo	approach.	

With	 the	 increased	 availability	 of	 computing	 resources	 and	 simulation	 techniques,	 Monte	 Carlo	
simulations	have	been	used	in	numerous	recent	studies	to	explore	the	sensitivity	of	modeling	results	(e.g.,	
Webster	et	al.,	2001;	Sokolov	et	al.,	2009;	Elliot	et	al.	2012a;	Elliot	et	al.	2012b).	For	example,	Elliot	et	al.	
(2012a)	take	advantage	of	large-scale	parallel	processing	to	conduct	Monte	Carlo	simulations	that	explore	
the	sensitivity	of	CGE	model	results	to	parametric	uncertainty	in	the	case	of	a	global	CGE	model.8	Notably,	
they	 find	 that	 the	bias	 associated	with	model	 results	 based	on	 running	 the	CGE	model	 at	 the	 central	
tendency	of	all	parameters	versus	the	case	with	full	uncertainty	in	parameters	is	small.	However,	they	find	
the	variance	around	the	CGE	results	was	still	significant.	In	a	bootstrap	analysis	of	their	results,	Elliot	et	al.	
(2012a)	 find	 that	 the	 number	 of	 simulations	 required	 to	 obtain	 information	 about	 the	 shape	 of	 the	
distribution	 around	 endogenous	 variables	 might	 vary	 considerably	 depending	 on	 the	 uncertain	
parameters	considered	and	the	endogenous	variables	of	interest.	For	example,	Elliot	et	al.	(2012a)	find	
that	endogenous	variables	with	lower	coefficients	of	variation	require	fewer	simulations	to	adequately	
capture	the	mean	and	variance	of	the	result,	compared	to	variable	with	relatively	higher	coefficients	of	
variation.		

Basic	Monte	Carlo	analysis	relies	on	the	strong	law	of	large	numbers	and	the	central	limit	theorem	for	its	
convergence	properties.	In	terms	of	estimating	the	mean	of	the	endogenous	variables	the	approximation	
error	tends	to	zero	as	the	number	of	simulations	tends	to	infinity;	however,	in	practice	the	approximation	
error	is	random	due	to	the	probabilistic	nature	of	the	analysis	and	can	be	large	even	when	the	number	of	
simulations	is	large.	In	recent	Monte	Carlo	studies,	researchers	have	used	quasi-Monte	Carlo	techniques	
to	more	efficiently	sample	the	parameter	space	and	therefore	reduce	the	number	simulations	required.	
The	 goal	 of	 these	 approaches	 is	 to	 impose	 additional	 structure	on	 the	method	used	 to	draw	 random	
parameters	for	the	analysis,	such	that	the	approximation	error	is	reduced	beyond	what	it	would	be	in	a	
basic	Monte	Carlo	analysis.9	For	example,	Webster	et	al.	(2001)	use	Latin	Hypercube	sampling	to	reduce	
the	number	of	runs	required	for	a	desired	degree	of	accuracy.		

																																																													
8	 Similar	 to	 other	 studies,	 Elliot	 et	 al.	 (2012a)	 assume	 the	 uncertain	 parameters	 are	 normally	 distributed	 and	

independent.	

9	See	Judd	(1998)	for	details	on	quasi-Monte	Carlo	techniques.		
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Building	 upon	Monte	 Carlo	 techniques,	 variance	 decomposition	methods,	 such	 as	 the	 Sobol	 method	
(Sobol,	1993),	produce	sensitivity	indices	that	estimate	the	fractional	contribution	of	an	input	parameter	
(and	parameter	interactions)	to	the	variance	of	an	output.	These	methods	allow	the	modeler	to	trace	the	
dependencies	between	outputs	and	inputs.	However,	they	can	be	computationally	intensive	(Iooss	and	
Lemaitre,	 2015).	 Although	 variance	 decomposition	 methods	 have	 been	 employed	 in	 environmental	
modeling	and	chemical	engineering,	 they	have	not	been	widely	used	 in	conjunction	with	CGE	models.	
However,	in	one	example	Mohora	(2006)	employs	the	Sobol	method	in	a	study	of	the	Romanian	economy	
and	 finds	 that	 the	 variance	 decomposition	 identified	 that	 indirect	 effects	 and	 database	 structure	
contribute	most	 to	output	variance.	 Interestingly,	Mohora	 found	these	results	 to	be	 largely	consistent	
with	a	simpler	parameter	screening	method	used	in	the	study.	

5.3 Inter-Model	Comparison	Exercises	

Inter-model	comparison	exercises	are	a	means	to	examine	the	effect	of	both	structural	and	parametric	
differences	 between	models.	 These	 exercises	 convene	 several	modeling	 teams	 to	 examine	policy	 and	
modeling	issues	by	comparing	model	results	for	a	standardized	set	of	scenarios.	Inter-model	comparison	
exercises	 can	 serve	many	 purposes.	 The	 exercises	 bring	 together	modelers	 from	 academia,	 industry,	
government,	and	other	organizations	to	examine	an	issue	from	different	perspectives	and	using	different	
tools.	 The	 section	 will	 discuss	 the	 basics	 of	 inter-model	 comparisons	 projects,	 past	 examples,	 and	
important	considerations	to	take	into	account	when	designing	such	exercises.		

Inter-model	comparison	exercises	are	structured	around	a	set	of	policy-relevant	research	questions.	Each	
of	the	modeling	teams	produce	results	for	a	common	set	of	scenarios	(e.g.,	with	and	without	a	policy	or	a	
technology).	The	scenarios	and	results	are	developed	and	analyzed	typically	over	a	series	of	two	to	three	
workshops	held	 several	months	apart.	 These	exercises	 serve	 several	 valuable	 functions.	 First,	 a	multi-
model	approach	to	a	topic	may	highlight	areas	of	robust	agreement	as	well	as	identify	and	the	key	factors	
driving	disagreement	across	models.	Second,	the	exercise	helps	to	explain	the	strengths	and	limitations	
of	alternative	modeling	approaches.	Third,	the	exercises	provide	a	forum	for	modelers	to	receive	peer	
feedback	on	modeling	issues	that	range	from	data	and	parameter	selection	to	structural	specifications	
and	modeling	techniques.	Finally,	the	exercises	identify	future	research	and	model	development	needs.	

The	longest	running	and	a	well-known	series	of	inter-model	comparisons	is	Stanford	University’s	Energy	
Modeling	Forum	(EMF)	co-directed	by	John	Weyant	and	Hillard	Huntington10.	Begun	in	the	mid-1970’s	
EMF	has	completed	nearly	30	projects	on	issues	related	to	energy	and	its	relationship	to	the	economy	and	
environment.	Past	projects	have	explored	the	oil,	gas,	coal,	and	electric	power	markets.	EMF	exercises	
within	the	last	fifteen	years	have	emphasized	the	interaction	between	energy	markets,	climate	change,	
and	climate	change	policy.	Several	recent	inter-model	comparison	exercises	have	also	focused	on	energy-
economy-climate	interactions	(see	e.g.,	AMPERE	(Kriegler,	et	al.	2015)	and	LIMITS	(Kriegler	et	al.,	2013)	
and	agriculture-economy-climate	interactions	(see	e.g.,	AgMIP	(Rosenzweig,	2013)).	

	

																																																													
10	See	https://emf.stanford.edu/.	
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Although	 inter-model	 comparison	 exercises	 are	 valuable	 to	 both	 the	 policymaking	 and	 modeling	
communities,	there	are	important	challenges.	For	example,	it	can	be	difficult	to	discern	the	key	factors	
that	lead	to	the	range	of	results	across	models	because	the	models	may	differ	by	type	(e.g.,	general	vs.	
partial	equilibrium)	in	addition	to	structural	and	parametric	differences.	One	notable	exception	to	this	is	
EMF	29:	The	Role	of	Border	Carbon	Adjustment	in	Unilateral	Climate	Policy	(Bohringer	et	al.,	2012).	EMF	
29	was	entirely	comprised	of	CGE	models	that	used	the	same	underlying	dataset	(GTAP	7.1).	In	addition,	
caution	should	be	taken	when	interpreting	the	range	of	results	from	comparison	exercises	because	the	
range	typically	does	not	represent	the	full	range	of	uncertainties.	Instead,	the	range	of	results	represent	
the	 uncertainties	 across	 the	 participating	 models	 and	 possibly	 over	 a	 handful	 of	 parameters	 or	
assumptions	 in	 the	 study.	 Finally,	 a	 study	 may	 not	 necessarily	 reflect	 all	 models	 as	 participation	 is		
voluntary	and	may	not	be	supported	by	external	funds.	

6 Presentation	of	Uncertainty	Analysis	

While	additional	sensitivity	or	formal	uncertainty	analysis	can	provide	useful	 information	as	previously	
described,	it	also	presents	a	challenge	to	analysts	who	must	summarize	this	additional	information	in	a	
format	 that	 is	 readily	 understood	 by	 policy	 makers	 and	 stakeholders.	 When	 uncertainty	 analysis	 is	
conducted,	Circular	A-4	guides	analysts	to	try	to	“provide	some	estimate	of	the	probability	distribution	of	
regulatory	 benefits	 and	 costs”	 (OMB,	 2003).	 However,	 there	 are	 different	 formats	 in	 which	 such	
information	can	be	conveyed.	Information	about	the	probability	distribution	of	benefits	and	costs	can	be	
presented	numerically,	verbally	or	graphically	(NAS,	2013).		

A	numerical	representation	may	include	summary	statistics,	such	the	central	tendency	(e.g.,	mean	and	
median),	 variances,	 confidence	 intervals,	 or	 other	 potentially	 relevant	 characteristics.	 A	 numerical	
presentation	of	the	results	can	provide	a	significant	amount	of	information,	however,	the	approach	may	
require	that	the	audience	have	the	appropriate	expertise	to	understand	and	interpret	the	information.	
Verbal	representations	convey	information	using	cues	such	as	likely	or	unlikely	to	differentiate	potential	
outcomes	and	characterize	the	probability	distribution	of	benefits	and	costs.	While	verbal	representations	
of	 uncertainty	 may	 be	 more	 approachable	 to	 a	 broader	 audience,	 there	 is	 the	 potential	 for	 the	
interpretation	to	differ	across	individuals.	The	United	Nations	Intergovernmental	Panel	on	Climate	Change	
(IPCC)	has	attempted	to	address	this	concern	by	establishing	specific	definitions	and	use	guidelines	for	the	
verbal	characterization	in	their	assessment	reports	(IPCC,	2010).	Graphical	representations	of	probabilistic	
information	 have	 the	 potential	 to	 convey	 more	 information	 than	 basic	 verbal	 cues	 while	 remaining	
accessible	to	broader	audiences.	Graphical	representations	can	take	different	forms	such	as	histograms	
or	color	wheels.	For	example,	Webster	et	al.	(2008)	present	some	results	of	their	probabilistic	CGE	analysis	
as	probability	distributions.	Figure	1,	which	is	from	their	analysis,	presents	the	loss	in	global	consumption	
in	a	given	simulation	year	across	different	policy	stringencies	(i.e.,	Level	1	through	4).	
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Figure	1:	Distribution	of	Consumption	Loss	across	Stringencies	in	EPPA	CGE	Model	(Webster	et	al.,	2008)	

In	the	case	of	dynamic	analyses,	it	can	be	useful	to	depict	the	results	in	a	way	that	provides	information	
as	 to	how	the	distribution	of	 results	changes	over	 time.	For	example,	 in	 their	CGE	analysis	Elliot	et	al.	
(2012a)	present	the	mean	estimate	of	a	key	output	variable,	CO2	emissions	intensity,	over	time	along	with	
the	different	confidence	intervals	that	are	differentiated	by	their	shading	(Figure	2).	

	

Figure	2:	Carbon	Intensity	[kg	CO2	/	2004$	of	GDP]	from	CIM-EARTH	CGE	Model	(Elliott	et	al.,	2012a)	

A	well-known	 example	 of	 color	wheels	 to	 convey	 probabilistic	 information	 is	 the	work	 by	MIT’s	 Joint	
Program	on	the	Science	and	Policy	of	Global	Change	on	communicating	uncertainty	surrounding	climate	
change	 (Figure	3).11	This	plot	presents	 the	probability	of	different	climate	outcomes	with	and	without	
policy	 as	 two	 different	 pie	 charts	 where	 the	 area	 of	 the	 slices	 corresponds	 to	 the	 probability	 of	 the	
outcome	 conditional	 on	 the	 policy	 assumption	 associated	 with	 the	 pie	 chart.	 The	 graphic	 eases	

																																																													
11	See	http://globalchange.mit.edu/focus-areas/uncertainty/gamble.	
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interpretation	of	the	outcomes	and	comparison	across	the	two	scenarios	by	coordinating	the	color-coding	
of	the	pie	slices.	

	

Figure	3:	MIT	Greenhouse	Gamble	Representation	of	Climate	Change	Uncertainty11	

In	addition	to	presenting	the	results	of	uncertainty	analysis,	analysts	may	choose	to	provide	additional	
information	as	to	the	sources	of	uncertainty	most	relevant	to	the	results.	For	example,	Tornado	plots	may	
also	be	useful	 in	 communicating	 the	 results	of	 sensitivity	analysis	 to	 show	the	parameters	of	greatest	
influence	over	the	results	of	interest.	Jacoby	et	al.	(2006)	conduct	a	study	with	the	EPPA	CGE	model	in	
which	they	vary	key	parameters,	one	by	one,	by	plus	and	minus	one	standard	deviation.	They	then	plot	
the	 effect	 of	 these	 experiments	 on	 the	welfare	 change	 of	 a	 given	 policy	 in	 order	 of	 greatest	 to	 least	
influence	(Figure	4).		
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Figure	4:	Change	in	Welfare	for	a	Policy	with	Plus	and	Minus	One	Standard	Deviation	Change	in	the	
Parameter	with	the	EPPA	CGE	Model	(Jacoby	et	al.,	2006)	

However,	 tornado	plots	can	also	be	used	to	present	the	results	of	probabilistic	analyses.	For	example,	
standardized	regressions	may	be	used	to	analyze	the	results	of	Monte	Carlo	simulations,	as	described	in	
Section	 5.2,	 to	 determine	 the	 influence	 of	 different	 parameters	 on	 the	 results	 of	 the	 analysis.	 After	
standardizing	 the	 draws	 for	 the	 input	 parameters,	 they	 may	 be	 regressed	 on	 the	 output	 variable	 of	
interest	 to	 obtain	 standardized	 regression	 coefficients	 that	 represent	 the	 impact	 of	 a	 one	 standard	
deviation	 change	 in	 the	 parameters	 on	 the	 output	 variable	 of	 interest.	 The	 results	 of	 such	 additional	
analysis	are	often	presented	in	the	form	of	tornado	plots.		

7 Verification	and	Validation	Exercises	

The	 methods	 of	 conducting	 and	 presenting	 uncertainty	 analysis	 discussed	 in	 Sections	 5	 and	 0	 are	
approaches	 to	 providing	 decision	 makers	 and	 stakeholders	 with	 additional	 information	 about	 the	
robustness	of	model	results	to	help	instill	confidence	in	the	qualitative	conclusions	of	policy	analysis	based	
on	 modeling	 results.	 Additional	 confidence	 in	 the	 model	 results	 may	 be	 provided	 through	 formal	
approaches	 to	 model	 verification	 and	 validation.	 Model	 verification	 and	 validation	 represent	 two	
important,	 interrelated	 activities	 in	 the	 CGE	 model	 building	 process.	 Carson	 (2002)	 defines	 model	
verification	as	a	“process	and	technique	that	the	model	developer	uses	to	assure	that	his	or	her	model	is	
correct	 and	 matches	 any	 agreed-upon	 specification	 and	 assumption.”	 Sargent	 (2013)	 defines	 model	
validation	as	the	“substantiation	that	a	model	within	its	domain	of	applicability	possesses	a	satisfactory	
range	 of	 accuracy	 consistent	 with	 the	 intended	 application	 of	 the	 model.”	 This	 section	 discusses	
techniques	for	model	verification	and	validation	with	a	focus	on	CGE	models.		
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7.1 Model	Verification	

Verification	 of	 a	 CGE	model	 constitutes	 the	 initial	 phase	 of	 the	modeling	 project	 (Carson,	 2002).	 This	
process	involves	a	number	of	iterative	procedures	that	include,	among	other	things,	model	specification,	
data	organization,	and	debugging	of	the	model	code.	The	modeler	will	usually	perform	a	number	of	tests	
and	simulations	to	examine	basic	features	of	the	underlying	data	and	economic	structure.	For	example,	a	
common	initial	experiment	attempts	to	test	if	the	model	code	and	the	imbedded	assumptions	replicate	
the	benchmark	dataset.	If	the	model	is	specified	correctly,	the	equilibrium	solution	to	the	model	with	no	
shocks	should	be	identical	to	the	baseline	data.	This	check	can	be	performed	at	each	stage	of	the	baseline	
setting	process.	For	example,	Rausch	and	Rutherford	(2008)	describe	a	set	of	programs	that	transform	
IMPLAN	data	on	the	U.S.	economy	into	a	format	that	can	be	used	in	a	CGE	model	implemented	in	the	
GAMS/MPSGE	modeling	language.	After	each	step	in	the	process,	the	benchmark	is	tested	in	a	small-scale,	
highly	aggregated,	open-economy	model.	These	steps	include	aggregating	the	data,	translating	parameter	
names,	diagonalizing	the	data	so	that	each	industry	produces	only	one	commodity,	merging	state	level	
data,	 and	 balancing	 interregional	 trade	 flows.	 If	 the	 benchmark	 is	 not	 replicated	 at	 any	 point,	 the	
programs	stops	and	an	error	message	prompts	the	user	to	correct	the	imbalance	before	moving	on.		

Dixon	and	Rimmer	(2013)	describe	a	basic	homogeneity	test	that	may	be	performed	in	the	development	
of	some	CGE	models.	If	all	model	sectors	are	represented	with	constant	returns	to	scale	(CRTS)	production	
functions,	 then	 increasing	 the	 exogenous	 nominal	 variables	 by	 a	 percentage	 should	 return	 the	 same	
percentage	change	in	the	endogenous	nominal	values.	For	 instance,	doubling	the	costs	of	all	 inputs	to	
production	should	result	in	a	doubling	of	the	unit	cost	of	output.	If	the	model	contains	representations	of	
nominal	rigidities,	such	as	sticky	wages,	adherence	to	homogeneity	should	not	be	expected.	The	effects	
of	 these	 deviations	 can	 be	 checked	 by	 turning	 off	 the	 features	 that	 cause	 the	 rigidity,	 such	 as	 a	
representation	of	sticky	wages,	to	test	if	the	feature	is	causing	the	deviation	from	the	homogeneous	case.	
Other	deviations	in	the	homogeneity	test	may	represent	errors	in	the	model.		

CGE	model	verification	can	also	be	conducted	using	GDP	accounting	 identities.	GDP	can	be	computed	
from	CGE	modeling	 results	by	adding	up	 total	 incomes	or	 total	expenditures,	where	both	calculations	
should	produce	the	same	value.	Each	of	 these	calculations	can	also	be	done	 in	real	or	nominal	 terms.	
These	checks	are	useful	because	they	involve	different	sets	of	model	variables,	and	are	therefore	testing	
for	 consistency	 across	 the	model.	 The	 expenditure	 calculation	 involves	 the	macroeconomic	 variables	
consumption,	 investment,	government	expenditures,	and	net	exports.	The	 income	calculation	 includes	
factor	incomes	for	all	agents,	transfer	payments,	and	tax	revenues.		

The	social	accounting	matrix	(SAM)	used	to	calibrate	the	model	provides	an	additional	check	on	the	model.	
The	SAM	includes	all	payments	between	industries	and	agents,	as	well	as	international	trade	balances,	
and	should	balance	before	and	after	a	policy	shock.	This	means	that	the	zero-profit,	market-clearance,	
and	 income	 balance	 conditions	 hold	 for	 each	 industry,	 good,	 and	 agent	 in	 the	 model.	 (For	 more	
information	on	SAMs	see,	inter	alia,	Pyatt	and	Round	(1985).)		
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7.2 Model	validation	

While	 it	 has	 been	 argued	 that	 a	 simulation	 model	 can	 never	 be	 completely	 validated	 (Gass,	 1983),	
subjecting	a	model	to	validation	tests	–	and	making	appropriate	adjustments	to	the	model	if	necessary	–	
can	increase	confidence	in	the	usefulness	of	the	model	for	policy	analysis.	A	number	of	methods	for	model	
validation	 have	 been	 used	 by	 CGE	 modelers.	 This	 section	 describes	 several	 of	 these	 methods	 and	 a	
number	of	exercises	that	have	been	conducted	to	validate	(or	invalidate)	CGE	models,	along	with	the	costs	
of	model	validation.	Validation	exercises	could	be	performed	when	a	model	is	first	developed,	at	the	time	
of	major	revisions,	or	simply	over	time	to	check	the	model	has	continued	validity.	

7.2.1 Back	of	the	Envelope	Models	

Dixon	and	Rimmer	(2013)	suggest	that	back	of	the	envelope	(BOTE)	models	can	be	useful	tools	for	CGE	
model	validation.	These	estimates	can	give	a	sense	of	the	magnitude	of	the	expected	results	from	the	full	
model.	A	BOTE	model	simplifies	the	large-scale	model	to	gain	insight	on	model	results.	This	simplification	
can	be	done	by	aggregating	the	number	of	industries,	factors	of	production,	and/or	agents	in	the	model.	
After	a	simple	model	is	calibrated	to	the	aggregated	data,	the	modeler	can	add	policy	variables	to	test	to	
see	if	the	expected	magnitude	of	changes	in	the	model	results	are	produced.	Next,	the	modeler	can	add	
one	 feature	at	a	 time	to	 the	BOTE	model	 to	 test	 the	performance	of	 these	 features	of	 the	 large-scale	
model	and	to	gain	insight	about	how	each	feature	influences	the	results	of	sample	scenarios.		

Simple	BOTE	estimates	of	the	GDP	impacts	of	a	policy	shock	can	be	calculated	using	data	and	parameters,	
such	as	industry	size,	tax	rates,	and	elasticities.	Each	of	the	components	of	the	GDP	calculation	can	be	
used	to	help	explain	model	results	and	the	overall	impact	of	a	policy	on	GDP.	Policies	that	affect	economic	
activity	 can	 influence	 the	 components	of	GDP	 in	different	directions.	We	may	expect	 that	 a	 rule	 that	
requires	installation	of	new	capital	would	increase	the	investment	component	of	GDP	and	decrease	the	
consumption	component.	Once	the	macroeconomic	impacts	of	the	simplified	model	are	well	understood	
with	the	BOTE	model,	the	full	CGE	model	can	be	used	to	understand	the	effects	on	specific	industries	and	
households.		

7.2.2 Statistical	Validation	of	Model	Parameters	

Dixon	and	Rimmer	(2013)	suggest	the	use	of	statistical	techniques,	such	as	regression	analysis,	to	improve	
the	understanding	of	microeconomic	results.	They	use	the	example	of	an	analysis	of	employment	changes	
under	 a	 scenario	 in	 which	 import	 tariffs	 and	 quotas	 are	 removed.	 The	 USAGE	 CGE	 model	 forecasts	
employment	changes	by	state,	which	are	then	compared	to	a	regression	analysis	that	seeks	to	forecast	
the	same	changes.	The	regression	analysis	was	prepared	for	this	validation	exercise	using	historical	data	
to	estimate	a	relationship	between	the	trade	policy	and	employment.	By	ranking	the	relative	impacts	by	
state	and	comparing	these	rankings	across	the	two	models,	the	regression	exercise	allowed	the	authors	
to	see	where	states	were	represented	differently	in	each	model	and	ultimately	improve	the	CGE	model.		

Ideally,	CGE	models	should	use	general	equilibrium	elasticities	that	account	for	the	degree	of	flexibility	
available	across	many	parts	of	the	economy.	Values	that	are	estimated	in	a	partial	equilibrium	framework	
can	cause	the	model	to	be	too	responsive	or	not	responsive	enough	to	policy	scenarios,	when	compared	
to	historical	outcomes	analyzed	during	the	validation	process.		
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7.2.3 CGE	Model	Validation	Exercises	

Although	the	published	 literature	 is	relatively	sparse,	a	number	of	authors	have	undertaken	validation	
exercises	with	 their	models.	 Recent	 efforts	 have	 used	 increasingly	 sophisticated	 techniques	 that	may	
allow	for	a	process	by	which	significant	modeling	improvements	can	be	made.		

Kehoe	et	al.	(1995)	compared	results	from	their	CGE	analysis	of	fiscal	reform	in	Spain	–	replacement	of	a	
complex	system	of	indirect	taxes	with	a	value-added	tax	–	during	1985-1987	with	the	changes	that	actually	
occurred.	They	compared	changes	in	consumer	and	industrial	prices,	industrial	output,	and	a	number	of	
macroeconomic	 variables	 using	 two	 performance	 metrics:	 the	 weighted	 correlation	 coefficient	 and	
weighted	R2.	Kehoe	et	al.	(1995)	report	that	their	model	performed	well,	particularly	when	they	included	
two	exogenous	shocks	that	affected	the	Spanish	economy	during	the	period	of	analysis	(a	fall	in	the	price	
of	petroleum	and	a	decline	in	agricultural	productivity	due	to	adverse	weather	conditions).	In	addition,	
they	 found	 that	 the	 results	 were	 robust	 to	 alternative	 specifications	 of	 the	 labor	 market	 and	
macroeconomic	closure	rules.		

Kehoe	 (2005)	 evaluated	 the	 performance	 of	 three	multisector	 static	 CGE	models	 used	 to	 predict	 the	
impact	of	the	North	American	Free	Trade	Agreement	(NAFTA).	Kehoe	(2005)	reports	that	all	of	the	models	
dramatically	underestimated	the	impact	of	NAFTA	on	trade	amongst	the	U.S.,	Canada,	and	Mexico.	The	
models	were	also	reported	to	have	only	been	able	to	capture	relative	portion	of	the	impacts	in	different	
sectors.	Kehoe	(2005)	argued	that,	based	on	his	analysis,	a	new	theoretical	mechanism	was	needed	for	
generating	large	increases	in	trade	in	product	categories	that	previously	had	little	trade.	In	addition,	in	
order	 to	 capture	 changes	 in	macro	 aggregates,	models	 need	 to	 be	 better	 able	 to	 capture	 changes	 in	
productivity	brought	about	by	trade	agreements.	While	this	effort	did	not	explicitly	result	 in	modeling	
improvements,	 this	 retrospective	analysis	was	able	 to	 identify	potential	areas	of	 improvements	 in	 the	
models.		

Valenzuela	et	al.	(2007)	developed	a	methodology	for	validating	CGE	models	on	a	sector-by-sector	basis,	
focusing	on	the	wheat	market	in	the	GTAP	model.	They	employed	a	stochastic	simulation,	using	shocks	
derived	 from	 a	 time-series	model	 to	measure	 the	 randomness	 in	 annual	 output	 over	 the	 1990-2001	
period.	 The	 residuals	 were	 used	 to	 create	 a	 distribution	 reflecting	 random	 productivity	 variation	 by	
producing	region.	These	productivity	shocks	generated	endogenous	fluctuations	in	production	that	match	
those	 in	 the	 data.	 Solving	 the	 CGE	model	 repeatedly	 while	 sampling	 from	 this	 distribution	 yielded	 a	
distribution	of	corresponding	market	price	changes	for	wheat,	by	region.	Standard	deviations	based	on	
these	modeled	outcomes	were	then	compared	to	observed	outcomes	for	year-to-year	price	changes.	The	
authors	find	that	when	the	GTAP	model	fails,	it	tends	to	do	so	in	a	systematic	way,	under-predicting	price	
volatility	for	net	exporters	of	wheat,	and	over-predicting	volatility	for	importing	regions.	Using	the	insights	
gained	from	this	exercise,	the	authors	were	able	to	make	modifications	to	the	model	specification	that	
improved	the	fit	to	the	fluctuations	in	the	time-series	data.		
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Using	a	methodology	similar	to	that	of	Valenzuela	et	al.	(2007),	Beckman	et	al.	(2011)	examined	the	ability	
of	 the	 GTAP-E	 model	 to	 reproduce	 historical	 price	 volatility	 in	 the	 petroleum	 market.12	 Whereas	
Valenzuela	et	al.	(2007)	focused	on	the	supply-side,	Beckman	et	al.	(2011)	include	both	supply-side	and	
demand-side	 shocks.	 For	 the	 supply-side,	Beckman	et	 al.	 (2011)	 fit	 a	 time-series	model	 to	 country	oil	
production	over	the	1980-2005	time	period.	For	the	demand-side,	a	general	indicator	of	economic	activity,	
GDP,	was	used.	Time-series	residuals	were	then	used	to	create	probability	distributions	for	random	shocks	
to	the	underlying	supply	and	demand	schedules	for	petroleum.	Using	these	shocks,	standard	deviations	
of	oil	price	changes	based	on	GTAP-E	model	runs	are	then	compared	to	those	from	the	historical	data.	
The	original	GTAP-E	model	significantly	underestimated	petroleum	price	volatility	in	comparison	with	the	
data.	In	response,	Beckman	et	al.	(2011)	conducted	an	extensive	literature	search	and	updated	relevant	
model	parameters.	The	re-parameterized	model	performed	significantly	better.	To	 further	 test	 the	re-
parameterized	model,	Beckman	et	al.	(2011)	also	performed	a	stylized	medium-run	simulation	in	which	
they	 shocked	population,	 labor,	 capital,	 investment,	oil	prices,	 and	TFP	by	observed	changes	over	 the	
2001-2006	period.	With	the	now	more	inelastic	demand	specification,	the	model	was	able	to	capture	the	
broad	changes	in	the	petroleum	market	including	an	increase	in	demand	that	occurred	despite	the	sharp	
increase	in	price	during	this	period.		

7.2.4 Challenges	of	Model	Validation	

Sargent	(2013)	points	out	that	simulation	model	validation	can	be	time-consuming	and	costly,	and	that	it	
is	not	feasible	to	ensure	that	a	large-scale	model	is	valid	over	its	entire	domain.	Several	of	the	examples	
cited	in	Dixon	and	Rimmer	(2013)	were	stated	to	have	taken	years	to	complete,	due	to	the	time	required	
to	 collect	 the	 historical	 data,	 perform	 numerous	 runs,	 and	 conduct	 detailed	 analysis.	 Sargent	 (2013)	
further	 suggests	 that	 validating	 a	model	 for	 one	 specific	 purpose	 does	 not	mean	 it	 is	 valid	 for	 other	
applications,	and	that	additional	validation	may	be	necessary.	Furthermore,	in	the	context	of	regulatory	
analysis	back	casting	exercises	may	face	additional	challenges	due	to	the	nature	of	CGE	models	as	tools	
to	 estimate	 changes	 instead	 of	 levels,	 and	 the	 unobserved	 counterfactual	 baselines	 necessary	 to	
understand	the	historical	change	because	of	the	policy.	

8 Concluding	Remarks	

EPA	has	a	history	of	considering	uncertainty	in	different	contexts	and	using	a	variety	of	qualitative	and	
quantitative	approaches	to	determine	the	robustness	of	policy	outcomes.	However,	as	outlined	 in	this	
white	 paper,	 there	 may	 be	 additional	 sources	 of	 uncertainty	 associated	 with	 extending	 benefit	 cost	
analyses	to	an	economy-wide	perspective.	This	leads	to	questions,	such	as:	

• Are	 certain	 types	 of	 uncertainty	more	 of	 a	 concern	when	 evaluating	 social	 costs,	 benefits	 or	
economic	impacts	in	an	economy-wide	framework?	

																																																													
12	The	GTAP-E	model	is	a	variant	of	the	standard	GTAP	model	that	includes	more	detail	in	the	specification	of	the	

energy	sector.		
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• Are	challenges	or	 limitations	 related	 to	 these	uncertainties	more	of	a	concern	 than	 for	partial	
equilibrium	approaches	to	estimation?	

As	noted	by	the	NAS	in	their	2013	report:	

“Although	some	analysis	and	description	of	uncertainty	is	always	important,	how	many	and	what	
types	of	uncertainty	analyses	are	carried	out	should	depend	on	the	specific	decision	problem	at	
hand	 the	 effort	 to	 analyze	 specific	 uncertainties	 through	 probabilistic	 risk	 assessment	 or	
quantitative	uncertainty	analysis	should	be	guided	by	the	ability	of	those	analyses	to	affect	the	
environmental	decision	at	hand.”	

When	 quantitative	 analysis	 of	 uncertainty	 is	 warranted	 in	 an	 economy-wide	 framework,	 there	 are	
multiple	approaches	to	conducting	such	analysis,	as	laid	out	in	Section	5.	These	approaches	range	from	
limited	sensitivity	analysis	to	formal	probabilistic	approaches	and	have	different	information,	resource,	
and	time	requirements,	which	will	vary	on	a	case-by-case	basis,	as	will	the	potential	value	of	the	additional	
analysis.	 Differences	 in	 analytical	 approaches	 in	 terms	 of	 the	 information	 provided	 and	 input	
requirements	leads	to	questions,	such	as:	

• Are	sensitivity	analyses	of	important	model	parameters	and/or	model	assumptions	a	technically	
appropriate	way	to	assess	uncertainties	involved	in	economy-wide	modeling	of	regulations?	

• Are	there	circumstances	in	which	the	use	of	multiple	models	should	be	considered?	

Beyond	 addressing	 model	 and	 parameter	 uncertainty	 that	 stem	 from	 limitations	 in	 scientific	
understanding,	 in	 some	 cases	 there	 may	 be	 questions	 about	 the	 fitness	 of	 a	 particular	 model	 for	 a	
purpose.	In	the	context	of	economy-wide	analysis	of	air	regulations,	this	may	include:	

• Are	there	best	practices	to	provide	confidence	that	a	CGE	model	is	producing	credible	welfare	or	
economic	impact	estimates?	
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