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On September 5, 2019, the U.S. Environmental Protection Agency (EPA, or “the Agency”) released its 
Policy Assessment for the Review of the National Ambient Air Quality Standards for Particulate Matter, 
External Review Draft (hereafter referred to as the “draft PA”).1  On October 24-25¸ the Clean Air 
Scientific Advisory Committee (CASAC) will be convening to develop its comments to EPA on the draft 
PA.  The following document is intended to provide additional information from my own research that is 
of relevance and potential interest to the CASAC, as well as to the Agency.  I have prepared these 
comments with financial support from a coalition of industry associations. 

My comments are focused specifically on the question of whether the section of the draft PA that 
discusses risk-based considerations provides information that is useful and reliable as guidance to 
decision makers when considering the merits of the current and alternative potential National Ambient 
Air Quality Standards (NAAQS).2   

This is a research topic on which I have been actively engaged for the past thirty-five years, starting with 
a study funded by EPA in the early 1980s to explore methods for incorporating uncertainties into 
NAAQS-focused health risk analyses.  (I conducted that study while working in the Decision Analysis 
Group at SRI International.)  I have continued to be actively engaged in developing and demonstrating 
methods for air pollutant health risk analysis, including preparing technical comments on the risk analyses 
for many prior NAAQS reviews of PM2.5, ozone, SO2, and NO2.   

Of most relevance to the present deliberations is a set of seven articles that I have written (and have had 
published in the period 2015-2019) on criteria pollutant heath risk analysis methods.  These papers have 
addressed both the Health Risk and Exposure Assessment (HREA) documents that have been prepared to 
support in the Administrators’ decisions on NAAQS revisions and the risk and benefits estimates that 
appear in the Regulatory Impact Analyses (RIAs) that must accompany each new major proposed and 
final rulemaking, such as most NAAQS revisions.  This PM2.5 review cycle has not produced a separate 
HREA document, but Section 3.3 of the draft PA contains the same kind of information that is usually 
first presented in an HREA.  For that reason, any reference to methods appropriate for HREAs in my 
comments below should be viewed as a relevant comment for the contents of Section 3.3 of the draft PA. 

My objective in this document is to provide a brief synthesis of the content and conclusions of my articles 
in the specific context of the current review of the PM2.5 primary NAAQS.  I provide full references to the 

                                                 
1 EPA, Policy Assessment for the Review of the National Ambient Air Quality Standards for Particulate Matter, External Review 

Draft, EPA-452/P-19-001, Office of Air Quality Planning and Standards, Research Triangle Park, NC, September 2019. 
2 This discussion is based primarily on Sections 3.3 and Appendix C of the draft PA.  It does, of course, also tie into some of the 

broader questions regarding the causal interpretation of the concentration-response (C-R) functions that EPA has inferred from 
PM2.5 epidemiological studies.  Although my focus herein is on the risk analysis in this draft PA, I have previously (in 2009) 
commented on the Agency’s causality framework.  Because I consider those comments to be of continued relevance, I am 
attaching a copy of them in an appendix to this document. 
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articles in the bullet list below.3  I list the papers in the order in which I discuss them (rather than by 
publication date), along with a short name that I will use in the rest of this document to refer to each.  
Those short names are shown in bold font: 

• “Setting Air Quality Standards for PM2.5: A Role for Subjective Uncertainty in NAAQS 
Quantitative Risk Assessments?” Risk Analysis, Vol. 38(11), November 2018, pp. 2318-2339. 
(“HREA History”) 

• “Author Synthesis and Response” to Special Issue on Air Pollution Health Risks, Risk Analysis 
Vol. 36(9), September 2016, pp. 1780-1782. (“Special Issue Synthesis”) 

• “Enhancing the Characterization of Epistemic Uncertainties in PM2.5 Risk Analyses” (with W. 
Gans), Risk Analysis, Vol. 35(3), March 2015, pp. 361-378. (“BenMAP Review”) 

• “Response to Commentary by Fann et al. on “Enhancing the Characterization of Epistemic 
Uncertainties in PM2.5 Risk Analyses,” Risk Analysis, Vol. 35(3), March 2015, pp. 381-384.  
(“Response to EPA”) 

• “Integrated Uncertainty Analysis for Ambient Pollutant Health Risk Assessment:  A Case Study 
of Ozone Mortality Risk” (with Garrett Glasgow), Risk Analysis, Vol. 38(1), January 2018, pp. 
63-176.  (“Ozone IUA”) 

• “Inconsistencies in Risk Analyses for Ambient Air Pollutant Regulations,” Risk Analysis, 
Vol. 36(9), September 2016, pp. 1737-1744. (“Inconsistencies”) 

• “Using Uncertainty Analysis to Improve Consistency in Regulatory Assessments Of Criteria 
Pollutant Standards” (accepted by Risk Analysis in September 2019, in press). (“Improving 
Consistency”) 

1. Summary of Key Points 

The articles listed above cover several different aspects of issues with and methods for health risk analysis 
for criteria pollutants.  However, each of the articles, and all of them as a group, support my conclusion 
here that the risk analysis presented in the draft PA provides insufficient and even misleading guidance 
for the upcoming PM2.5 NAAQS decision.   

The central flaw of this draft PA’s risk analysis is its lack of any attempt to quantify or integrate the most 
important sources of uncertainty inherent in the risk calculations—uncertainties that are variously referred 
to as “model,” “epistemic,” or “scientific” uncertainty.  Instead, the range around each of the draft PA’s 
reported risk estimates reflects only the statistical error of the respective single concentration-response 
(C-R) function slope coefficient assumed for that particular risk calculation.  That statistical error reflects 
only the noise in the data of that one epidemiological study; it bears no relationship to additional potential 
errors in the C-R slope estimate that may be due to misspecification of the C-R shape to be estimated, the 
manner in which covariates are assumed to influence the PM-risk relationship, potential exposure 
measurement errors,4 or potentially different levels of exposure errors for co-pollutants.  These latter 

                                                 
3 Under my copyright agreements, I can send copies of these papers to individuals who request them of me.  Such requests can be 

emailed to me at Anne.Smith@NERA.com.   
4 Exposure mismeasurement is often discussed in terms of whether the estimated ambient concentration of total PM2.5 mass that 

is attributed to the individuals in a study is a correct estimate of their actual ambient total mass exposure.  However, there are 
other important (perhaps more important) errors that fall in the category that are often ignored.  One is whether the correct 
period for exposure is being used, including whether lagged, time-varying and/or cumulative exposures are more appropriate.  
Another form of mismeasurement error is whether total PM2.5 mass is the correct exposure, or some specific PM2.5 constituent 

mailto:Anne.Smith@NERA.com
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forms of potential biases and error have repeatedly been recognized as far larger than the statistical errors. 
In my own research analyzing these non-statistical uncertainties, I have routinely found that they do not 
simply widen the range about the risk estimate, but asymmetrically add more probability on the lower 
rather than higher side of the risk estimate.   

Layered on top of the aforementioned host of unquantified model uncertainties is a concern with 
prediction error.5  An epidemiological estimate of the relative risk based on a given set of observations—
even if highly accurate as an estimate of the average responses of the individuals within that data set that 
are causally attributable to PM2.5—does not necessarily accurately predict what the average population 
response will be in a future year, at a different future level of exposure to PM2.5, or in different locations.  
However, such extrapolation is the essence of risk analyses based on epidemiological associations:  the 
epidemiological estimation attempts to infer statistically what did happen under one set of circumstances, 
and the risk analysis then attempts to predict what would happen under different circumstances.  The 
prediction error of the estimated C-R relationship can be large for individual observations within the 
original set of observations.  However, it is vastly exacerbated when using an estimated C-R relationship 
for “out of sample” extrapolations to other conditions, which is the essence of the type of health risk 
analysis reported in Section 3.3 of the draft PA.   

By using statistical error as the only measure of uncertainty in its risk estimates, Section 3.3 provides a 
highly misleading summary of risk-based considerations for decision makers.  As written, it could sway  
decision makers and other readers into a mistaken belief that the ranges around its risk estimates represent 
a quantitative synopsis of the many uncertainties that the section discusses only qualitatively.  The risk 
analysis in the draft PA is at odds with and completely ignores the available literature on the need for 
quantitative integrated assessment of the uncertainties that arise when using from epidemiologically-
based relative-risk coefficients to predict absolute levels of risk under different circumstances.  Lacking 
any attempt at providing an integrated uncertainty analysis (IUA), the draft PA does not provide the type 
of decision-relevant information that is core objective of good quantitative risk analysis.  

2. The Progressively Declining Usefulness of Risk Analysis in PM NAAQS 
Decision-making 

My November 2018 paper labelled “HREA History” tracks the use of and reliance on results from 
quantitative health risk analysis in the Agency’s NAAQS decisions dating back to the 1970s.  It first 
documents how the Agency realized over 40 years ago that integrated assessment of the epistemic 
uncertainties associated with available scientific evidence was critical to making a well-informed decision 
on what level of criteria pollutant exposures could be judged to be protective of the public health with an 
adequate margin of safety.  This included recognition by the Agency that such uncertainties could only be 
fully characterized through the subjective judgments of experts who are able to assess the merits of 
existing scientific studies.   

The “HREA History” paper then reviews the HREAs specifically associated with the PM2.5 NAAQS, 
including those for the 1997, 2006, and 2013 PM2.5 NAAQS decisions.  It tracks how epistemic 
uncertainty was characterized in the past three PM2.5 NAAQS HREAs, and it analyzes how informative 
each successive HREA was to the respective Administrators’ final judgments on the appropriate NAAQS 
                                                 

that is a subset of the total mass.  Serious errors in the C-R slope estimate that is then applied in a risk calculation can be created 
by either of these latter forms of measurement error, even if the researchers have very accurate information on what the 
concentration of total PM2.5 mass was at a given individual’s residence and point in time. 

5 Prediction error of an estimated relationship is not the same thing as statistical error of the slope estimate, which is the only 
form of statistical uncertainty that EPA uses in its risk analyses in the draft PA.  The prediction error of a line fit through a set 
of observations is larger than the statistical error on the estimated slope of that line, and increasingly so for observations farther 
from the mean observation.  
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to establish.  Consistent with the structure of the current draft PA, the three prior PM2.5 NAAQS decisions 
considered an “evidence-based” approach and a “risk-based” approach.6 

The paper describes a progressive elimination of quantitative characterizations of epistemic uncertainty in 
the PM2.5 HREAs, and a concomitant elimination of relevance to the decision makers of the information 
provided by the HREAs.  The research shows that these parallel trends are not a coincidence but are 
clearly causally related.  That is, in each successive NAAQS review decision, it is shown that 
deterministic assumptions that eliminated consideration of critical epistemic uncertainties in the HREAs’ 
risk estimates undercut the decision makers’ ability to rely on those respective HREAs.  As a result, in 
both the 2006 and 2013 rulemakings, the justification for the selected NAAQS level was founded entirely 
on the evidence-based approach, while the “risk-based considerations” reported in the HREA were 
ignored. 

My article recounts how the first PM2.5 HREA, finalized in 1997, contained a set of three alternative 
potential subjective probability distributions over the key scientific uncertainties in the risk calculations – 
the most important of which was the level below which the C-R functions might not continue.7  Given the 
quantification of epistemic uncertainties in that HREA, it was possible to present a consistent discussion 
of evidence-based and risk-based considerations.  The Administrator at the time was able to select 
NAAQS levels that were coherently related to the information provided in the HREA.   

The second PM2.5 HREA (for the rule finalized in 2006) did not include a probability distribution over the 
epistemic uncertainty on a potential end of the C-R relationship.  Instead, following a recommendation by 
CASAC, that HREA assumed (deterministically) a threshold for long-term mortality risk specifically at 
10 µg/m3.  This deterministic treatment of the most critical, decision-relevant uncertainty associated with 
the risk calculations had the effect of making 10 µg/m3 the only reasonable level at which to set the long-
term standard if one were to rely on that HREA’s risk estimates. Observing this, the Administrator 
essentially dismissed that HREA as uninformative to the science-policy judgment that he faced.  

In the third PM2.5 HREA (for the current standard, promulgated in 2013), the HREA backed-off entirely 
from any quantitative treatment of scientific uncertainties in the risk calculations.  It assumed the C-R 
functions, including that for long-term mortality, were of unchanging slope or uncertainty down to the   
the lowest measured level in each epidemiological dataset from which a C-R slope coefficient was 
obtained.  (This was similar to assuming a deterministic threshold at 5.8 µg/m3.)  Anticipating the 
impending implications of that HREA’s assumptions, CASAC advised the Agency to seek alternative 
rationales for characterizing the uncertainty in continued health risks at ever lower potential NAAQS 
levels.  The final rule’s preamble reflected that warning and used an extended discussion of evidence-
based considerations as its sole justification for the final NAAQS decision.  The HREA was rendered 
irrelevant to the decision.    

Section 3.3 of the draft PA contains a risk analysis that is much the same as the last in the sequence of 
past PM2.5 HREAs.  It lacks any quantification of the still-important epistemic uncertainties associated 
with estimating health risks and health risk changes associated with alternative NAAQS.  In fact, it now 
calculates risks at PM2.5 levels down to zero exposure.  The logical consequence of this should be obvious 
but is also clearly presaged by the history of PM2.5 NAAQS decisions:  the risk-based considerations 
presented in Section 3.3 of the draft PA are not informative to a decision maker faced with making a 

                                                 
6 Section 3.2 of the draft PA contains information in the format associated with the “evidence-based” approach while Section 3.3, 

upon which I am specifically commenting, contains information in the format associated with the “risk-based” approach. 
7 These three alternative distributions were represented as hypothetical and not attributed to any specific person or group of 

people. 
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science-based judgment on a NAAQS level that is protective of the public health with an adequate margin 
of safety.  

3. Themes in Special Issue of Risk Analysis  

The reason the risk estimates in the past two prior PM2.5 HREAs as well as those in the current draft PA 
are not informative for decision makers is not that they are poorly communicated or summarized.  It is 
because they ignore virtually all forms of scientific uncertainty that are critical to the NAAQS policy 
judgment of what is requisite to protect the public health when zero-risk is not the required goal.  When 
ignoring the impact of the most important factor in the relevant decision process (i.e., scientific 
uncertainty), a risk analysis renders itself irrelevant by design.  Ignoring those scientific uncertainties also 
means that the draft PA’s risk estimates are not reliable from any potential decision-making perspective. 

The risk analysis profession has developed, over many decades, a structure or paradigm to guide the 
conduct of risk analyses in the direction of providing reliable decision-guidance.  The risk analysis 
profession describes the process of risk analysis as having four components:  (1) hazard identification, (2) 
exposure assessment, (3) dose-response assessment and (4) risk characterization.  The first step, hazard 
identification, is to determine, through observational, clinical and laboratory investigation whether a 
health risk exists.  If one is determined to exist, then estimates of exposures are combined with estimates 
of a dose-response relationship (i.e., the outputs of elements 2 and 3) to characterize the risk associated 
with the identified hazard.  There are basic principles developed for each of the four steps. 

Within this structure, an HREA reflects the second, third and fourth elements.  They provide a synopsis of 
how the Agency has conducted its exposure assessments and what it assumes for its dose-response 
relationships, with the goal of reporting results of risk calculations that are based on the exposure and 
dose-response relationship inputs.  However, these HREAs (including Section 3.3 of the draft PA) all 
start from a presumption of the existence of a hazard: that is, they presume a causal relationship between 
PM2.5 and the health risk endpoints for which they make quantitative public health risk estimates.   

Within this paradigm, epidemiological studies are, first and foremost, of relevance to the question of 
whether a hazard exists from exposure to ambient PM2.5.8  Unfortunately, the Agency conflates those 
studies of association with the different (and challenging) risk analysis element of dose-response 
assessment.  That is, the Agency’s analysts select a few specific epidemiological studies’ coefficients 
from estimates of a health effects association and use those coefficients at face value as a rigid and 
deterministic prediction of how changes in concentration translate causally into changes in risk of the 
studied health endpoint.  This egregiously short-changes the demands of a thorough dose-response 
assessment and represents the most fundamental flaw in the Agency’s implementation of the risk analysis 
paradigm in its PM2.5 HREAs and Section 3.3 of the draft PA.   

In September 2016, the journal Risk Analysis presented a Special Issue on Air Pollution Health Risks that 
contained invited commentaries by six different professionals active in addressing risks associated with 
criteria pollutants such as PM2.5.  I was invited to read and respond to this set of commentaries, which 
resulted in publication in the same special issue of the article I have called “Special Issue Synthesis” in 
my list of papers above.  That article points out that a consistent theme across those six sets of 
commentaries was that the primary challenges ahead for PM2.5 risk assessment was associated with 
shifting from use of the epidemiological studies for the purpose to hazard identification into use of those 
studies for the dose-response element of the risk analysis paradigm.  I do not see any evidence that 

                                                 
8 Many concerns have been raised about the appropriateness of the Agency’s causality framework.  While I will not attempt to 

engage in that current line of discussion here, I did discuss my own concerns in technical comments that I wrote (and which 
were submitted into the docket) for the PM2.5 NAAQS review that culminated in the 2013 rule.  As I consider the issues that I 
raised at that time to remain relevant today, I provide a copy of those comments in an appendix to this document. 
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Agency staff have taken notice of the need to grapple better with the dose-response assessment challenges 
that was discussed by multiple different risk analysis professionals in that September 2016 Special Issue 
of Risk Analysis.  The draft PA’s discussion of risk-based considerations is thus out of touch with and 
unresponsive to concerns about how to more effectively address the dose-response element of the risk 
analysis paradigm – concerns that continued to be actively discussed among risk analysis professionals at 
the outset of the current PM2.5 NAAQS review.    

4. BenMAP’s Capabilities and Limitations 

The risk analysis calculations in the draft PA have been conducted using EPA’s BenMAP model.  
BenMAP is a computational tool that calculates health risks when provided with a specific projection of 
ambient concentrations (i.e., the exposure input) and a specific assumed C-R function (i.e., the dose-
response input).  In my March 2015 paper that I have called the “BenMAP Review” in the list above, I 
provide a review of BenMAP’s capabilities estimating the sensitivity of its risk estimates to uncertainties 
in the C-R relationships that users choose as inputs.  

The actual formula for the risk calculation that BenMAP runs is simple and can be done on a hand-
calculator.  The reason the Agency has built this tool is so that it can make the application of the formula 
as disaggregated as one might desire.  For example, exposure assumptions are often provided at the level 
of a 12 km by 12 km gridded surface of the U.S.9  As there are nearly 50,000 such grid cells covering the 
48 conterminous U.S. states, this means the simple risk formula needs to be applied about 50,000 times 
over.  Furthermore, it requires 50,000 separate estimates of the cells’ respective population and baseline 
incidence rates for each health effect.  BenMAP’s contribution is to estimate these highly disaggregated 
demographic data for whatever geographic scale is used for the ambient concentration input.  However, 
BenMAP applies the same risk formula to the demographic and exposure estimates for every grid cell.  
My paper concludes that the main problem with BenMAP is that it suggests a great deal of sophistication 
in the risk analysis that is simply not there.  It converts risk-relevant insights that can be obtained by a few 
back-of-the-envelope calculations into a vast and inscrutable array of model-generated numbers—a fact 
that is probably apparent to any reader of Section 3.3 of the draft PA.     

BenMAP’s design encourages its users to conduct risk calculations at a level of disaggregation that is far 
out of line with the degree of detail in risk relationships that the epidemiological studies provide. The 
“BenMAP Review” paper also concludes that its potential for computational complexity distracts users 
from assessing the sensitivity of its risk estimates to some of the most fundamental uncertainties 
associated with the C-R input assumptions.  While a good risk analysis tool should encourage and enable 
users to conduct both sensitivity and uncertainty analysis, BenMAP cannot be used for integrated 
uncertainty analysis (IUA) and it discourages even sensitivity analysis.   

My article goes on to illustrate three types of sensitivity analysis that would be helpful to add to 
BenMAP:  (1) consideration of ranges of C-R slope estimates consistent with the full literature (rather 
than providing a “library” limited to the select studies that the Agency prefers to use); (2) a continuum of 
alternative assumptions about the PM2.5 level where the assumed C-R relationship may cease to exist; and 
(3) alternative assumptions about the relative toxicity of PM2.5 constituents.   

In the third example (differential toxicity uncertainty), the article shows that the estimate of risk reduction 
due to a reduction in ambient PM2.5 mass depends not just on what constituents are considered toxic, but 
also on what type of PM2.5 reduction strategies would be taken.  While the right assumptions are 
unknown, this sensitivity analysis shows that the risk estimate that the Agency produces under its 

                                                 
9 This is the grid scale used in the draft PA’s risk calculations for 47 urban study areas of the U.S. 
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standard assumption that all constituents are equally toxic is at the high end of the range of risk estimates 
that account for uncertainty in the relative toxicity of different PM2.5 constituents. 

In summary, the “BenMAP Review” paper focuses on the appropriateness of BenMAP’s design for 
encouraging risk analyses that can provide useful and reliable guidance to decision makers.  It finds that 
even sensitivity analyses to epistemic uncertainties are difficult to conduct given this tool’s emphasis on 
enabling risk calculations to be conducted as a level of geographical detail that is far out of line with the 
current state of scientific knowledge about the underlying risk relationships.   

In an invited comment on the “BenMAP Review” paper that appeared in the same journal issue, Agency 
staff cited an NAS report to dismiss the potential that there might be any discontinuation in the C-R 
relationship.  In my “Response to EPA” (also in that issue), I pointed out that EPA was incorrectly 
characterizing the conclusions of that NAS report.  I further noted that arguing against the existence of 
any particular scientific uncertainty was just another way of distracting rather than informing decision 
makers about the role of unresolved uncertainties in risk-based considerations. The commenters also 
expressed satisfaction that we were able to use BenMAP for our sensitivity analysis, but I noted that we 
had had to conduct our paper’s sensitivity analyses in a spreadsheet outside of BenMAP because the 
spreadsheet was easier to work with than BenMAP itself, once BenMAP’s estimates of the cell-by-cell 
demographic data had been extracted from it. 

In brief, my advice to CASAC members regarding BenMAP is to have less concern about its ability to 
produce correct risk estimates for a given set of input assumptions and more concern about how its use is 
preventing the draft PA from exploring a reasonable range of  variations in those input assumptions.10 

5. Integrated Uncertainty Analysis 

The discussion thus far has made the case that the risk analysis methods that EPA has historically used 
(and which are again used in the draft PA) fail to appropriately quantify the scientific uncertainties that 
are central to the PM2.5 NAAQS decision.  An important question is whether there are better methods to 
conduct such a quantification.  It is exceedingly late in the current review process to revise the risk 
analysis, but with sufficient planning and a willingness to embrace the reality that these uncertainties are 
inherently subjective, there are alternative methodologies that could be taken.  Often these approaches are 
called “integrated uncertainty analysis” (IUA) because they require that the effects of multiple different 
sources of uncertainty be accounted for in a single probabilistic analysis.   

Among my own writings, I discuss several different ways that epistemic uncertainties can be incorporated 
into a NAAQS-related health risk analysis.  I will summarize where these discussions can be found within 
the papers I have had published since the prior PM2.5 NAAQS review: 

• Section 2 of my “HREA History” paper (“Origins of Quantitative Risk Assessment for Criteria 
Pollutants”) describes how IUA was incorporated into the 1997 HREA for PM2.5.  It was done by 
positing three alternative probability distributions (illustrative and implicitly subjective) over key 
input assumptions.  The most important probabilistic input regarded how low the C-R function 
was believed to continue to exist.  The HREA thus presented three alternative probability 
distributions over the resulting health risk estimates. No single distribution was endorsed, but it 

                                                 
10 I do not, however, warrant that the particular estimates provided in the draft PA are correct.  I have made no attempt to 

replicate them and am not aware of such effort by any other party.  During the prior ozone NAAQS review, NERA identified 
significant errors in the BenMAP computations of risks for specific urban areas in that ozone HREA, and the Agency had to 
revise a large fraction of the HREA’s risk tables.  The errors were due to faulty mappings in BenMAP to access demographic 
data at different levels of geographic disaggregation—a BenMAP function that is especially “black box” in nature and thus 
difficult to check.  
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provided HREA readers and the Administrator with information about the net effect of the 
scientific uncertainties on the reliability of the risk estimates.   

• Section 5 of my “HREA History” paper (“Rebuilding Relevance for the NAAQS Risk 
Assessment”) makes a detailed recommendation for how future NAAQS reviews could alter the 
process by which HREAs could be conducted that would enable multiple alternative probability 
distributions over the continued existence of a causal C-R relationship to be identified and 
incorporated into the HREA.  These alternative probability distributions would be proposed (and 
justified) by commenters rather than by EPA staff.  Each proposed probability distribution would 
be run as a separate set of risk calculations, with resulting probabilistic risk estimates presented in 
collated fashion as the main output of the HREA.  This would leave the Administrator free to 
examine the justifications associated with each submission, and ultimately give weight to the 
probabilistic risk estimates from the submission(s) that best fit the Administrator’s own 
evaluation of the strengths and /or limitations of the scientific evidence. 

• My January 2018 “Ozone IUA” paper provides a discussion of how epidemiological evidence of 
a potential threshold in the long-term ozone respiratory mortality could be incorporated into a 
probability distribution over that risk endpoint.  The approach was to combine an initial 
(subjective) probability distribution on the potential level of such a threshold11 with a statistically-
based set of likelihoods on where such a threshold may lie.  The latter set of likelihoods is based 
on the relative goodness-of-fit of the many alternative threshold model runs that were reported in 
the epidemiological paper that was being used as the source for a C-R function on this mortality 
risk.  The result of this operation is a probability distribution over the potential threshold location 
that accounts for both subjective views and epidemiological evidence.12  With such an approach, 
one can avoid having to choose between two deterministic assumptions: that there is no threshold 
(despite evidence that there may be one) or that there is a threshold at the level that produces the 
best-fitting model (despite that model having only marginal statistical significance over the no-
threshold model).  Using this combined distribution as the basis for an IUA-based risk analysis, 
this paper shows how even highly uncertain indications of a potential threshold, if incorporated 
probabilistically into the risk analysis, can result in a substantially different indication of the 
merits of alternative NAAQS levels compared to assuming (as the Agency did) that a linear-to-
zero C-R function remained the best single deterministic assumption.   

I recognize that the third of these examples was made possible by the availability of a set of 
epidemiological estimates for a wide range of alternative model specifications.  However, the 
methodological benefits of having such alternative model estimates are apparent.  They enabled a direct 
and quantitative characterization of the model uncertainty in the risk estimates without forcing any 
definitive (deterministic) judgment on the level of the true threshold.  Even the possibility of no threshold 
continued to be included in the IUA.  If it were to become a standard among air pollution epidemiologists 
to provide the statistical fits of alternative model specifications applied to their dataset, such hybrid 
statistical-and-subjective judgments could be used more often.  This could provide a middle ground 
between the purely deterministic approach of the current draft PA and the purely subjective approach 
suggested in the “HREA Review” paper.        

6. Inconsistencies Between NAAQS and RIA Risk Analysis 

All of the above discussion concerns incorporation of epistemic uncertainty into the risk analyses that are 
used to inform a decision on whether to revise or keep a NAAQS standard, i.e., in the HREAs.  Those risk 

                                                 
11 In technical terms, this initial probability distribution is called a “prior” distribution. 
12 In technical terms, this is called a “posterior” distribution. 
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analyses are the relevant ones for CASAC to evaluate.  However, many of the same issues about 
epistemic uncertainty pertain to the risk and benefit calculations of the RIAs that accompany a NAAQS 
rulemaking.  The risk calculations in RIAs for criteria pollutants may seem to mirror the risk calculations 
in the HREAs that occur before a NAAQS decision is made.  However, in my recent research I have 
noticed a significant inconsistency between the rationales that are used to justify a final NAAQS decision 
and the risk input assumptions that are then used in the RIA for that same NAAQS.  This inconsistency is 
documented in my September 2016 “Inconsistencies” paper.   

Briefly, the rationale for setting the annual PM2.5 NAAQS at 12 µg/m3 was largely an evidence-based 
judgment by the Administrator that the available epidemiological evidence was too limited to give her 
confidence that the key C-R relationships continued to exist below about 12 to 13 µg/m3.  Thus, while 
health risks could not be said to be zero below 12 µg/m3, protection against exposure to lower levels of 
PM2.5 was considered not to be requisite.  Nevertheless, the accompanying RIA assigned as much 
confidence to the risks it estimated for PM2.5 exposures well below the standard (including those near 
zero) as it did to those estimated for exposures above or near the standard.  My paper demonstrated that 
70% to 96% of the benefits attributed to that rulemaking were due to this inconsistent assumption in the 
RIA.   

In my most recently accepted paper, which I have labelled “Improving Consistency,” I revisit this 
inconsistency issue.  I make a recommendation for how an Administrator’s expressions of uncertainty 
about the C-R relationship might be incorporated into NAAQS-related RIAs’ risk calculations to generate 
consistency between the reasoning behind a NAAQS decision and its associated RIA.  The concept is that 
the Administrator’s subjective probability distribution on the continued existence of the mortality C-R 
relationship could be formally elicited and directly reported as part of the formal rationale for a NAAQS 
decision.  This elicited distribution would be presented as a quantitative supplement to the usual evidence-
based reasoning already found in NAAQS rationales.  (It could be provided without any risk-based 
calculations, or it could also be incorporated into HREA estimates to be summarized in the preamble.)  
Importantly, however, it would become a direct input to a probabilistic (confidence-weighted) estimate of 
the rule’s benefits that would be presented in the accompanying RIA.  In my “Improving Consistency” 
paper, I provide illustrative examples of what the resulting probabilistic risk estimates might be and 
contrast them to the inconsistent risk estimates that result from the deterministic (no threshold) C-R 
assumptions presently used in RIAs.  (The illustrative example is based on the RIA for the PM2.5 NAAQS 
promulgated in 2013.) 

Instituting such a process for preparing RIAs that are logically-consistent with the basis for the NAAQS 
decision would have no effect on the NAAQS decision itself, as the RIA is not an input to that decision.  
It would, however, create greater acceptance of the RIA results. Also, the impact on RIA estimates would 
carry over into RIAs for rules that do not target PM2.5, but which treat coincidental reductions in PM2.5 as 
co-benefits.  Adoption of this confidence-weighted risk calculation for all RIAs could significantly reduce 
the current controversies over the appropriateness of basing non-NAAQS rulemakings on co-benefits.   
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In September 2009, the U.S. Environmental Protection Agency (EPA) released its 
external review draft of a document titled “Risk Assessment to Support the Review of the 
PM Primary National Ambient Air Quality Standards” (hereafter, the “Draft PMRA”).  
Following are my comments on issues in conducting a quantitative risk assessment for 
PM2.5.   
 
I.  Introduction and Summary of Main Points   
 
EPA’s Draft PMRA is intended to provide quantitative estimates of the levels of risk 
from PM2.5 actually being experienced by the U.S. population today, and how those risks 
will change if current ambient PM2.5 is reduced by the application of more stringent 
National Ambient Air Quality Standards (NAAQS).  The Draft PMRA only quantifies 
those risks that have been determined to be “causal” or “likely causal” in the second draft 
of the Integrated Science Assessment (hereafter, the “Draft ISA”).  Once such a 
determination is made in the ISA, however, the Draft PMRA not only presumes that 
statistical estimates of PM2.5’s relative risks are causal, but also that they can be 
interpreted quite literally as the quantitative concentration-response functions that 
determine actual risks.  Whatever merit the observed epidemiological associations may 
have as indicators of a causal relationship, the unquestioning numerical credence that 
EPA assigns to the epidemiological estimates undermines the credibility and reliability of 
the Draft PMRA results.  A common adage is “association does not imply causation;” to 
this can be added that even if a statistical association does reflect causation, it does not 
define the actual quantitative response function.   
 
There are several layers of problems with the quantitative risk calculations in the Draft 
PMRA: 

• At the most fundamental level, the Draft PMRA presumes that there is a causal 
association in the epidemiological evidence.  That presumption is less than 
settled, as my comments will explain, because all of the studies may be wrong for 
the same systematic reason. 
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• At the next level, the estimates of relative risk from the epidemiological studies 
are almost certainly highly biased and, as my comments will explain, the bias is 
likely in the upward direction.  Because the Draft PMRA uses those estimates 
directly for its quantifications of risk, the Draft PMRA’s estimates of current 
premature mortality from PM2.5 exposures are probably overstated. 

• Topping it off, the epidemiological studies are incapable of defining how the 
relative risk would tend to vary at increasingly lower levels of PM2.5.  This creates 
an increasingly large error as risk reductions are estimated for tighter and tighter 
alternative ambient PM2.5 standards.  

 
All of the above problems in using the epidemiological relative risk estimates for 
quantitative purposes stem from fundamental data limitations that face every single one 
of the epidemiological research teams.  This situation does not imply any fault on the part 
of the research teams or that the quality of their work is not of high quality.  
Unfortunately, however, EPA understates the remaining uncertainties that result from 
these studies’ inherent data limitations when it engages in the quantitative risk assessment 
in its Draft PMRA.   
 
Given that it does not address this array of problems in using epidemiological studies to 
attempt to quantify risk, the quantitative risk assessment in the Draft PMRA is highly 
misleading as an input to policy decisions.  EPA could mitigate this situation by finding 
ways to quantitatively incorporate corrections for the systematic biases.  This would 
produce a larger range of uncertainty in its estimates of risk, but one that reflects the true 
current state of knowledge.  If this is not done, however, then the Draft PMRA should not 
be used in the consideration of alternative PM2.5 NAAQS. 
 
The rest of my comments are organized in the following way: 

• Section II explains the problem in making a presumption of causality in the Draft 
PMRA, even though this is the determination in the Draft ISA.   

• Section III discusses how the data limitations of the available PM2.5 epidemiology 
literature make it inappropriate to use the estimated relative risks from those 
studies directly in a quantitative risk assessment as the Draft PMRA does.   

• Section IV points out that even the epidemiological studies indicate a non-
negligible chance that PM2.5 imposes no long-term risk to all-cause mortality at 
all, once they are reviewed in a less selective manner than in the Draft PMRA. 

• Section V summarizes and concludes that until these uncertainties are addressed 
quantitatively in the PMRA, it will be unreliable, and should not be used in the 
consideration of alternative PM2.5 NAAQS. 
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II.  EPA’s Causality Criteria Are Inappropriate and Promote False Confidence in 
Quantified Risk Estimates in the Draft PMRA.  
 
The Draft ISA provides a review of the weight of evidence in favor of alternative degrees 
of causal inference for various effects, such as between long-term exposures to PM2.5 and 
cardiovascular mortality.  The Draft ISA’s determinations of causality for long-term 
PM2.5 associations with CVD mortality and likely-causal for all-cause mortality 
associations are heavily driven by evidence of statistical associations in observational 
epidemiology studies.  As explained below, this degree of reliance on the epidemiological 
evidence is excessive, highlighting a weakness in the criteria for causality that EPA 
establishes in that document.  Given that uncertainties in the causality determination are 
never questioned again in the Draft PMRA, they are important to discuss in these 
comments on the Draft PMRA.  
 
 (II.A.) EPA’s criteria allow excessive reliance on epidemiological findings in 

making a determination whether pollutants are causally associated with 
health effects. 

 
The Draft ISA provides a set of criteria that must be met to determine that a particular 
health effect is causally related to PM2.5 exposure.  I quote the criteria below, which I 
have broken into two parts for purposes of the discussion that follows:1 

Part 1:  “The pollutant has been shown to result in health effects in studies in which 
chance, bias, and confounding could be ruled out with reasonable confidence. For 
example: a) controlled human exposure studies that demonstrate consistent 
effects; or b) observational studies that cannot be explained by plausible 
alternatives or are supported by other lines of evidence (e.g., animal studies or 
mode of action information).”  

Part 2:  “Evidence includes replicated and consistent high-quality studies by multiple 
investigators.”   

 
On its own, Part 1 provides what would seem to be a perfectly appropriate set of criteria 
for making a causal determination.  However, the addendum of Part 2 greatly weakens 
the requirements, because as a logical “or” statement, it provides a way for EPA to 
conclude in favor of causality even if controlled human exposures studies do not 
demonstrate consistent effects, and observational studies can be explained by plausible 
alternatives and are not supported by animal studies or mechanistic actions; Part 2 allows 
EPA to conclude in favor of causality even in the face of all of the foregoing findings as 
long as multiple authors have published quality epidemiological studies that replicate 
each other.  Thus, the single sentence of Part 2, treated as a logical “or” rather than as a 
logical “and” to the requirements of Part 1, serves to absolve EPA from having to 
demonstrate that the associations in chronic studies “cannot be explained by plausible 
alternatives” before it can make its causal determination.   

                                                 
1 Draft ISA, Table 1-3, p. 1-29. 
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Unfortunately, EPA relies almost entirely on the type of evidence allowed by Part 2 to 
make its causal determination regarding long-term mortality risks of PM2.5.  Take the 
case of long-term cardiovascular (CVD) mortality risk, for example.  The Draft ISA 
relies almost entirely on the existence of a multiplicity of separate chronic studies that all 
find a PM2.5-mortality association.  It begins and ends that causality discussion with the 
following respective quotes:    
 

“A number of large, multicity U.S. studies (the ACS, Six Cities Study, 
WHI, and AHSMOG) provide consistent evidence of an effect between 
long-term exposure to PM2.5 and cardiovascular mortality.”2  
 

and: 

“In summary, a number of large U.S. cohort studies report associations of 
long-term PM2.5 concentration with cardiovascular mortality. These 
studies provide the strongest evidence for an effect of long-term PM2.5 
exposure on CVD effects.”3 

EPA determines that this evidence from multiple chronic studies suffices to identify a 
causal relationship, even though the remainder of the supporting evidence that the Draft 
ISA musters in support of a long-term CVD mortality risk are some inconsistent 
morbidity studies, inconsistent clinical studies, and a few toxicological studies that are 
suggestive of some possible relevant responses.  The Draft ISA does not offer any 
reasons to believe that any of the many observational studies have met EPA’s conditions 
for making a causal determination under Part 1.  Nowhere does EPA make a case that the 
associations in the chronic mortality studies “cannot be explained by plausible 
alternatives.”  In fact, it could not possibly make such a claim given that epidemiologists 
continue actively to try to rule out various plausible alternatives.  The plausible 
alternatives that researchers have not yet been able to rule out include confounding 
(residual or otherwise) by co-pollutants, noise, stress, and socioeconomic factors.4  For 
example, the most recent ACS cohort analysis (Krewski et al., 2009) focused vigorously 
on more effectively controlling for socioeconomic factors than in past studies, but it made 
no attempt to rule out possible confounding by co-pollutants.   

Thus, the available evidence for long-term mortality risk does not meet the causality 
criteria contained within Part 1, and EPA is relying very heavily on Part 2 to defend its 
“causal” determination.  Part 2, however, is not a valid basis for a causal determination if 
observational studies are not also supported by consistent effects in controlled studies.  It 
would be a reasonable addendum if it were required in addition to Part 1 conditions, but 
not when used instead of meeting Part 1 conditions.  The reason it is insufficient for 

                                                 
2 Draft ISA, p. 7-25. 
3 Draft ISA, p. 7-26. 
4 The effect modification by educational status in the chronic studies remains as an indication of some 
residual confounding by socioeconomic factors.  Although this pattern was reduced in the Krewski et al 
(2009) study, it was not eliminated. 
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identifying whether a statistical association is causal is because it fails to address the 
possibility of systematic biases, which cannot be ruled out except with evidence from 
controlled studies. 

Systematic biases will occur if the studies in question have relied on similar 
methodologies and similar data sources.  In this case, if a bias (e.g. due to residual 
confounding) exists in one study, then it is likely to exist in all the studies.  All of the 
epidemiological results can be wrong for the same reason.  A multiplicity of studies 
finding a statistical association do not provide independent confirmation supporting a 
causal inference unless one can demonstrate that there is no potential for such systematic 
bias among those multiple studies.  Thus, Part 2 of EPA’s causality criteria enables 
causality to be declared even if there remains a very large likelihood of no causality.   

There is substantial potential for systematic bias in the case of chronic PM2.5-mortality 
epidemiology.5  Table 7-8 of the Draft ISA lists 14 recent U.S. cohort studies that find an 
association between PM2.5 and mortality.6  All of these studies draw from the same 
fundamental data set, however, because they all sample individuals across the U.S. and 
assess the correlation between their local monitors’ PM2.5 levels and their mortality risks 
after attempting to control as best possible for the very broad swath of much stronger 
determinants of risk (e.g., age, sex, diet, smoking habits, and socioeconomic factors).  
Controlling effectively for these other factors is the key to getting a sound answer, yet all 
of the studies are reduced to using approximately the same approximate data, all of them 
facing enormous amounts of error in how those variables are assigned to individual 
cohort members.  In any single study, there is a good chance that the controls for the 
primary determinants of mortality risk are incomplete, and some confounding remains to 
bias the association estimated for PM2.5.  Unfortunately, all of these studies face the same 
problem, in a systematic way, because they all rely on the same types of data, and face 
the same fundamental data limitations.7  

The fact that these studies rely on several different cohorts does not make them 
independent of each other with respect to confounding and effect modification.  If 
ambient PM2.5 is correlated with the missing or poorly measured non-PM explanatory 
variables across the U.S., then almost any reasonably diverse subset of the U.S 
population are likely to embody that same underlying correlation.  For example, a sample 
of mostly white volunteers for a cancer study and a sample of veterans may have quite 
different socioeconomic profiles, but both will reflect the general correlations that exist 
across the U.S. between PM2.5 measured at central monitors and key socioeconomic or 
other non-PM2.5 causal factors.  The same biases can apply to every single cohort of 
people drawn from the U.S. population.  This is a particular systematic concern for 
                                                 
5 Goodman (2009), pp. 8-9, makes a similar point. 
6 Draft ISA, pp. 7-119 to 120.   
7There is also uniformity in the methodologies being used, in that almost all of the researchers use the same 
statistical model, the Cox proportional-hazards (PH) model, and thus systematically share any biases that 
may derive from the limitations of this statistical model.  For example, the Cox PH model assumes the 
effects of pollution levels and of potential confounders on the logarithm of hazard are all linear.  The 
assumption of proportional hazards has received limited testing, but that which has been done raises serious 
questions about this key assumption (see, for example, Abrahamowicz et al., 2003).    
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variables that must be controlled at the ecological level.  Thus, the biases from 
confounding and effect modification that are most difficult to control are also likely to be 
systematic across multiple U.S. cohorts.   

This is not a criticism of the quality of the research teams’ efforts; it is just an unfortunate 
reality of the limitations of the available data and tools to study such a subtle possible risk 
without the ability to perform controlled experiments.  Nevertheless, the potential for 
systematic bias should not be ignored.   
 

(II.B.)  Differential measurement error can systematically create bias from 
confounding, even if confounders are included in the epidemiological study. 

 
The potential for systematic confounding and effect modification cannot be eliminated 
simply by including the relevant explanatory variable in the data analysis if there is 
measurement error.  A confounder is a variable that has a direct effect of its own on risk, 
and which is correlated with the pollutant being studied.  When this is the case, if the 
confounder is left out of the analysis, the pollutant will be attributed some of the 
explanatory power that is actually due to the missing confounder, and thus the relative 
risk estimate will be biased.  If personal exposures to all the confounders and effect 
modifiers can be measured accurately, the bias in the PM2.5 exposure-risk association can 
be eliminated by identifying and including the confounder in the data analysis.  However, 
if the confounder cannot be measured with accuracy, even if it is included in the data 
analysis, residual confounding will remain in the estimated association between the 
exposure variable and risk.   
 
The situation is complex, but simulation studies can help understand the potential for 
biased effects estimates in situations that have confounders with differential measurement 
error.  One such study (Fewell et al., 2007) demonstrates that typical amounts of 
confounding, combined with typical amounts of measurement error, can cause quite large 
relative risks to be assigned to an exposure variable that has no effect at all, even when 
measures of the confounder are included among the controlling covariates in the analysis.  
The size of the potential erroneous relative risk reported by Fewell et al. exceeds the 
magnitude of the PM2.5 relative risk in the PM2.5 epidemiological literature.  The 
implication is that the estimated chronic PM2.5 relative risks – given their fairly small 
magnitude – could be the result of residual and unmeasured confounding by either 
socioeconomic factors or other environmental factors.  Because these potential 
confounding relationships are likely to exist for every cohort if they exist for one, all of 
the multiple, independent long-term PM2.5-risk associations could be reflecting the same 
systematic biases (Boffeta et al., 2008). 
 
Cohort studies in other countries might not face all of the same systematic errors that 
would apply to cohort studies all from the U.S.  However, if the source of the confounder 
is physically related to PM sources, then one would see the same systematic bias even for 
cohort studies outside of the U.S.  Thus, positive findings from cohort studies in other 
countries might reduce some of the concern with a socioeconomic-pollutant correlation, 
but cannot eliminate concerns that PM is a proxy for another co-emitted pollutant, some 
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non-chemical effect coinciding with chemical emissions (e.g., noise), or for a single 
constituent of PM.  Table 7-8 of the Draft ISA identifies one PM2.5-mortality cohort study 
from the Netherlands (Brunekreef et al., 2009).  The abstract for this study states that it 
“differs from cohort studies based on city-level differences in exposure” because it 
considered exposures to pollution sources that exist mainly within cities.  The U.S. cohort 
studies, which are based on city-level differences in pollution, are reporting an 
association between health and the total, undifferentiated mass of all forms of PM2.5.  It is 
those total mass associations that are then being used for risk calculations in the Draft 
PMRA.  Thus, this non-U.S. study does not provide corroborating evidence of the same 
kinds of relationships being estimated by the U.S. cohort studies, and so it does not help 
eliminate concerns that potential systematic biases may pervade the latter.    
 
 (II.C.)  Other pollutants are a likely source of residual and unmeasured 

confounding bias in the long-term associations. 
 
The potential for the long-term PM2.5 estimates to all share bias due to confounding from 
other pollutants is clear, regardless of what one might think about residual socioeconomic 
variable confounding in this body of literature.  Rarely are other pollutants or pollutant-
sources included in PM2.5 epidemiological regressions; however, when they are included, 
there is often a marked reduction in the size and statistical significance of the PM2.5 
effect.  Such a sensitivity upon the inclusion of SO2 was a major finding of the reanalysis 
of the ACS data by Krewski et al. (2000); yet, the subsequent papers of Pope et al. (2002) 
and Krewski et al. (2009) that extended the ACS cohort analysis did not report any PM2.5 
relative risks that had also been controlled for SO2.  This omission in recent ACS-based 
studies leaves an important question regarding the quantitative validity of the PM2.5 
associations taken from Krewski et al. (2009) that the Draft PMRA uses.  
 
The other study that EPA places high reliance on is the update of the Harvard Six Cities 
study by Laden et al. (2006).  EPA cites this study as providing confirmatory evidence 
that long-term reductions in PM2.5 produce a corresponding reduction in mortality.  
However, this study does not consider any pollutants other than PM2.5, even though the 
levels of various gaseous pollutants have fallen concomitantly with PM2.5 in the six cities.  
Rather, Laden et al. attribute the entire change in health risk associated with air pollution 
reduction to PM2.5 without any apparent attempt to test whether any other pollutant might 
have equivalent explanatory value.8  The paucity of data points available with this cohort 
make it impossible for statisticians to even attempt to control for more than one pollutant 
at a time.  That is, with the Harvard Six Cities cohort, the estimate of the effect of 
pollution on inter-city mortality risk differences must be based on only 6 cities/data 
points.  In contrast, as many as 150 cities/data points are available for inferring relative 
risk estimates with the ACS data set.  Nevertheless, the researchers still could have used a 
series of one-pollutant models to explore whether pollutants other than PM2.5 might also 
be associated with the observed changes in inter-city mortality risks.             

                                                 
8 Furthermore, in the critical second period of this study, the results were not based on actual fine PM 
measurements.  Rather, they are rather based on measurement of another NAAQS pollutant (PM10) and 
extinction coefficients. 
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Even if other pollutants were to be included in these long-term risk studies, it is quite 
likely that they would fail to control for confounding because of differential measurement 
error.  PM2.5 is generally believed to have a much more uniform distribution in space than 
other pollutants with which it is correlated, including NO2, CO, coarse PM, and even 
ozone.  Thus, the standard practice of using data from a central monitor to estimate 
individuals’ exposures probably results in greater exposure misclassification for these 
other pollutants than for PM2.5.  The result could be that PM2.5 will persistently appear to 
carry the best explanatory power, yet just be serving as a proxy for the health effects of 
the other, more erroneously measured pollutant exposures.  This possibility was 
demonstrated in a simulation study that contained considered two hypothetical correlated 
pollutants, one a “True Culprit” measured with relatively large error, and the other an 
“Innocent”, but measured with relatively small error.  The simulation results showed that:   
 

“in circumstances like this, which pollutant would appear to have the most 
significant and consistent relationship with health may be determined 
more by its relative observation error than by its actual contribution to the 
health effects in question.  The greatest problem with this spurious 
association of Innocent with health is that it remains stable whether or not 
True Culprit is added into the regression.  Further, if only True Culprit is 
included in the regression, the R2 falls to zero.  True Culprit is the 
pollutant that seems to have a highly unstable association and very little 
explanatory power on its own. Thus, unlike in the simple confounding 
case, the usual methods for checking for confounding no longer function 
well when there are observation errors as well as strong correlation among 
pollutants.”9 
 

 (II.D.)  Evidence of proxy effect exists in changes in estimated PM2.5 relative 
risk coefficients over time. 

 
One signal that a non-causal proxy effect might account for the PM2.5-mortality 
associations would occur if the estimated relative risk for PM2.5 mass were to increase 
over time as PM2.5 levels decline.  That is, if there is a given amount of risk associated 
with a certain non-PM2.5 causal factor that is correlated with PM2.5 mass, if the 
unidentified causal factor was not reduced while PM2.5 was reduced, then the remaining 
lower levels of PM2.5 would account for the same total level of risk from the unidentified 
factor.  The result would be a greater relative risk associated with a given amount of PM 
difference.10   
 

                                                 
9 Smith and Chan (1997), p. 21.  (The observed correlation between the two pollutants in this analysis was 
0.56, which is in the range often observed in the US.) 
10 This signal will not necessarily occur even if PM2.5 is serving solely as a proxy for some unnamed causal 
factor, if the causal factor were to be reduced in roughly the same degree as PM2.5 over that same period of 
time.  That could be the case if PM2.5 is serving as proxy for a gaseous pollutant, since most of the 
pollutants have been declining simultaneously due to parallel environmental regulations.  
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We do observe this pattern in the extended analyses of the ACS cohort.  For example, in 
Pope et al. (2002), the estimated relative risk per 10 µg/m3 of PM2.5 for all-cause 
mortality rose from 1.04 when using 1979-1983 PM2.5 data (which averaged 21.2 µg/m3) 
to 1.06 when using 1999-2000 data (which averaged 14.0 µg/m3). The estimated relative 
risk for cardiopulmonary risks rose from 1.06 to 1.08.11  Similarly, in Krewski et al. 
(2009), the all-cause relative risk rises from 1.043 to 1.056 and the cardiopulmonary 
relative risk rises from 1.089 to 1.129 when estimated with the earlier or later PM2.5 
data.12  (Laden et al. (2006) report a decline in the relative risks from an earlier period to 
a later period of exposure, but this is not the same comparison.  In the ACS examples, the 
risk over the same follow up period is estimated using PM2.5 from two different parts of 
the time period.  Laden et al. do not report estimates or relative risk for the entire time 
period using first the earlier, then the later PM2.5 measures.  Since they do not report a 
comparable set of relative risks, their finding cannot be said to conflict with the ACS 
finding just described.) 
 
The increase in the estimated relative risk that occurs in the ACS data set when more 
recent PM2.5 data are used might also occur if there is a real effect from PM2.5 mass that is 
truly long-term in nature.   In that case, on-going mortality outcomes might be a function 
of earlier exposures to PM2.5, when it was at higher levels, while more recent PM2.5 
measures might be serving as a proxy for the historically higher PM2.5 exposures.  Even if 
this does explain the upward trend in estimates of PM2.5 relative risks, it implies that any 
quantitative estimate of benefits from reducing current PM2.5 based on the numerical 
results of recent epidemiological associations will be biased upwards.  That is, adoption 
of a relative risk estimated using the more recent PM2.5 “at face value” as the quantitative 
PM2.5 concentration-response function would be erroneously assuming that the entire 
increase in risk due to higher historical PM2.5 exposure is caused by a much smaller 
amount of PM2.5 exposure.  This concentration-response function would overstate the risk 
from as-is PM2.5, and it would overstate reductions in risk that could be expected by 
reducing today’s lower PM2.5 to yet lower levels.   
 
In summary, proxy effects can be at play in chronic studies, even if there is a causal 
relationship for PM2.5 mass generally, and this proxy effect would create erroneous 
(overstated) risk and risk-reduction estimates in the PMRA. The bias would then be 
exacerbated even further when considering the benefits of further reductions in PM2.5 due 
to rollbacks to alternative, more stringent PM2.5 standards.  The latter possibility is 
discussed further in Section III.B. 
 

(II.E.)  Epidemiological findings on short-term mortality are far more 
heterogeneous, and do not provide strong back-up to long-term studies. 

 
Some people prefer to rely on short-term, time-series studies for evidence of an effect 
from PM2.5 because effects observed within each city provide more inherent control for 

                                                 
11 Pope et al. (2002), Table 2, p. 1136. 
12 Krewski et al. (2009), Table 6, p. 23.  Values reported are for regressions with MSA & DIFF ecological 
controls, but the pattern also appears in other regression in the table. 
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socioeconomic factors that are otherwise difficult to measure accurately.  While this may 
be true to some extent for the socioeconomic factors, short-term studies are still subject to 
potentially uncontrollable confounding from other pollutants.   Nevertheless, existing 
short-term risk studies offer very little support for a causal interpretation of the observed  
long-term PM2.5 associations.  In particular, the quantitative level of the risk in the long-
term studies is roughly an order of magnitude higher than associations found in short-
term studies.  The difference could be entirely due to confounding bias, or – as EPA 
prefers to explain it – the difference could be that cumulative, long-term effects are much 
larger than acute effects.  Neither explanation can be held up as more correct, but even 
EPA’s preferred explanation implies that the short-term studies cannot be viewed as 
corroborating the long-term study findings, because it implies that the long-term 
associations would have to be for an effect that acute studies cannot even detect. 
   
Short-term studies also produce results that vary enormously from city to city and 
regionally, often finding no effect at all, even in cities and regions with relatively high 
PM2.5 levels. This heterogeneity may indicate that the smaller, short-term PM2.5 
associations are not necessarily causal either.   
 
III.  Even If the PM2.5 Association Is Causal, Statistical Estimates of PM2.5 Relative 
Risk Remain Subject to Biases that Make Them Unreliable for Quantifying Risks. 
 

(III.A.)  Biases in estimates of the average magnitude of the PM2.5 association 
are likely due to four types of data problems. 

 
As explained in Section II, the Draft ISA’s conclusion that PM2.5 is causally related to 
cardiovascular mortality risks (and likely causally related to mortality risks in general) 
remains open to reasoned debate.  However, a variety of uncertainties also exist that 
directly undermine the quantitative interpretation of the epidemiological findings for 
determining what numbers of deaths are premature at present, and especially for 
predicting how mortality risks would change if PM2.5 mass were reduced.  There are at 
least four ways in which quantitative biases can be present in the epidemiologically-
estimated associations that would undercut their reliability for quantification of risks, as 
discussed below. 
 
(1) Differences in potency of various PM2.5 constituents.  There are uncertainties about 
the relative potency of different constituents within the PM2.5 mass.13  Thus, even if a 
relative risk estimate is quantitatively valid as an average effect of the current mix of 
PM2.5, if some constituents would not be reduced as much as others when an alternative 
PM2.5 standard is imposed, then the reduction in risk from that standard would not be 
what one would predict using the average relative risk.  In fact, if some small subset of 
the mass is highly potent and accounts for most or all of the observed association, it is 
                                                 
13 The Draft ISA states (at p. 7-129) that “only a very limited number of the chronic exposure cohort studies 
have included direct measurements of chemical-specific PM constituents other than sulfates, or assessments 
of source-oriented effects, [in] their analyses.” Also (at p. 2-25): “It remains a challenge to determine 
relationships between specific constituents, combination of constituents, or sources of PM2.5 and the 
various health effects observed.” 
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quite likely that this culprit would escape implementation plans, which will naturally be 
focused on reducing the constituents that account for the largest portions of the mass.  
The result could be no risk reduction at all, despite reductions in PM2.5 mass; yet the 
Draft PMRA’s methodology would predict substantial benefits from the tighter standard. 
 
(2) Missing or inaccurate socio-economic variables correlated with regional PM2.5 levels.  
All of the epidemiological studies have taken steps to provide controls for socioeconomic 
variables that affect mortality risks, but information is insufficient to ensure that these 
have been fully specified; also, many of the potential socioeconomic confounders and 
effect modifiers can only be measured with substantial amounts of error.  Sometimes 
these errors can be found and eliminated through careful data quality work.14  However, 
the errors of concern here are for socioeconomic data that are simply not possible to 
obtain.  For example, although various updates of the key ACS study have been 
published up through 2009, they rely on the same individual and socioeconomic data 
collected in 1982, almost 30 years ago.  Thus, it is not possible to assess changes in key 
confounding factors such as smoking cessation rates that are well known to fall along 
socioeconomic lines.15  Other socioeconomic variables, such as data on the degree of 
stress in family life, are simply not possible to obtain and will never be possible to 
control for in the chronic risk studies.  
 
Thus, despite extensive socioeconomic controls in all of the chronic risk studies, there 
remains the possibility that PM2.5 mass is at least partially serving as a proxy for 
unidentified, or poorly measured, socioeconomic variables.  If so, the PM2.5 risk 
coefficient is biased.  In this case, while it is not certain what the direction of bias would 
be, it is likely to be in the upward direction because lower socioeconomic status tends to 
be positively correlated with mortality risk and also with living in areas with higher 
pollution.16  Regardless of direction of bias, quantified risk estimates that use the 
estimated PM2.5 relative risk “at face value” will be incorrect. 
 
(3)  Other pollutants, even if included in the analysis.  Much has been said about the 
possibility that PM2.5 is serving as a proxy for another pollutant that has the true causal 
role.  Studies have, at times, considered the role of other pollutants but this practice has 
been inconsistent.17  When multi-pollutant results are not reported, one never knows if 

                                                 
14 For example, the reanalysis by Krewski et al. (2000) of the Harvard Six Cities Study found that the 
coding protocol allowed cigar and pipe smokers to be classified as “non smokers;” the calculation of pack-
years of smoking cigarettes was inconsistent, resulting in an underestimate of smoking pack-years of about 
3% in some cities; and the error rate for the education variable on the earliest form used was 18%; etc.  
These kinds of errors can be avoided through careful review, and fixed, if detected. 
15 Some hypothesize that the errors in data on smoking cessation might explain the education gradient in 
PM2.5 mortality observed in this study as well as the Harvard Six Cities Study; if so, the PM2.5 relative risk 
estimate is probably a biased estimate. 
16 In the one known example where those with higher socioeconomic status happen to live in an area where 
the PM2.5 is higher (i.e., New York City), the lack of any increased mortality risk attributed to exposure to 
PM2.5 in this group, versus those with lower socioeconomic status and lower PM2.5 exposure, may illustrate 
the importance of socioeconomic confounding in air pollution epidemiology studies (Krewski et al. 2009).   
17 The Draft ISA states (at p. 7-82):  “Given similar sources for multiple pollutants (e.g., traffic), 
disentangling the health responses of co-pollutants is a challenge in the study of ambient air pollution.” 
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they may have been performed and found to have had the effect of attenuating the 
reported association for PM2.5.  Even if those studies simply did not perform any multi-
pollutant regressions, one must wonder, why not?  For example, the most recent papers 
based on the ACS cohort (Pope et al., 2002; Krewski et al., 2009) did not attempt to 
explore whether SO2 had greater explanatory power than PM2.5 mass, even though this 
was a widely discussed source of sensitivity reported in the preceding ACS paper 
(Krewski et al., 2000).18  Thus, the most recent epidemiological studies are not 
necessarily the most thorough in their efforts to explore confounding by other co-
pollutants; as a result, their quantitative estimates cannot be viewed as more reliable for 
use in a quantitative assessment of PM2.5-related risks.  Relative risk estimates from the 
earlier studies that did account for co-pollutants could be less biased than the more recent 
relative risk estimates, even though the earlier ones have less statistical power due to their 
reliance on shorter cohort follow-up periods. 
 
(4)  Other environmental factors.  Gaseous pollutants are not necessarily the only other 
non-PM2.5 environmental factor for which PM2.5 might be serving as a proxy.  Measures 
such as proximity to traffic and intensity of local traffic have been the subject of much 
recent exploration of the basis for the PM2.5 associations (e.g., Lipfert, Wyzga et al., 
2006; Lipfert, Baty, et al., 2006; Jerrett et al., 2005; Beelen et al., 2008a).  In most cases 
where they have been accounted for in the data analysis, traffic-related variables appear 
to have the stronger associations.  This could point to certain PM2.5 constituents, or to 
some gaseous pollutants, and it could point to other factors such as noise or stress 
(Lipfert, Baty et al., 2006; Beelen et al. 2008b).19  Rolling back PM2.5 mass would not 
have any effect on these other possible causal factors; again, the quantitative 
interpretation of a PM2.5 relative risk would produce completely erroneous estimates of 
risk reductions from alternative PM2.5 standards. 
 
The point is obvious:  even if the associations with PM2.5 have a causal element, the 
many limitations of the epidemiological data mean that the relative risks estimated by 
epidemiological studies do not offer a direct quantitative relationship for how PM2.5 mass 
alone affects either current health risks, or changes in risks if PM2.5 mass is reduced.  In 
all of the situations described above, the observed association could be “statistically 
significant,” yet the health benefits from rolling back PM2.5 could be as low as zero, 
because statistical significance calculations cannot detect the presence of bias; in fact, 
they presume it does not exist.  Also, if differential measurement errors are at work, then 

                                                 
18 HEI’s commenters on the 2009 Krewski et al. study lament the lack of further study of confounding by 
copollutants, but offer their own excuse for this omission: “Given that the Reanalysis (Krewski et al., 2000) 
had extensively tested the potential for the gaseous pollutants to confound the relationship between 
exposure to PM2.5 and mortality and had not found any significant confounding (other than by SO2), it is 
understandable that the current investigators chose to focus their limited resources on the extensive 
exploration of spatial autocorrelation in a series of one-pollutant models.”  (Krewski et al., 2009, p. 130, 
emphasis added).  This is a rather weak reason if their goal is to explore the strength of the PM2.5 mass 
association in greater detail, given that their previous paper’s findings on that association were the most 
sensitive to the inclusion of SO2 as a co-pollutant.   
19 Bukowski (2008) has suggested that noise and stress could be an uncontrolled factor also affecting short-
term PM2.5-exposure risk studies. 
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one cannot have confidence that the bias would be eliminated, or even mitigated, by 
having included these other factors in the epidemiological regressions.   
 

(III.B.)  The magnitude of the PM2.5 association at varying PM2.5 exposure 
levels (i.e., the “shape” of the relationship) is estimated with error. 
 

Brauer et al. (2002), among others, have demonstrated that measurement error for 
personal exposures when using central monitor data can hide a threshold from the 
statistical methods, even when one exists in reality.20  Thus EPA’s assumption of a linear 
relationship is not valid for quantitative risk analysis, even if the estimated constant 
relative risk were quantitatively valid as an average over the range of observed exposure 
levels.  
 
EPA does not consider concerns with measurement error at all when it concludes that a 
linear relationship “most adequately” represents the association for purposes of statistical 
fit.  When the Draft ISA states that “the C-R curve was found to be indistinguishable 
from linear,”21 it is only making a statement about statistical goodness of fit to the 
available data.  These statistical tests offer no information about whether the shape of the 
underlying true relationship has been obscured by measurement error, yet this is the 
critical question when trying to develop a quantitative estimate of risk from statistical 
associations using messy data.22  The risk quantification step of the PMRA requires a 
functional relationship that properly reflects the true shape of the underlying relationship 
in order to reliably predict the changes in risk that would result from changes in PM2.5.  If 
a risk relationship has a non-linear shape (as one would logically expect for a true 
concentration-response situation, given a normally distributed degree of sensitivity across 
a population), then it is not appropriate to simply use a linear relationship just because the 
available epidemiological data do not offer the sensitivity necessary to detect that shape.   
 
Errors due to an incorrect shape of the concentration-response function will become more 
and more pronounced with rollbacks to increasingly lower levels of PM2.5 because the 
amount of change in risk associated with increasingly lower PM2.5 exposures may 
                                                 
20 Smith and Chan (1997) also demonstrated the impossibility of statistically detecting a real threshold in 
the presence of exposure measurement error.  For simulated data with a pronounced (“hockey-stick” ) 
threshold at 20, the best fit for alternative thresholds was no threshold at all.  They also fit a 
nonparametrically smoothed curve to the simulated data, with the resulting estimated relationship appearing 
to have the opposite of a threshold, that is, that the estimated concentration-response curve became steeper 
at concentrations closer to zero (and well below the point of the actual threshold).  See Figure 9 and 
associated discussion in Smith and Chan (1997), p. 14, for the nonparametrically smoothed estimate of the 
concentration-response curve. 
21 Draft ISA, p. 2-37. 
22 Even the conclusion that linearity is the best statistical fit remains a debatable conclusion:  see, for 
example, Abrahamowicz et al. (2003), and Goodman (2009), pp. 21-22.  Without even considering debates 
about statistical tests of nonlinearity, potential evidence of nonlinearity can be found in the extended cohort 
analyses.  For example, the finding reported by Laden et al. (2006) that estimated relative risks were 
lowered as PM2.5 levels fell over time implies a non-linear relationship, while Gamble and Nicolich (2006) 
argue that a non-linear relationship may be observable even in the relative risks for a single time period.  
Also, the ACS evidence discussed in II.D that recent PM2.5 levels used to estimate long-term associations 
could be serving as a proxy for earlier, higher PM2.5 exposures also implies a non-linear actual relationship. 
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become vanishingly small, while the presumed linear statistical association assumes 
equally large amounts of risk reduction for a unit of improvement in PM2.5, whether that 
change occurs from high levels of as-is exposure, or from near-background levels.  The 
practice in the Draft PMRA of not counting risks below the lowest measured level (LML) 
of PM2.5 does not eliminate this quantitative error.  In fact, this practice exacerbates the 
misleading nature of the PMRA because it produces the bizarre effect of suggesting that 
there is no threshold, yet also that 100% of the currently existing risk attributed to PM2.5 
would be eliminated if PM2.5 is rolled-back only as far as the LML. 
 
(Setting aside the logical inconsistency, if one truly believes that a linear relationship can 
be assumed, then the Draft PMRA is misleading when it reports that nearly 100% the 
long-term PM2.5 risk can be eliminated by tightening the standard for PM2.5 to 12 µg/m3 

annual average.  All EPA can really say is that the latter standard would reduce PM2.5 to 
the lowest levels that were observed in the most recent years among the cities included in 
the ACS cohort studies.) 
 
IV.  The Epidemiological Evidence Itself Indicates a Meaningful Chance that Long-
Term PM2.5 Exposures Do Not Elevate Public Health Risk. 
 
Sections II and III have provided multiple reasons why quantitative estimates of risk in 
the Draft PMRA are unreliable.  The Draft PMRA uses estimates of relative risks from 
the epidemiological studies at “face value” for its quantitative concentration-response 
functions, ignoring the many likely sources of bias those estimates.  At a minimum, this 
results in large errors in its estimates of risk and risk reductions from reducing ambient 
PM2.5 exposures that are not captured in statistical confidence intervals.  However, EPA 
also commits an error of omission in its Draft PMRA by relying selectively on a few 
relative risk estimates from a few studies.  This hides the degree of uncertainty that is 
detectable in the full body of epidemiological evidence, even if taken “at face value.”   
 
Even if one accepts the existing body of long-term epidemiological relative risk estimates 
at face value, one can observe a substantial chance that no effect exists at all if the full set 
of available relative risk estimates is given fair consideration.  Figure 7-6 of the Draft 
ISA (p. 7-123) shows a very selective set of results.  However, the entire body of 
evidence includes past as well as current studies.  Even earlier estimates from the ACS 
studies remain relevant to the extent that certain regressions in them have not been 
reproduced in more recent ACS analyses.  (The results that include SO2 as well as PM2.5 
in the regressions from Krewski et al., 2000, are a case in point.)  Other studies also not 
shown in Figure 7-6 have produced non-positive and/or no statistically significant 
association between PM2.5 and chronic mortality.23  Nothing in the more recent literature 

                                                 
23 Lipfert et al. (2000) is an example that found a negative association.  More recent papers for the Veterans 
cohort (e.g., Lipfert, Wyzga, et al., 2006) have reported positive PM2.5-risk associations (although 
significant only in 1-P formulations) but these newer findings do not make the earlier findings irrelevant.  
The earlier findings used a different subset of the Veteran’s Cohort than the later findings, where the subset 
was driven by the locations of the available pollution data being used.  The earlier studies also considered 
mortality risk in a different (earlier) time period.  Thus, one can find both negative and positive associations 
within this single cohort, depending solely on the time period and air pollution data used. 
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necessarily supersedes those other studies.  When the entire set of regressions are 
considered, giving equal weights to single and multipollutant models, and giving equal 
weights to the various cohorts that have been studied, one finds that this literature as a 
whole suggests that there is about a 15-20% chance that there is zero risk from PM2.5.24  
This reflects the fact that the literature does contain quite a few findings of insignificance, 
which imply, based on statistical error alone, that the effect is zero.  (In fact, it implies a 
possibility of a negative effect, but for this discussion, those are considered zero, not 
beneficial, effects.) 
 
V.  Conclusion 
 
EPA’s criteria for determining whether a causal relationship exists between exposures to 
PM2.5 and health endpoints are fundamentally flawed because they allow an incorrect 
determination of causality to be made in circumstances that are marked by systematic 
biases.  The epidemiological literature for long-term PM2.5 exposure risks is clearly open 
to the possibility, and even likelihood, of systematic bias.  Therefore, EPA’s “causal” 
determination for long-term cardiovascular mortality risk and its “likely-causal” 
determination for long-term all-cause mortality risk in the Draft ISA are subject to a 
much greater chance of being wrong than the words themselves suggest.  This fact alone 
places significant limitations on the usefulness and reliability of EPA’s quantitative 
estimates of long-term mortality risks in its Draft PMRA, because the entire risk 
assessment is predicated on an unquestioned presumption of causality. 
 
The quantitative estimates of mortality risk in the Draft PMRA remain unreliable, 
however, even if it is correct that there is some causal relationship between PM2.5 and risk 
of dying.  This is because the Draft PMRA also presumes that the statistical associations 
in the epidemiological literature can be interpreted literally as the actual concentration-
response relationships for quantifying current levels of risk, and changes in risks for 
altered ambient PM2.5 conditions. 
 
The translation from an epidemiologically-derived association to a real “concentration-
response function” that quantifies how much risk would change if PM mass were 
changed is highly problematic, regardless of the quality of the epidemiological studies 
that are being relied on.  Even if one has great confidence that an association between 
PM2.5 and health risk detected in an epidemiological study is reflecting a true causal 
relationship, the statistical model and its parameter estimates (e.g., the “relative risk”) 
cannot be assumed to be a precise numerical estimate of the true causal relationship, 
given the many limitations of the available data.  As explained above, there remain good 
reasons to suspect that some or all of the estimated association bears no causal 
implication for PM2.5 mass itself, or even of one of its constituents.  If there are any 
missing explanatory variables – which is almost certainly true – then the statistical 
estimate of relative risk is not quantitatively reliable to assess either “as-is” risks, or 

                                                 
24 This includes consideration of relative risks in Eftim et al. (2008), Enstrom (2005), Jerrett et al. (2005), 
Krewski et al. (2000, 2009), Laden et al. (2006) Lipfert et al. (2002), Lipfert, Baty et al. (2006), Lipfert, 
Wyzga et al. (2006), McDonnell et al. (2000), Pope et al. (2002), and Villeneuve et al. (2002).  
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changes in risk as PM2.5 is reduced.  The kinds of measurement errors and confounding 
that are present in the PM2.5 epidemiological data also mean that the shape of the true 
relationship cannot be identified.  The inability to define the shape of the true relationship 
means that one can have no confidence in statements of how risk will change as PM2.5 is 
reduced.  
 
The statistical confidence intervals that the Draft PMRA offers up as “uncertainty” do not 
measure biases due to missing variables or measurement error, and thus do not offer a 
way of characterizing the numerical uncertainty in actual risk levels at current or rolled-
back PM2.5 levels.  The Draft PMRA’s sensitivity analyses, which simply substitute one 
statistical estimate of relative risk for another, also cannot begin to characterize the 
quantitative uncertainty, given that all the available epidemiological estimates suffer from 
the same limitations in data and methods, and are thus subject to a systematic bias.  As a 
result, the numerical estimates provided in the Draft PMRA have no reliable relationship 
to reality, even if one accepts the presumption that the epidemiological studies are 
detecting a causal relationship between one or more constituents of PM2.5 and health risk.  
With all of these unstated and unanalyzed presumptions, one can have no confidence in 
the estimates of how much health risk is being created by current PM2.5 exposures, nor 
whether any of that estimated risk would be reduced by reducing an undifferentiated 
measure of total PM2.5 mass.  The Draft PMRA’s quantitative estimates of risk from as-is 
PM2.5, and quantitative estimates of reductions in due to lowered PM2.5, are unreliable.   
 
Until it contains a more explicit analysis of the quantitative implications of these inherent 
challenges for estimating risks under current and alternative ambient PM2.5 standards, the 
quantitative risk assessment of the Draft PMRA is, at best, not useful; at worst, its results 
are highly misleading as an input to policy decisions for setting a NAAQS.  The only way 
to obtain reliable estimates would be to find ways to quantitatively incorporate 
corrections for systematic biases due to differential measurement errors, and potentially 
unmeasured causal confounders of a non-pollutant nature.  This would produce a larger 
range of uncertainty, but one that reflects the true current state of knowledge.  If this is 
not done, however, then the Draft PMRA should not be used in the consideration of 
alternative PM2.5 NAAQS. 
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