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Overall, the ISA is a generally thorough, balanced, and well-written summary of the 
existing PM health literature. However, we do have some significant concerns as follows: 
 

1. The discussion of the accumulated evidence for specific PM components and 
health impacts is limited in the ISA compared with previous Criteria Documents 
for PM, despite the significant recent literature on this issue. Much more 
emphasis should be placed on this topic in the ISA. As PM composition clearly 
influences resultant toxicity, it would behoove the Agency to evaluate the 
feasibility of a regulatory paradigm that emphasizes those components that are of 
most concern from a health perspective. The first step in such an activity is to 
compile all available information and review it to evaluate weight-of-evidence; 
the result of such an evaluation should be included in the ISA. This is particularly 
true given the Agency’s application of causality criteria for PM size metrics in the 
ISA; this application should be extended to PM components. 

 
2. In particular, Section 2.3.3 inaccurately characterizes the literature related to PM 

composition and health effects. The section is termed “PM2.5 Constituents or 
Sources Linked to Health Outcomes”; however, the table only includes studies 
that use factor analytical approaches in the context of the complex PM mixture.  
The numerous epidemiological and toxicological studies that have examined 
specific components in the absence of such analyses are not mentioned and should 
be included (e.g., Klemm et al., 2004; Metzger et al., 2004; Peel et al., 2005; Peel 
et al., 2007; Sinclair and Tolsma, 2004; Tolbert et al., 2000; Ostro et al., 2009; 
citations provided at end of comments). We also note that the results of Laden et 
al.. (2000) are incorrectly cited here and elsewhere in the ISA. In the reanalysis 
(Schwartz, 2003), the association between mortality and the coal combustion 
source factor was no longer statistically significant. 

 
3. We note that in many cases, human or animal exposures to complex mixtures 

(e.g., DE, woodsmoke) are included as evidence of PM-related effects. In some 
cases, filtration was conducted to allow attribution of observed effects to either 
PM or gas-phase materials; however, in most cases this was not done. It is 
therefore difficult to characterize PM as the sole causative agent in these studies. 
Furthermore, and along the lines of our comment 1 above, although many of the 
studies cited in the ISA used traffic or diesel exhaust as estimates of exposure, no 
attempt was made to integrate the results for these metrics. 

 
4. The issue of co-pollutants is rarely addressed comprehensively in the ISA, and 

there is a need to consider all potential co-pollutants systematically. There is also 
the possibility that measured pollutants may be serving as surrogates for 
substances that are not routinely measured. For example, a paper in press (Lipfert 
et al., 2009; attached to these comments) reports that several non-criteria air 
pollutants appear to be more highly associated with premature mortality than the 
NAAQS pollutants. 
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Selected Specific Comments:  
 
Chapter 5 
p. 5-13: The involvement of trigeminal nerve-mediated responses (sensory irritation) in 
the upper airways should be included here as these responses affect both respiratory 
pattern as well as cardiovascular function. There is a large literature on this well-studied 
response, including the following: 
 
Alarie, Y. 1973. Sensory irritation by airborne chemicals. CRC Crit Rev Toxicol 2:299-363. 
 
Nielsen, G.D. 1991. Mechanisms of activation of the sensory irritant receptor by airborne chemicals. Crit. 
Rev. Toxicol. 21:183-208.  
 
Chapter 6: 
 
Note: Seagrave et al. (2008) should be included in the relevant sections of Chapter 6 
(both respiratory and cardiovascular endpoints). 
 
Seagrave, J.C., Campen, M.J., McDonald, J.D., Mauderly, J.L., and Rohr, A.C. 2008. Oxidative stress, 
inflammation, and pulmonary function assessment in rats exposed to laboratory-generated pollutant 
mixtures. J. Toxicol. Environ. Health, Part A 71:1352-1362.  
 
p. 6-17, 2nd full paragraph: Routledge et al. (2006) exposed human volunteers to ultrafine 
elemental carbon/carbon black. This should be reflected in the discussion, and the generic 
term “carbon” modified. Certainly there was no organic carbon involved in the 
exposures. Moreover, the conclusion of the study, as stated by the authors, was that “The 
adverse effects of vehicle derived particulates are likely to be caused by more reactive 
species found on the particle surface”, which is rather different from that expressed in 
lines 27-30 of the ISA. 
 
p. 6-30, 1st full paragraph: The comparison of the work of Anselme et al. (2007) with 
Wellenius et al. is invalid and inappropriate given that each investigated a different PM 
source (Anselme DE, Wellenius ROFA). 
 
p. 6-31, lines 18-19: Not sure how this statement is relevant, given that DE-filtered 
atmospheres (with virtually zero PM) induced effects. 
 
p. 6-37:  The Dales et al. and Rundell et al. studies both implicate traffic, and there could 
be other dimensions of this exposure besides PM that explain the result.  
 
p. 6-40, lines 5-7: There are numerous gas-phase and SV organic compounds as well in 
DE. 
 
p. 6-61: The Reidiker et al. study examined specific components of PM; this should be 
noted.   
 
p. 6-65, 1st full paragraph: In addition to the factors stated at the end of the paragraph, PM 
composition is likely to strongly influence results. 
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p. 6-69: Again, the section organization is inconsistent. “PM Components” is included as 
a separate subsection for toxicological studies of oxidative stress, but is not consistently 
presented for other endpoints (or other study approaches, i.e., epidemiology, clinical 
studies). 
 
p. 6-76:  Metzger et al. (2004) also analyzed PM and its components jointly with CO and 
NO2, both of which appeared to be stronger predictors of ED visits.  It should be noted 
that Sarnat et al. (2008) used a different set of lags than did Metzger et al.    
 
p. 6-82, lines 19-20: There is inconsistent presentation of results in the document. Here, 
the ISA states that positive associations were observed but did not reach statistical 
significance; however, other studies’ findings are not consistently described in this 
manner. 
 
p. 6-88, lines 12-17: Metzger et al. (2007) should be included in this section. 
 
p. 6.89, lines 1-4: See above comments for Metzger et al. (2004). 
 
p. 6-126, Section 6.3.2.3: This section needs to consider and discuss trigeminal nerve 
stimulation, i.e., sensory irritation (see comment above). 
 
p. 6-141, 1st paragraph: The greater toxicologic potency of urban particles in Schaumann 
et al. (2004) could also be due to a greater contribution of organic material, not only to 
greater concentration of transition metals. 
 
p. 6-145, 1st paragraph: The ISA should discuss the limitations and caveats of the 
monocrotaline model and its representiveness to human disease.  
 
p. 6-151: Because collected coal fly ash (e.g., from an electrostatic precipitator) is by its 
nature material that has been retained and does not enter the atmosphere, its relevance to 
human exposure is unclear. Moreover, emissions generated from lab-scale combustors 
differ significantly from full-scale plant emissions due to (a) difference in time-
temperature histories; and (b) the lack of pollution control equipment such as ESPs, 
SCRs, and FGD systems. 
 
p. 6-154, lines 15-18: Besides a greater proportion of UF particles near roadways, there 
are also elevated concentrations of traffic-related pollutants in general, including gas-
phase compounds and other PM size fractions. 
 
p. 6-159, “Summary”: Virtually all the studies presented in the ISA in the section on 
allergic sensitization were conducted with diesel emissions; therefore, stating that “PM 
can modulate immune reactivity” may potentially be overstating the effect. Clearly DE 
can induce this effect; however, the evidence for ambient PM, or, for that matter, diesel 
PM, eliciting this response is less certain. Diesel emissions contain a plethora of non-PM 
pollutants. 
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p. 6-160: Again, for host defense, the bulk of the studies were conducted with DEP. 
 
p. 6-168, ll. 16-26: It should be noted that Peel et al. (2005) and Sarnat et al. (2008) used 
different lags.  A detailed examination of results by lag in Peel at al. shows no conflict 
with the Sarnat et al. results.   
 
p. 6-174 and follows: Sinclair and Tolsma (2004) also examined physician visits for adult 
asthmatics and found no significant positive associations. 
 
p. 6-180:  Sinclair and Tolsma (2004) also examined physician visits for upper and lower 
respiratory diseases.   
 
p. 6-182, lines 4-17:  Peel et al. (2005) needs to be considered in this regard.   
 
p. 6-229 (Section 6.5.2.5): This section is missing the results of Klemm et al. (2004).  
 
p. 6-236:   Those findings that are statistically significant should be noted and 
distinguished from those that are not.  It is also important to indicate that the factor 
loading are for the “source factors”; the names of these factors can be misleading.  
Ideally, a comparison of epidemiological analyses using source apportioned data and 
analyses using single component data will help to evaluate consistency. 
 
p. 6-242 and following: This section needs also to consider other metrics that have been 
considered in the ISA; e.g., traffic, diesel particles, etc.   
 
p. 6-245, line 16: It should be noted that the Laden et al. (2000) findings changed with the 
Schwartz (2003) reanalysis. 
 
p. 6-246, lines 7-8: A comparison of the results of this study with those of Peel et al. 
(2005) demonstrates that the choice of lag was key. Significant results of opposite signs 
were reported for sulfate by Peel et al.    
 
p. 6-246, line 23: Metzger et al. (2004) also considered PM components.   
 
p. 6-246, lines 27-30: These studies are discussed in Chapter 7 of the ISA, and, as long-
term studies, should not be included here. 
 
p. 6-247 and follows:  Several studies are missing – e.g., Peel et al (2005); Metzger et al 
(2004); Sinclair and Tolsma (2004); Klemm et al. (2004). 
 
p. 6-247: Again, the Laden et al. (2000) reference is incorrectly stated. The Schwartz 
(2003) reanalysis found that the coal source factor was no longer significant. 
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Chapter 7:  
 
p. 7-38, lines 19-20: Brown Norway rats are only an allergic model if they are sensitized, 
typically using an ovalbumin protocol; this should be stated. 
 
p. 93, lines 8-9: Again, care should be taken to adequately characterize the risk posed by 
diesel PM vs. other non-PM materials present in diesel emissions/exhaust. 
 
p. 7-100, Summary: It should be noted that many of the exposures conducted were to 
mixtures of PM and gas-phase compounds. In particular, the ISA states that studies were 
conducted of DEP, but in fact most of those studies were of DE. 
 
p. 7-100, line 20:  What is meant by “broadly representative”?  No cohort is completely 
representative.  The Six Cities Study, for example, looked at only a quadrant of the US, 
and the ACS cohort was above-average socioeconomically.   
 
p. 7-102, Table 7-8:  Additional studies should be added to this table and accompanying 
discussion:  
 
Enstrom, J.E. 2005. Fine particulate air pollution and total mortality among elderly Californians, 1973-
2002. Inhal Toxicol. 17:803-16. 
 
Jerrett, M., Newbold. K.B., Burnett, R.T., Thurston, G., Lall, R., Pope, C.A. III, Ma, R., De Luca, P., Thun, 
M., Calle, J., Krewski, D. 2007. Geographies of uncertainty in the health benefits of air quality 
improvements; Stoch Environ Res Risk Assess . 21:511-522. 

 
Lipfert, F.W., Baty, J.D., Miller, J.P., Wyzga, R.E.. 2006. PM2.5 constituents and related air quality 
variables as predictors of survival in a cohort of U.S. military veterans; Inhal Toxicol. 18:645-657 (should 
be included under PM2.5 results).  

 
Lipfert, F.W., Wyzga, R.E., Baty, J.D., Miller, J.P. 2006. Traffic density as a surrogate measure of 
environmental exposures in studies of air pollution health effects: Long-term mortality in a cohort of US 
veterans. Atmos Environ. 40:154-169 (also presents results for PM2.5). 
 
Several of the above also address the issue of components, which could be summarized 
here as well.      
 
p. 7-103, Figure 7-7: This table should also include Jerrett et al. (2007), provided above.  
 
p. 7-110, line 15-16: This phrasing is not consistent throughout the document. If positive 
but nonsignificant results are highlighted, this should be done for all pollutants in all 
studies. This paragraph should take note of the recently accepted paper by Lipfert et al.  
(attached and referenced in comments for p 7-108.) 
 
p. 7-115: In this discussion of the expert judgment study (Roman et al., 2008), the 
European expert judgment should also be included (Cooke et al., 2007). 
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Cooke, R.M., Wilson, A.M., Tuomisto, J.T., Morales, O., Tainio, M., and Evans, J.S. 2007. A probabilistic 
characterization of the relationship between fine particulate matter and mortality: elicitation of European 
experts. Environ. Sci. Technol. 41:6598-6605. 
 
Chapter 8: 
 
p. 8-15, Section 8.2.1.10: Toxicological studies using the JCR (prediabetic) rat model 
should be included here, e.g., Proctor et al., 2006. 
 
Proctor, S.D., Dreher, K.L., Kelly, S.E., and Russell, J.C. 2006. Hypersensitivity of prediabetic JCR:LA-cp 
rats to fine airborne combustion particle-induced direct and nonadrenergic-mediated vascular contraction. 
Toxicol. Sci. 90:385-391. 
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ABSTRACT  

We considered relationships between mortality, vehicular traffic density, and ambient 

levels of twelve hazardous air pollutants, elemental carbon, NOx, SO2, and SO4
2-

.  These 

pollutant species were selected as markers for specific types of emission sources, 

including vehicular traffic, coal combustion, smelters, and metal-working industries. 

Pollutant exposures were estimated using emissions inventories and atmospheric 

dispersion models.    We analyzed associations between county ambient levels of these 

pollutants and survival patterns among  ~70,000 US male veterans, by mortality period 

(1976-2001 and subsets), type of exposure model, and traffic density level.  We found 

significant associations between all-cause mortality and traffic-related air quality 

indicators and with traffic density per se, with stronger associations for benzene, 

formaldehyde, diesel particulate, oxides of nitrogen, and elemental carbon.  The 

maximum effect on mortality for all cohort subjects during the 26-y follow-up period is 

about 10%, but most of the pollution-related deaths in this cohort occurred in the higher-

traffic counties, where excess risks approach 20%.  However, mortality associations with 

diesel particulates are similar in high- and low-traffic counties.  Sensitivity analyses show 

risks decreasing slightly over time and minor differences between linear and logarithmic 

exposure models.  Two-pollutant models show stronger risks associated with specific 

traffic-related pollutants than with traffic density per se, although traffic density retains 

statistical significance in most cases.  We conclude that tailpipe emissions of both gases 

and particles are among the most significant and robust predictors of mortality in this 

cohort and that most of those associations have weakened over time. However, we have 

not evaluated possible contributions from road dust or traffic noise. Stratification by 

traffic density level suggests the presence of response thresholds, especially for gaseous 

pollutants.  Because of their wider distributions of estimated exposures, risk estimates 
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based on emissions and atmospheric dispersion models tend to be more precise than those 

based on local ambient measurements.   

 

 

IMPLICATIONS  

This research confirms the importance of residence in high-traffic counties on long-term 

survival within this cohort of male military veterans.  It shows robust risk estimates based 

on spatially-averaged gas and particle concentrations estimated from emissions and 

atmospheric dispersion modeling, rather than from ambient measurements. There are 

important differences in the risks attributed to these pollutants that indicate the 

importance of hazardous and non-criteria species in explaining associations between air 

quality and survival.  Mortality risks also differ by mortality follow-up period and level 

of traffic density.  For most pollutants, stronger risk coefficients occur in the high-traffic 

density counties, suggesting exposure thresholds. 
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INTRODUCTION 

Prospective cohort studies have become the “gold standard” for epidemiological studies 

of long-term health effects of air pollution.  Most of these studies are limited by the 

availability of the ambient air quality data required to estimate subjects’ exposures to the 

pollutants of interest.  Exposure estimates for most cohorts have been based on outdoor 

ambient conditions where subjects resided at entry to the study.  Limitations include the 

numbers and locations of air monitoring sites, their periods of operation, and the species 

monitored.  For example, the American Cancer Society (ACS) study,1,2  which played an 

important role in establishing the National Ambient Air Quality Standard (NAAQS) for 

PM2.5, used PM2.5 monitoring data from only 51 locations and assigned each of them to a 

multi-county metropolitan statistical area.  This reduced the population under study by 

about 75%.  Subsequent reanalysis of these results3 found SO2 to be a more robust 

predictor of mortality in this cohort than either PM2.5 or SO4
2-, even though SO2 is known 

to exhibit strong local concentration gradients and its implied health effects are 

problematic at these low concentration levels.  Analysis of more localized PM2.5 levels in 

Southern California and New York City metropolitan areas, obtained by spatial 

interpolation of the available measurements, showed much stronger within-city mortality 

effects,4,5 suggesting local rather than regional effects. 

 

In previous papers, the Washington University-EPRI Veterans Cohort Mortality Study 

considered a wide range of measured ambient air quality data at the (single) county level, 

including various PM2.5 constituents from the Speciation Trends Network (STN)6,7 

initiated by the U.S. Environmental Protection Agency (EPA) in 1999.  We also 

considered county-level vehicular traffic density, computed as annual vehicle-distance 

traveled per unit of county land area; we found this parameter to be the most robust 

predictor of survival for this cohort.7-9  However, traffic density may represent a wide 

range of potentially causal agents, including emissions of combustion products, 

degradation products from vehicle or roadway wear, traffic noise, stress, and 

socioeconomic effects associated with preferred residential locations, but it is not specific 

to any of them.  A previous paper9 considered sensitivity to the mathematical form of the 

exposure variable (linear, logarithmic, or categorical) and concluded that the results were 
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not sensitive to the choice of continuous measure (linear vs. logarithmic).  However, 

larger risks are seen in the more urban counties, as characterized by traffic density levels.  

Also, estimating and accumulating effects over several sub-periods of mortality follow-

up yields larger mortality risks than analyzing the entire follow-up period in a single 

regression. 

 

This paper considers the unresolved question: does the success of traffic density as a 

predictor of survival in this cohort derive from the availability of data for each county in 

the contiguous United States?  An additional rationale could be that this surrogate 

exposure metric represents a county average rather than a point estimate and thus is not 

subject to the vagaries of site selection for ambient air quality monitoring stations.  We 

draw upon two sources of national annual-average county-level ambient air quality data 

to consider these questions: 

 

1. County-average ambient levels of selected hazardous air pollutants, from EPA’s 

National Air Toxics Assessment (NATA).10,11  These data are referred to here as 

“HAPS” values, and we selected  12 of them for detailed analyses of their 

associations with the veterans’ survival, based on their likely associations with 

different types of emission sources, including vehicular traffic, coal combustion 

sources, smelters, and metal-working industries. 

 

2. Estimates from the plume-in-grid model of Atmospheric and Environmental 

Research, Inc.12-14 for SO2, NOx, sulfate aerosol (as (NH4)2SO4), and elemental 

carbon (EC).  These data are referred to as “AER” values.  These species were 

selected because they have been found to be important in other cohort studies1-7 and 

relate to both traffic and stationary combustion sources. 

 

We use Cox proportional hazards regression modeling to estimate the relationships 

between survival within the Veterans Cohort and each of these air pollutants, as well as 

various joint regressions with the traffic density measure used in previous analyses of this 

cohort.7-9  The objective is to screen and compare plausible relationships. 
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DATA AND METHODS 

Data 

The Veterans Cohort Database.  An earlier paper6 presented initial Cox proportional 

hazard modeling results from a prospective study of all-cause mortality in this national 

cohort, initially comprising about 70,000 U.S. male military veterans who were 

diagnosed as hypertensive in the mid-1970s.  This cohort had an average age at 

recruitment (in 1976) of 51 +/- 12 y; 35% are African-American and 81% had been 

smokers at some time.  Non-pollution predictor variables in the baseline model include 

age, race, height, smoking (ever or at recruitment), age, systolic and diastolic blood 

pressure (BP), and body mass index (BMI). Interactions of BP and BMI with age are also 

considered.  The study controls for socioeconomic status essentially by design because of 

the relative homogeneity of the cohort, but selected contextual variables on race, income, 

education, and climate, some of which were found to be significant predictors of survival, 

are also considered at the zip-code and county levels. 

 

The database also includes county-level estimates of various indicators of ambient air 

quality, as well as of vehicular traffic density (VMTA), which is defined as annual 

vehicle-miles traveled per square mile of land area, in millions, based on data on vehicle-

miles traveled (VMT) from EPA. Since the distribution of VMTA is approximately log-

normal, we elected to use ln(VMTA) in Cox proportional hazards models of survival in 

some of the previous papers.7-9  In this paper we consider both VMTA per se and its 

logarithm, as a means of examining the linearity of responses. All exposure data are 

considered at the county level, based on each subject’s address at enrollment in the study 

(1975-6). Using county-level air quality data allows for exposures at other than the 

immediate residential location of the subject and admits the possibility of within-county 

residential relocation during the 26-y period of follow-up.  However, these county-level 

estimates are based on simple averages of all fixed-point monitoring data in the county at 

various times and thus may not always be representative.  We base subjects’ implied 

exposures on estimated average conditions in their counties of residence at entry to the 

study.  
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Table 1 presents the descriptive statistics for the Veterans Cohort by mortality period and 

level of vehicular traffic density for 1985.  As expected, the crude annual death rates 

increase over time as the cohort ages; there are only very minor differences in these rates 

between the full cohort and the subset restricted to higher levels of traffic density.  Crude 

death rates are slightly lower in the more rural counties.  About 66% of the cohort died 

through 2001.  However, there are substantial differences in the VMTA data (about an 

order of magnitude); stratifying the cohort by traffic density and hence urbanicity also 

results in reduced ranges of the pollution variables (Table 2).  We would expect such 

reductions to decrease statistical power in regression models.15  

 

Vehicular Traffic Density.  Data on annual vehicle-miles traveled (VMT) by county were 

obtained from the U.S. EPA for 1985, 1990, and 1997, for gasoline- and diesel-powered 

vehicles.  Each was divided by the county land area, resulting in six measures of traffic 

density (VMTA).  These six datasets are highly inter-correlated (R>0.99) and thus 

essentially interchangeable. The 1997 VMT data for gasoline-powered vehicles were 

used in previous analyses that emphasized the most recent mortality experience.7-9  

Because this paper focuses on the entire mortality follow-up period (1976-2001), we 

emphasize the 1985 traffic density data, which are about 30% smaller than the 1997 data.  

We also consider selected comparisons between analyses based on the 1985 or 1997 

VMT data. 

 

Stratification by Traffic Density.  We consider all cohort subjects and two subsets, 

stratified by the county level of traffic density, cut at 7.39 x 106 veh-mi/mi2.  This 

arbitrary cut point is consistent with previous analyses of this cohort9 and is the 

approximate mean of the 1997 distribution.  Here we consider both 1985 and 1997 traffic 

density data.  The risk estimates for all subjects portray the overall relationships, while 

comparing the results for high vs. low traffic densities is intended to test for thresholds in 

these relationships. 
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HAPS Data.  The U.S. EPA has designated 188 substances as “hazardous” air pollutants 

(HAPS) under Section 112 of the Clean Air Act, for which sources are required to report 

their emissions as part of the “Toxics Release Inventory” (TRI).  To provide national 

level risk assessments,10,11 EPA used atmospheric dispersion modeling to estimate annual 

average ambient concentrations at county and census tract levels.  This dispersion 

modeling is  based on the frequency distributions of selected meteorological conditions.11  

Using 50th and 95th percentiles to represent county averages and hot-spot levels, 

respectively, we downloaded these ambient concentration estimates for 12 selected 

HAPS species:  

 

1. Metals:  arsenic, lead, manganese, mercury, nickel. 

2. Traffic-related compounds: benzene, diesel particulate matter (DPM), formaldehyde, 

polycyclic organic materials (POM). 

3.    Others: chlorine, hydrochloric acid, polypropylene.  

4.   Coal combustion products include arsenic, mercury, and hydrochloric acid, in 

addition to the more traditional air pollutants discussed below.  

 

Diesel particulate matter is not defined chemically and was designated as a “toxic air 

contaminant” in California in 1998,16 according to Sexton et al.17  According to an 

informal definition, DPM comprises elemental and organic carbon and trace amounts of 

sulfate, metals, and similar elements or compounds.18  As discussed in on-line 

supplemental Appendix D, the ratio of DPM to elemental carbon is approximately 2.0 

 

Descriptive statistics for the HAPS and traffic density variables are given in Table 2 (in 

ng/m3).  New York County (Manhattan), New York, has the highest vehicular traffic 

density in the United States; it also has the highest estimated concentrations of benzene, 

DPM, and formaldehyde (but not PM2.5); the second highest levels of mercury, and the 

third highest level of polycyclic organic material.  By contrast, the highest estimated 

levels of the selected metals, chlorine, and hydrochloric acid occur in rural counties and 

in West Virginia metropolitan areas. 
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AER National Estimates of Ambient Air Quality.   These national estimates were 

produced by Atmospheric and Environmental Research, Inc., using the Community 

Multiscale Air Quality (CMAQ) modeling system with the MADRID aerosol algorithms 

and Advanced Plume Treatment (CMAQ-MADRID-APT).  This state-of-the-science 

plume-in-grid air quality model was developed to provide a more realistic representation 

of the behavior of reactive plumes in the atmosphere within an Eulerian grid model 

framework.12,13  This plume-in-grid model consists of a reactive plume model embedded 

into a three-dimensional grid-based model, CMAQ-MADRID, referred to as the host 

model.  Annual average concentrations are based on hourly calculations at ground level.  

 

Table 3 presents descriptive statistics of the ambient air quality estimates derived from 

the AER plume-in-grid air quality model.13,19  They are based on EPA’s 1999 inventory 

of the relevant emissions from both point and area sources; the model accounts for 

atmospheric chemical reactions and for long-term patterns in atmospheric dispersion.  

Annual estimates are obtained by summing hourly estimates.  For these computations, 

AER uses a national grid of 36x36 km grid squares, which are generally smaller than 

most U.S. counties.  Only the 48 contiguous states are included. To transform these 

outputs to the county level, we identified the latitude and longitude of the largest city 

within each county and the AER grid square that includes each of those locations.  We 

then assigned the AER output concentration estimate at that location to the entire county.  

This provides estimates for 3065 counties that were then merged with the Veterans 

Cohort database, by subjects’ county of residence at enrollment.  Although assigning the 

county average to the largest city may entail exposure error in the less populous counties, 

it is unlikely that such errors would add substantially to the other exposure uncertainties, 

including  the lack of personal exposure data and the existence of unquantified temporal 

trends. 

 

The subject-weighted descriptive statistics are included in Table 2, along with 

unweighted statistics for all 3065 counties.   The air quality indicators selected for this 

task include one species associated with large coal or oil combustion point sources  

(SO4
2-), one associated with traffic (EC), and two associated with both area and point 
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sources (SO2 and NOx).  Table 3 indicates that SO2, NOx, and EC are much more 

spatially variable than SO4
2- and also shows that the initial distribution of subjects in this 

cohort captures the full range of national variation in the AER air quality data.  

 

Appendix A in the On-Line Supplement identifies the counties with the highest levels of 

these four pollutants.  New York City, Chicago, and some Louisiana locations have high 

levels of all four species.  Most of the high-pollution counties are in the eastern half of 

the nation, where population and traffic densities are also higher. 

 

Summary of Pollution Variables.  This analysis considers 12 HAPS species, four AER 

variables, and either one or two traffic density variables (totaling either 17 or 18 pollution 

variables). 1985 VMT data comprise our base case, but we include 1997 VMT data for 

selected comparisons, especially when stratifying the cohort by traffic-density level.   

While we interpret the modeled ambient concentration data in this study as estimated 

exposures, they also represent indicators of residential proximity to emission sources.  

Pollutants with standard deviations greatly exceeding the mean (such as As or HCl) are 

sparsely distributed, resulting in lower probabilities of actual exposure.  By contrast, our 

exposure paradigm is more reasonable for pollutants with more uniform spatial 

distributions like benzene or NOx.   

 

Bivariate Correlation Analysis.  Table 4 presents the subject-weighted bivariate Pearson 

correlation coefficients among the pollutant variables used in this analysis.  These 

correlations indicate the degree of independence of each species, which vary from 

essentially interchangeable (EC and NOx) to moderately anti-correlated (Cl with SO4
2- in 

high-density counties).  Values above the unity diagonal in the matrix are for cohort 

subjects who resided in counties with lower than average 1985 traffic density; values 

below this diagonal are for subjects in the “high traffic-density” counties. Since most of 

these coefficients are statistically significant (p < 0.05) because of the large numbers of 

subjects involved, correlation coefficients of 0.7 or more are shown in boldface, as an 

arbitrary indicator of the stronger relationships.  There are ten coefficients of 0.7 or larger 

for the low-density counties (above the diagonal) and eight for the high-density counties 
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(below the diagonal).  The correlation matrix for all subjects is presented in the On-Line 

Supplement (Appendix A); these values tend to be stronger, because of the larger range 

of traffic-related pollutants, and there are 23 correlation coefficients of 0.70 or larger.  

Table 4 also shows the averages of between-pollutant correlations (excluding the unity 

values) at the bottom of the table.  As expected, traffic-related pollutants are the most 

intercorrelated, especially in low-density counties.  The least intercorrelated species are 

As, Cl, HCl, polypropylene, and sulfate (high-density counties).   Correlation matrices 

based on the logarithms of pollutant concentrations are also presented in Appendix A. 

 

The HAPS traffic indicators benzene, formaldehyde, and DPM and traffic density are 

more strongly correlated with EC and NOx  (0.56 < R < 0.77) in low-density counties 

than in high-density counties  (0.26 < R < 0.75), perhaps because space-heating and 

industrial sources are relatively more important in dense urban areas.  These traffic-

related pollutants are only moderately correlated with SO2 (0.18 < R < 0.54 in both high- 

and low-traffic counties, but SO2  is more strongly correlated with EC and NOx  (0.65 < R 

< 0.81), regardless of traffic density, thus suggesting other common combustion sources 

such as space heating.  Some studies of measured ambient air quality have noted summer 

morning peaks in SO2,20 local source effects stronger than.regional contributions,21 and 

higher ambient concentrations near the ground, 22 all of which suggest SO2 contributions 

from traffic, popular perceptions to the contrary not withstanding. 

 

 Bivariate correlations between pollutants may not always correspond with differences in 

their effects on mortality, as estimated by Cox proportional hazard regression.  These 

Cox models include other contextual variables (like heating degree-days, for example) 

that are also correlated with air quality, but in ways that differ by pollutant.  Such 

interactions between pollutants and contextual variables may result in differences 

between the bivariate relationships between pollutants and their mortality risk estimates. 

  

Comparisons of these computed air quality estimates with measured values are presented 

and discussed in the On-Line Supplement (Appendix D).  There are essentially two types 

of such comparisons: differences in mean values, and spatial correlations.  In this 
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instance, spatial correlations are more relevant, because differences in mean values are 

accounted for in the effect estimates (discussed below).  Correlations between predicted 

and measured air quality range from excellent for sulfates (0.82 < R < 0.85) to moderate 

for SO2 and EC (0.26 < R < 0.42).  This is consistent with the regional nature of sulfates 

and the local distributions of SO2 and EC.  NO2 correlations are intermediate (0.57 < R < 

0.66).  The readily available comparisons for HAPS pollutants are those for metals in 

PM2.5 Speciation Trends Network (STN)7 and those presented by EPA.23   EPA found 

good agreement between measured and modeled benzene, but the agreement between 

HAPS county-average model estimates and local STN metal measurements is poor.  This 

could be due to temporal gradients (the STN data are for 2002) or because HAPS metal 

emissions are not necessarily in the particulate phase.  However, there is reasonable 

agreement between the mean values for STN EC and HAPS DPM, taking into account 

the conversion factor of 2.0.24  Overall, we find satisfactory agreement between key 

measured and modeled estimates of air quality parameters associate with vehicle 

emissions.  

  

Methods 

Regression Models.  We consider five mortality follow-up periods (1976-81, 1982-88, 

1989-96, 1997-2001, and 1976-2001) and three different subject selection criteria: 

unrestricted (all subjects), or restricted to those subjects who initially resided in counties 

for which 1985 traffic density was either greater or less than 7.39 x 106veh-mi/mi2.  For 

convenience, these Cox proportional hazard models were run without the interaction 

variables that were used in earlier papers,6.8 since these variables were seen to have little 

effect on the pollution-survival relationships.9  We consider each of the 18 pollutants 

separately, and we consider the HAPS and AER variables in two-pollutant models with 

1985 traffic density. 

 

We combined the results of the four sub-period analyses to provide alternative estimates 

of the mortality risks for each pollutant over the entire period.  This was accomplished by 

computing a cumulative mortality risk (CMR) based on the risks estimated for each sub-

period (i): 
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  ln(CMR) = Σi ln(RRi)Di/ΣDi      (1) 

 

where RRi is the risk for each sub-period and Di is the number of cohort deaths during  

this period. There are four mortality sub-periods, as shown in Table 1.  The standard error  

of each CMR was estimated by summing the variances of the relative risks for each  

sub-period, weighted by the deaths in each sub-period. 

 

We also consider both the “raw” pollutant concentrations in these models and their 

logarithms, in part to examine the robustness of alternative specifications and also to 

consider whether the implied relationships might extend to very low concentration levels.  

This analysis is facilitated by the fact that the estimated minimal exposure levels are not 

limited by the minimum detection levels of typical ambient monitoring methods. 

  

Measures of Effect.   Making valid comparisons among disparate exposure measures 

requires dimensionless measures of effect, such as the elasticity (ε) metric often used by 

econometricians, in contrast to risks per unit of pollutant mass (such as per 10 ppb or 10 

μg/m3).   Elasticity is defined as the percentage change in output resulting from a given 

percentage change in input.25  It may also be thought of as the total percentage change in 

an effect attributed to a predictor variable, i.e., the attributable risk or “mean effect”. 

When ε = 1.0, the relationship is directly proportional, when ε = 0.10, a 10% change in 

the predictor variable yields a 1% change in the endpoint, which is a more typical result 

for air pollution health effects.   The regression coefficient of a log-log relationship is 

equivalent to the elasticity25; for a semi-log relationship, i.e., the log of health effects as a 

linear function of air quality levels, the elasticity or mean effect is obtained by 

multiplying the regression coefficient by the mean value of the pollutant.25   The 

corresponding relative risks (RRs) are given by exp(ε).  All relative risks in this paper are 

based on mean concentrations for relationships with linear exposures and elasticities for 

logarithmic relationships.  This measure of effect is insensitive to uncertainties in the 

mean value of an independent variable; understating the mean will correspondingly 

inflate the regression coefficient, with no change in the elasticity.25  The risks reported for 
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the logarithm of traffic density in previous papers7,8 had different exposure bases, thus 

leading to higher risk estimates in some instances.  We consider these effect estimates to 

be appropriate measures of puiblic health importance, within their 95% confidence 

intervals. 

 

Timing of Exposures.  Since traffic density is highly correlated over time among 

counties,8  we used a common set of VMTA data for all mortality periods, as in previous 

analyses.  We followed this protocol for all other pollutant variables as well.  This is 

based on the hypothesis that the mean effect or elasticity will be less sensitive than the 

corresponding regression coefficient to changes in the mean value of the independent 

variable.  This may be seen by comparing “effects” with “coefficients” in Tables 6 and 7 

of the first Veterans Cohort paper.6 

 

Measures of Model Fit.  We use the Akaike Information Criterion (AIC) as a measure of 

overall model fit.  Since AIC is proportional to the sample size, which varies by mortality 

follow-up period and dataset restriction, we use AIC/deaths (AICD) to compare fits 

among cohort subsets. We also compare the relative magnitudes of the standard errors of 

mean effects or elasticities among the various pollutants and subsets. 

 

Sensitivity Analysis.  The Cox proportional hazards analysis described above comprises 

272 single-pollutant risk estimates and 128 two-pollutant risk estimates.  As a sensitivity 

analysis and to consider possible effect modification, we used ordinary least squares 

regression to examine the variability within these sets of estimates, by timing of deaths, 

type of exposure model (linear vs. logarithmic), stratification by level of high-density, 

and pollutant species.  This protocol provides more precise overall estimates of the 

differences among species and the effects of cohort subset parameters. 

 

We also tested the hypothesis that the bivariate correlations among pollutants predict  

their relative rankings of risks,15 after assigning one of them as the “true” predictor  

variable (Pt, with risk RRt ): 
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  ln(RRj) = Rt-j ln(RR, )       (2) 

 

where Rt-j is the subject-weighted correlation between pollutants j and t.  This procedure  

is tested for several alternative choices of Pt and then ordinary least-squares  

regression is used to determine which of them appears to best fit the ensemble of RRs. 

 

RESULTS 

Single-Pollutant Regression Results 

Proportional Hazards Models.   We began the survival analysis by running proportional 

hazards models for each pollutant, one at a time, for each mortality sub-period and the 

overall mortality follow-up period (1976-2001).  We compared linear and logarithmic 

(Appendix B) pollutant specifications and the effect of restricting the dataset by county 

traffic density level, cut at 7.39 x 106 veh-mi/mi2.  We computed relative mortality risks 

for each pollutant, model, and mortality follow-up sub-period; more than 700 Cox 

regression models were run in the course of this project.  For brevity, we present only the 

aggregated cumulative risks based on linear exposures (Table 5).  Risk estimates for each 

period and for logarithmic exposures (which are very similar to their linear counterparts) 

are available in Appendix B of the On-Line Supplement.  The pollutants are listed in 

Table 5 in decreasing order of risk for all subjects.  

 

Almost all of the CMR estimates in Table 5 indicate adverse effects (RR > 1), and 35 of 

the 54 risk estimates are statistically significant.  The table also shows that the traffic-

related pollutants benzene, formaldehyde, DPM, nitrogen oxides, and elemental carbon 

(EC) exhibit the highest CMR estimates for all subjects.  However, DPM ranks further 

down the list when high-exposure counties are considered but is the most important 

pollutant in low-traffic counties.  All pollutants are show statistically significant (p<0.05) 

mortality risks in the high-traffic subset, but the effects of manganese and sulfates are 

negative.  Sulfate aerosol shows statistically significant negative risks in all counties 

considered. Comparing mortality risks between high and low traffic density subsets 

shows significant differences for benzene, formaldehyde, NOx, EC, and nickel, 

suggesting the presence of thresholds for these species. 



15 
 

 

The smaller risks attributed to known toxic agents like arsenic, chlorine, mercury, lead, or 

manganese, are also of interest.  There are several possible reasons for these outcomes, 

including exposure errors associated with relatively sparsely distributed sources: 

1. The “known” toxicity may relate to a relatively uncommon cause of death. 

2. Toxicity may relate to a specific form of the agent, such as As(III) rather than 

As(V), or As particles rather than As vapor. 

3. Toxicity may be dominated by a pathway other than inhalation, such as 

ingestion.  

4.  Thresholds may be involved, such that only a subset of cohort subjects were 

exposed to harmful levels.  Such thresholds might become evident by stratifying 

the cohort by each of these pollutants separately instead of by traffic density. 

 

Sensitivity Analyses.  Linear regression analyses of the risk estimates that were used to 

construct Tables 5 and B-1 show the following, using dummy variables for each species 

to estimate overall differences in their risks (RRs) for all subjects and by level of 1985 

traffic density (these results are similar to but do not exactly mirror those given in Table 

5): 

 

Mortality risks are significantly higher in counties with higher traffic densities  

(overall RR=1.07, for high-density relative to low-density). 

   

For all subjects and exposure models, benzene, DPM, and formaldehyde have the 

highest mortality risks; NOx and EC are next, and the risks for all other pollutants 

are significantly lower. 

 

In the high-density counties, benzene has the highest risks; formaldehyde, NOx, 

and EC are next; and all other pollutants (including DPM) have significantly 

lower risks. 

 

Only DPM shows similar risks in both high and low traffic density counties.   
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There are only minor differences between the results based on linear exposure 

models shown in Table 5 and those based on logarithmic exposure models, shown 

in the on-line supplement (Table B-1). 

 

The overall temporal trend in mortality risk is downward, at about one risk 

percentage point per decade (RR for 10 years = 0.99). 

 

We also determined that mortality risks in the high-density counties account for the bulk 

of the risks in all counties, implying threshold effects.  However, DPM and traffic density 

were exceptions, with significant mortality risks in the low-density counties as well. 

 

To determine the role of (bivariate) correlations between pollutants in determining their 

relative mortality risks, we regressed mortality risks against pollutant inter-correlation 

coefficients. We assumed alternatively that either benzene, formaldehyde, EC, or NOx is 

the true causal agent (Pt in Eq. 2) and that the risks attributed to all other pollutants are 

due to their correlations (Rt-j) with this “true” agent Pt.  We used OLS regression forced 

through the origin for this purpose.  Most of these alternative results are very similar;  

thus, no significant differences could be discerned between benzene, formaldehyde, or 

NOx as the most likely “true” agent.  Figure 1 shows these relationships for benzene and 

NOx. 

 

In Figure 1(a), no pollutant has a mean effect higher than what might be expected from 

its correlation with benzene, while in Figure 1(b), benzene, formaldehyde, and DPM 

appear to show mean effects independent from NOx.  This suggests that benzene is the 

most important pollutant when all counties are considered together.  However, when the 

high-density counties are considered separately, NOx, benzene, EC, and formaldehyde 

(but not DPM) show at least some degree of independent effects.  Pollutants not 

commonly associated with traffic, including SO2, Ni, Hg, do not appear to exhibit 

independent effects in any of these cross-plots.  However, SO4
2- shows anomalously (and 

significantly) lower risks in Figures 1 (a, b, d), relative to what might have been expected 
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from its bivariate correlations.  Each of the data points on Figures 1(c,d) is statistically 

significant, which indicates the wide range in precision of these risk estimates. 

 

The data presentations of Figure 1 are also useful for making qualitative judgments about 

the relative importance of specific pollutants.  Pollutant risks falling above the diagonal 

lines may be considered as “better” predictors than those below the line.  Pollutant risks 

falling on the diagonal line may be considered as showing mainly surrogate relationships 

defined by their correlations with either benzene or NOx. 

 

Considerations of Model Fit.  With respect to overall model fit, we found only minor 

variations in the Akaike Information Criteria (AIC) statistics according to the pollutant 

that was entered into a proportional hazards model with a given dataset.  Because of the 

relatively large numbers of subjects, AICs typically comprise five or six digits, while 

differences in AICs among pollutants comprise only one or two digits.  Among the 

various pollutants, there is little correspondence between the AICs and either pollutant 

effects or statistical significance, and only single-digit differences between AICs obtained 

with linear vs. logarithmic exposure models.   

 

However, based on AICD values, we find substantially larger and systematic differences  

in model fits of up to 10% among mortality follow-up periods and subsets.  The  

restricted datasets consistently fit better (lower AICDs) than their non-restricted  

counterparts, and there is a trend towards better fits with  the most recent mortality  

follow-up periods.  These findings lead to the conclusions that reducing the number of  

subjects considered may improve the overall model fit, and that overall model fit may not  

provide reliable guidance as to the most important pollutants. 

 

As expected,15 we also found a strong inverse log-log relationship between the standard 

errors of elasticities or of risk coefficients (based on mean concentrations) and the 

coefficients of variation (CV) of the pollutants (Figure 2).  In this situation, statistical 

significance per se is not a measure of toxicity, since the p-level is affected by the large 

range in standard errors (more than an order of magnitude).  This range is much larger 
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than the differences in standard errors between 26-yr and 4-yr follow-up periods, for 

example.  Thus, statistical significance is necessary for a pollutant to be considered as an 

important predictor of survival, but significance level should not be used to rank relative 

importance to public health. 

 

Two-Pollutant Models Including Traffic Density 

Proportional Hazard Models.  We used similar procedures with two-pollutant Cox 

models, comprising 1985 traffic density and each of the 16 other pollutants, one at a time 

(Table 6 and Figure 3).  In each case, we computed the risk coefficient for the pollutant 

(mean effects or elasticities) and for traffic density, and then added them to provide an 

estimate of the combined effect of the pair (the “total” column in Table 6).  For traffic-

related pollutants, the combined effects are very similar to the single-pollutant effects, 

with traffic density making only minor contributions to the total effect.  However, when 

combined with non-traffic related pollutants, the apparent relative risk of traffic density is 

about 1.03, which is similar to the results for traffic density alone and considerably less 

than Table 5 indicates for other traffic-related pollutants (RRs from 1.07 to 1.10). All of 

the “total” risk estimates are statistically significant, as are 14 of the 16 estimates of the 

traffic contribution, notwithstanding the modest levels in some cases.  Similar results 

were obtained using logarithmic exposures (On-line Supplement Table B-2).  

Considering both linear and logarithmic exposures, the highest mortality risks are 

associated with benzene, DPM, NOx,and formaldehyde, in combination with traffic 

density.  The combination of sulfate aerosol and traffic density indicates the lowest 

mortality risks. 

 

The right-hand section of Table 6 presents relative risks for the most recent mortality 

follow-up period (1997-2001), which is appropriate for estimating future mortality risks 

in this cohort.   (A complete list of time-stratified risk estimates is presented in the On-

Line Supplement, Table B-3.) Only three of these estimates are statistically significant, 

but benzene, formaldehyde, and DPM continue to be associated with the highest 

mortality risks.  Lack of significance may have resulted in part from variance inflation 
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created by jointly regressing correlated pollutants, in addition to the reduced number of 

deaths during 1997-2001. 

 

DISCUSSION 

Summary of Findings 

Much of the extant air pollution epidemiology literature focuses on specific “criteria” 

pollutants and the consideration of appropriate ambient air quality standards.  This 

objective may be severely constrained by correlations among pollutants and by the 

realization that some of them may be serving mainly as markers for other, more toxic, 

agents.  Uncertainty as to the true toxic agent(s) makes it more difficult to identify 

thresholds for use in setting ambient standards.26  In this paper, we consider a suite of 

pollutants, including non-criteria species, in an attempt to focus more on source 

characteristics than on the individual pollutants or indicators used to regulate ambient air 

quality.  Finding similar risks among groups of pollutants associated with a common 

emission source can add strength to the overall conclusions and provides a rational basis 

for pollution abatement.  Risks associated with absolute concentration levels of specific 

pollutants may thus be less useful than identification of the most important sources. 

 

We find that residence in counties with higher levels of traffic-related air pollutants 

shows stronger mortality risk estimates than those based on vehicular traffic density per 

se, and that each of these pollutants comprises the bulk of the risk in a joint regression 

with traffic density.  These pollutants include gaseous species, some of which are 

indicated to pose larger mortality risks than most of the particulate species considered in 

this study.  Mortality associations with benzene are among the strongest of these 

pollutants; our results indicate that benzene may be associated with about 10% of all-

cause mortality in this cohort and 20% when limited to the counties with above-average 

traffic densities. This suggests that tailpipe or refueling emissions may be the most 

important environmental health aspects of vehicular traffic.  In our previous studies of 

traffic density in combination with measured air quality,8,9 we found that traffic density 

dominated, which suggests that the additional pollutant variables investigated here are 

also better predictors of cohort survival than locally measured ambient air quality 
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concentrations for criteria air pollutants.  However, we have not evaluated possible 

contributions from brake or tire wear, road dust, or noise. 

 

The finding of strong mortality risks associated with DPM in counties with lower traffic 

density (1985 mean = 2.7 x 106 veh-mi/mi2) suggests that off-road diesel sources may 

also be important, assuming that off-road applications may be relatively more common in 

rural areas.  It is not entirely clear how diesel ship emissions are handled in the NATA, 

but emissions of criteria pollutants from ships in port are considered as off-road mobile 

sources. 

 

Tabulated national emissions inventory data (tons/yr) by source category27 may help 

identify the important types of mobile sources.  In the transport sector, volatile organic 

compounds (hydrocarbons) are emitted primarily from gasoline-powered vehicles.  Total 

on-road NOx emissions are almost double the off-road NOx emissions.  However, for 

diesel engines, on-road vehicles emit about 25% less total PM than off-road vehicles.  

This supports our finding of equivalent risks associated with DPM in both high- and low-

traffic density counties and higher risks associated with NOx and VOCs such as benzene 

in urban counties, because of the contributions of gasoline-powered vehicles and other 

urban sources. 

 

This is the first American cohort mortality study to base estimated exposures of 

individual subjects on computed rather than measured ambient air quality levels.  This 

protocol involves a trade-off between the reduced sample sizes and uncertainties imposed 

by relying on routine air quality monitoring networks and the larger sample sizes and 

implied combined uncertainties of estimated emission rates and complex atmospheric 

dispersion models.  Because (non-differential) exposure error tends to bias regression 

results towards the null and to attenuate statistical significance,26,28 our findings of 

substantial, precise, and internally consistent risk estimates were somewhat unexpected. 

  

Potentially Critical Issues 
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Validity of Exposure Estimates.  An important critical issue concerns the use of 

theoretical estimates of county-level exposures based on emissions rather than local 

ambient air quality measurements. We find that our exposure estimates are largely 

consistent with the ambient mobile-source HAPS data recently reported by the Health 

Effects Institute29 and others.30,31   NATA data have been used or cited in other 

analyses32-34 and evaluated by EPA,23 as discussed in on-line supplement Appendix D.  

However, mobile source emissions may be underestimated because of the difficulty in 

accounting for high-emitting vehicles that do not conform to regulatory models, 

especially in more recent years.8 

 

In addition, comparisons of county averages with spot measurements are likely to be 

affected by local variability within counties.23,30,31  The success of these regressions 

across a wide range of exposure levels derives in part from the fact that between-city 

variations in HAPS concentrations tend to be larger than within-city variations.31 

 

Also, any errors stemming from differences between personal exposures and county-wide 

averages will tend to be less important for pollutants exhibiting large ranges in outdoor 

exposures.  For example, a personal exposure uncertainty of say, 50% of the mean, would 

be more important for a pollutant like PM2.5, having a range of a factor of 7,7 than for 

pollutants such as DPM with a range of three orders of magnitude (Table 2), because of 

the much larger baseline variance of the latter.  (Random error tends to attenuate a 

regression slope by a factor Rt-s
2, where Rt-s is the correlation between the true exposure 

and the surrogate measure.26)    This highlights the statistical advantage of working with 

source-specific pollutants that tend to produce wider ranges of estimated exposures than 

measured ambient concentrations that reflect the combined impacts of many types of 

sources. 

 

However, there are also local “hot-spots” to consider, such as on-road exposures to 

vehicle exhaust33-35 and benzene exposures from refueling operations.36  The HAPS 

estimates are based on census tracts, which may reflect some of these hot-spots; we used 

the median concentration level for each county in the analysis, and we also downloaded 
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the 95th percentile levels.  Hot-spot exposures may be an order of magnitude higher than 

the county averages considered here, but the relative rankings of urban vs. rural counties 

appear to be preserved, since the median and 95th percentiles of the HAPS data we used 

tend to be highly spatially correlated.  Census tracts usually contain between 2500 and 

8000 persons, so that their land areas vary inversely with population density and thus 

urbanicity.  As a result, the more urban areas may have more precise concentration 

estimates than their rural counterparts in percentage terms, but not necessarily in absolute 

terms. 

 

Notwithstanding these uncertainties in exposure estimates, we find consistent results 

using two different sets of emissions data and two very different dispersion models.  This 

is shown, for example, by the strong correlation (R=0.75) between estimated DPM 

concentrations from NATA and estimated EC concentrations from AER (Tables A-2), 

notwithstanding non-traffic sources of EC.  In addition, there are eight correlation 

coefficients of 0.8 or higher in Table A-2, indicating self-consistent spatial patterns in 

both NATA and AER data sets and between them.  Our new risk estimates are also 

reasonably consistent with our previous estimates7,8 based on measured air quality and 

with traffic density data that comprise a third independent database. 

 

Timing Issues.  The exposure data used here have been applied to various mortality 

periods, regardless of relative timing.  This protocol may be problematic for exposures 

prior to the Clean Air Act of 1970 and does not accommodate subsequent vehicular 

emission reductions.  For this cohort, we have no information on specific diseases 

involved in these deaths or their likely latency periods, and thus any associations with 

induction of new cases of chronic disease cannot be proven or disproven by this analysis. 

However, it is likely that at least some of the pollution-related deaths implied here may 

have also been affected by the much higher exposures that were likely experienced 

during previous decades.29,37-40  This reinforces the need to consider trends in the 

mortality-pollution relationships during the 26-y period of follow-up (see Appendix 

Table B-3 in the On-Line Supplement).   Such trends may also be affected by aging of 

thocohort and by differential survival of the hardiest subjects.  Cook et al.41 estimated 
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future levels of mobile-source air toxics and concluded that, while levels are projected to 

continue to decline, health concerns will likely remain. 

 

Population Mobility. 

All of our exposure estimates are based on the county of residence at enrollment in the 

study (1975-76).  Although we also have the zip-codes of residence, we used counties in 

order to allow for non-residential (but reasonably local) exposures and the likelihood of 

within-county residential relocation during the follow-up period.  As a means of 

assessing the potential consequences of residential mobility, we consulted U.S. Census 

data on migration (http://www.census/gov/population/www/cen2000/migration.html), 

based on a population sample of persons aged 65 and over.  For the nation, 77.2% of the 

elderly population remained in the same residence from 1995 to 2000, and residential 

stability was slightly greater in the more urban states.  During this period, 4.8% of the 

sample moved out-of-state (~1%/y), which leads to an estimate of 25% out-of-state 

movers over the 26-y period and the conclusion that population mobility is not likely to 

be a major issue with respect to our exposure estimates.  Krewski et al.3 reported a similar 

figure (18.5% movers) for the Six Cities study, which is based on much smaller 

residential areas.  They also reported only minor effects of mobility on their mortality 

risk estimates. 

 

Issues with Specific Pollutants and Mixtures.   

Mobile source pollutants tend to be highly inter-correlated, such that their individual 

effects are difficult to separate.  Nitrogen oxides have often been used as a marker for the 

mobile source mixture,42 which provides no guidance as to which specific constituent(s) 

of the mixture should be regulated. For example, ultrafine particles are not monitored 

routinely and are not included in this analysis, but they tend to be correlated with NOx in 

on-road exposures.35  This quandary leads to the conclusion that epidemiology might be 

better served by considering all of the impacts from a source as a totality, rather than 

trying to develop dose-response relationships for each of the individual pollutants 

emitted.  Noise and brake/tire/road dust effects are not specifically addressed in this 

analysis and thus cannot be ruled out as part of the overall traffic-related impact. 
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This analysis considers inhalation as the sole mode of exposure, while some of the HAPS 

we consider may have other modes, including ingestion and dermal absorption.  Benzene, 

chlorine, arsenic, and lead are examples.  If these modes of exposure are indeed 

important, the effects of inhalation presented here may be inflated, but to the extent that 

other exposure pathways are affected by local pollutant deposition, source proximity 

could still be a factor. 

 

There are also indoor and personal inhalation exposures to consider for traffic-related 

pollutants, especially for benzene (cigarette smoking and cooking) and formaldehyde 

(building materials). Coke ovens are another important source of benzene.  Charcoal 

cigarette filters tend to absorb benzene and other gases,43 but a study of benzene 

biomarkers (e.g., muconic acid) showed that benzene uptake was related to smoking, 

occupation, time spent outdoors in urban areas, and time spent in vehicles.44  Less 

information is available on formaldehyde biomarkers, but formaldehyde from mobile 

sources may be considered as just another component of the source-related mixture. 

Thus, for some pollutants, sources other than traffic may have contributed to the 

mortality risks estimated from these analyses. 

 

While our results tend to emphasize mobile sources, there may also be concerns about 

mercury, arsenic, or nickel, which have been associated with large stationary sources 

burning residual fuel oil, coal, or municipal solid waste.  Municipal incinerators are an 

important source of mercury emissions,45,46 and urban excesses in wet deposition of 

mercury have been reported in Connecticut46 and in the Chicago-Gary area.47  Other 

studies have shown higher concentrations of Hg in gasoline than in diesel fuel48-49 and 

still higher levels in liquefied petroleum gas (LPG).50  Thus, the relatively strong 

correlations between airborne mercury and traffic pollutants seen in Table 4 may relate to 

both common sources and common urban locations of different types of sources.  Nickel 

and arsenic have been identified in residual oil and coal fly ashes, respectively, but their 

relative toxicities and bioavailabilities (solubilities) vary according to the specific 

compounds involved.51  Lipmann et al.52 did not discuss specific nickel compounds and 



25 
 

noted that nickel was not always correlated with vanadium, as might be expected if the 

source were residual fuel oil.53  Finally, although coal-fired power plants emit small 

quantities of metals in fly ash, they do not emit EC or polycyclic aromatic 

hydrocarbons.54 

 

Our findings for sulfur compounds deserve special mention here, since we find consistent 

significant positive effects for sulfur dioxide (RR = 1.04 [1.02-1.05]) and statistically 

significant negative effects for sulfates (RR = 0.95 [0.92-0.97]), in spite of the relatively 

strong bivariate correlations between the two sulfur species.  This is counter-intuitive 

from a toxicological perspective, since SO2 is a reactive gas likely to be adsorbed in the 

upper airways or onto indoor structural surfaces, while sulfate particles are likely to enter 

the lower respiratory tract.25  Such an assessment is also complicated by considering that 

sulfate particles tend to be water-soluble but that SO2 may be adsorbed onto small 

insoluble particles that could be retained in the lung.25  Our results indicate that the 

adverse effects indicated for SO2 derive from its spatial correlations with traffic-related 

pollutants in the high-density counties, while the “beneficial” effects indicated for SO4
2- 

stand alone in their own right, independently from other pollutants and regardless of 

traffic density (as shown in Figure 1). Several assessments55-58 have determined that 

(NH4)2SO4, the most likely ambient sulfate compound, is not a health hazard at current 

ambient levels, which is consistent with opinions reported by European experts.59  Our 

negative findings for sulfates for this cohort are supported by previous negative results 

based on ambient measurements,6,7 indicating that the previous negative findings were 

not the result of anomalous measurements.  Survival plots of the raw data for high and 

low sulfate portions of the cohort also show an advantage for higher sulfate exposure, 

consistent with the proportional hazard model results that consider confounders. As seen 

in the On-Line Supplement (Table B-3), the risks for both sulfur oxide pollutants show 

negative trends over time, and neither is statistically significant for the 1997-2001 sub-

period. 

 

We did not include PM2.5 in this analysis, in part because of the lack of appropriate data 

for all U.S. counties, and in part because PM2.5 serves as an air quality indicator and is 
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not specific to any single emission source.27  An analysis of hourly PM2.5 concentrations 

at 20 monitoring stations around the New York City metropolitan area from 2000 to 2002 

showed very smooth spatial and temporal distributions, because of the combined effects 

of local traffic and regional levels of secondary pollutants.60  The overall average PM2.5 

level was about 12.5 μg/m3, which meets the current annual NAAQS, even though 

portions of the New York area have the highest HAPS levels in the nation (Appendix A).  

The diurnal PM2.5 data showed a sharp peak during morning rush hour, and mean levels 

were about 2 μg/m3 higher on Thursdays than on Sundays, indicating relatively modest 

effects of traffic, on average. Our negative findings for sulfates would imply that the 

overall toxicity of PM mixtures containing sulfate should increase as the sulfate content 

declines over time, which has been reported by Jerrett et al.2. 

 

Measures of Effect.  The risk estimates reported here are based on the mean 

concentrations of the pollutants in question, and thus could be interpreted as the public 

health benefit that would accrue if the pollutant in question were completely eliminated 

from the environment.  However, putative irreducible background levels may be 

appreciable for some pollutants (25-30% of mean levels for benzene or formaldehyde, for 

example), but not for DPM.  Thus, practical pollution abatement strategies may only be 

able to realize risk reductions comprising modest fractions of the estimates reported here.  

We also computed some risk estimates based on the 95th percentiles of the pollutant 

distributions, which resulted in only minor alterations of the rank orders in Table 5. 

 

It is also important to realize that while statistical significance levels provide useful 

information on the reliability of a finding, significance level per se is not an appropriate 

indicator of the relative importance or toxicity of a pollutant.  Thirty-five of the 54 risk 

estimates in Table 5 are significant, and there is no relationship between confidence 

interval width and level of risk.  For example, chlorine is highly significant, not 

withstanding an excess risk level only about 10% of that of benzene, which is also 

statistically significant.  This arises from differences in the spatial distributions of these 

pollutants, as seen from Figure 2 and by comparing standard deviations and mean values 

in Table 3.  Chlorine is distributed very heterogeneously, with a spatial standard 
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deviation about five times its mean.  By contrast, benzene is more homogeneous, with a 

standard deviation less than half its mean.  This translates to an order of magnitude range 

in the coefficients of variation and thus in the standard errors of elasticities or mean 

effects15 (Figure 2).  There may indeed be an appreciable mortality risk associated with 

chlorine at its maximum concentration level (RR = ~1.16), but our analysis indicates that 

benzene effects reach this level of risk at many more locations than chlorine.  Our 

analysis also suggests that the apparent national chlorine mortality risk may partly be due 

to its (spatial) correlation with traffic-related pollutants.   

 

Analyses of Subsets.  A previous paper9 noted that mortality effects of traffic density 

summed over subsets of the follow-up period tend to exceed the effects estimated for the 

entire period.  This is also the case with the pollutants under study here.  We propose that 

this outcome results from temporal changes in the non-pollution risk factors in the model 

subsequent to enrollment in the study and differences in the resulting confounding.  

However, the phenomenon generally does not occur here with subsets by traffic density; 

the sums of high- and low-density traffic effects are very nearly equal to those for all 

subjects. This supports the hypothesis that risk factor changes during follow-up can be 

important in estimating the overall pollution risks appropriately and suggests the presence 

of confounding. 

 

The major differences in mortality risks seen here between sets of counties with high and 

low traffic densities suggest that thresholds may exist for some pollutants.  Thus, caution 

is warranted in trying to estimate risks for the entire nation based on ambient data 

obtained from urban counties. 

 

Comparisons with Other Risk Estimates 

Comparisons with Previous Estimates for This Cohort.  The first publication6 on air 

pollution risks for this cohort presented mean pollution risks in terms of matrices of 

mortality sub-periods by pollution measurement periods (Table 7 of that paper, for deaths 

through 1996).  We found it difficult to discern a consistent pattern in the timing of 

responses vs. those of exposures, in part because of high temporal correlations among the 
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air quality measures.  Below we compare the estimates from previous papers with those 

of the present analysis, using mean effect ranges and standard errors, for brevity.  Table 

7A compares the present results with those of the first Veterans Cohort paper,6 by 

mortality follow-up period.  Table 7B compares the present results for the 1997-2001 

period with those obtained using data on PM2.5 constituents from EPA’s Speciation 

Trends Network.7  None of the differences between estimates based on measurements vs. 

modeling is statistically significant, and the relative rankings of pollutants are similar for 

the two sets of risk estimates.  Also, note in Table 7B that the standard errors of the 

modeled estimates tend to be smaller than those based on measured air quality.  In this 

sense, the modeled estimates should be considered “better” predictors of survival in this 

cohort. 

 

Comparisons with Previous Risk Assessments.  Woodruff et al.61 estimated 1990 ambient 

levels of HAPS for all of the census tracts in the contiguous United States and compared 

them with EPA “benchmark” levels, including those for a cancer risk of 10-6.  They 

concluded that levels of benzene and formaldehyde may have posed excess risks by this 

definition, but that arsenic and nickel did not.   

 

Wu and Pratt62 analyzed 1996 HAPS levels in Minnesota, considering both emission 

levels and toxicity rankings.  Their rankings of the 12 HAPS considered here include 

formaldehyde (#2), nickel (#3), manganese (#4), benzene (#10), and lead (#13). 

 

Sexton et al.17 performed a similar assessment for the Houston area, basing “benchmark” 

levels on the judgments of a panel of experts.  Ozone and PM2.5 were also included, based 

on exceedances of NAAQS levels, in addition to 1999 HAPS levels.  They concluded that 

O3, PM2.5, DPM, benzene, formaldehyde, and chlorine (among others) posed “definite” 

risks in Houston, and that arsenic compounds were a “possible” risk.  This area is of 

interest here because our initial analysis of the Veterans cohort6 identified Houston as a 

relatively high-mortality location. 
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Appendix C in the On-Line Supplement compares our results for associations between 

total mortality and ambient air quality with those of previous long-term studies from the 

literature.   

Support from Toxicology 

The inability to identify the individual contributions of correlated pollutants has often 

been a limitation of epidemiology.  Toxicology experiments with controlled exposures on 

animals or in vitro may thus offer assistance.  However, findings of experiments with 

specific types of particles have been mixed and often require compromised subjects in 

order to show effects;63-67 testing with actual source emissions may be more promising.  

These include exposures on68 and near69 roadways and to diluted engine exhaust.70-72   

Engine exhaust experiments with particles removed by filtering show risks associated 

with gaseous constituents as well.71  Experiments with concentrated ambient PM often 

show effects with crustal materials73-76 that might implicate road dust, the effects of 

which were not evaluated in this study.   

 

CONCLUSIONS 

We conclude that survival of members of the Washington University-EPRI Veterans 

Cohort is strongly and robustly associated with county-average levels of traffic-related air 

pollution, as estimated by several protocols, based on residence at entry to the study.  

Both gaseous and particulate species are implicated, including hazardous air pollutants; 

sources of these pollutants other than traffic may also be implicated.  The mortality risks 

in this cohort appear to be declining slightly over time, and the overall composition of 

traffic emissions has changed with the imposition of engine exhaust control systems.  

Except for DPM, mortality relationships are stronger in the counties with higher levels of 

traffic density.  These findings are supported by other risk assessments and 

epidemiological studies of the health effects of traffic in North America and Europe, in 

addition to toxicological experiments.  However, health effects of vehicular traffic may 

also involve degradation products from vehicle or roadway wear, traffic noise, stress, or 

socioeconomic effects associated with preferred residential locations.  While this study 

effectively controls for socioeconomic status by design, we have not specifically 

evaluated these other factors. 
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We also conclude that statistical significance alone is not an appropriate indicator of the 

importance (i.e., toxicity) of a pollutant predictor variable.  Significant excess risks as 

low as 0.5% were detected for some pollutants.  In counties with high levels of vehicular 

traffic density, all of the pollution variables considered here show statistically significant 

relationships with mortality; inter-pollutant correlations may explain many of these 

relationships.  Emission sources located in densely populated areas appear to be the 

common factor.  We are unable to identify specific pollutants that might be uniquely 

responsible for the observed excess mortality, and we recommend extension of these 

analytical and modeling techniques to other cohorts, to further test the hypotheses 

generated here. 

 

We find the following specific conclusions with respect to predicting survival in this 

cohort, based on modeled county-level estimates of residential exposures: 

 

Selected traffic-related air pollutants (benzene, formaldehyde, diesel particulate, 

oxides of nitrogen, elemental carbon) are better predictors than traffic density per 

se (Figure 1[a,b]). 

 

The AER-modeled EC and NOx exposures are better predictors than the measured 

air quality values used previously, as shown by the more precise risk estimates 

achieved with modeling (Table 7B). 

 

Significant mortality risks associated with SO2 are limited to high-traffic density 

counties (Table 5), where SO2 appears to be a surrogate variable (Figure 1). 

 

Among the potentially toxic trace elements in fossil fuels or emitted from metal-

working industries (As, Hg, Mn, Ni, Pb), Ni appears to be the most important in 

high-traffic counties, but Ni also appears to be a surrogate variable (Figure 1).  

Risks for As, Hg, Mn, and Pb are significantly lower, in all counties (Table 5) 
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Other non-metal HAPS not related to either traffic or combustion (chlorine, 

hydrochloric acid, polypropylene) are not significant independent predictors of 

survival in the total cohort (Figure 1). 

 

The negative sulfate risk coefficients previously  reported on the basis of ambient 

measurements in selected counties are confirmed with nationwide modeled 

estimates (Tables 5, 6, 7). 

 

Traffic density and ambient concentrations of related pollutants tend to be higher in the 

more densely populated cities of the Northeast, where residual fuel oil containing nickel 

and sulfur is commonly used.52  These considerations lead to the conclusion that cities 

can be important sources of a variety of air pollutants besides those directly emitted in 

vehicle exhaust. Air pollution epidemiology studies should consider a suite of potentially 

causal agents before focusing on any one of them, including non-criteria and hazardous 

species.   
 

ACKNOWLEDGEMENTS 

The Veterans Cohort database is maintained at Washington University, St. Louis, School 

of Medicine, under the leadership of J. Philip Miller; the proportional hazards modeling 

was done there by Jack Baty.  The Electric Power Research Institute funded the bulk of 

this study but the authors are solely responsible for these findings.  We thank 

Atmospheric and Environmental Research, Inc., for their dispersion modeling work, 

Sheldon Lipsky for assistance in downloading the EPA HAPS data, and three anonymous 

reviewers for their helpful suggestions. 
 
 

REFERENCES  
 
1. Pope, C.A. III, Thun, M.J., Namboodiri, M.M., Dockery, D.W., Evans, J.S., Speizer, 
F.E., Heath, C.W., Jr.  Particulate air pollution as a predictor of mortality in a prospective 
study of U.S. adults; Am J Respir Crit Care Med. 1995, 151, 669-674. 
 
2. Jerrett, M., Newbold. K.B., Burnett, R.T., Thurston, G., Lall, R., Pope, C.A. III, Ma, 
R., De Luca, P., Thun, M., Calle, J., Krewski, D.  Geographies of uncertainty in the 



32 
 

health benefits of air quality improvements; Stoch Environ Res Risk Assess . 2007, 21, 
511-522. 
 
3. Krewski, D., Burnett, R.T., Goldberg, M.S., Hoover, K., Siemiatycki, J., 
Abrahamowicz, M., White, W.H., others.  Reanalysis of the Harvard Six Cities Study and 
the American Cancer Society Study of Particulate Air Pollution and Mortality: Special 
Report. Cambridge, MA: Health Effects Institute, 2000.  Part I. Replication and 
Validation (http://www.healtheffects.org/Pubs/Rean-part1.pdf) and Part II. Sensitivity 
Analyses (http://www.healtheffects.org/Pubs/Rean-part2.pdf). 
 
4. Jerrett, M., Burnett, R.T., Ma, R., Pope, C.A. 3rd, Krewski, D., Newbold, K.B., 
Thurston, G., Shi, Y., Finkelstein, N., Calle, E.E., Thun, M.J..  Spatial analysis of air 
pollution and mortality in Los Angeles; Epidemiology. 2005, 16, 727-736.  
 
5. Jerrett, M., Burnett, R., Ma, R., Pope, C.A. III, Thun, M., Calle, J., Thurston, G., Ito, 
K., Ross, Z., Krewski, D. Air pollution and mortality in New York City.  Poster presented 
at the Annual Meeting of the Health Effects Institute, San Francisco, April 2006.  Also 
see presentation by Krewski et al. at 
www.healtheffects.org/Slides/AnnualConference/2008/Krewski.pdf (accessed Nov. 5, 
2008). 
 
6. Lipfert, F.W., Perry, H.M. Jr., Miller, J.P., Baty, J.D., Wyzga, R.E., Carmody, S.E.. 
The Washington Unversity-EPRI Veterans Cohort Mortality Study: preliminary results; 
Inhal Toxicol.  2000, 12,  Suppl 4, 41-73.  
 
7. Lipfert, F.W., Baty, J.D., Miller, J.P., Wyzga, R.E.. PM2.5 constituents and related air 
quality variables as predictors of survival in a cohort of U.S. military veterans; Inhal 
Toxicol. 2006, 18, 645-657.  
 
8. Lipfert, F.W., Wyzga ,R.E., Baty, J.D., Miller, J.P. Traffic density as a surrogate 
measure of environmental exposures in studies of air pollution health effects: Long-term 
mortality in a cohort of US veterans; Atmos Environ. 2006, 40, 154-169.   
 
9. Lipfert FW, Wyzga RE, Baty JD, Miller JP. Vehicular traffic effects on survival within 
the Washington University-EPRI veterans cohort: new estimates and sensitivity studies. 
Inhal Toxicol. 2008 Aug;20(10):949-60. 
 
10. U.S. Environmental Protection Agency, 1996 National Air Toxics Assessment, 
http://www.epa.gov/ttn/atw/nata;  U.S. Environmental Protection Agency, 1999 National 
Air Toxics Assessment, http://www.epa.gov/ttn/atw/nata1999/. 
 
11. Rosenbaum, A.S., Axelrad, D.A., Woodruff, T.J., Wei, Y-H., Ligocki, M.P., Cohen, 
J.P., National estimates of outdoor air toxics concentrations; J Air Waste Manag Assoc. 
1999, 49, 1138-1152. 
 
12. Karamchandani, P.K., Vijayaraghavan, K., Seigneur, C., CMAQ-MADRID-APT 
Version 4.5.1 User’s Guide; 2006, EPRI, Palo Alto, CA. 



33 
 

 
13. Karamchandani, P., Vijayaraghavan, K., Chen, S-Y., Seigneur, C., Edgerton ,E.S., 
Plume-in-grid modeling for particulate matter; Atmos Environ. 2006, 40, 7280-7297. 
 
14. Pun, B.K., Seigneur, C., Bailey, E.M., Gautney, L.L., Douglas, S.G., Haney, J.L., 
Kumar, N. Response of atmospheric particulate matter to changes in precursor emissions: 
A comparison of three air quality models; Enviro Sci Tech, in press.  
 
15. Lipfert, F.W., Wyzga, R.E., Statistical Considerations in Determining the Health 
Significance of Constituents of Airborne Particulate Matter; J Air Waste Manag Assoc. 
1999, 49 (special issue), 182-189. 
 
16. California Air Resources Board, The Toxic Air Contamination Identification Process: 
Toxic Air Contaminants from Diesel-Fueled Engines, Fact Sheet. 
http://www.arb.ca.gov/toxics/dieseltac/factsht1.pdf. 
 
17. Sexton, K., Linder, S.H., Marko, D., Bethel, H., Lupo, P.J., Comparative assessment 
of air pollution-related health risks in Houston; Environ Health Perspect. 2007, 115, 
1388-1393. 
 
18. Somers J, personal communication, Nov. 14, 2007. 
 
19. Vijayaraghavan, K., Karamchandani, P., Seigneur, C., Plume-in-grid modeling of 
summer air pollution in Central California; Atmos Environ. 2006, 40, 5097-5109. 
 
20.  Rattigan OV, Hogefe O, Felton HD et al., Multi-year urban and rural semi-
continuous PM2.5 sulfate and nitrate measurements in New York state: Evaluation and 
comparison with filter based measurements, Atmos Environ 2006, 40, Suppl 2, 192-205. 
 
21.  Bari A, Dutkiewicz VA, Judd CD et al., Regional sources of particulate sulfate, SO2, 
PM2.5, HCl, and HNO3, in New York, NY. Atmos Environ 2003, 37, 2837-44.  Also see  
Wheeler AJ, Smith-Doiron M, Xu Xiaohong, Gilbert NL, Brook JR. Intra-urban 
variability of air pollution in Windsor, Ontario – Measurement and modeling for human 
exposure assessment. Environ Res 2008, 106, 7-16. 
 
22. Restrepo C, Zimmerman R Thurston G et al., A comparison of ground-level air 
quality data with New York State Department of Environmental Conservation monitoring 
stations in South Bronx, New York.  Atmos Environ 2004, 38, 5295-04. 
 
23.  http://www.epa.gov/ttn/atw/nata/mtom_pre.html (summary); 
http://www.epa.gov/ttn/atw/nata/draft6.html (complete report).  Last updated Aug. 4, 
2008.  Accessed Aug. 13, 2008. 
 
24.  ICF Consulting, DPM Model-To-Measurement Comparison, Report EPA 420-D-02-
004, October 2002. 
 



34 
 

25. Lipfert, F.W., Air Pollution and Community Health; van Nostrand (Wiley): New 
York, 1994.  pp. 71-73. 
 
26. Lipfert, F.W.,  Wyzga, R.E., Effects of Exposure Error on Environmental 
Epidemiology, Proc. International Symposium on the Health Effects of Particulate 
Matter, Prague. AWMA Publ. VIP-80, pp. 155-166 (1998).  Also see Lipfert, F.W., The 
Use and Misuse of Surrogate Variables in Environmental Epidemiology, J. 
Environmental Medicine  1999, 1, 267-278. 
 
27. U.S. Environmental Protection Agency,National Air Quality and Emission Trends 
Report, 1999. Report EPA 454/R-01-004, March 2001.  Appendix A. 
 
28. Mallick, R., Fung, K., Krewski, D. Adjusting for measurement error in the Cox 
proportional hazards regression model; J Cancer Epidemiol Prev. 2002, 7, 155-164. 
 
29. HEI Air Toxics Review Panel, Mobile-Source Air Toxics: A Critical Review of the 
Literature on Exposure and Health Effects. HEI Special Report 16, 2007. Health Effects 
Institute, Boston, MA. 
 
30. Touma, J.S., Cox, W.M., Tikvart, J.A., Spatial and temporal variability of ambient air 
toxics data; J Air Waste Manag Assoc. 2006, 56,1716-1725. 
 
31. Baker, A.K., Beyersdorf, A.J., Doezema, L.A., Katzenstein, A., Meinardi, S., 
Simpson, I.J., Blake, D.R., Rowland, F.S. Measurements of nonmethane hydrocarbons in 
28 United States cities; Atmos Environ. 2008, 42, 170-182. 
 
32. Marshall JD, Teoh S-K, Nzaroff WW. Intake fraction of nonreactive vehicle 
emissions in US urban areas. Atmos Environ 2005, 39, 1363-71. 
 
33. Greco SL, Wildon AM, Spengler JD, Levy JI, Spatial patterns of mobile source 
particulate matter emissions-to-exposure relationships across the United States. Atmos 
Environ 2007, 41, 1011-25. 
 
34. Ozkaynak, H., Palma, T., Touma, J.S., Thurman, J.. Modeling population exposures 
to outdoor sources of hazardous air pollutants; J Expo Sci Environ Epidem. 2008, 18, 45-
58. 
 
35. Fruin, S., Westerdahl, D., Sax, T., Sioutas, C., Fine, P.M., Measurements and 
predictors of on-road ultrafine particle concentrations and associated pollutants in Los 
Angeles; Atmos Environ. 2008, 42, 207-219. 
 
36. Karakitsios, S.P., Papaloukas, C.L., Kassomenos, P.A., Pilidis, G.A. Assessment and 
prediction of exposure to benzene of filling station employees; Atmos Environ. 2007, 41, 
9555-9569. 
 



35 
 

37. Edgerton, S.A., Holdren, M.W., Smith, D.L., Shah, J.J., Inter-urban comparison of 
ambient volatile organic compound concentrations in U.S. cities; J. Air Poll Control 
Assoc. 1989, 39, 729-732. 
 
38. Ban-Weiss, G.A., McLaughlin, J.P., Harley, R.A., Lunden, M.M., Kirchstetter, T.W., 
Kean, A.J., Strawa, A.W., Stevenson, E.D., Kendall, G.R., Long-term changes in 
emissions of nitrogen oxides and particulate matter from on-road gasoline and diesel 
engines; Atmos Environ. 2008, 42, 220-232. 
 
39. Louchouarn, P., Chillrud, S.N., Houel, S., Yan, B., Chaky, D., Rumpel, C., Largeau, 
C., Bardoux, G., Walsh, D., Bopp, R.F. Elemental and molecular evidence of soot- and 
char-derived black carbon inputs to New York City’s atmosphere during the 20th century; 
Environ Sci Tech, 2007, 41, 82-87.  
 
40. Wakeham, S.G., Forrest, J,, Masiello, C.A., Gelinas, Y., Alexander, C.R., Leavitt, 
P.R. Hydrocarbons in Lake Washington sediments. A 25-year retrospective in an urban 
lake; Environ Sci Tech. 2004, 38, 431-439. 
 
41. Cook, R., Strum, M., Touma, J.S., Palma, T., Thurman, J., Ensley, D., Smith, R. 
Inhalation exposure and risk from mobile source air toxics in future years; J Expo Sci 
Environ Epidem. 2007, 17, 95-105. 
 
42. Beckerman, B., Jerrett, M., Brook, J.R., Verma, D.K., Arain, M.A., Finkelstein, M.M. 
Correlation of nitrogen dioxide with other traffic pollutants near a major expressway; 
Atmos Environ. 2008, 42, 275-290. 
 
43. Scherer, G., Urban, M., Engl, J., Hagedorn, H.W., Riedel, K., Influence of smoking 
charcoal filter tipped cigarettes on various biomarkers of exposure; Inhal Toxicol. 2006, 
18, :821-829. 
 
44. Berthoin, K., Broekaert, F., Robin, M., Haufroid, V., De Burbere, C., Bernard, A. 
Serum pneumoproteins and biomarkers of exposure to urban air pollution: a cross-
sectional comparison of policemen and foresters; Biomarkers 2004, 9, 341-352. 
 
45. Glass, G.E., Sorensen, J.A., Schemidt, K.W., Rapp, G.R. Jr. New source 
identification of mercury contamination in the Great Lakes; Environ Sci Tech. 1990, 24, 
1059-1069. 
 
46.  Nadim, F., Perkins, C., Liu, S., Carley, R.J., Hoag, G.E. Long-term investigation of 
atmospheric mercury contamination in Connecticut; Chemosphere 2001, 45, 1033-1043. 
 
47. Landis, M.S., Vette, A.F., Keeler, G.J. Atmospheric mercury in the Lake Michigan 
basin: Influence of the Chicago/Gary urban area; Environ Sci Tech. 2002, 36, 4508-4517. 
 



36 
 

48. Landis, M.S., Lewis, C.W., Stevens, R.K., Keeler, G.J., Dvonch, J.T., Tremblay, 
R.T., Ft. McHenry tunnel study: Source profiles and mercury emissions from diesel and 
gasoline powered vehicles; Atmos Environ. 2007, 41, 8711-8724.  
 
49. Wilhelm, S.M., Kirchgessner, D.. Mercury in U.S. crude oil: A study by U.S. EPA, 
API, and NPRA; Society of Petroleum Engineers Paper SPE 80573, 2003. 
 
50. Won, J.H., Park, J.Y., Lee, T.G., Mercury emissions from automobiles using 
gasoline, diesel, and LPG; Atmos Environ. 2007, 41, 7547-7552. 
 
51. Huggins, F.E., Huffman, G.P., Linak, W.P., Miller, C.A., Quantifying hazardous 
species in particulate matter derived from fossil-fuel combustion; Environ Sci Tech. 
2004, 38, 1836-1842. 
 
52. Lippmann, M., Ito, K., Hwang, J-S., Maciejczyk, P., Chen, L-C. Cardiovscular effects 
of nickel in ambient air; Environ Health Perspect. 2006, 114, 1662-1669. 
 
53.  Okuda, T., Nakao, S., Katsuno, M., Tanaka, S., Source identification of nickel in 
TSP and PM2.5 in Tokyo, Japan; Atmos Environ. 2007, 41, 7642-7668. 
 
54. Meij, R., te Winkel, H., The emissions of heavy metals and persistent organic 
pollutants from modern coal-fired power stations, Atmos Environ. 2007, 41, 9262-9272. 
 
55. Schlesinger, R.B., Kunzli, N., Hidy, G.M., Gotschi, T., Jerrett, M.  The health 
relevance of ambient particulate matter characteristics: coherence of toxicological and 
epidemiological inferences; Inhal Toxicol. 2006, 18, 95-125.  
 
56. Grahame, T., Schlesinger, R.  Evaluating the health risk from secondary sulfates in 
eastern North American regional ambient air particulate matter; Inhal Toxicol. 2005, 17, 
15-27.  
 
57. Schlesinger, R.B., Cassee, F. Atmospheric secondary inorganic particulate matter: the 
toxicological perspective as a basis for health effects risk assessment; Inhal Toxicol. 
2003, 15, 197-235. 
 
58. Schlesinger, R.B.  The health impact of common inorganic components of fine 
particulate matter (PM2.5) in ambient air: a critical review; Inhal Toxicol . 2007, 19, 811-
832.  
 
59. Cooke, R.M., Wilson, A.M., Tuomisto, J.T., Moarales, O., Taino, M., Evans, J.S. A 
probabilistic characterization of the relationship between fine particulate matter and 
mortality: Elicitation of European Experts; Environ Sci Technol. 2007, 41, 6598-6605. 
 
60. DeGaetano, A.T., Doherty, O.M., Temporal, spatial and meteorological variations in 
hourly PM2.5 concentration extremes in New York City; Atmos Environ. 2004, 38, 1547-
1558. 



37 
 

 
61. Woodruff, T.J., Axelrad, D.A., Caldwell, J., Morello-Frosch, R., Rosenbaum, A. 
Public health implications of 1990 air toxics concentrations across the United States; 
Environ Health Perspect. 1998, 106, 245-251. 
 
62. Wu, C.Y., Pratt, G.C., Analysis of air toxics emission inventory: Inhalation toxicity-
based ranking; J Air Waste Manag Assoc. 2001, 51, 1129-1141. 
 
63. Ayres JG, Borm P, Cassee FR, Castranova V, Donaldson K, Ghio A, Harrison RM,  
Hider R, Kelly F, Kooter IM, Marano F, Maynard RL, Mudway I, Nel A, Sioutas C, 
Smith S, Baeza-Squiban A, Cho A, Duggan S, Froines J.  Evaluating the toxicity of 
airborne particulate matter and nanoparticles by measuring oxidative stress potential--a 
workshop report and consensus statement. Inhal Toxicol. 2008, 20, 75-99. 
 
64. Borm PJ, Kelly F, Kunzli N, Schins RP, Donaldson K. Oxidant generation by 
particulate matter: from biologically effective dose to a promising, novel metric. Occup 
Environ Med. 2007, 64, 73-4.  
 
65. 13. Chang CC, Hwang JS, Chan CC, Cheng TJ. Interaction effects of ultrafine carbon 
black with iron and nickel on heart rate variability in spontaneously hypertensive rats. 
Environ Health Perspect. 2007, 115, 1012-7. 
 
66. 14. Chen LC, Hwang JS. Effects of subchronic exposures to concentrated ambient 
particles (CAPs) in mice. IV. Characterization of acute and chronic effects of ambient air 
fine particulate matter exposures on heart-rate variability. Inhal Toxicol. 2005, 17, 209-
16. 
 
67. Schwarze PE, Ovrevik J, Lag M, Refsnes M, Nafstad P, Hetland RB, Dybing E.  
Particulate matter properties and health effects: consistency of epidemiological  and 
toxicological studies. Hum Exp Toxicol. 2006, 25, 559-79.  
 
68. Elder A, Gelein R, Finkelstein J, Phipps R, Frampton M, Utell M, Kittelson DB, 
Watts WF, Hopke P, Jeong CH, Kim E, Liu W, Zhao W, Zhuo L, Vincent R, 
Kumarathasan P, Oberdorster G.  On-road exposure to highway aerosols. 2. Exposures of 
aged, compromised rats. Inhal Toxicol. 2004, 16 Suppl 1, 41-53. 
 
69. Kleinman MT, Hamade A, Meacher D, Oldham M, Sioutas C, Chakrabarti B, Stram 
D, Froines JR, Cho AK.  Inhalation of concentrated ambient particulate matter near a 
heavily trafficked road stimulates antigen-induced airway responses in mice. J Air Waste 
Manag Assoc. 2005, 55, 1277-88. 
 
70. Campen MJ, McDonald JD, Gigliotti AP, Seilkop SK, Reed MD, Benson JM. 
Cardiovascular effects of inhaled diesel exhaust in spontaneously hypertensive rats. 
Cardiovasc Toxicol. 2003, 3, 353-61. 
 
71. Campen MJ, Babu NS, Helms GA, Pett S, Wernly J, Mehran R, McDonald JD. 
Nonparticulate components of diesel exhaust promote constriction in coronary arteries 
from ApoE-/- mice. Toxicol Sci. 2005, 88, 95-102. 



38 
 

 
72. Lund AK, Knuckles TL, Obot Akata C, Shohet R, McDonald JD, Gigliotti A, 
Seagrave JC, Campen MJ. Gasoline exhaust emissions induce vascular remodeling 
pathways involved in atherosclerosis. Toxicol Sci. 2007, 95, 485-94.  
 
73. Wellenius GA, Coull BA, Godleski JJ, Koutrakis P, Okabe K, Savage ST, Lawrence 
JE, Murthy GG, Verrier RL. Inhalation of concentrated ambient air particles exacerbates 
myocardial ischemia in conscious dogs. Environ Health Perspect. 2003, 111, 402-8. 
 
74. Steerenberg PA, van Amelsvoort L, Lovik M, Hetland RB, Alberg T, Halatek T, 
Bloemen HJ, Rydzynski K, Swaen G, Schwarze P, Dybing E, Cassee FR.  Relation 
between sources of particulate air pollution and biological effect parameters in samples 
from four European cities: an exploratory study. Inhal Toxicol. 2006, 18, 333-46. 
 
75. Ovrevik J, Myran T, Refsnes M, Lag M, Becher R, Hetland RB, Schwarze PE.  
Mineral particles of varying composition induce differential chemokine release from 
epithelial lung cells: Importance of physico-chemical characteristics. Ann Occup Hyg 
2005, 49, 219-31. 
 
76. Chang CC, Hwang JS, Chan CC, Wang PY, Cheng TJ. Effects of concentrated 
ambient particles on heart rate, blood pressure, and cardiac contractility in spontaneously 
hypertensive rats during a dust storm event. Inhal Toxicol. 2007, 19, 973-8. 
 



39 
 

Table 1   Descriptive Statistics for the EPRI-Washington University Veterans Cohort Study 
 
period      live subjects deaths average annual    traffic density (VMTA)  
A. All subjects   death rate  mean std dev 
1976-01 67938 44653 0.0253   12.17 15.3  

1976-81 67938 11938 0.0293  
1982-88. 56000 13885 0.0354  
1989-96 42115 13119 0.0389  
1997-01 28996   5711 0.0394  

 
B. Restricted to subjects in counties with traffic density > 7.39 x 106 veh-mi/mi2 
1976-01 29808   19666 0.0254    24.3 16.2 

1976-81 29808  5240 0.0293  
1982-88. 24568  6133 0.0357  
1989-96 18435  5760 0.0391  
1997-01 12675  2533 0.0400 

 

C. Restricted to subjects in counties with traffic density <= 7.39 x 106 veh-mi/mi2 
1976-01 38130 24987 0.0252   2.69 2.38 

1976-81 38130  6698 0.0293 
1982-88. 31432  7752 0.0352  
1989-96 23680  7359 0.0388  
1997-01 16321  3178 0.0389 
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Table 2  Descriptive Statistics of selected HAPS and traffic density data  (county median concentrations, ng/m3) 
 
  --------------------------------- all subjects ----------------------------------           restricted to traffic density > 7.39 
      (n = 3065 counties)  (n = 67938 subjects)   (n = 29808 subjects) 
 species mean  std dev    min max weighted mean  weighted s dev wtd mean wtd s dev 
    arsenic                0.06     0.44        0           18     0.152     0.358         0.20     0.23 
    benzene        760      335        481      4760            1520  605    1990  475. 
    chlorine            5.73    56.5         0      2769    19.1     98.9      16.8     31.4 
    diesel PM               779      697       15       15100                1810.   999.   2534    897 
    formaldehyde           547     370       251       6810             1155    587  1623    522 
    hydrochloric acid         111      573          0      14637   168    321    218    157 
    local mercury                0.11     0.61      0           28      0.57        0.62       1.02      0.61 
    lead         1.05     4.05      0         141      5.68        7.31       8.63      6.89 
    manganese            1.25     5.89      0         238      3.08       3.79        4.13      3.56 
    nickel      0.46     1.49      0           57      2.09       1.87        3.49       1.67 
    polycyclic organics        24.5     39.5      0.0      618     96.4     83.8     148      94/7 
    polypropylene           0.17     0.96      0         12.4       0.183      1.00        0.34       1.48 
    1997 traffic density      1.72    9.6 0.004   265      17.11    20.7      34.1      21.5       
    1985 traffic density          1.23    6.87  0.003      183      12.17    15.3      24.3       16. 2   
 
 
 
  
Table 3   Descriptive Statistics for the AER Ambient Air Quality Concentration Estimates 
 
Species   Raw Data Subject-Weighted Data         Minimum  Maximum 
     all subjects high traffic counties 
   mean   std dev  mean   std dev   mean   std dev     
SO2 (ppb)  1.86 1.76 4.28 3.12  6.37      3.16  0.06      19.2 

NOx (ppb)          5.58 6.49 19.5 14.0    31.0     12.17  0.22      72.1 

SO4
2- (μg/m3)  3.01 1.60 3.87    1.56  4.65      1.21  0.33        7.3 

EC (μg/m3)  0.37 0.26 0.82 0.45  1.18      0.39  0.05        3.5 
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Table 4  Subject-Weighted Correlations among Pollutant Variables (raw values) 
 
species     As   benzene    Cl      Diesel EC    formald HCl Hg Mn Ni NOx lead POM    polypro SO2 SO4

2- traffic  
arsenic   1.00   0.08  -0.0  0.09 0.10 0.08 0.02 0.03 0.03 0.11 0.12 0.13 0.07 0.05 0.16 0.05 0.08 

benzene  0.28  1.00  0.15  0.65 0.71 0.90 0.08 0.37 0.26 0.47 0.71 0.35 0.64 0.15 0.34 0.09 0.71   

chlorine  0.14  0.21  1.00  0.04 0.18 0.09 -0.01 0.04 0.23 0.37 0.15 -0.02 -0.09 0.0 0.02 -0.09 0.13   

Diesel PM -0.05  0.36  0.05  1.00 0.75 0.71 0.08 0.35 0.12 0.33 0.70 0.29 0.04 0.09 0.54 0.29 0.65  

EC   0.01  0.36     -0.39  0.44  1.00 0.75 0.08 0.33 0.17 0.45 0.96 0.41 0.43 0.12 0.68 0.33 0.59  

formald   0.10  0.72  0.03  0.75  0.70 1.00 0.09 0.40 0.23 0.39 0.72 0.43 0.59 0.14 0.44 0.09 0.64  

HCl   0.05  0.50  0.14 -0.10  0.23 0.34 1.00  0.05 0.08 0.06 0.08 0.10 0.21 0.01 0.17 0.12 0.03 

mercury  0.12  0.57 -0.08  0.64  0.39 0.54 0.13  1.00 0.61 0.21 0.31 0.23 0.31 0.08 0.49 0.19 0.27 

Mn          0.18  0.50  0.30 -0.04 -0.04 0.16 0.49  0.43 1.00 0.23 0.14 0.11 0.10 0.03 0.14 0.16 0.15 

nickel   0.26  0.67 -0.04  0.23  0.39 0.55 0.03   0.41 0.13 1.00 0.35 0.17 0.35 0.15 0.31 -0.0 0.37 

NOx   0.13  0.44 -0.29  0.26  0.84 0.36 0.33       0.24 -0.10 0.51  1.00 0.43 0.45 0.13 0.65 0.20 0.56 

lead   0.12  0.07  0.15  0.35  0.47 0.68 0.68  0.48 0.70 0.29  0.49 1.00 0.35 0.01 0.44 0.16 0.04  

POM      0.20  0.67  0.09  0.24  0.29 0.43 0.13  0.41 0.07 0.52  0.25 0.15 1.00  0.11 0.30 -0.06 0.34 

polypro   0.03   0.04 -0.03  0.01 -0.01 0.03 -0.08 -0.01 0.08 0.26 -0.03 -0.07 -0.03  1.00 0.13 0.09 0.15 

SO2   0.05  0.33 -0.39  0.18 0.75 0.52  0.48  0.19 0.07 0.32  0.81  0.53 -0.07 -0.06 1.00  0.56 0.32 

SO4
2-  -0.06 -0.03 -0.52 -0.02 0.39 0.07  0.25  0.08 0.03 -0.01  0.40  0.24 -0.41 -0.19 0.79  1.00 0.16 

traffic  0.10  0.68  0.14  0.54 0.36 0.67 0.45 0.60 0.46 0.31 0.27 0.61 0.26 0.05 0.37  0.10 1.00 
density    
 
av’g low  0.08 0.42  0.07 0.38 0.44 0.42 0.08 0.27 0.17 0.27 0.42 0.24 0.30 0.09 0.22 0.26 0.32 
av’g high 0.10 0.40 -0.03 0.24 0.32 0.42 0.25 0.32 0.21 0.30 0.31 0.37 0.20 -0.0 0.33 0.11 0.35 
  
 
Values above the diagonal are for low-traffic density counties; values below the diagonal are for high-density counties. 
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Table 5  Cumulative mortality risks across all sub-periods (linear exposures)  
 

            all subjects        traffic dens.>7.39x106 veh-mi/mi2     traffic dens.<= 7.39x106 veh-mi/mi2 
              RR        LCI         UCI                  RR        LCI        UCI      RR        LCI        UCI 
    benzene      1.1042   1.0801    1.1289            1.2013   1.1797    1.2234 1.0071   0.9682   1.0491 

    formaldehyde   1.0866   1.0676    1.1059            1.1248   1.1101    1.1396 1.0137   0.9782   1.0519 

    diesel PM      1.0797   1.0621    1.0976            1.0510   1.0381    1.0642 1.0737   1.0439   1.1053 

    oxides of nitrogen 1.0764   1.0612    1.0919            1.1823   1.1685    1.1963 1.0292   1.0115   1.0474 

    elemental carbon 1.0736   1.0519    1.0958            1.1460   1.1289    1.1633 1.0420   1.0147   1.0707 

    nickel           1.0553   1.0446    1.0660            1.0964   1.0871    1.1059 1.0229   0.9744   1.0764 

    polycyclic organics 1.0381   1.0272    1.0491            1.0704   1.0629    1.0779 0.9973   0.9797   1.0155 

    sulfur dioxide  1.0375   1.0214    1.0539            1.0723   1.0600    1.0846 1.0159   0.9978   1.0347 

    1985 traffic density 1.0297   1.0221    1.0373            1.0220   1.0139    1.0301 1.0313   1.0154   1.0476 

    local mercury  1.0257   1.0180    1.0334            1.0288   1.0217    1.0359 1.0008   0.9933   1.0085 

   1997 traffic density 1.0239   1.0148    1.0331            1.0595   1.0384    1.0810 1.0446   1.0315   1.0579 

    lead           1.0166   1.0089    1.0243            1.0234   1.0177    1.0291 0.9983   0.9917   1.0051 

    arsenic          1.0062   0.9977    1.0146            1.0266   1.0220    1.0312 1.0031   0.9996   1.0066 

    chlorine           1.0048   1.0028    1.0068 1.0195   1.0139    1.0250            1.0039   1.0019   1.0058   

    hydrochloric acid 1.0030   0.9990    1.0071  1.0114   1.0046    1.0183  1.0004   0.9966   1.0042            

    polypropylene   1.0028   0.9961    1.0095 1.0052   1.0043    1.0062     1.0005   0.9962   1.0050          

    manganese     0.9970   0.9896    1.0044 0.9797   0.9738    0.9858            0.9933   0.9858   1.0009   

    sulfate aerosol 0.9466   0.9195    0.9746 0.9364   0.9142    0.9591            0.9328   0.9046   0.9629   
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Table 6   Summary of relative mortality risks for all subjects based on 2-pollutant models  
(1985 traffic density + "other" species) based on linear exposures 
 
                           Cumulative (all sub-periods) 1997-2001 sub-period  
    other species             traffic        other    total             traffic      other     total 
    benzene                 1.0123    1.0763  1.0907 0.9984    1.1074   1.1056                

    formaldehyde             1.0042    1.0800  1.0849   1.0080    1.0662   1.0671              

    diesel PM                1.0050    1.0749  1.0806 0.9971    1.0736   1.0706                

    oxides of nitrogen       1.0102    1.0674  1.0791 1.0126    1.0292   1.0422               

    elemental carbon       1.0171    1.0493  1.0682  1.0147    1.0248   1.0399                

    nickel                   1.0112    1.0477  1.0600  1.0086    1.0326   1.0414               

    polycyclic organics     1.0203    1.0250  1.0463 1.0149    1.0154   1.0305               

    sulfur dioxide           1.0244    1.0136  1.0387 1.0280    0.9628   0.9898               

    arsenic                  1.0280    1.0051  1.0334 1.0197    1.0023   1.0220               

    chlorine                 1.0281    1.0046  1.0330  1.0195    1.0034   1.0230              
    lead                     1.0263    1.0062  1.0328 1.0178    1.0047   1.0226               

    local mercury            1.0223    1.0079  1.0327 1.0101    1.0163   1.0266                

    polypropylene            1.0275    1.0021  1.0298 1.0192    1.0014   1.0206                

    hydrochloric acid        1.0287    1.0090  1.0296 1.0186    1.0063   1.0251                

    manganese                1.0335    0.9869  1.0194             1.0208    0.9982   1.0190   

    sulfate aerosol          1.0305    0.9321  0.9586 1.0220    0.9351   0.9557                
bold italic = p < 0.05 
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Table 7A   Comparison of Mortality Risks with Those Based on Measurements6 
     

 
Period      1976-81            1982-88      1989-96 
       measured*   modeled#    measured*      modeled#      measured*    modeled#     
 NO2, NOx   0.049-0.093   0.097 (0.015)   0.029-0.069  0.089 (0.014)  0.014-0.074   0.061 (0.014)   

SO4
2-    -0.045 – 0.02   -0.018 (0.029)  -0.13 – 0.05  -0.036 (0.027)  -0.22 - -0.08  -0.10 (0.028)    

--------------- 
* range of estimated risk coefficients6    # estimated risk coefficient (standard error) 
 
 
Table 7B   Comparison of 1997-2001 Mortality Risk Coefficients with Those Based on 
Measurements7  

     measured7 modeled 
NO2, NOx   0.086 (0.079)  0.041 (0.022) 

EC    0.131 (0.046)  0.045 (0.028) 

SO2   -0.047 (0.043) -0.012 (0.023) 

SO4
2-    0.036 (0.060) -0.056 (0.042) 

  Mn   -0.013 (0.014)  0.004 (0.010) 

  Ni    0.043  (0.020)  0.039 (0.016) 

  Pb   -0.031 (0.025)  0.011 (0.010) 
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Figure captions 
 
Figure 1.  Relationship between risk coefficients (mean effects) and pollutant correlations. 
  (a)  for all subjects, assuming benzene is the “true” pollutant. 
  (b)  for all subjects, assuming NOx is the “true” pollutant. 
  (c)  for subjects in high traffic-density counties, assuming benzene is the “true” pollutant. 

(d) for subjects in high traffic-density counties, assuming NOx is the “true” pollutant. 
 
Figure 2.  Relationships between the standard errors of mean effects and pollutant coefficients of 
variation (linear exposure model). 
 
Figure 3.  Relative risks from two-pollutant models (linear exposures). 
 
 
 

 
 
 
 
 
 



46 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



47 
 

 

 
 
 



48 
 

 
 
 
 
 
 
 
 



49 
 

more 



50 
 

 



51 
 

 



52 
 

 



53 
 

 



54 
 

 



55 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



56 
 

Air Pollution and Survival within the Washington University - EPRI Veterans 
Cohort: Risks Based on Modeled Estimates of Ambient Levels of Hazardous and 

Criteria Air Pollutants  
 
F.W. Lipfert1, R.E. Wyzga2, Jack D. Baty3, J. Phillip Miller3   
 

1Consultant, Northport, NY 
2Technical Executive, Electric Power Research Institute, Palo Alto, CA 
3Division of Biostatistics, School of Medicine, Washington University, St. Louis, MO 

 
 

ON-LINE SUPPLEMENT (APPENDICES) 
 
Appendix A.  Additional data on the AER and HAPS air quality estimates. 
 

The 10 locations with the highest average concentrations of each AER pollutant 

are given in Table A-1. The rankings tend to be tightly grouped, especially for SO4
2-, for 

which 27 counties are included in the ten highest concentration levels. The AER 36x36 

km grid square locations did not allow a clear distinction to be made among the five 

boroughs of New York City, with the exception of the Bronx, which had slightly worse 

predicted air quality than the other four boroughs.  This is consistent with recent detailed 

air quality surveys in that local area, as discussed below.  More than half of these high-

pollution locations are in the eastern portion of the nation, where population and traffic 

densities are also higher.  The locations of high SO2 and SO4
2- levels also reflect the 

influence of coal-fired power plants, several of which are located in or near Chattooga 

County, Georgia.  New York City, Chicago, and some Louisiana locations appear in all 

four columns of Table A-1.  
 
Table A-1  Ten Highest Concentration  Locations for AER Air Quality Estimates 
 
SO2    NOx   SO4

2-      EC  
Bronx (NY)   Bronx (NY)  Chattooga County (GA)   Bronx (NY) 
Port Huron (MI)   Houston (TX)  Baltimore (MD) area   Boston, Quincy (MA) 
east PA, Wilmington,DE  Chicago (IL)  eastern PA, DE    rest of New York City 
Chicago (IL)   rest of New York City Chicago (IL)      Newark (NJ) area 
Paterson (NJ)   Newark (NJ) area Bronx (NY)    Paterson (NJ) area 
rest of New York City  St. Charles (LA)  northeast TN, s’west VA     Long Island (NY)  
Newark (NJ) area   Paterson (NJ)  Atlanta (GA) area   Houston (TX) 
Alton (IL) (St..Louis)       east PA, Wilmington,DE Gary (IN) area      St. Charles (LA) 
Baton Rouge (LA)  Phoenix (AZ)  Washington (DC) area east PA, Wilmington,DE  
Long Island (NY)   Riverside (CA) area St. Charles (LA)    Chicago (IL) 
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Tables A-2 and A-3 contain additional correlation matrices.  Table A-2 provides correlations of the raw variables for all subjects.  
Table A-3 has correlations of their logarithms, for all subjects and for subjects residing in counties with high traffic density. 
 
 
Table A-2  Subject-Weighted Correlations among Pollutant Variables (all subjects) 
 
species     As   benzene Cl        Diesel EC    formald HCl Hg Mn Ni NOx lead POM    polypro SO2 SO4

2- traffic  
arsenic   1.00  0.18  0.01  0.10  0.13 0.14 0.04  0.12 0.10 0.19  0.17 0.16 0.16  0.04 0.16  0.07 0.13 

benzene    1.00  0.08  0.71  0.74 0.89 0.21  0.71 0.43 0.77  0.76 0.59 0.76  0.13 0.58  0.32 0.77 

chlorine     1.00  0.01  0.02 0.02 -0.001 -0.01 0.20 0.15   0.02 0.02 -0.03  0.004 -0.06 -0.20 0.02  

diesel PM     1.00  0.75 0.85 0.10  0.74 0.19 0.57  0.67 0.46 0.53  0.10 0.55  0.36 0.72  

elemental carbon     1.00 0.85 0.17  0.64 0.21 0.67  0.94 0.54 0.57  0.10 0.82  0.52 0.65  

formaldehyde     1.00 0.19  0.75 0.30 0.73  0.84 0.62 0.66  0.12 0.68  0.38 0.80 

hydrochoric acid      1.00  0.12 0.19 0.12  0.18 0.25 0.18 -0.004 0.26  0.18 0.20 

mercury         1.00 0.52 0.62  0.58 0.49 0.60  0.07 0.49  0.33 0.74 

manganese        1.00 0.29  0.18 0.42 0.19  0.09 0.21  0.20 0.38 

nickel          1.00  0.72 0.40 0.65  0.25 0.56  0.28 0.61 

oxides on nitrtogen          1.00 0.55 0.56  0.09 0.84  0.48 0.62 

lead            1.00 0.36  0.01 0.57  0.31 0.52 

polycyclic organic materials          1.00  0.36 0.33  0.06 0.54 

polypropylene              1.00 0.05      -0.02 0.13 

sulfur dioxide              1.00  0.71 0.58 

sulfate aerosol                1.00 0.35 

traffic density                1.00  
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Table A-3  Subject-Weighted Correlations among the Logarithms of Pollutant Variables) 
 
 
species    As Bzn Cl        Diesel EC Form HCl Hg Mn Ni NOx Pb POM Ppn SO2 SO4

2- traffic  
As   1.00  0.73 0.56 0.64 0.66 0.71 0.62 0.69 0.69 0.75 0.70 0.73 0.72 0.60 0.54 0.30 0.63 

Bzn   0.68  1.00 0.56 0.80 0.81 0.94 0.68 0.88 0.68 0.85 0.84 0.82 0.87 0.69 0.55 0.25 0.86   

Cl   0.53  0.56 1.00 0.50 0.50 0.53 0.52 0.50 0.54 0.57 0.51 0.49 0.48 0.50 0.41 0.29 0.51   

Diesel   0.04  0.34 0.02  1.00 0.84 0.86 0.63 0.85 0.59 0.78 0.83 0.74 0.74 0.62 0.63 0.41 0.81  

EC   0.28  0.38 -0.20 0.33 1.00 0.87 0.66 0.82 0.56 0.77 0.95 0.77 0.71 0.61 0.78 0.49 0.81  

Form   0.45  0.75 0.28 0.68 0.68 1.00 0.67 0.87 0.63 0.81 0.86 0.82 0.82 0.68 0.59 0.32 0.86  

HCl   0.22  0.48 0.10 -0.10 0.34 0.40 1.00 0.70 0.66 0.68 0.68 0.75 0.64 0.49 0.65 0.41 0.64   

Hg   0.54  0.56 0.06 0.42 0.46 0.53 0.17 1.00 0.73 0.86 0.83 0.82 0.86 0.70 0.63 0.35 0.86  

Mn   0.40  0.40 0.30 0.02 0.02 0.14 0.25 0.64 1.00 0.73 0.58 0.70 0.64 0.58 0.46 0.26 0.61  

Ni   0.72  0.69 0.53 0.24 0.43 0.61 0.12 0.50 0.24  1.00 0.82 0.79 0.84 0.71 0.60 0.26 0.80  

NOx   0.48  0.50 0.04 0.21 0.88 0.70 0.45 0.44 0.0 0.55   1.00 0.81 0.76 0.66 0.75 0.40 0.81  

Pb   0.46  0.68 0.23 0.30 0.61 0.73 0.64 0.57 0.47 0.45 0.69 1.00 0.79 0.60 0.60 0.29 0.71  

POM      0.65  0.75 0.47 0.31 0.39 0.59 0.10 0.66 0.25 0.69 0.44 0.38 1.00 0.70 0.47 0.15 0.74   

Ppn  0.37  0.30 0.39 0.22 0.20 0.39 -0.21 0.28 0.16 0.46 0.24 0.14 0.40 1.00 0.37 0.13 0.66  

SO2  0.28  0.24 -0.28 -0.04  0.60 0.25 0.39 0.21 0.03 0.30 0.63 0.35 0.0 -0.22 1.00 0.79 0.63  

SO4
2-  0.02 -0.06 -0.44 -0.15 0.39 -0.09 0.20 0.0 -0.02 0.0 0.30 0.08 -0.32 -0.42 0.90 1.00 0.42 

traffic  0.41  0.72 0.19 0.39 0.44 0.70 0.48 0.49 0.34 0.39 0.41 0.63 0.39 0.25 0.32 0.09 1.00 
density 
 
Values above the diagonal are for all subjects; values below the diagonal are for high-density counties.        
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Appendix B.    Additional Mortality Risk Estimates 
 
This Appendix includes risk estimates based on the logarithms of the pollutant variables: Table 
B-1 compares with Table 5 in the main text, and Table B-2 compares with Table 6.  Table B-3 
contains the (non-logarithmic) risk estimates by mortality sub-period that were used to construct 
Table 5 in the main text.  Downward trends are seen for elemental carbon, formaldehyde, 
nitrogen oxides, nickel, sulfur dioxide, and sulfates.     
 
 

 
Table B-1  Cumulative mortality risks across all subperiods (logarithmic exposures)  
 

            all subjects                traffic dens.>7.39x106 veh-mi/mi2     traffic dens.< =7.39x106 veh-mi/mi2 
              RR        LCI         UCI RR          LCI         UCI      RR        LCI        UCI 
    benzene      1.0887   1.0646   1.1133 1.2583   1.2320   1.2852 1.0122   0.9754    1.0519 

    diesel PM      1.0786   1.0615   1.0961 1.1022   1.0793   1.1256 1.0506   1.0244    1.0781 

    formaldehyde  1.0769   1.0567   1.0973 1.1687   1.1485   1.1892 1.0189   0.9842    1.0562 

    elemental carbon  1.0570   1.0380   1.0763 1.1204   1.1006   1.1405 1.0377   1.0083    1.0689 

    oxides of nitrogen 1.0480   1.0356   1.0606 1.1400   1.1256   1.1546 1.0216   1.0037    1.0403 

    polycyclic organics      1.0308   1.0204   1.0413 1.1043   1.0924   1.1163 1.0022   0.9884    1.0164 

    nickel           1.0296   1.0220   1.0374 1.1104   1.0976   1.1233 1.0143   1.0043    1.0245 

    1985 traffic density 1.0286   1.0221   1.0352 1.0577   1.0471   1.0685   1.0193   1.0084    1.0304 

    1997 traffic density 1.0260   1.0194   1.0327 1.1011   1.0799   1.1228   1.0581   1.0464    1.0700 

    local mercury  1.0257   1.0180   1.0334  1.0380   1.0272   1.0489 1.0135   1.0026    1.0247 

    lead        1.0195   1.0131   1.0260 1.0493   1.0425   1.0561 1.0020   0.9937    1.0104 

    sulfur dioxide        1.0163   1.0032   1.0294 1.0342   1.0235   1.0450 1.0111   0.9939    1.0289 

    arsenic           1.0161   1.0073   1.0250 1.0807   1.0703   1.0913 0.9982   0.9874    1.0092 

    chlorine           1.0145   1.0113   1.0177 1.0174   1.0142   1.0205 1.0031   0.9996    1.0067 

    polypropylene    1.0129   1.0061   1.0198 1.0469   1.0413   1.0526 0.9791   0.9702    0.9882 

    hydrochloric acid         1.0111   1.0022   1.0200 1.0249   1.0159   1.0340 0.9928   0.9824    1.0034 

    manganese           1.0045   0.9960   1.0132 0.9761   0.9666   0.9858 0.9929   0.9827    1.0033 

    sulfate aerosol            0.9823   0.9628   1.0022 0.9802   0.9632   0.9974 0.9745   0.9517    0.9983 
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Table B-2   Summary of cumulative mortality risks across all subperiods  
for all subjects based on 2-pollutant models  (1985 traffic density + "other" species), based 
on logarithmic exposures 

 
                            
    other species              traffic      other       total 
    benzene                      1.0298     0.9975    1.0271 

    formaldehyde              1.0259      1.0116    1.0381 

    diesel PM                   1.0133     1.0513    1.0660 

    oxides of nitrogen       1.0236     1.0143    1.0386 

    elemental carbon        1.0342      0.9824    1.0154 

    nickel                   1.0227     1.0098    1.0329 

    polycyclic organics      1.0300     0.9984    1.0283 

    sulfur dioxide           1.0355     0.9791    1.0131 

    arsenic                  1.0323     0.9927    1.0245 

    chlorine                 1.0214     1.0104    1.0322 

    lead                     1.0278     1.0020    1.0300 

    local mercury            1.0324     0.9954    1.0275 

    polypropylene            1.0345     0.9916    1.0255 

    hydrochloric acid        1.0364     0.9836    1.0188 

    manganese                1.0391     0.9773    1.1036 

    sulfate aerosol          1.0336     0.9567    0.9874 
bold italic = p < 0.05 
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Table B-3  Trends in mortality risks 
    pollutant       period       all subjects                 subjects in high-density cos   pollutant      period         all subjects                      subjects in high-density cos 
     RR LCI UCI    RR LCI UCI       RR  LCI UCI   RR LCI UCI  
    arsenic  1976-81    1.0057   1.0000   1.0116    1.0191   0.9947   1.0441          manganese  1976-81    0.9942   0.9800   1.0086    0.9645   0.9341   0.9959 
    arsenic              1982-88    1.0091   1.0033   1.0148    1.0354   1.0128   1.0585          manganese       1982-88    1.0007   0.9882   1.0135    0.9777   0.9500   1.0062 
    arsenic              1989-96    1.0048   0.9971   1.0126    1.0258   1.0026   1.0496          manganese    1989-96    0.9923   0.9789   1.0059    0.9853   0.9569   1.0145 
    arsenic              1997-01    1.0032   0.9920   1.0146    1.0258   0.9918   1.0610          manganese  1997-01    1.0045   0.9844   1.0249    1.0065   0.9636   1.0512 
 
    benzene         1976-81    1.1067   1.0523   1.1640   1.1500   1.0304   1.2835          nitrogen oxides 1976-81    1.1014   1.0695   1.1343   1.2418   1.1518   1.3389 
    benzene         1982-88    1.1072   1.0568   1.1601    1.2135   1.0973   1.3421          nitrogen oxides      1982-88    1.0933   1.0641   1.1233    1.2654   1.1815   1.3553 
    benzene         1989-96    1.1191   1.0663   1.1746    1.4268   1.2864   1.5826          nitrogen oxides 1989-96    1.0626   1.0332   1.0928    1.1675   1.0876   1.2534 
    benzene         1997-01    1.1033   1.0255   1.1870    1.0506   0.8954   1.2325          nitrogen oxides 1997-01    1.0424   0.9992   1.0875    1.0673   0.9597   1.1869 
 
    chlorine              1976-81    1.0051   1.0024   1.0078    1.0074   0.9782   1.0375          nickel        1976-81    1.0648   1.0424   1.0877    1.0740   1.0232   1.1273 
    chlorine              1982-88    1.0058   1.0032   1.0083   1.0103   0.9840   1.0373          nickel        1982-88    1.0581   1.0373   1.0794    1.1136   1.0657   1.1636 
    chorinel              1989-96    1.0040   1.0011   1.0069    1.0341   1.0064   1.0626          nickel        1989-96    1.0560   1.0344   1.0781    1.1373   1.0863   1.1907 
    chlorine              1997-01    1.0035   0.9991   1.0080    1.0360   0.9941   1.0797          nickel        1997-01    1.0393   1.0068   1.0729    1.0534   0.9781   1.1346 
 
    diesel PM       1976-81    1.0832   1.0492   1.1183    1.0158   0.9499   1.0863          polycyclic organics 1976-81    1.0340   1.0121   1.0563    1.0517   1.0116   1.0933 
    diesel PM       1982-88    1.0830   1.0517   1.1152    1.0265   0.9655   1.0913          polycyclic organics  1982-88    1.0319   1.0119   1.0523    1.0601   1.0229   1.0986 
    diesel PM       1989-96    1.0891   1.0569   1.1222    1.1302   1.0660   1.1982          polycyclic organics  1989-96    1.0569   1.0361   1.0782    1.1320   1.0925   1.1728 
    diesel PM       1997-01    1.0691   1.0216   1.1189    1.0308   0.9380   1.1327          polycyclic organics 1997-01    1.0253   0.9947   1.0568    1.0245   0.9701   1.0819 
 
    elemental carbon 1976-81    1.1076   1.0657   1.1512    1.1948   1.0905   1.3091          lead         1976-81    1.0149   1.0006   1.0293    1.0182   0.9881   1.0492 
    elemental carbon  1982-88    1.0756   1.0379   1.1147    1.1644   1.0715   1.2653          lead      1982-88    1.0236   1.0107   1.0367    1.0332   1.0053   1.0618 
    elemental carbon  1989-96    1.0634   1.0250   1.1033    1.1715   1.0760   1.2755          lead         1989-96    1.0135   1.0004   1.0268    1.0260   0.9975   1.0552 
    elemental carbon  1997-01    1.0464   0.9904   1.1057    1.0479   0.9208   1.1926          lead         1997-01    1.0116   0.9921   1.0314    1.0075   0.9655   1.0514 
 
    formaldehyde    1976-81    1.1015   1.0608   1.1438    1.1086   1.0284   1.1950          polypropylene 1976-81    1.0016   0.9984   1.0049    1.0021   0.9969   1.0074 
    formaldehyde    1982-88    1.0885   1.0513   1.1270    1.1185   1.0439   1.1985          polypropylene 1982-88    1.0031   1.0004   1.0059    1.0059   1.0014   1.0104 
    formaldehyde    1989-96    1.0930   1.0533   1.1342    1.2307   1.1473   1.3202          polypropylene 1989-96    1.0040   1.0013   1.0067    1.0080   1.0036   1.0123 
    formaldehyde    1997-01    1.0678   1.0111   1.1277    1.0282   0.9208   1.1481          polypropylene 1997-01    1.0019   0.9977   1.0060    1.0037   0.9970   1.0105 
 
    hydrochloric acid  1976-81    0.9995   0.9909   1.0081    1.0081   0.9728   1.0447          sulfur dioxide  1976-81    1.0634   1.0314   1.0964    1.1054   1.0355   1.1799 
    hydrochloric acid  1982-88    1.0019   0.9945   1.0095    1.0133   0.9807   1.0471          sulfur dioxide  1982-88    1.0495   1.0201   1.0797    1.1205   1.0551   1.1900 
    hydrochloric acid  1989-96    1.0055   0.9977   1.0133    1.0196   0.9860   1.0543          sulfur dioxide  1989-96    1.0271   0.9975   1.0575    1.0507   0.9874   1.1181 
    hydrochloric acid  1997-01    1.0077   0.9958   1.0197    0.9962   0.9470   1.0478          sulfur dioxide  1997-01    0.9881   0.9454   1.0326    0.9748   0.8885   1.0695 
 
    local mercury       1976-81    1.0178   1.0017   1.0341    1.0037   0.9677   1.0410          sulfate aerosol 1976-81    0.9818   0.9275   1.0392    0.9958   0.8793   1.1278 
    local mercury 1982-88    1.0282   1.0137   1.0429    1.0195   0.9863   1.0539          sulfate aerosol 1982-88    0.9650   0.9155   1.0173    1.0286   0.9183   1.1522 
    local mercury 1989-96    1.0323   1.0170   1.0478    1.0666   1.0312   1.1032          sulfate aerosol 1989-96    0.9039   0.8563   0.9542    0.8487   0.7561   0.9528 
    local mercury 1997-01    1.0238   0.9999   1.0481    1.0250   0.9711   1.0819          sulfate aerosol 1997-01    0.9454   0.8715   1.0255    0.8593   0.7246   1.0191 
   ’85 traffic density 1976-81    1.0263   1.0099   1.0429    0.9959   0.9540   1.0396 
   ’85 traffic density 1982-88    1.0238   1.0090   1.0388    0.9860   0.9489   1.0245 
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   ’85 traffic density 1989-96    1.0452   1.0299   1.0606    1.0848   1.0451   1.1260 
  ’85 traffic density 1997-01    1.0200   0.9982   1.0422      1.0350   0.9801   1.0930 
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Appendix C.  Comparisons with Previous Long-Term Mortality Studies.   
 

No other U.S. cohort study has examined mortality risks associated with traffic exposures 

on a national basis.  However, there are relevant studies in the literature: 

 

Finkelstein et al.1 found a relative risk of 1.18 for all-cause mortality associated 

with living near major roads in Hamilton, Ontario.   

 

Tonne et al.2 reported a 5% (3-6%) increase in heart attack risk associated with 

living near major roads in Worcester, MA, after adjusting for PM2.5 emissions 

sources.   

 

Hoffmann et al.3 found an odds ratio of 1.85 (1.21-2.34) for the prevalence of 

coronary heart disease associated with living near major roads in Germany.   

 

Gehring et al.4 reported a relative risk of 1.29 (0.93-1.78) for all-cause mortality 

associated with living near major roads in the Ruhr area of Germany and a 

relative risk of 1.47 (1.05-2.04) associated with the mean concentration of NO2.    

 

Rosenlund et al.5 used emissions data and dispersion modeling to estimate NO2 

concentrations at home addresses due to traffic, the median levels of which were 

associated with relative risks for fatal heart attacks of 1.22 (0.98-1.50) for all 

cases and 1.44 (1.02-2.04) for out-of-hospital deaths.   

 

Elliott et al.6 report an ecological study of mortality in Great Britain for four 4-y 

periods from 1982-98, based on routine monitoring of black smoke (EC) and SO2 

in electoral wards. Using the methods of the present study to estimate risks at 

mean concentration levels for the total follow-up period, we find relative risks of 

1.13 for smoke and 1.02 for SO2. 
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Nafstad et al.7 estimated NOx and SO2 levels for the home addresses of 16,209 

male residents of Oslo, Norway.  Their relative risks for all-cause mortality were 

1.13 (1.10-1.19) for NOx and 0.97 (0.94-1.02) for SO2, based on estimated mean 

concentration levels. 

 

Naess et al.8 used dispersion modeling to estimate PM and NO2 levels for all 470 

local districts of Oslo, Norway.  Based on the fragmentary information they 

reported for NO2, the all-cause mortality risk for the elderly is 1.29 and is 

essentially linear.  For the 51-70 age group, there is a definite threshold at about 

20 ppb with a steeper slope thereafter. 

 

Hoek et al.9 reported on a small study in the Netherlands that associated all-cause 

mortality with living near a major road (RR=1.41 [0.94-2.12]) and with mean 

levels of black smoke (RR=1.52 [0.92-2.49]) and NO2 (RR=1.31 [0.80-1.36]). 

 

Beelen et al.10 studied associations between 1987-1996 mortality in a Dutch 

cohort of about 120,000 subjects, in relation to traffic variables and selected 

criteria air pollutants.  They found substantial differences according to the degree 

of  confounder adjustment; detailed data were available for only about 12% of the 

full cohort, for which no excess all-cause mortality risks were reported.  After 

adjustment for age, sex, smoking, and area-wide socioeconomic status, relative 

risks based on mean-minimum concentrations were 1.059 (1.0-1.117) for NO2, 

1.039 (1-1.085) for black smoke (~EC), 1.031 (0.983-1.082) for PM2.5, and 0.986 

(0.951-1.023) for SO2.  Traffic intensity on the nearest road was also a significant 

predictor, for the full cohort only (RR=1.03 [1.0-1.08]).   In a separate 

publication, no significant associations were found with lung cancer. 

         

The widely cited U.S. cohort studies by Dockery et al.11 and Pope et al.12,13 do not 

consider traffic impacts.  However, the Six Cities Study11 is dominated by the high 

pollution levels in Steubenville, OH, where elevated levels of benzene may have also 

been present from coke oven operations but were not considered in the analysis.  Table 
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C-1 compares ACS and Six Cities findings with those of the present study, on the basis of 

mean concentration levels of relevant pollutants.  Estimated risks for SO2 agree among 

the four studies, but there are significant differences for SO4
2-.that might relate to the use 

of contextual variables in the present study and not in the others. When SO2 and SO4
2- 

were regressed jointly in the ACS reanalysis,14 the SO4
2- risk diminished markedly and 

lost significance; thus, SO2 is statistically a better mortality predictor than SO4
2-. 

Comparing Tables 6 and 7 of Lipfert et al.15 shows that sulfate mortality risks are 

sensitive to the use of contextual variables in the proportional hazards modeling.    For 

NOx, our results agree with the Six Cities study, but not with the ACS estimates, which 

may have been limited by the availability of ambient monitoring data.   However, 

pollutant exposures in the ACS study are based on multi-county metropolitan statistical 

areas and thus that study may not be able to detect the local effects of traffic and NOx.  

Table C-1 also shows that the present study has much tighter confidence intervals than 

the other studies. 

Lipfert et al.16 used modeled estimates of SO2, SO4
2- and NOx to predict excess 

all-cause mortality in 916 U.S. cities for 1980 in an ecological analysis that included 

state-level estimates of smoking prevalence.  The dispersion model used for these 

estimates was much less complex than the one used in the present analysis, but the 

relative risk estimates obtained (1.05 – 1.08) are similar.  Estimates were also reported 

for measured Mn and Pb;16 risks associated with measured Mn are stronger in the earlier 

study but the Pb risks are similar to the present findings. 

In the present study, we find evidence that mortality risks associated with air 

pollution for this cohort have declined over time.  This finding is also supported by the 

extant literature, notably Lipfert and Morris,17 Enstrom,18 and by the difference between 

the results of Pope et al.12 for 1982-98 mortality and Pope et al.13 for 1982-89 mortality.  

Further, Laden et al.19 report the results of extended follow-up of the Six Cities Study, 

showing a decline in excess risk over time (1990-98 vs. 1974-89).  Based on the original 

air quality data reported by Dockery et al.,10 none of the all-cause mortality risks 

associated with SO2, NO2, or NOx is significant in the later period, and the rate of risk 

decline for the group of pollutants is nearly significant (p=0.07).  Jerrett et al.20 reported 

additional analyses of the American Cancer Society CPS-II cohort,12 and found that 
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cardiovascular mortality risks associated with sulfates declined from 1982-2000 while 

those associated with PM2.5 increased.  They attributed this trend to a shift in the 

composition of PM2.5 towards less sulfate and more traffic-related PM. 

In conclusion, all of the traffic-related studies listed above1-10 are in general 

agreement with the present study, by finding excess risks of similar magnitudes near 

roadways or associated with traffic-related pollutants, based on local impacts.  There is 

also support for downward trends and the existence of thresholds (from roadway 

proximity studies).  Several studies used dispersion modeling to estimate pollution 

exposures.  The Six Cities Study11 finds similar risk levels but cannot identify specific 

pollutants with certainty.  The ACS12-14 studies do not consider local or traffic impacts 

and their results differ from our findings, with the exception of SO2.   
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Table C-1  Comparison of All-Cause Mortality Risks in Selected US Cohort Studies, Based on Mean 
Concentrations 
    
    SO2   SO4

2-   NO2 or NOx 
Dockery et al. (Six Cities)* 1.12   (1.04-1.21)     1.24   (1.08-1.42)         1.26 (1.07-1.52) 
Krewski et al. (orig ACS)** 1.084 (1.06-1.11)     1.063 (1.04-1.09)         0.97 (0.94-1.00) 
Pope et al. (ACS CPS II)*** 1.045 (1.02-1.07)     1.095 (1.04-1.15)         1.01 (0.97-1.05)  
present study*** *  1.07 (1.06-1.085)     0.936 (0.91-0.96)                   1.18 (1.17-1.20) 

• based on Krewski et al.,13 Part II, Table 16, adjusted to mean concentration levels. 
**     based on Krewski et al.,13 Part II, Tables 31, 32, adjusted to mean concentration levels. 
***   based on Figure 5 of Pope et al.,11 using multi-year exposures.  Mortality from 1982-98. 
**** based on Table 5 of this study, for NOx in high-traffic counties.  Mortality from 1976-2001. 
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Appendix D.  Supplementary Material on the Estimated Air Quality Data 
 
1.  Correlations with measured ambient air quality data.  
 
The most relevant correlations are between like species, using data from previous 
publications on the Veterans Cohort. These results are listed in Table D-1; the weighted 
correlations are weighted by 1989 population.  The strongest correlations are seen for 
sulfates (SO4), especially for the IPN dataset, which was used in the ACS studies. The 
weakest relationships are seen for the more localized pollutants, such as SO2, EC, and 
metals; this could be due to comparing the county-wide model estimates with local spot 
measurements. Correlations between measured NO2 and predicted NOx are influenced by 
the non linearity of this photochemical relationship.1  The highest predicted NOx values 
agree with the expected slope,1 but many of the lower model estimates are substantially 
less than measured, especially in Southern California.  Differences between county 
averages and local measurements could account for some of these differences. 
 
Table D-1.  Spatial correlations between measured ambient air quality indicators and AER 

or HAPS estimates. 
 
A.  AER estimates          correlations 

Estimated parameter measured parameter  unw’t’d weighted          #obs 
SO4       1975-81 AIRS SO4 (from TSP) 0.82      0.69  421 
SO4                  STN SO4 (from PM2.5)  0.82      0.56  192 
SO4     ACS SO4:(from TSP)  0.77      0.49  150 
SO4    IPN SO4 (from PM2.5)  0.85      0.83    75 
NOx    1975-81 AIRS NO2  0.57      0.42  259 
NOx    1982-88 AIRS NO2  0.61      0.43  234 
NOx    1989-96 AIRS NO2  0.66      0.58  288 
SO2    1975-81 AIRS SO2:  0.26      0.39  520 
SO2    1982-88 AIRS SO2:  0.27      0.36  493 
SO2    1989-96 AIRS SO2:  0.29      0.36  450 
elemental carbon  STN elemental carbon  0.42      0.26  192 
 

B. HAPS estimates 
nickel    STN nickel (from PM2.5)  0.27      0.28  178 

 manganese   STN manganese (from PM2.5) 0.01      0.04  178 
lead    STN lead (from PM2.5)  0.20      0.13  178 

 arsenic     STN arsenic (from PM2.5)               -0.16     -0.28  178  
 chlorine    STN chloride (from PM2.5)   0.24      0.13  178 
 average diesel PM   diesel traffic density  0.75      0.89   3078 
 local peak diesel PM  diesel traffic density  0.80      0.83   3078  
------------------------------------------------------------------------------------------------------------------------------------------- 
acronyms ACS:   American Cancer Society studies by Pope et al.   

    IPN:   Inhalable Particulate Network. 
   AIRS:  Aerometric Information Retrieval System (US EPA)  
   STN:   Speciation Trends Network (US EPA) 

 
2. Comparisons with Ambient Measurements in Bronx County, NY (FIPS 36005) 
 
The South Bronx area of New York City has been identified as suffering from urban 
blight, poverty, and environmental injustice.  It has one of the highest childhood asthma 
prevalence rates in the nation, heavy vehicular traffic, and various industrial facilities.  
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One of its major highways connects with the George Washington Bridge, which carries 
about 300,000 vehicles per day in 14 lanes of traffic.  Bronx County has the nation’s 
highest values for several of the air quality indicators considered in this study.  Table D-2 
compares those model estimates with the various measurements available from the 
literature, for similar time periods.  Values are in μg/m3 unless otherwise indicated. 
 
 
Table D-2.  Comparisons of ambient air quality estimates for Bronx County, NY 
 
pollutant  this study STN2  other studies      
SO2 (ppb) 19.2     17-20 
SO4

2-     6.2  4.1  4.1-4.3 
NOx (ppb) 72.1    40 (as NO2) 
EC    3.5  1.3  2.7-4.4 
benzene     3.2    1.1-2.77 
formaldehyde   5.1    4.7-8.67 
HCl    0.16    0.47 
As   0.00022  0.0013 
Mn   0.0074  0.00020 
Ni   0.0053  0.021 
Pb   0.021  0.0061 
 
 
Some of these comparisons are quite good, while others are only approximate.  Some of 
the other findings from the relevant literature are also worth mentioning.  Carslaw et al.1 
presented measured data on the relationship between NOx and NO2 in London, for which 
a linear relationship with a slope of about 0.6 fits with an error of less than 1 ppb.  On this 
basis, the measured NOx value of 72 ppb in the Bronx would correspond to 43 ppb as 
NO2, which compares quite well to actual measurements.  The corresponding national 
average NO2 value would be 12 ppb for all subjects in this cohort and 18.6 ppb for 
subjects in the high-traffic counties.  The latter estimate comports well with the measured 
value (20 ppb) for the STN counties.3 
 
Ito et al.2 performed factor analyses on speciated PM2.5 data from three monitors in Bronx 
and Queens Counties, NY.  They found somewhat different factors at each station and 
concluded that the traffic factors were much less spatially correlated than the secondary 
aerosol factors.  They concluded that “a source-oriented evaluation of PM health effects 
needs to take into consideration the uncertainty associated with spatial 
representative[ness] of the species measured at a single monitor.”  
 
Bari et al.4 noted that HCl may be attributed to local as well as regional sources, with an 
estimated 27% from the latter (presumably midwestern coal burning).  The ambient HCl 
estimates used in this analysis are presumably due only to local sources, which may help 
account for the lower values.  Bari et al.5 also noted similar patterns between ambient 
HCl and SO4

2- in summer, when the highest concentrations occurred.  Thus, SO4
2- in the 

eastern US may be a crude proxy for HCl from regional sources. 
 
Restrepo et al.6 assessed the effect of sensor height above ground on ambient 
concentrations by comparing data obtained from a mobile lag at 4 m above ground with 
those monitored by the NYSDEC at 15 m above ground.  NO2 and CO levels were over 
twice as high at the lower elevations, while SO2 was only higher at 4 m during August.  
Ozone levels were lower at 4 m and PM2.5 levels were about the same.  These data 
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suggest that routinely monitored ambient air quality data should be considered as 
indicators rather than actual exposures.  Spatial differences in monitoring heights could 
easily confound spatial exposure patterns. 
 
In summary, both local spot ambient measurements and dispersion model estimates entail 
uncertainties with regard to their interpretation as individual exposures.    
 
3.  Comparisons of HAPS model estimates with ambient measurements 
 
The US EPA published a detailed critique of the 1996 NATA ambient concentration 
estimates, as compared to the available ambient measurements, for selected species10 
(hereafter, the “ASPEN” [Asessment System for Population Exposures Nationwide] 
report.)  Among them, benzene, formaldehyde, lead, and diesel PM pertain to the current 
analysis.  Data on SO2 predictions were also presented in discussing the underlying 
dispersion model development.  The emphasis throughout the ASPEN report is on 
predicting the magnitudes of specific exposures; no attention is given to the validity of 
the spatial distributions, which are more relevant to long-term epidemiology studies than 
the absolute values per se.  Presenting risk estimates on the basis of mean concentrations 
(elasticities) precludes bias due to uncertainties in absolute values, since a high mean 
value will result in a lower risk coefficient and no effect on the elasticity.  Long-term 
spatial distributions may be compared graphically or characterized in terms of spatial 
correlation coefficients (R or R2).  The only such correlations presented by EPA were for 
SO2 or PM within specific metropolitan areas; R2 values ranged from 0.90 to 0.96 for 
seven published modeling studies, even though as few as 40% of the model predictions 
were within 30% of the measured values.  This indicates that it may be easier to predict 
the relative spatial patterns than the absolute concentrations. 
 
The ASPEN report summary concludes the following: 

 
Modeled estimates are typically lower than measurements when compared at the 
exact monitor location.  However, comparisons are better when maximum 
modeled concentrations are considered within about 30 km of the monitoring site.  
This lends credence to the use of county spatial averages in our analysis, based on 
the median level for the census tracts in the county.  The ASPEN report attributed 
part of the local discrepancies to uncertainties in precise locations of emission 
sources. 
 
Among the species listed above, benzene had the best comparisons with 
measurements, with a median model/monitor concentration ratio of 0.92.  
Predictions were within 30% of measurements 59% of the time.  Spatial 
correlations were not provided. 
 
Formaldehyde (outdoor) levels were systematically underestimated, and indoor 
exposures were not considered.  The ASPEN report states that secondary 
reactions leading to aldehydes including formaldehyde were not considered.  
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Again, spatial correlations were not considered, but should not be greatly affected 
by systematic underestimation. 
 
The largest problems were seen with particulate metal species, including lead, 
which was greatly underestimated in the ASPEN report, based largely on point-
source monitors.  However, comparing subject-weighted means from the STN 
network11 with the NATA shows somewhat better comparisons (Table D-3, where 
values are in ng/m3 except as shown).  There are no direct ambient measurements 
of diesel PM (DPM), which is strongly associated with EC.  The ASPEN report 
cites an EPA study12 of this relationship, which finds ratios of either 2.0 or 1.3, 
depending on how EC is measured.    Comparing averages of NATA diesel PM 
with AER EC in the current study shows a ratio of 2.16.  The EPA report12 cites 
overall DPM/PM2.5 ratios of 0.091 for rural areas and 0.166 for urban areas (their 
Table 3-1).  We find a ratio of 0.14 between NATA DPM and overall PM2.5,3 
which agrees quite well. 

 
Gray and Cass13 studied these relationships in the Los Angeles basin and found good 
agreement between measured and modeled EC for seven locations (their Table 2).  The 
correlation is 0.66 with a slope of 0.95.  Their overall means agree quite well (3.88 
vs.3.65 μg/m3), but the modeled values are considerably more variable than the 
measurements.  Note that these 1982 EC values are considerably higher than current 
levels. 
 
Table D-3  Comparisons between measured values and NATA/AER estimates. 
 

Species     STN mean  NATA or AER means 
    All subjects high-traffic counties 
As           1.67           0.15       0.20 
Cl  (1)      30.6     19.1                  16.8 
EC  (2)           0.79          0.82        1.18 
Mn           9.26           3.08              4.13 
Ni           1.41           2.09             3.49 
Pb          7.54           5.68            8.63 
SO4

2-  (3)         3.90           4.28            6.37 
Diesel PM (4)     1.58        1.81        2.53 
---------------------------------------------------------------------------- 

(1) STN chloride is compared with NATA chlorine 
(2) ASPEN also compares EC with diesel PM. The table shows AER EC (μg/m3). 
(3) The table shows AER SO4

2-  (μg/m3). 
(4) The table compares STN EC multiplied by 2.0 with NATA diesel PM (μg/m3). 

    
Table D-3 shows both over- and under-estimates, good agreement for EC and Pb, and 
reasonable agreement for Ni and SO4

2-.  This reinforces the conclusion that model-
monitor comparisons can be sensitive to the selection of monitors.  Overall, we find 
satisfactory agreement between key measured and modeled estimates of air quality 
parameters associate with vehicle emissions.  
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