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The Electric Power Research Institute, Inc. (EPRI) respectfully submits the enclosed comments on 
the U.S. Environmental Protection Agency’s (EPA’s or the Agency’s) Integrated Science 
Assessment for Particulate Matter (External Review Draft). EPRI appreciates the opportunity to 
comment on this Integrated Science Assessment (ISA). 

EPRI is a nonprofit corporation organized under the laws of the District of Columbia Nonprofit 
Corporation Act and recognized as a tax-exempt organization under Section 501(c)(3) of the U.S. 
Internal Revenue Code of 1986, as amended, and acts in furtherance of its public benefit mission. 
EPRI was established in 1972 and has principal offices and laboratories located in Palo Alto, Calif.; 
Charlotte, N.C.; Knoxville, Tenn.; and Lenox, Mass. EPRI conducts research and development 
relating to the generation, delivery, and use of electricity for the benefit of the public. As an 
independent, nonprofit organization, EPRI brings together its scientists and engineers as well as 
experts from academia and industry to help address challenges in electricity, including reliability, 
efficiency, health, safety, and the environment. EPRI also provides technology, policy and economic 
analyses to inform long-range research and development planning, as well as supports research in 
emerging technologies. As a tax-exempt research organization, EPRI makes its research results 
widely available to the interested public through license, purchase or other dissemination.   

These comments on the ISA reflect EPRI’s opinions derived from its research and development 
experience related to the study of air quality health effects, including extensive epidemiological, 
toxicological, and exposure research on particulate matter. These comments reflect EPRI’s research 
activities in that they are technical rather than legal in nature. The enclosed comments reflect only 
EPRI’s opinion and expertise and do not necessarily reflect the opinions of those supporting and 
working with EPRI to conduct collaborative research and development.  

EPRI hopes its comments and technical feedback will be valuable to EPA.  
 
Sincerely, 

Robert Chapman 
Vice President, Energy and Environment  
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Palo Alto, CA 94304 

December 10, 2018 

The Electric Power Research Institute, Inc. (EPRI) respectfully submits the enclosed comments 
on the U.S. Environmental Protection Agency’s (EPA’s or the Agency’s) Integrated Science 
Assessment for Particulate Matter (External Review Draft). EPRI appreciates the opportunity to 
comment on this ISA.  
We first discuss four primary comments, and then follow with secondary comments organized by 
chapter.  
 
Primary Comments 
 

1. Confounding in epidemiological studies on PM is a critical issue, and since the last ISA 
many studies have focused on the evaluation and/or control of confounding in air 
pollution epidemiology studies. While most of these studies are discussed in the current 
ISA, there are several papers related to the evaluation of confounding, centered around a 
method developed by Greven et al. (2011), that were not included.  
 
Since 2014, EPRI has been supporting research to better understand confounding in long-
term air pollution epidemiology studies. As such, a large Medicare dataset of over 60 
million beneficiaries was obtained from the Centers for Medicare and Medicaid Services 
(2000-2012); these data also included cause of death for the years 2000-2008. The 
method of Greven et al. (2011) was applied to decompose PM2.5 into temporal and spatio-
temporal components. This approach posits that if the associations for these two 
independent components of PM2.5 differ, unmeasured confounding is present. Pun et al. 
(2017) conducted an analysis of 20 million beneficiaries living within 6 miles of a PM2.5 
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monitor and found that the temporal and spatio-temporal coefficients were different; the 
authors concluded that unmeasured confounding was present. 
Eum et al. (2018) applied three different methods to evaluate temporal confounding in the 
same dataset: (1) assessing exposures using the residual of PM2.5 regressed on time; (2) 
adding a penalized spline term for time to the health model; and (3) including a term that 
describes temporal variability in PM2.5 into the health model, with this term estimated 
using the Greven et al. decomposition approach. Results showed that a 10 µg/m3 increase 
in PM2.5 exposure was associated with a mortality rate ratio of 1.20 (1.20, 1.21) over the 
13-year study period. However, when models adjusted for long-term time trends in PM2.5, 
the associations were significantly attenuated. The most stable result was observed for the 
residual-based approach, and that association was reduced by approximately 50% from 
the unadjusted model. The authors concluded that epidemiological studies of long-term 
PM2.5 can be confounded by long-term time trends, and this confounding can be 
controlled using the residuals of PM2.5 regressed on time. The paper by Eum et al. (2018) 
is included in this comment document as Appendix A. 
In light of the importance of the original Greven et al. (2011) findings, EPRI convened an 
expert panel in June 2017 to discuss the method and implications for its use. The panel 
consisted of Adam Szpiro (University of Washington), Rick Bilonick (University of 
Pittsburgh), and Garrett Glasgow (NERA Economic Consulting). A paper describing the 
meeting has been submitted (Glasgow, submitted). In light of the importance of 
confounding in long-term PM epidemiology studies, EPRI recommends that the work 
began by Greven et al. (2011) and continued by Pun et al. (2017) and Eum et al. (2018) 
be included and discussed in the ISA. 
 

2. EPRI finds that the classification of the relationship between long-term exposures to 
PM2.5 and ultrafine particles (UFP) and nervous system effects as “likely to be causal” is 
not supported by the evidence.  
 
The strongest evidence of the causal relationship between long-term PM2.5 exposure and 
nervous system outcomes come from toxicological studies using animal models. 
Although these studies can provide valuable information, they have substantial 
limitations in offering evidence to determine the causal relationship between long-term 
PM2.5 and human health. The animal toxicological studies tend to use high PM2.5 
concentrations; rodents were exposed to >100 µg/m3 in Bhatt et al. (2015), Ljubimova et 
al. (2013), Tyler et al. (2016), and other studies. These high levels of PM are unrealistic 
compared to the long-term ambient levels that human populations experience in the US. 
In addition, uncertainties exist regarding animal-to-human extrapolation.  
 
Among the epidemiological studies based on real-world human cohorts and PM2.5 
exposure, there is considerable inconsistency in results for most of the nervous system 
outcomes. For cognitive effects, two epidemiological studies out of ten found statistically 
significant positive changes associated with long-term PM2.5 exposure, two found 
significant negative changes, and the remaining six found null effects (Figure 8-3 and 8-
4). For neurodegenerative diseases, four out of the eight studies found significant results; 
the remainder were null (Figure 8-6). For autism, four out of five found significant 
associations, but the small number of studies and limitations in their study methods may 
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constrain the interpretation of the results (Section 8.2.7.2). The results for other nervous 
system outcomes are largely null. Considering the results from animal toxicological 
studies and epidemiological studies, concluding that there is likely to be a causal 
relationship between long-term PM2.5 and nervous system effects based on the studies 
included in this chapter appears to be an overstatement. 
 
For long-term UFP, the animal toxicological studies have similar limitations as those 
related to the PM2.5 studies. There is only one epidemiological study that investigated the 
association between UFP and nervous system outcomes; this study did report a 
significant positive association. The extremely limited epidemiological evidence does not 
support the “likely to be causal” relationship concluded in the ISA.  
  

3. In some cases, presentation and discussion of the results are not consistent with respect to 
the direction, magnitude, and significance of epidemiological effect estimates. This 
unbalanced presentation could lead the reader to biased conclusions. For example, in 
Section 5.1.4.1.1 and Section 5.1.4.1.2, the results with positive coefficients and 
confidence intervals covering zero are reported as increases in effects (in page 5-57, line 
29 and page 5-58, line 8), but results with negative coefficients, or estimates less than 1 
in the case of RR, and confidence intervals covering zero are reported as null effects (in 
page 5-58, line 19). The sentence at page 5-57, line 18 states that single-city studies 
“reported inconsistent evidence”, but all the results reported in this paragraph are null 
results at the confidence level the authors chose. The description of studies and the 
discussion of the results would be more objective if the reporting of direction and 
significance is consistent. 
 
In addition, potential bias in readers’ interpretations may appear from selective reporting 
of estimates from some studies. For example, in Figure 5-44, Peng et al. (2008) estimated 
effects for lag 0, 1, and 2, and while the estimate for lag 0 is positive, the other two 
estimates are negative (all non-significant at 95% confidence level). The figure only 
included the positive estimate from this paper.   
 

4. There are a number of studies missing from the document in multiple chapters. Some of 
these were published in late 2017 and 2018, after the cutoff period for the document; 
however, many were published prior to this date. A detailed list of missing studies in 
each chapter can be found in the Secondary Comments section.  
 

Secondary Comments  
 
EPRI’s secondary comments on the ISA are categorized by chapter below. 
 
Chapter 5: Respiratory Effects  
Page 5-50: The following study should be added: 
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Magzamen, S., Oron, A.P., Locke, E.R., Fan, V.S. 2018. Association of ambient 
pollution with inhaler use among patients with COPD: a panel study. Occup Environ Med 
75.5: 382-388. 

Page 5-85: The following study should be added: 
Makar, M., Antonelli, J., Di, Q., Cutler, D., Schwartz, J., Dominici, F. 2017. Estimating 
the causal effect of low levels of fine particulate matter on hospitalization. Epidemiology 
28(5):627-634. 

Page 5-87, line 25: Prevalence of using air conditioners may be one of the contributors to the 
observed geographic variability in PM2.5 associations with respiratory-related diseases. The role 
of air conditioning was the main topic of the literature cited at the end of the statement, i.e., Bell 
et al., 2009a.  
Page 5-117, line 8: Consider adding references. 
Page 5-119: The following study should be added: 

Lall, R., Ito, K., Thurston, G.D. 2010. Distributed lag analyses of daily hospital 
admissions and source-apportioned fine particle air pollution. Environ Health Perspect 
119(4):455-460. 

Page 5-131, line 8: Consider explaining what a “scripted” exposure is.   
Page 5-138: The following studies should be added: 

Fang, T., Verma, V., Bates, J.T., Abrams, J., Klein, M., Strickland, M.J., et al. 2016. 
Oxidative potential of ambient water-soluble PM2.5 in the southeastern United States: 
contrasts in sources and health associations between ascorbic acid (AA) and dithiothreitol 
(DTT) assays. Atmos Chem Phys 16(6):3865-3879.  
Luttmann-Gibson, H., Sarnat, S.E., Suh, H.H., Coull, B.A., Schwartz, J., Zanobetti, A., et 
al. 2014. Short-term effects of air pollution on oxygen saturation in a cohort of senior 
adults in Steubenville, OH. J Occup Environ Med 56(2):149.  

Page 5-140, line 21: The pairwise posterior probability that elemental carbon had greater toxicity 
than PM2.5 in the East is about 0.7 for respiratory hospital admissions. Consider modifying the 
statement “The recent analysis by Levy et al. (2012) indicated the likelihood of greater risk for 
EC than PM2.5 in the East” to “The recent analysis by Levy et al. (2012) indicated a suggestive 
likelihood of greater risk of respiratory hospital admissions for EC than PM2.5 in the East”. 
Page 5-183, Table 5-22: In Column titled “Exposure assessment”, consider adding the exposure 
metric, i.e., whether the authors used annual averages or monthly averages.  
Page 5-246: The following study should be added. It looks like a statistics paper but it estimated 
respiratory effects in Medicare patients: 

Chang, H.H., Peng, R.D., Dominici, F. 2011. Estimating the acute health effects of coarse 
particulate matter accounting for exposure measurement error. Biostatistics 12.4: 637-
652. 

Page 5-5, line 16 and other locations in this chapter:  Please define “Section 0”. 
Page 5-112 to 114, all figures: Please clarify the differences between solid circles and open 
circles.  
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Page 5-141, Figure 5-24: Consider mentioning in the figure caption that the bars of asthma, 
COPD, etc. in each section would add up to the first bar to add clarity. 
Page 5-259, Figure 5-46: Please clarify the differences between solid and open red circles.  
Page 5-310: Please clarify which section is “Section 0”. Clicking on the “section 0” hyperlink in 
the pdf of this report takes to Ostro et al. (2015), which does not seem to be relevant to the 
content.  
 
Chapter 6: Cardiovascular Effects 
Overall, several studies are omitted that should have been included in the tables and discussion.  
The tables highlight papers published since the last PM review, but key findings of the earlier 
papers should have been included in the figures and discussion so that the discussion and 
conclusion are not based only on the most recent studies.   
Pages 6-8-6-10; Table 6-1: The following studies should be added, which should also be 
incorporated into the discussion and Figure 6-2.  

Sarnat, S.E., Winquist, A., Schauer, J.J., Turner, J.T., Sarnat, J.A. 2015. Fine particulate 
matter components and emergency department visits for cardiovascular and respiratory 
diseases in the St. Louis, Missouri-Illinois Metropolitan Area. Environ Health Perspect 
123(5):437-444. 
Kioumourtzoglou, M-A, Zanobetti, A., Schwartz, J., Coull, B.A., Dominici, F., Suh, H. 
2013. The effect of primary organic particles on emergency hospital admissions among 
the elderly in 3 US cities. Environ Health 12:68. 
Atkinson, R.W., Fuller, G.W., Anderson, H.R., Harrison, R.M., Armstrong, B. 2010. 
Urban ambient particle metrics and health: a time-series analysis. Epidemiology 21:501-
511.  
Bell, M.L., Ebisu, K., Peng, R.D., Samet, J.M., Dominici, F. 2009. Hospital admissions 
and chemical composition of fine particle air pollution. Am J Respir Crit Care Med 
179:1115-1120. 
Ito, K., Mathes, R., Ross, Z., Nadas, A., Thurston, G., Matte, T. 2011. Fine particulate 
matter constituents associated with cardiovascular hospitalizations and mortality in New 
York City. Environ Health Perspect 119:467-473. 
Lall, K., Ito, K., Thurston, G.D. 2011. Distributed lag analyses of daily admissions and 
source-apportioned fine particulate air pollution. Environ Health Perspect 119:455-460. 
Peng R.D., Bell, M.L., Geyh, A.S., McDermott, A., Zeger, S.L., Samet, J.M. 2009. 
Emergency admissions for cardiovascular and respiratory diseases and the chemical 
composition of fine particle air pollution. Environ Health Perspect 117:957-963. 

Page 6-15, Table 6-2: The following studies should be added to the table and accompanying 
discussion: 

Suh, H., Zanobetti, A. 2010. Exposure error masks the relationship between traffic-
related air pollution and heart rate variability. J Occup Environ Med 52:685-692. 
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Weichenthal, S., Kulka, R., Debeau, A., Martin, C., Wang, D., Dales, R. 2011. Traffic-
related air pollution and acute changes in heart rate variability and respiratory function in 
urban cyclists. Environ Health Perspect 119:1173-1178. 

Page 6-28, Table 6-7: The following paper should be added to the table and ensuing discussion:  
Sarnat, S.E., Winquist, A., Schauer, J.J., Turner, J.T., Sarnat, J.A. 2015. Fine particulate 
matter components and emergency department visits for cardiovascular and respiratory 
diseases in the St. Louis, Missouri-Illinois Metropolitan Area. Environ Health Perspect 
123(5):437-444. 

Page 6-33, Table 6-8: This table is inconsistent from others in that it also includes some earlier 
studies considered in the previous ISA. If earlier studies are to be included, the tables should also 
include this paper, which reports on the largest study ever undertaken on air pollution and 
arrhythmia. 

Metzger, K.B., Klein, M., Flanders, W.D., Peel, J.L., Mulholland, J.A., Langberg, J.J., 
Tolbert, P.E. 2007. Ambient air pollution and cardiac arrhythmias in patients with 
implantable defibrillators. Epidemiology 18(5):585-592.  

Page 6-42, Table 6-12: This table and ensuing discussion should include the following study: 
Sarnat, S.E., Winquist, A., Schauer, J.J., Turner, J.T., Sarnat, J.A. 2015. Fine particulate 
matter components and emergency department visits for cardiovascular and respiratory 
diseases in the St. Louis, Missouri-Illinois Metropolitan Area. Environ Health Perspect 
123(5):437-444. 

Page 6-65, Table 6-19: Several studies should be added to the table. They include:  
Sarnat, S.E., Winquist, A., Schauer, J.J., Turner, J.T., Sarnat, J.A. 2015. Fine particulate 
matter components and emergency department visits for cardiovascular and respiratory 
diseases in the St. Louis, Missouri-Illinois Metropolitan Area. Environ Health Perspect 
123(5):437-444. 
Kioumourtzoglou, M-A, Zanobetti, A., Schwartz, J., Coull, B.A., Dominici, F., Suh, H. 
2013. The effect of primary organic particles on emergency hospital admissions among 
the elderly in 3 US cities. Environ Health 12:68. 
Atkinson, R.W., Fuller, G.W., Anderson, H.R., Harrison, R.M., Armstrong, B. 2010. 
Urban ambient particle metrics and health: a time-series analysis. Epidemiology 21:501-
511.  
Bell, M.L., Ebisu, K., Peng, R.D., Samet, J.M., Dominici, F. 2009. Hospital admissions 
and chemical composition of fine particle air pollution. Am J Respir Crit Care Med 
179:1115-1120. 
Ito, K., Mathes, R., Ross, Z., Nadas, A., Thurston, G., Matte, T. 2011. Fine particulate 
matter constituents associated with cardiovascular hospitalizations and mortality in New 
York City. Environ Health Perspect 119:467-473. 
Lall, K., Ito, K., Thurston, G.D. 2011. Distributed lag analyses of daily admissions and 
source-apportioned fine particulate air pollution. Environ Health Perspect 119:455-460. 
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Peng R.D., Bell, M.L., Geyh, A.S., McDermott, A., Zeger, S.L., Samet, J.M. 2009. 
Emergency admissions for cardiovascular and respiratory diseases and the chemical 
composition of fine particle air pollution. Environ Health Perspect 117:957-963. 

Page 6-76, Table 6-20: The following paper should be added to the table: 
Suh, H., Zanobetti, A. 2010. Exposure error masks the relationship between traffic-
related air pollution and heart rate variability. J Occup Environ Med 52:685-692. 

Page 6-118-6-128: This section would strongly benefit from additional discussion considering 
several more studies than those listed in Figure 6-14. For a more comprehensive list of studies 
undertaken through February 2012, see Rohr and Wyzga (Rohr, A.C., Wyzga, R.E. 2012. 
Attributing health effects to individual particulate matter constituents. Atmos Environ 62:130-
152.)  They reviewed all short-term studies published through February 2012 that considered 
PM2.5 and at least one constituent of PM2.5. Although they found that every component of PM 
was associated with some cardiovascular effect, they did find that EC and OC (elemental and 
organic carbon), especially OC, showed more significant associations with health effects, 
especially cardiovascular health effects, than PM2.5 mass. We would encourage EPA to undertake 
a similar examination of results for the broader set of studies that inform the ISA. This is 
important because it could help EPA decide upon the most appropriate index of PM and to 
stimulate further research that examines this issue. In the discussion on Page 6-122, EPA should 
also discuss Suh and Zanobetti (2010) who found that a component of PM was a better predictor 
of cardiovascular response when personal exposures were considered.   
Page 6-125, Section 6.1.15.4:  The document should also include and discuss the following 
paper: 

Ye, D., Klein, M., Mulholland, J.A., Russell, A.G., Weber, R., Edgerton, E.S., et al. 
2018. Estimating acute cardiovascular effects of ambient PM2.5 metals. Environ Health 
Perspect 126:027007. 

Page 6-136, Table 6-34: This table should also say something about PM components. 
Page 6-143, Table 6-35:  The following study should be included: 

Vedal, S., Campen, M.J., McDonald, J.D., Kaufman, J.D., Larson, T.V., Sampson, P.D., 
et al. 2013. NPACT Epidemiologic Study of Components of Fine Particulate Matter and 
Cardiovascular Disease in the MESA and WHI-OS Cohorts in National Particle Toxicity 
(NPACT) Initiate report on Cardiovascular Effects. Research Report 178. Health Effects 
Institute, Boston, MA. 

Page 6-186, Table 6-47: The following studies should be incorporated here and in other tables of 
this chapter; their results should be incorporated into the figures and discussion: 

Vedal, S., Campen, M.J., McDonald, J.D., Kaufman, J.D., Larson, T.V., Sampson, P.D., 
et al. 2013. NPACT Epidemiologic Study of Components of Fine Particulate Matter and 
Cardiovascular Disease in the MESA and WHI-OS Cohorts in National Particle Toxicity 
(NPACT) Initiate report on Cardiovascular Effects. Research Report 178. Health Effects 
Institute, Boston, MA. 
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Ostro, B., Lipsett, M., Reynolds, P., Goldberg, D., Hertz, A., Garcia, C., et al. 2010. 
Long-term exposure to constituents of fine particulate matter: results from the California 
Teachers Study. Environ Health Perspect 118:363-369. 
Ostro B., Lipsett, M., Reynolds, P., Goldberg, D., Hertz, A., Garcia, C., et al. 2011. 
Erratum: assessing long-term exposure in the California Teachers Study. Environ Health 
Perspect 119:242-243. 
Wang, M., Beelen, R., Stafoggia, M., Raaschou-Nielsen, O., Andersen, Z.J., Hoffmann, 
B., et al. 2014. Long-term exposure to elemental constituents of particulate matter and 
cardiovascular mortality in 19 European cohorts: Results from the ESCAPE and 
TRANSPHORM project. Environ Int 66:97-106. 
Cesaroni, G., Forastiere, F., Stafoggia, M., Andersen, Z.J., Badaloni, C., Beelen, R., et al. 
2014. Long-term exposure to ambient air pollution and incidence of acute coronary 
events: prospective cohort study and meta-analysis in 11 European cohorts from the 
ESCAPE project. Brit Med J 348:1-16. 
Gan, W.Q., Koehoorn, M., Davies, H.W., Demers, P.A., Tamburic, L., Brauer, M., et al. 
2010. Long-term exposure to traffic-related air pollution and the risk of coronary heart 
disease hospitalization and mortality. Environ Health Perspect 119:501-507. 
Lenters, V., Uiterwaal, C.S., Beelen, R., Bots, M.L., Fischer, P., Brunekreef, B., et al. 
2010. Long-term exposure to air pollution and vascular damage in young adults. 
Epidemiology 21:512-520. 
Stafoggia, M., Cesaroni, G., Peters, A., Andersen, Z.J., Badaloni, C., Beelen, R., et al. 
2014. Long-term exposure to ambient air pollution and incidence of cerebrovascular 
events: results form 11 European cohorts within the ESCAPE Project. Environ Health 
Perspect 122:919-925. 

Page 6-213, Figure 6-28 and its discussion: Is it noteworthy that BC appears to be a better 
indicator than PM2.5 in the number of positive and significant positive associations with 
cardiovascular endpoints. There should be some discussion of this issue and a comparison of the 
findings here with those from the acute studies.   
Page 6-220, Table 6-54: Should there be some mention here of the importance of BC as a 
component of PM?   
Page 6-274, Section 6.5: Should there be some discussion of the difficulty of undertaking short-
term epidemiological studies for UFPs given their spatial and temporal heterogeneity? 
Page 6-277, Section 6.5.2.1: Metzger et al. (2007) examined the associations between emergency 
department admissions and several pollutants, including UFP and PM2.5. It is noteworthy that the 
results of this study showed a significant negative effect of UFP on these admissions and that 
PM2.5 and UFP were negatively correlated.  
 
Chapter 7: Metabolic Effects 
Page 7-30, line 2: May be worth mentioning that many of the studies in this section had exposure 
levels over 100 µg/m3, which are not comparable to average long-term PM2.5 levels in the United 
States.  
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Page 7-54, line 11: Consider adding references for the “well-conducted studies”.  
 
Chapter 8: Nervous System Effects 
Page 8-11, line 11: Unclear what the comparison group is in the RR estimate. 
Page 8-13, Table 8-5: Concentration is recorded as NA in the 4th column because the paper 
reported community-specific levels. Consider adding a range of the community-specific 
concentration in the first row, column #4, to provide more relevant information. 
Page 8-35, line 9: Consider adding references. 
Page 8-53, line 18 and 20: Please add what the reference group of the OR is: comparing “entire 
pregnancy exposure” with no exposure during pregnancy, or exposure during one or two 
trimesters? Also unclear what “entire pregnancy exposure” is: exposed to certain levels of PM2.5 
every day during pregnancy? 
 
Chapter 9: Reproductive and Developmental Effects 
Page 9-7, line 21: Consider changing “mixed effects were seen” to “mixed results were seen” 
because the phrase “mixed effects” coincides with a specific type of statistical model. 
Page 9-16: The following studies should be added: 

Savitz, D.A., Bobb, J.F., Carr, J L., Clougherty, J E., Dominici, F., Elston, B., et al. 2013. 
Ambient fine particulate matter, nitrogen dioxide, and term birth weight in New York, 
New York. Am J Epidemiol 179(4):457-466.  
Kingsley, S.L., Eliot, M.N., Glazer, K., Awad, Y.A., Schwartz, J.D., Savitz, D.A., et al. 
2017. Maternal ambient air pollution, preterm birth and markers of fetal growth in Rhode 
Island: results of a hospital-based linkage study. J Epidemiol Community Health. 
71:1131-1136. 

Page 9-25, line 6: Consider adding some discussion on why examining studies of sex ratio in 
litters at birth would be relevant to PM2.5 regulations that aim to protect human health. 
Page 9-39: The following studies should be added: 

Basu, R., Pearson, D., Ebisu, K., Malig, B. 2017. Association between PM2.5 and PM2.5 
constituents and preterm delivery in California, 2000–2006. Ped Perinatal Epidemiol 
31(5):424-434. 
Bell, M.L., Belanger, K., Ebisu, K., Gent, J.F., Leaderer, B.P. 2012. Relationship 
between birth weight and exposure to airborne fine particulate potassium and titanium 
during gestation. Environ Res 117:83-89. 

 
Chapter 10: Cancer 
Page 10-13, line 12: The implication of seasonal variation from Singla et al. (2012) is based on 
observation instead of statistical analyses, so extra caution is required when interpreting their 
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findings. Therefore, providing more basic information from which the authors drew their 
conclusion, such as sample size, would be helpful. 
Page 10-19, Section 10.2.2.2.3 and Table 10-1: The first paragraph of the section indicated that 
this section aims to examine studies of long-term exposure. The fourth study in the Table (Ma et 
al., 2015) only measured 2 weeks of exposure. It may be helpful to describe what type of 
exposure window is considered long-term in this context.  
Page 10-37, Table 10-4: Inconsistent reporting of exposure assessment. Some cells reported 
temporal resolution and measurement/modeling methods, some cells only reported 
measurement/modeling methods. Consider adding temporal resolution to all cells. 
Page 10-45 to 47: About half the studies described on these pages had HR estimates with large 
confidence intervals covering null estimates. Consider changing the statement “provide evidence 
for a relationship between PM2.5 and lung-cancer mortality” to “provide evidence for a 
suggestive relationship between PM2.5 and lung-cancer mortality” for the conclusions on these 
pages. 
Page 10-72, line 8: Consider adding a section number or references to support the statement 
“PM2.5 has been shown to act as a tumor promoter…”.  
 
Chapter 11: Mortality 
Page 11-38, Section 11.1.10: The following paper is missing from this section and should be 
added: 

Schwartz J., Bind, M.A., Koutrakis, P. 2017. Estimating causal effects of local air 
pollution on daily deaths: effect of low levels. Environ Health Perspect 125(1):23-29. 

This paper found that when only days with PM2.5 estimated to be < 30 µg/m3 were considered, 
the RR was slightly lower than when all days were included. 
Page 11-41, Section 11.1.11.1: Rohr and Wyzga (2012) conducted a semi-quantitative review of 
the available literature as it relates to PM2.5 components and short-term health effects, including 
mortality. While the authors concluded that no major component of PM2.5 was exonerated, the 
literature did suggest a need to systematically consider the role of carbonaceous components. 
The review identified EC and/or OC as being potentially more important than other PM2.5 
components, and this finding was consistent across disciplines. Also of note, the majority of the 
studies examined yielded significant findings for specific components of PM2.5, but not for PM2.5 
mass concentration, demonstrating that PM2.5 alone does not drive health responses. For 
example, among the epidemiology studies, 39 studies considered both PM2.5 and at least two 
components. Of these 39 studies, 21 reported significant associations between a health response 
and both PM2.5 and at least one component; 1/39 found significant associations with PM2.5 but 
with no components, and 17/39 found significant responses with at least one component but not 
with PM2.5. Similarly, in the toxicology arena, while 5/20 studies reported at least one 
association with PM2.5 mass concentration, 15/20 studies did not. 
Also related to Section 11.1.11.1, a number of studies are missing. These include: 
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Franklin, M., Koutrakis, P., Schwartz, J. 2008. The role of particle composition on the 
association between PM2.5 and mortality. Epidemiology 19(5):1-10. 
Klemm, R.J., Lipfert, F.W.,Wyzga, R.E.,Gust, C. 2004. Daily mortality and air pollution 
in Atlanta: two years of data from ARIES. Inhal Toxicol 16 (Suppl. 1):131-141. 
Klemm, R.J., Thomas, E.L., Wyzga, R.E. 2011. The impact of frequency and duration of 
air quality monitoring: Atlanta, GA, data modeling of air pollution and mortality. J Air 
Waste Manage Assoc 61:1281-1291. 
Lipfert, F.W., Morris, S.C., Wyzga, R.E. 2000. Daily mortality in the Philadelphia 
metropolitan area and size-classified particulate matter. J Air Waste Manage Assoc 
50:1501-1513. 
Lippmann, M., Ito, K., Hwang, J.-S., Maciejczyk, P., Chen, L.C. 2006. Cardiovascular 
effects of nickel in ambient air. Environ Health Perspect 114(11):1662-1669. 
Mar, T.F., Norris, G.A., Koenig, J.Q., Larson, T.V. 2000. Associations between air 
pollution and mortality in Phoenix, 1995-1997. Environ Health Perspect 108(4):347-353. 

Page 11-46: The role played by PM2.5 components in mortality should be investigated in single 
(or preferably multi-) pollutant models using the actual concentration of PM2.5 and its 
components. Other approaches, such as using a deviation from a monthly mean as in Lippmann 
et al. (2013) or a percent contribution of a given component to overall mass, eliminate the “dose” 
from the “dose-response”. If we assume that it is the actual concentration of a particular toxic 
agent that leads to a response, any approach beyond including that concentration in models does 
not make biological sense. These approaches could make sense if the objective is to generally 
differentiate one “type” of PM2.5 mixture from another, but that is not the same as evaluating the 
relative toxicity of components and should not be construed as such. 
Page 11-58, Table 11-5: Several studies are missing from this table and the text. These include: 

Greven, S., Dominici, F., Zeger, S. 2011. An approach to the estimation of chronic air 
pollution effects using spatio‐temporal information. J Am Stat Assoc 106(494):396‐406. 
Pun, V.C., Kazemiparkouhi, F., Manijourides, J., Suh, H.H. 2017. Long-term PM2.5 
exposure and respiratory, cancer, and cardiovascular mortality in older US adults. Am J 
Epidemiol 186(8):961-969. 
Eum, K., Suh, H.H., Pun, V.C., Manjourides, J. 2018. Impact of long-term temporal 
trends in fine particulate matter (PM2.5) on association of annual PM2.5 exposure and 
mortality: an analysis of over 20 million Medicare beneficiaries. Environ Epidemiol 2(2): 
e009. [included as Appendix A] 

Page 11-82, Table 11-7: A number of studies that investigated the shape of the concentration-
response function between long-term PM2.5 and mortality do not appear in this table and should 
be added. Some of these did not present a shape per se, but they did conduct analyses of effects 
above and below certain concentration cutpoints. Studies that are missing include: 

Pope, C.A. 3rd, Burnett, R.T., Krewski, D., Jerrett, M., Shi, Y., Calle, E.E., et al. 2009. 
Cardiovascular mortality and exposure to airborne fine particulate matter and cigarette 
smoke: shape of the exposure-response relationship. Circulation 120(11):941-948. 
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Pope, C.A. 3rd, Burnett, R.T., Turner, M.C., Cohen, A., Krewski, D., Jerrett, M., et al. 
2011. Lung cancer and cardiovascular disease mortality associated with ambient air 
pollution and cigarette smoke: shape of the exposure–response relationships. Environ 
Health Perspect 119(11):1616-1621. 
Brook, R.D., Cakmak, S., Turner, M.C., Brook, J.R., Crouse, D.L., Peters, P.A., et al. 
2013. Long-term fine particulate matter exposure and mortality from diabetes in Canada. 
Diabetes Care 36(10):3313-3320. 
Weichenthal, S., Villeneuve, P.J., Burnett, R.T., van Donkelaar, A., Martin, R.V., Jones, 
R.R., et al. 2014. Long-term exposure to fine particulate matter: association with 
nonaccidental and cardiovascular mortality in the Agricultural Health Study cohort. 
Environ Health Perspect 122(6):609-15. 
Crouse, D.L., Philip, S., van Donkelaar, A., Martin, R.V., Jessiman, B., Peters, P.A., et al. 
2016. A new method to jointly estimate the mortality risk of long-term exposure to fine 
particulate matter and its components. Sci Rep 6:18916. 
Jerrett, M., Turner, M.C., Beckerman, B.S., Pope, C.A., van Donkelaar, A., Martin, R.V., 
et al. 2017. Comparing the health effects of ambient particulate matter estimated using 
ground-based versus remote sensing exposure estimates. Environ Health Perspect 
125(4):552-559. 
Weichenthal, S., Pinault, L.L., Burnett, R.T. 2017. Impact of oxidant gases on the 
relationship between outdoor fine particulate air pollution and nonaccidental, 
cardiovascular, and respiratory mortality. Sci Rep 7:16401. 
Pinault LL, Weichenthal S, Crouse DL, Brauer M, Erickson A, Donkelaar AV, et al. 
2017. Associations between fine particulate matter and mortality in the 2001 Canadian 
Census Health and Environment cohort. Environ Res 159:406-415. 
Deng, H., Eckel, S.P., Liu, L., Lurmann, F.W., Cockburn, M.G., Gilliland, F.D. 2017. 
Particulate matter air pollution and liver cancer survival. Int J Cancer 141(4):744-749. 
Makar, M., Antonelli, J., Di, Q., Cutler, D., Schwartz, J., Dominici, F. 2017. Estimating 
the causal effect of low levels of fine particulate matter on hospitalization. Epidemiology 
28(5):627-634. 
Corrigan, A.E., Becker, M.M., Neas, L.M., Cascio, W.E., Rappold, A.G. 2018. Fine 
particulate matters: The impact of air quality standards on cardiovascular mortality. 
Environ Res 161:364-369. 

EPRI conducted an unpublished review of the long-term mortality literature presenting C-R 
function shape information. Of the 20 studies identified (including those above), 13 suggested a 
supralinear shape, 4 suggested a sublinear shape, and 3 suggested a linear or mixed shape. The 
ISA could be improved by pointing out the multiple factors that may cause or contribute to the 
observation of a supralinear shape, including: 

 The C-R effect is truly supralinear over the range of PM2.5 levels observed in the 
study 

 In areas with the lowest PM2.5 levels, the fraction of the mass that is the toxic 
constituent(s) is generally larger than areas with higher PM2.5 levels 
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 Individual susceptibility to PM2.5 is not normally distributed across the population, 
but highly concentrated near the origin, and skewed to the right 

 PM2.5 associations serve as a proxy for another risk factor, and the other risk factor 
has not declined proportionately with the recent declines in PM2.5 across the nation 

 Exposure misclassification (i.e., measurement error) is disproportionately large in 
areas with higher PM2.5 concentrations 

 Exposure misclassification (i.e., measurement error) is disproportionately small in 
areas with higher PM2.5 concentrations 

 There is a significant latency period for effect, and earlier exposure levels explain a 
portion of the presently observed risk 

 Page 11-90: Consider mentioning the following review: 
Wyzga, R.E., Rohr, A.C. 2015. Long-term particulate matter exposure: attributing health 
effects to individual PM components. J Air Waste Manage Assoc 65(5):523–543. 

Page 11-90, Section 11.2.6: The same comment made above regarding short-term mortality 
studies can be made here. Considering PM2.5 sources and components must be done in a manner 
that reflects the quantitative dose of the material. Adjusting for the proportion of a specific 
component or using residual approaches eliminates the dose concept. This is particularly true for 
components that have low concentrations, such as BC.  
Page 11-91, lines 18-21: Please add a category for “positive associations, regardless of width of 
the confidence interval.” This comment also applies to the short-term mortality section. 
Page 11-92, Table 11-14: The following studies are missing from this section and should be 
added: 

Lipfert, F.W., Wyzga, R.E., Baty, J.D., Miller, J.P. 2009. Air pollution and survival 
within the Washington University-EPRI Veterans cohort: risks based on modeled 
estimates of ambient levels of hazardous and criteria air pollutants. J Air Waste Manage 
Assoc 59:473–489.  
Wang, M., Beelen, R., Stafoggia, M., Raaschou-Nielsen, O., Andersen, Z.J., et al. 2014. 
Long-term exposure to elemental constituents of particulate matter and cardiovascular 
mortality in 19 European cohorts: results from the ESCAPE and TRANSPHORM 
projects. Environ Int 66:97–106. 
Jerrett, M., Newbold, K.B., Burnett, R.T., Thurston, G., et al. 2007. Geographies of 
uncertainty in the health benefits of air quality improvements. Stoch Environ Res Risk 
Assess 21:511–522.  
Pope, C.A. III, Burnett, R.T., Thun, M.J., et al. 2002. Lung cancer, cardiopulmonary 
mortality and long-term exposure to fine particulate air pollution. J Am Med Assoc 
287:1132–1141.  
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Chapter 12: Populations and Lifestages Potentially at Increased Risk of a Particulate Matter-
Related Health Effect 
Page 12-11, line 24: Please clarify “effect estimates were imprecise”. Does it mean that the 
effects are statistically insignificant? 
Page 12-18: The following papers should be added: 

Clougherty, J.E., Kubzansky, L.D. 2009. A framework for examining social stress and 
susceptibility to air pollution in respiratory health. Environ Health Perspect 117(9): 
1351-1358. 
Liu, J.C., Wilson, A., Mickley, L.J., Ebisu, K., Sulprizio, M.P., Wang, Y., et al. 2017. 
Who among the elderly is most vulnerable to exposure to and health risks of fine 
particulate matter from wildfire smoke? Am J Epidemiol 186(6):730-735. 

Page 12-21, line 11: Consider adding some discussion of whether genetic variants in the 
glutathione pathway are more prevalent in certain ages/regions/races, etc., and how these 
variants are relevant to air pollution regulation, if any. 
Page 12-25, line 7: Please clarify what the comparison group is in the summary sentence of the 
section. The summary sentence stated “… children are at increased risk for PM2.5-related health 
effects.”. Among the studies cited in the section, there are studies that compared children to 
adults, and studies that compared younger children to older children. Therefore, it is better to 
specify the comparison group.  
Page 12-29: The following study should be added: 

Bell, M.L., Zanobetti, A., Dominici, F. 2013. Evidence on vulnerability and susceptibility 
to health risks associated with short-term exposure to particulate matter: a systematic 
review and meta-analysis. Am J Epidemiol 178(6):865-876. 

Page 12-44: The following study should be added: 
Péter, S., Holguin, F., Wood, L., Clougherty, J., Raederstorff, D., Antal, M., et al. 2015. 
Nutritional solutions to reduce risks of negative health impacts of air pollution. Nutrients 
7(12):10398-10416. 
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Introduction
Over the last 2 decades, ambient air pollution concentrations 
have decreased steadily across the United States primarily as the 
result of emissions controls instituted as part of the Clean Air 
Act Amendments. In the United States, PM2.5, annual concentra-
tions have dropped by 24% from 2001 to 2010, with 2010 mean 
concentrations ranging, by location, between 3 and 18 μg/m3.1 
These lower concentrations are projected to result in substantial 
health benefits. A 2011 US Environmental Protection Agency 

report, e.g., estimated that the Clean Air Act Amendments will 
prevent 230,000 early deaths in 2020, with most early deaths 
attributable to reductions in ambient PM2.5.

1

Despite these reductions, PM2.5 concentrations continue to be 
linked with adverse health impacts.2–6 Numerous multicity studies, 
including the American Cancer Society, Six Cities, Women’s Health 
Initiative, Nurses’ Health Study, and National Institutes of Health-
American Association of Retired Persons (NIH-AARP) Diet and 
Health Cohort, have shown positive associations between long-
term exposure and mortality.2–7 The observed associations in these 
studies vary widely, with null associations in Health Professionals 
Follow-Up Study prospective cohort8 and significant effect esti-
mates ranging from a 3% increase (per 10 μg/m3 in PM2.5) in the 
NIH-AARP cohort7 to 26% in Nurses’ Health Study.9 Variability 
in effect sizes has been attributed to differences in cohort charac-
teristics, PM2.5 composition, modeling approaches, and confound-
ing by correlated air pollutants or unmeasured covariates.10–13

Another possible, but little studied, explanation for the varia-
tion in PM2.5-associated mortality risks is confounding by long-
term time trends in both PM2.5 and mortality, where decline in 
ambient PM2.5 concentrations is accompanied by increased life 
expectancy. Several studies provide evidence of the impact of 
long-term time trends on PM2.5-associated mortality.14 In a simu-
lation study, Griffin et al15 showed that the length of the study 
period may adversely affect the performance of the Cox propor-
tional hazards model, increasing bias and mean and squared error 
(MSE) and reducing power as the strength of the linear associa-
tion between exposure and time increases, as may occur with the 
temporal trends observed for PM2.5. Similarly, linear models may 
also produce biased effect estimate, if linear trends exist between 
both PM2.5 and time, and mortality and time. Consistent with 
this, Janes et al,16 Greven et al,17 and Pun et al18 found evidence of 
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Abstract
Decreasing ambient fine particulate matter (PM2.5) concentrations over time together with increasing life expectancy raise concerns 
about temporal confounding of associations between PM2.5 and mortality. To address this issue, we examined PM2.5-associated 
mortality risk ratios (MRRs) estimated for approximately 20,000,000 US Medicare beneficiaries, who lived within six miles of an 
Environmental Protection Agency air quality monitoring site, between December 2000 and December 2012. We assessed temporal 
confounding by examining whether PM2.5-associated MRRs vary by study period length. We then evaluated three approaches to 
control for temporal confounding: (1) assessing exposures using the residual of PM2.5 regressed on time; (2) adding a penalized 
spline term for time to the health model; and (3) including a term that describes temporal variability in PM2.5 into the health model, 
with this term estimated using decomposition approaches. We found a 10 μg/m3 increase in PM2.5 exposure to be associated with 
a 1.20 times (95% confidence interval [CI] = 1.20, 1.21) higher risk of mortality across the 13-year study period, with the magnitude 
of the association decreasing with shorter study periods. MRRs remained statistically significant but were attenuated when models 
adjusted for long-term time trends in PM2.5. The residual-based, time-adjusted MRR equaled 1.12 (95% CI = 1.11, 1.12) per 10 μg/
m3 for the 13-year study period and did not change when shorter study periods were examined. Spline- and decomposition-based 
approaches produced similar but less-stable MRRs. Our findings suggest that epidemiological studies of long-term PM2.5 can be 
confounded by long-term time trends, and this confounding can be controlled using the residuals of PM2.5 regressed on time.

Keywords: Medicare beneficiaries; Residual; Temporal confounding; Mortality; Fine particulate matter (PM2.5)
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unmeasured confounding of the association of PM2.5 and all-cause 
mortality. They did so by decomposing PM2.5 into two orthogonal 
components describing temporal and spatiotemporal variability, 
which they term “global” and “local” PM2.5, respectively. When 
both terms were included in the health model, the coefficient for 
temporal PM2.5 was larger and statistically significant compared 
with the spatiotemporal coefficient, which was null. The unequal 
temporal and spatiotemporal coefficients led the authors to con-
clude that PM2.5 associations with mortality were confounded by 
unmeasured variables, such as long-term time trends.

To examine the possibility that temporal confounding is pres-
ent in the mortality and PM2.5 relationship, we analyzed data for 
over 20 million Medicare enrollees from 2000 to 2012 to assess 
the impact of long-term time trends on the association between 
1-year–averaged PM2.5 concentrations and mortality.

Methods
The protocol was reviewed and approved by the Institutional 
Review Boards of Northeastern University.

Medicare beneficiary and mortality data

We obtained monthly mortality counts for 2000–2012 in the 
United States (except for Alaska and Hawaii) using data from 
the Centers for Medicare and Medicaid Services Medicare 
enrollment file, which provides demographic (age and sex), ZIP 
code of residence, and survival, including date of death and data 
for all Medicare enrollees (≥65 years).

PM2.5 exposure

We compiled daily PM2.5 concentrations from Environmental 
Protection Agency’s Air Quality System from 2000 to 2012. We 
did so for monitoring sites (“site”) with daily measurements for 
at least eight calendar years, with each year having 9+ months 
with 4+ daily measurements. For the 798 sites that met these cri-
teria, we calculated long-term concentrations following Greven et 
al.17 Briefly, we smoothed the time series at each site using a linear 
regression with the daily pollutant values as the response, and 
thin plate splines of time with four degrees of freedom per year 
as the predictor. For gaps longer than 90 days, we smoothed the 
PM2.5 time series before and after each gap separately. We used 
the predicted daily values to calculate yearly moving averages for 
PM2.5 each month. Yearly averages were considered valid when 
350+ days were available. Sites were classified based on their 
geographical region: “East” of the Mississippi River, “Center” 
between the Mississippi River and the Sierra Nevada mountain 
range, and “West” of the Sierra Nevada mountain range.17

Data linkage

We linked data for Medicare beneficiaries (65–120 years) to PM2.5 
monitors that met the study criteria for each month of the study, 
which restricted our sample to those beneficiaries living in ZIP 
codes with centroids within six miles of a valid monitor. We then 
linked data for beneficiaries living in these ZIP codes to the closest 
corresponding site’s PM2.5 concentration for the previous 12-month 
period ending in that study month. We performed the ZIP code 
identification and linkage by year to reduce exposure error intro-
duced by residential moves and changes in ZIP code boundaries. 
For each month, we calculated the total number of Medicare bene-
ficiaries at risk and the number of deaths associated with each site.

Statistical analysis

All analyses were conducted for the entire study population liv-
ing in the United States as well as separate analyses for Medicare 
beneficiaries living in each of three US regions (East, Central, and 

West). In general, we examined the variation in MRR estimates 
per 10 µg/m3 increase in exposure; although for analyses compar-
ing MRRs for base to those for time-adjusted models, we make 
comparisons based on an interquartile range (IQR) increase in 
exposure given their different variabilities. We further present 
graphical summaries of this variation using linear regression. SAS 
statistical software package (SAS Institute Inc., Cary, NC, 2003) 
and R-Studio, Inc., (Boston, MA) were used for all analyses.

Base models

To examine the association between PM2.5 exposure and 
monthly rate of all-cause mortality, we fit an age-stratified 
log-linear model including offset terms for the size of the popu-
lation at risk as our base model:

	 log log ( )E Y h a PMat
c c

t
c

c( )= ( )+ +0 β β BRFSS� (1)

where (Yat
c) is the number of deaths at time t, in age cate-

gory a, associated with site C. The exposure measure PMt
c is 

the 1-year average PM2.5 concentration at site C, preceding the 
month (t) of death. For each age group a and site C, mortality 
counts are offset by both the baseline hazard of death, h ac

0( ),  
and the total population at risk at time t, Nat

c . The Poisson 
model was selected (over the quasi-Poisson) as overdispersion 
parameter values varied from 1.02 to 1.25. To reduce the com-
putational burden of this large dataset, we assumed a constant 
baseline hazard of death for all age groups above 90 years of age 
and models were fit via the backfitting algorithm.17–19

To adjust for potential, measured confounders, we performed 
additional analyses adjusting for county-level behavioral 
covariates from the Selected Metropolitan/Micropolitan Area 
Risk Trends of the Behavioral Risk Factor Surveillance System 
(BRFSS), including proportions of non-whites, current smok-
ers, diabetes, asthma, individuals possessing health care plans, 
and mean income and body mass index.20 βc is the vector of 
BRFSS adjustment variables. Because the BRFSS data are only 
available for 465 of the 798 sites with PM2.5 monitoring data, 
we performed these analyses using the corresponding subset of 
the cohort. As appropriate, we converted results from previ-
ous studies into percent change per 10 µg/m3 PM2.5 increase to 
compare with our results.16–18 Additionally, we assessed whether 
unmeasured confounding of our base models remained by 
decomposing PM2.5 into two orthogonal components that cap-
ture temporal and spatiotemporal variability, following meth-
ods described by Greven et al.17 Briefly, 

•	 The temporal component describes national trends in 
exposures by centering the average exposure nationally in 
month t, PMt , by the average concentration for all sites 
over the entire study period, PM:

TemporalPM PM PMt t= −
•	 The spatiotemporal component describes site-specific tem-

poral trends in exposure by centering the exposure in 
month t at site c, PMt

C, by the average exposure at site c, 
PMc, and the national trends, (PM PMt − ):

Spation-temporalPM PM PMPM PMt
C

t
C

c t= − − −( )( )

We included the temporal and spatiotemporal components 
jointly in our base models and compared their effect estimates, 
interpreting a difference in their estimates as evidence of unmea-
sured confounding.17

Evaluation of temporal confounding

We evaluated long-term time trends as a potential source of 
unmeasured confounding. To do so, we ran our base models 
using data for the entire 13-year study period (2000–2012) and 
for shorter study periods, ranging between 3 and 12 years in 
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length, with each of these study periods ending in 2012 (e.g., 
2001–2012, 2002–2012, 2003–2012, etc., to 2009–2012). We 
compared mortality risk ratios (MRRs) for the entire 13-year 
period with those from each of these shorter study periods, 
assuming that in the absence of temporal confounding, MRRs 
would be uniform irrespective of the study period length.

In addition to fitting our base model, we also examined three 
approaches to control for long-term time trends in PM2.5. In our 
first approach, we adjusted for long-term time trends in PM2.5 
using a new exposure measure calculated as the residual rt

c of the 
linear regression of PM2.5 on time in 4-year intervals December 
2000–2004, 2005–2008, and 2009–2012:

PM year year tt
c

t
c= + + +− −β β β0 1 2005 08 2 2009 12

The term rt
c was subsequently used as the exposure measure 

in the log-linear model:

	 log logE Y h a rat
c c

t
c( )= ( )( )+0 β � (2)

Our second approach adjusted for long-term time trends in 
PM2.5 by adding a penalized spline term for time, δ c t( ), modeled 
as two knots per study year, to our base log-linear model:

	 log log logE Y N h a PM tat
c

at
c c

t
c( )= ( )+ ( )( )+ + ( )0 1 2β β δ � (3)

For our third approach, we included the temporal component 
of decomposed PM2.5 into the base model as follows:

	
log log log .E Y N h a PM PMat

c
at
c c

t( )= ( )+ ( )( )+ +0 1 2 5 2β β Temporal � (4)

where “temporal PM2.5” was calculated by decomposing PM2.5 
into its orthogonal temporal and spatiotemporal components as 
above and in the study by Greven et al.17

For each of these time-adjusted approaches, we ran models 
using data for study periods ranging between 3 and 13 (2000–
2012) years in length and examined whether MRRs varied by 
length of study period.

Sensitivity analyses

We ran several sensitivity analyses to examine alternate speci-
fications of our methods to adjust for long-term time trends in 
PM2.5. Specifically, for the calculation of residuals for our residu-
al-based approach, we adjusted for time as each year rather than 
for each 4-year interval as in our main analysis:

PM year year year rt
c

t
c= + + +⋅⋅ ⋅+ +β β β β0 1 2001 2 2002 12 2012 1

as well as for years grouped into 2-, 3-, and 6-year intervals:

PM year year year rt
c

t
c= + + +⋅⋅ ⋅+ +− − −β β β β0 1 2003 04 2 2005 06 5 2011 12 2

PM year year year rt
c

t
c= + + + +− − −β β β β0 1 2004 06 2 2007 09 3 2010 12 3

PM year rt
c

t
c= + +−β β0 1 2007 12 6

We subsequently used the residuals from these sensitivity 
analyses as exposure measures in our log-linear health mod-
els and compared their ability to control for confounding by 
time trends. Additionally, we assessed our ability to account for 
long-term time trends using penalized splines for time calculated 
using three, four, or five knots instead of the two knots used in 
our main analysis.

Results
We examined 20.7 million Medicare enrollees, observing 5.5 
million deaths between December 2000 and December 2012 
near 798 sites across the contiguous United States (Table  1). 
Monthly, our analyses include on average over 9 million enroll-
ees. PM2.5 concentrations varied regionally, with sites located in 
the East having the highest mean concentrations. Yearly PM2.5 
concentrations decreased steadily during our study period 
(Figure 1), with larger decreases in the East and West as com-
pared to Center. Declines in PM2.5 concentrations were steep-
est between 2000 and 2009, with yearly concentrations more 
uniform during 2010–2012. The correlation between PM2.5 and 
the residual-based exposure measure equaled 0.92, suggesting 
that this residual-based exposure measure explained most of the 
variation in PM2.5.

Association of PM2.5 and mortality

Base models

We found that a 10 µg/m3 increase in 1-year PM2.5 is signifi-
cantly associated with a 1.20 times (95% CI = 1.20, 1.21 per 
10 μg/m3) higher rate of mortality in our Medicare cohort when 
data from 2000 to 2012 were analyzed (Table 2). Associations 
varied by geographic region, with MRRs higher in the Central 
(1.27; 95% CI = 1.26, 1.28) and Eastern (1.26; 95% CI = 1.25, 
1.26) regions compared with the Western United States (1.12; 
95% CI = 1.11, 1.12). Associations were similar when models 
additionally adjust for behavioral covariates (Table S1; http://
links.lww.com/EE/A4), suggesting that behavioral covariates 
did not confound associations of PM2.5 and mortality.

Despite this, we showed potential confounding of the asso-
ciation of PM2.5 and mortality by unmeasured variables. When 
PM2.5 is decomposed into its spatiotemporal and temporal com-
ponents, we estimated larger MRRs for the temporal as com-
pared to spatiotemporal component of PM2.5 (Table S1; http://
links.lww.com/EE/A4) for both base and BRFSS-adjusted mod-
els, consistent with the previous study.17 In base models, e.g., 
a 10 μg/m3 increase in temporal PM2.5 corresponded to a 1.54 
times (95% CI = 1.52, 1.56) higher rate of mortality, while spa-
tiotemporal PM2.5 was associated with only a 1.07 times (95% 
CI = 1.06, 1.09) higher rate.

Table 1

Descriptive statistics of all-cause mortality for the period of December 2000 to December 2012.a

Variable West Center East United States

No. monitorsa 93 195 510 798
1-year PM

2.5
 (µg/m3)b 11.46 (4.57) 9.87 (2.37) 12.33 (2.68) 11.65 (3.09)

No. Medicare enrolleesa

 � Total 3,931,203 3,112,854 13,832,532 20,744,214
 � By monthb 1,739,901 (140,871) 1,254,360 (123,762) 6,062,825 (378,173) 9,057,086 (609,378)
No. deaths
 � Total 976,007 769,092 3,739,848 5,484,947
 � By monthb 6,731 (703) 5,304 (705) 25,792 (2,409) 37,827 (3,711)

aMonitors include those with 8+ calendar years of data, each having 10+ months with 4+ valid measurements. All beneficiaries living in ZIP codes with centroids within 6 miles of a monitor were included 
in the analysis.
bValues are means (SD).

http://links.lww.com/EE/A4
http://links.lww.com/EE/A4
http://links.lww.com/EE/A4
http://links.lww.com/EE/A4
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Evaluation of temporal confounding

We showed PM2.5-associated MRRs increase with the length 
of the study, consistent with the hypothesis of confounding by 
long-term time trends in PM2.5. MRRs were lowest for the 3-year 
study periods (1.12; 95% CI = 1.11, 1.14) and increase steadily 
with longer study periods, resulting in a 0.08 higher MRR for the 
13-year as compared to 3-year study period (Figure 2). Similar 
trends between MRRs and length of study period were observed 
when analyses were performed by geographic region, although 
these trends were less pronounced in the Central United States, 
consistent with the more gradual decline in PM2.5 concentrations 
in the Central Unites States over the 13-year period (Figure S1; 
http://links.lww.com/EE/A4).

When models were adjusted for long-term time trends, MRRs 
remain statistically significant (Table 2) but were slightly atten-
uated (Table S2; http://links.lww.com/EE/A4). For the residu-
al-based approach, we found the MRR to equal 1.04 (95% CI 
= 1.04, 1.04) per IQR increase in time-adjusted PM2.5, as com-
pared to 1.08 (95% CI = 1.08, 1.08) per IQR increase in the base 
model. MRRs estimated from the penalized spline- and decom-
position-based approaches were also attenuated, with MRRs of 
1.01 (95% CI = 1.01, 1.02) and 1.03 (95% CI = 1.02, 1.03) per 
IQR increase, respectively (Table S2; http://links.lww.com/EE/A4). 
While consistently lower, MRRs for each of the time-adjusted 
approaches follow the same regional patterns as with the base 
models, as time-adjusted MRRs were highest in the Central United 

States and lowest in the Western United States (Table 2; Figures 
S2–S4; http://links.lww.com/EE/A4).

When analyses were performed across varying study periods, 
we demonstrated that the residual-based approach produces 
MRRs that are nearly uniform (Figure 2). The residual-based 
MRRs for the 13- and 3-year study periods, e.g., were almost 
identical, with MRRs of 1.12 (95% CI = 1.11, 1.12) and 1.12 
(95% CI = 1.11, 1.14) for a 10 μg/m3 increase in exposure, 
respectively. In contrast to both the base and residual-based 
models, MRRs for the spline- and decomposition-based 
approaches decrease with longer study periods. MRRs from 
the spline-based approach decrease from 1.09 (95% CI = 1.07, 
1.10) for 3-year study period to 1.03 (95% CI = 1.02, 1.04) 
for 13-year study period. The decomposition-based approach 
shows a similar decline in MRRs, with MRRs for 3- and 13-year 
study periods equaling 1.11 (95% CI = 0.10, 1.12) and 1.06 
(95% CI = 1.06, 1.07), respectively.

Sensitivity analyses

Sensitivity analyses demonstrated that alternate calculations of 
residual-based PM2.5 exposures and of penalized splines produce 
similar MRRs. Residual-based exposures calculated by regress-
ing PM2.5 concentrations on time as 1-, 2-, or 3-year intervals 
result in similar MRRs as models controlling for time in 4-year 
intervals (Figure 3). Residual-based exposure with 6-year inter-
vals showed slightly higher and less-consistent MRRs for longer 

Figure 1. One-year average PM2.5 concentrations: December 2000 to December 2012.

Table 2

MRRs (95% confidence intervals) per 10 µg/m3 increase in 1-year moving average PM2.5
a for base and time-adjusted models: 

2000–2012.

Region Monitors Base modelb

Time-adjusted models

Residualc Penalized splined Decompositione

United States 798 1.20 (1.20, 1.21) 1.12 (1.11, 1.12) 1.03 (1.02, 1.04) 1.06 (1.06, 1.07)
West 93 1.12 (1.11, 1.12) 1.04 (1.04, 1.05) 0.91 (0.90, 0.92) 1.00 (1.00, 1.01)
Center 195 1.27 (1.26, 1.28) 1.20 (1.18, 1.21) 1.15 (1.13, 1.17) 1.18 (1.17, 1.19)
East 510 1.26 (1.25, 1.26) 1.16 (1.15, 1.16) 1.14 (1.13, 1.15) 1.11 (1.10, 1.11)

aExposures estimated as the 1-year moving average PM
2.5

 exposures for all models except for the residual-based time-adjusted model; exposures for the residual-based model estimated as the 1-year 
moving average of the residuals of PM

2.5
 regressed on year in 4-year intervals.

bLog-linear models adjusted for age and regions; all P < 0.001.
cModel adjusted for long-term time trends in PM

2.5
 using a new exposure measure based on the residuals of PM

2.5
 regressed on year in 4-year intervals.

dModel adjusted for long-term time trends in PM
2.5

 by adding a penalized spline term for time to the base model.
eModel adjusted for long-term time trends in PM

2.5
 by adding a term that describes only temporal variation in PM

2.5
, which was calculated by decomposing PM

2.5
 into its temporal and spatiotemporal 

components following Greven et al.17

http://links.lww.com/EE/A4
http://links.lww.com/EE/A4
http://links.lww.com/EE/A4
http://links.lww.com/EE/A4
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study periods, suggesting less reliability than with the other 
intervals. Residual-based exposures calculated using 4-year 
intervals, however, were more stable, as evidenced by lowest 
variation in MRRs across study period length. It is also nota-
ble that residual-based exposure using 4-year time intervals 
requires fewer parameters than 1-, 2-, or 3-year intervals, sug-
gesting greater statistical efficiency. For spline-based models, 
increasing the number of knots per year from two to three or 
four had little effect on the MRR, thus we selected two knots for 
better efficiency (results not shown).

Discussion
We showed consistent, statistically significant, and positive 
associations between 1-year PM2.5 exposures and the rate of 
all-cause mortality among 20.7 million Medicare beneficiaries 
living across the United States from 2000 to 2012. In our base 
models, the mortality rate ratio associated with a 10 μg/m3  
increase in 1-year average PM2.5 equaled 1.20 (95% CI = 1.20, 
1.21). Consistent with our hypothesis that long-term time trends 
in PM2.5 positively confound the association between PM2.5 and 
mortality, we found PM2.5-associated rates of mortality to be asso-
ciated with the length of the study period, with higher MRR per 

10 µg/m3 for 13-year as compared to 3-year study periods. Of the 
three examined approaches, we found the residual-based approach 
to best control for temporal confounding, as evidenced by its sta-
tistically significant and uniform MRRs across all study period 
lengths, with an MRR for the 3- and 13-year study period of 1.12 
(95% CI = 1.11, 1.14) and 1.12 (95% CI = 1.11, 1.12) per 10 µg/
m3 increase in exposure, respectively. Note, however, that based on 
our analysis alone, it is not possible to determine which approach 
is best suited to control for temporal confounding, indicating the 
need for further examination, possibly through a simulation study.

Our findings add to the body of evidence showing that long-
term PM2.5 exposures are associated with increased mortality,2–7,9–13 
lending additional support to findings from the American Cancer 
Society (ACS) cohort,2 the Nurses’ Health Study,5 and the Medicare 
cohort.4 Although no studies to date have explicitly examined the 
possible impact of temporal confounding on these associations, 
several studies have indirectly examined this possibility. In a study 
by Lepeule et al,6 e.g., the original21 and initial follow-up22 of the 
Six Cities Study were extended to include 11 additional years of 
follow-up, comprising 36 years in total (1974–2009). MRRs were 
estimated for the entire 36-year study period and for four, equally 
divided 9-year time periods. While overall PM2.5 concentrations 
decreased over the 36-year study period, this decrease was uni-
form neither by city nor over time. PM2.5 concentrations exhibited 
strong downward trends over time in only the three most polluted 
cities—Steubenville, Kingston-Harriman, and St. Louis, with these 
trends steepest and most consistent between 1979 and 1992 and 
to a lesser extent 2000–2009. The authors found an overall MRR 
for all-cause mortality of 1.14 (95% CI = 1.07, 1.22) for a 10 µg/
m3 increase in 1-year PM2.5. When data for the four 9-year time 
periods were analyzed, MRRs varied widely, with values of 1.06 
(95% CI = 0.96, 1.17) for 1974–1982, 1.32 (95% CI = 1.16, 1.50) 
for 1983–1991, 1.11 (95% CI = 0.98, 1.27) for 1992–2000, and 
1.19 (95% CI = 0.91, 1.55) for 2001–2009. Notably, MRRs were 
highest during the period when temporal trends in PM2.5 were 
strongest, providing some, albeit indirect, support for our findings 
of confounding by long-term temporal trends. The increased MRR 
for the last 9-year interval compared with the full 36-year MRR 
may reflect aging of the cohort.

Further support is provided by results from related studies 
by Janes et al,16 Greven et al,17 and Pun et al18 who decomposed 
PM2.5 into its temporal and spatiotemporal components and found 
higher and statistically significant MRRs for temporal as compared 
to spatiotemporal PM2.5. The authors concluded that differences 
in the MRRs associated with temporal and spatiotemporal PM2.5 
reflected residual confounding by temporally varying covariates. 
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Figure 2. MRRs per 10 μg/m3 increase in PM2.5 by length of study period: for base and time-adjusted models.

Figure 3. MRRs per 10 μg/m3 increase in PM2.5 by length of study period: 
residual-based model using different time intervals to control for temporal 
trends.
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Consistent with Greven et al,17 additional adjustment for coun-
ty-level BRFSS covariates did not reduce residual confounding, 
suggesting that the examined behavioral variables do not confound 
the PM2.5 mortality association. This finding, however, differs from 
that reported by Pun et al,18 who found that residual confounding 
decreased after adjustment for BRFSS covariates in models of PM2.5 
and mortality. This discrepancy likely results from the fact that the 
Pun et al18 analysis assessed residual confounding by decomposing 
both PM2.5 and BRFSS data into their temporal and spatiotemporal 
components, while we decomposed only PM2.5 since our time-ad-
justed models already control indirectly for temporal trends in 
BRFSS data. Together, these results suggest that temporal trends in 
confounding variables are important to consider as well.

Our findings of increasing MRRs with longer study periods 
suggest that long-term temporal trends in PM2.5 concentrations 
may be one source of this unmeasured confounding. We found 
residual-based exposures to successfully control for these time 
trends in PM2.5. The ability of residual-based exposures to con-
trol for these time trends in PM2.5 is consistent with previous 
studies.23–25 For example, Mostofsky et al25 used a residual-based 
approach to estimate the effect of PM2.5 constituents while con-
trolling for confounding by total amount of PM2.5. To do so, they 
regressed each constituent of interest on the total PM2.5 in a linear 
model and used the residual to estimate the effect of each indi-
vidual constituent while holding PM2.5 constant. This approach is 
similar to our residual-based exposure method, with the only dif-
ference being our focus on the effect of PM2.5 while controlling for 
the unmeasured variables associated with long-term time trends. 
Because the unmeasured confounders are not perfectly correlated 
with time, complete control of time (through indicator functions 
for each month) would have likely over-adjusted for any potential 
confounding, as observed when the residual model was based on 
time controlled in 1-, 2-, and 3-year intervals. On the other hand, 
using a coarser measure of time (such as 6-year intervals) may 
not sufficiently control for the unmeasured variables, resulting in 
a lack of independence between time trends and both PM2.5 and 
mortality. Our results suggest that the residual model controlling 
for time in 4-year intervals was able to provide MRR estimates 
that were least affected by study period length.

We found this residual-based method to perform better 
than the spline and decomposition approaches, both of which 
showed declining MRRs as study periods increased, suggesting 
that these methods over-controlled for long-term time trends. 
Further, by including terms for both PM2.5 and some adjustment 
for time in the model, the spline- and decomposition-based 
approaches may result in biased effect estimates, given collinear-
ities of PM2.5 and time.26 In our data, the correlations of PM2.5 
with both the spline of PM2.5 and decomposed PM2.5 varied with 
the length of study period, with correlations for PM2.5 and the 
spline of PM2.5 equaling 0.15 for 3-year periods and increasing 
to 0.44 for 12-year periods. Identical correlations were observed 
for PM2.5 and decomposed PM2.5. These results suggest that the 
bias in MRRs derived from the spline and decomposed PM2.5 
models increases as the study length increases.

Our results are limited by several factors. First, our log-linear 
models aggregated data by site and limited the number of strata 
for computational efficiency, thus limiting our ability to control 
for individual-level covariates. However, when we additionally 
adjusted for county-level behavioral covariates, we found similar 
MRRs, suggesting behavioral covariates did not confound associ-
ations (Table S1; http://links.lww.com/EE/A4). Second, individual 
exposure measurement error is unavoidable when using the moni-
tor level air pollution data. This exposure error is likely to be small, 
given results from studies that show that PM2.5 concentrations to be 
moderately uniform within a given county and ambient PM2.5 con-
centrations to be strong surrogates for personal PM2.5 exposure.27 
Thus, we expect any exposure error to bias observed associations 
toward the null and underestimate mortality risk estimates.28 Third, 
although bias may also be introduced by the “healthy worker 
effect” where subjects less susceptible to PM2.5 exposures remain in 

our study population for longer time periods, this bias would be in 
the opposite direction of the observed changes. Although our study 
could not examine the impact of temporal variation of PM2.5 com-
position on MRRs, compositional variability is unlikely to explain 
our findings given the strong dependence of MRRs on PM2.5 time 
trends and the inconsistent time trends in PM2.5-associated total 
carbon concentrations between 2000 and 2010 in the United 
States.29 Finally, while we found the residual model based on 4-year 
intervals to best control for temporal trends, further study, such as 
through a simulation study, is needed to confirm our findings.

Summary
We found significant associations between 1-year PM2.5 exposures 
and mortality. These associations were likely confounded by long-
term temporal trends in PM2.5. We successfully controlled for this 
confounding by using exposure measures based on the residual of 
PM2.5 regressed on time in 4-year intervals. Controlling for long-
term temporal PM2.5 trends, we found significant 11.7% increase 
in all-cause mortality among Medicare beneficiaries for a 10 μg/
m3 increase in PM2.5. This MRR was reduced compared to the 
model without controlling for the temporal confounding. These 
findings demonstrate the importance and need to account for 
temporal trends in future air pollution health effect studies.
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