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The Health Effects Institute (HEI) is pleased to have the opportunity to submit these 
comments to US EPA and the Clean Air Scientific Advisory Committee (CASAC) on the 
new draft Integrated Science Assessment for ozone. We are encouraged to see that the 
draft ozone ISA continues to adhere to the high standards of scientific quality and 
systematic review of the literature which has become a hallmark of EPA’s approach to 
meeting the requirements of Section 108 of the Clean Air Act. That section of the Act 
requires that such reviews “shall accurately reflect the latest scientific knowledge useful 
in indicating the kind and extent of all identifiable effects on public health or welfare 
which may be expected from the presence of such (criteria) pollutant in the ambient air.”  
 
As you are aware, HEI has produced a number of studies of air pollution and health to 
inform the review of the National Ambient Air Quality Standards (NAAQS) and we were 
pleased to see several of these studies cited in the draft ISA. We will not review the 
specific studies (though we stand ready to answer any questions that CASAC might have 
on them). Rather we wanted to focus in these comments on:  
 
1. The causality determinations in the draft ozone ISA, and  
2. EPA conclusions of several key health endpoints where HEI studies have contributed 
importantly to the evidence  
 
1. Causality Determinations HEI has followed closely the development and application 
of EPA’s criteria for assessing causality of different air pollutants on particular health 
outcomes since they were first applied in the review of the NAAQS for NOx in 2008. We 
have found that this approach has been enhanced significantly over previous reviews, 
especially because it includes:  
 

• Well stated criteria for causality determination presented a priori in the Preface of 
each ISA; 

• Careful evaluation of evidence from multiple disciplines: exposure assessment, 
toxicology, clinical studies, and epidemiology, rather than reliance on any one 
strand of evidence or solely on statistical causal analyses; and  

• Explicit acknowledgement of the uncertainties attendant in each case.  
 



The result of this process is an open presentation of the literature and assumptions 
applied, and the opportunity for both CASAC and the broader community to review and 
raise questions about the determinations.  
 
Given this opportunity, HEI has reviewed the latest determinations in the draft ozone 
ISA, which in general seem well and carefully done. We do have comments on the 
certain determinations summarized in the ISA, broadly agreeing with their conclusions 
but offering some remarks.  
 
Evidence for short term respiratory effects from chamber studies:  The ISA summarizes 
the literature on short term respiratory effects, specifically on changes in measures of 
pulmonary function, which has bene widely reported and which has played a central role 
in establishment of the ozone standard. The unresolved question has been at how low a 
level can such effects be observed and in what populations. The HEI-supported MOSES 
study has provided useful information and we are pleased to see it cited in the ISA, and 
that it helps strengthen the determination of a causal relationship for the respiratory 
effects (See HEI MOSES report and investigator publications). 
 
In HEI’s Research Report 192, Multicenter Ozone Study in oldEr Subjects (MOSES): 
Part 1. Effects of Exposure to Low Concentrations of Ozone on Respiratory and 
Cardiovascular Outcomes, 87 healthy subjects, average age 60, were exposed to three 
levels of ozone, namely clean air control, and 70 and 120 ppb of ozone.  This multicenter 
study incorporated extensive quality assurance and control procedures and measured a 
wide variety of end points. Ozone exposure caused concentration-related reductions in 
lung function and presented evidence for airway inflammation and injury. Though a 
couple of other studies have made observed similar effects at low levels, the MOSES 
study stands out as having exposed the largest number of subjects, under well 
characterized conditions, and to some of the lowest ozone concentrations. And these 
observations are all the more noteworthy because healthy older individuals are less 
responsive to ozone-induced lung function effects than are healthy young individuals 
 
Lack of Evidence for Cardiovascular Effects after Short-term Exposure.  The question 
of the potential cardiovascular effects of ozone has been an important concern. We agree 
with the overall conclusion in the ISA that lowers the strength of evidence to “suggestive 
of a causal relationship” from the previous “Likely to be a causal relationship.” Again, 
we are pleased to see that the HEI MOSES study has provided useful information for this 
endpoint as well. 
 
HEI’s primary motivation for HEI’s MOSES study was to evaluate whether short-term 
exposure of older, healthy individuals to ambient levels of ozone induces acute 
cardiovascular responses.”  Using a cross-over design, this multicenter study efficiently 
collected information on a comprehensive array of cardiovascular endpoints, probing a 
variety of potential mechanistic or pathophysiological pathways, as well as several 
respiratory endpoints, and found that a 3-hour ozone exposure at 70 or 120 ppb did not 
lead to statistically significant changes in cardiovascular endpoints in this healthy group 
of 87 older participants undergoing moderate exercise.  



 
Exposure to Ozone and Mortality:  The draft ozone ISA reviews a wide range of newer 
epidemiologic studies of ozone exposure and health, an area where study results have not 
been consistent, and concludes that the overall evidence is “suggestive of, but not 
sufficient to infer, a causal relationship.” One of the considerations in this context is 
whether there is evidence for robust associations at levels of exposure below the current 
NAAQS, i.e. 70 ppb. While there had been a few earlier studies reporting such 
associations, these were relatively small in number, and questions remained about 
potential exposure measurement error at the lowest levels and the absence of information 
on potential confounders. These issues are being addressed in three HEI funded studies 
under our Health Effects at Low Levels of Air Pollution program, particularly a study 
based on the Medicare population in the US, whose results have been published in the 
open literature and cited in the ISA.  
 
After a rigorous peer-review of the results of the first two years of this research project, 
HEI has very recently published these early results, along with a commentary, prepared 
by a specially appointed review panel (Research Report 200, Assessing Adverse Health 
Effects of Long-Term Exposure to Low Levels of Ambient Air Pollution: Phase 1, 
Dominici et al).  Briefly, Francesca Dominici and her colleagues have analyzed data from 
61 million Medicare enrollees, between the years 2000 and 2012, using exposure 
estimates based on sophisticated hybrid models with a resolution of 1 km2 which 
included populations living in less well monitored areas. The initial results of these 
analyses – for both long and short term exposures – suggest an association between with 
all-cause mortality in two pollutant analysis – including at levels below the current ozone 
NAAQS. Substantial additional work is underway examine exposure measurement error, 
explore the role of various confounders, and to test causal inference models. The analyses 
are also being extended to 2016, making this study using not only the largest population 
but also one using the most recent air quality and health data. 
 
We believe that the evidence for an association between ozone exposure and an increase 
in mortality is getting stronger. However, the additional work HEI is supporting under its 
Low Exposure program and other studies would help shed light on the remaining 
uncertainties as well as clarify the nature of such relationship.   
 
HEI is attaching the Statements and Commentaries for this report to these Comments on 
the Ozone ISA and will respectfully request that CASAC, recognizing that this involves 
further intensive HEI review of studies already cited in the draft ozone ISA, would 
consider including this HEI Research Reports 200 in the final version of the ozone ISA. 
  
CONCLUSION  
 
Thank you again for the opportunity to provide these comments. We would be pleased to 
provide any additional assistance to EPA and CASAC in its review process, and/or 
answer any additional questions you may have about these comments, or the range of 
other HEI Research Reports under consideration in the Draft ozone ISA. 



Preprint 

11/12/2019 

  1 

 

 

 

 

ATTACHMENT 1 
 

Statement and Commentary on HEI Research 

Report 200 

 

by HEI’s Low-Exposure Epidemiology Studies Review Panel 

 

Research Report 200, Assessing Adverse Health Effects of Long-

Term Exposure to Low Levels of Ambient Air Pollution: Phase 1, 

Dominici et al.*† 

 

*Dr. Francesca Dominici’s 4-year study, “Assessing Adverse Health Effects of Long-Term 

Exposure to Low Levels of Ambient Pollution,” began in March 1, 2016. The Phase 1 draft 

Investigators’ Report from Dominici and colleagues was received for review in October 2018. 

A revised report, received in February 2019, was accepted for publication in March 2019. 

During the review process, HEI’s Low-Exposure Epidemiology Studies Review Panel and the 

investigators had the opportunity to exchange comments and to clarify issues in both the 

Investigators’ Report and the Review Panel’s Commentary. As the principal investigator of this 

study, Dr. Francesca Dominici, who is a member of the HEI Research Committee, was not 

involved in its selection for funding or in the oversight process. 

 

†
This document has not been reviewed by public or private party institutions, including those 

that support the Health Effects Institute; therefore, it may not reflect the views of these parties, 

and no endorsements by them should be inferred. 

 

Health Effects Institute, Boston, Massachusetts  
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Statement 

 
by HEI’s Low-Exposure Epidemiology Studies Review Panel 

 

 

 
Dominici et al., Assessing Adverse Health Effects of Long-

Term Exposure to Low Levels of Ambient Air Pollution: 

Phase 1 

 

 
 

 

 

 

 

 

This Statement, prepared by the Health Effects Institute, summarizes a research project funded by 

HEI and conducted by Dr. Francesca Dominici at the Harvard T.H. Chan School of Public Health, 

Boston, Massachusetts, and colleagues. Research Report 200 contains both the detailed 

Investigators’ Report and a Commentary on the study prepared by the HEI’s Low-Exposure 

Epidemiology Studies Review Panel. 
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What This Study Adds 

 
 

• This study is part of an HEI program to address questions regarding potential associations 

between air pollution exposure and health outcomes at low ambient air pollution levels, 

particularly at levels below the current U.S. national air quality standards. 

• Dominici and colleagues developed hybrid, U.S.-wide models using machine learning to 

estimate outdoor fine particle (particulate matter  2.5 µm in aerodynamic diameter, or 

PM2.5) and ozone (O3) concentrations at 1 km × 1 km grids, by combining monitoring, satellite, 

transport modeling output and other data. 

• They obtained Medicare data for 61 million Americans, ages 65 years and older, who enrolled 

between 2000 and 2012. Using both cohort and case–crossover designs, they analyzed the 

association between long-term and short-term outdoor PM2.5 and O3 exposures and mortality. 

• The investigators report positive associations between nonaccidental, all-cause mortality and 

PM2.5 and O3 at low concentrations, including below the U.S. national ambient air quality 

standards (annual 12 µg/m3 for PM2.5 and 8-hour 70 ppb for O3). 

• These associations were robust to most adjustments for potential confounding by a number of 

lifestyle and behavioral factors in the cohort analyses. Sensitivity analyses did not meaningfully 

impact the findings of association. 

• HEI’s Low-Exposure Epidemiology Studies Review Panel noted, however, that several 

important issues still need to be addressed by the investigators regarding these results during the 

remainder of this project. In particular, the potential for confounding by time and the 

complexities introduced by the use of different spatial scales for the exposure and health data 

need to be explored in more detail, and the causal inference methods need to be more fully 

applied. 

• The Panel concluded that Dominici and colleagues have conducted an extensive and innovative 

set of initial analyses in these extraordinarily large air pollution and health data sets. While initial 

conclusions may be drawn from these analyses, the Panel awaits the further analyses that are 

underway before reaching full conclusions on the air pollution and public health implications of 

this important research. 
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INTRODUCTION 

The levels of most ambient air pollutants have declined significantly in the United States during 

the last few decades. Recent epidemiological studies, however, have suggested an association 

between exposure to ambient levels of air pollution — even below the current U.S. National 

Ambient Air Quality Standards (NAAQS) — and adverse health effects. In view of the importance 

of such research findings, the Health Effects Institute in 2014 issued a request for applications (RFA 

14-3), seeking to fund research to assess the health effects of long-term exposure to low levels, 

particularly below the NAAQS, of ambient air pollution and to develop improved statistical methods 

for conducting such research. HEI funded three studies under this program; each study used state-of-

the-art exposure methods and very large cohorts. The studies were based in the United States, 

Canada, and Europe, thus providing a comprehensive cross-section of high-income countries where 

ambient levels are generally low.  

The low-exposure-level studies are scheduled to be completed in 2020. In 2018, in order to 

inform the ongoing review of the NAAQS for fine particles (PM2.5) and ozone (O3), HEI requested 

Phase 1 reports from the U.S. (Francesca Dominici) and Canadian (Michael Brauer) investigators. 

HEI’s formed a special panel, the Low-Exposure Epidemiology Studies Review Panel, to evaluate 

the studies’ methods, results, conclusions, and their strengths and weaknesses. This Statement 

focuses on the study by Dr. Francesca Dominici, from the Harvard T.H. Chan School of Public 

Health, Boston, MA, and her colleagues titled, “Assessing Adverse Health Effects of Long-Term 

Exposure to Low Levels of Ambient Air Pollution.” 

 

APPROACH 

Aims: The aims of the Dominici study were to (1) develop hybrid, high-resolution, exposure-

prediction models to estimate long-term exposures to PM2.5 and O3 levels for the continental United 

States; (2) develop and apply causal inference methods; (3) estimate all-cause mortality associated 

with exposure to ambient air pollution for all U.S. Medicare enrollees between 2000 and 2012 using 

a cohort (long-term) and a case–crossover (short-term) design; and (4) develop tools for data sharing, 

record linkage, and statistical software.  

Data and Methods: Dominici and colleagues developed hybrid air pollution concentration models 

for the contiguous United States for the period 2000 to 2012, using data from a variety of sources, 
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including satellite data, chemical transport models, land-use and weather variables, and routinely 

collected air monitoring data from the U.S. EPA.  

With this large amount of data and using multiple approaches and input variables, the 

investigators developed a hybrid model to estimate daily PM2.5 and O3 concentrations at 1 km × 1 km 

grids across the continental United States. Complex atmospheric processes were addressed using a 

neural network that modeled nonlinearity and interactions. The neural network was trained using 

data covering the study period, and the predictions were validated against 10% of the EPA air 

monitors left out of the model. A similar approach was used to estimate and validate a model to 

predict O3 concentrations during the warm months (April through September) of each study year. 

Health data were obtained from the Centers for Medicare and Medicaid Services for all Medicare 

enrollees for the years 2000 to 2012, which represents more than 96% of the U.S. population 65 

years of age and older (see Statement Table). The study obtained records for all Medicare enrollees 

(~61 million), with 460 million person-years of follow-up and 23 million deaths. They also obtained 

covariate information from the Medicare Current Beneficiary Survey (MCBS; ~57,000 people), an 

annual phone survey of a nationally representative sample of Medicare beneficiaries, with 

information on more than 150 individual-level risk factors, including smoking and body mass index. 

 

Statement Table: Key Features of the Dominici et al. Study 

Overall 

Medicare – Study Population 60.9 million 

MCBS Population 57,200 

Study Period 2000–2012 

 

Case–Control Study 

Follow-up period 460.3 million person-years  

Deaths 22.6 million 

PM2.5 Average Concentration 11.0 µg/m3 

Ozone Average Concentration 46.3 ppb 

 

Case–Crossover Study 

Case Days 22.4 million 

Control Days 76.1 million 

PM2.5 Average Concentration 11.6 µg/m3 

O3 Average Concentration 37.8 ppb 
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Using the Medicare data and cohort and case–crossover designs, they investigated the 

association between exposure to PM2.5 and O3 and all-cause mortality in two-pollutant analyses, 

including separate analyses for low pollutant concentrations. For the cohort study, they performed 

survival analyses using the Andersen-Gill method, a variant of the traditional Cox proportional 

hazards model that incorporates spatiotemporal features by allowing for covariates to vary year to 

year. The investigators developed concentration–response curves by fitting a log-linear model with 

thin-plate splines for both pollutants while controlling for important individual and ecological 

variables including socioeconomic status and race. For the case–crossover study, the case day was 

defined as the date of death, with exposure defined as the mean of the ambient concentration on that 

day and the day before; this was compared to exposure on three predefined control days. They fitted 

a conditional logistic regression to all pairs of case and matched control days, thus estimating the 

relative risk of all-cause mortality associated with short-term exposure to PM2.5 and O3. They also 

performed subanalyses to explore the health effects at lower levels of exposure.  

To assess whether any subgroups within the cohort study were at higher or lower risk of 

mortality associated with either long-term or short-term air pollution exposure, the investigators 

fitted the same statistical models to certain population subgroups (e.g., male vs. female and white vs. 

black). To explore the robustness of the results from the cohort analysis, they performed sensitivity 

analyses and compared any changes in risk estimates with differences in confounder adjustment and 

estimation approaches. Finally, since Medicare data do not include information on many important 

individual-level covariates, the investigators utilized data from the Medicare Current Beneficiary 

Statement to examine how the lack of adjustment for these risk factors could have affected the risk 

estimates for the Medicare cohort.  

 

RESULTS 

Dominici and colleagues report overall good performance of the models for estimating PM2.5 and 

O3 concentrations, with overall R2 values of 0.84 and 0.80, respectively. For PM2.5, the average 

annual concentration was 11.0 µg/m3 during the study period, 2000–2012. Performance of the model 

varied between different geographical regions and seasons; the highest PM2.5 concentrations were 

predicted to be in California and the eastern and southeastern United States, and model performance 

was better in the eastern and central United States than in the western part of the country. And, the 

PM2.5 model performed best during the summer. For O3, the average of 8-hour-daily concentrations 
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during the warm season was 46.3 ppb during the study period. O3 concentrations were highest in the 

Mountain region and in California and lower in the eastern states. The average concentrations of 

PM2.5 decreased during the study period, but O3 concentrations remained more or less the same. 

Annual PM2.5 and warm-season O3 concentrations were only weakly correlated. 

The 2000–2012 cohort of Medicare beneficiaries provided a very large population for studying 

association with long-term effects of exposure to ambient air pollution. In two-pollutant analyses of 

long-term effects, Dominici and colleagues report a 7.3% higher risk of all-cause mortality for each 

10-µg/m3 increase in annual average PM2.5 concentrations and a 1.1% higher risk of mortality for 

each 10-ppb increase in average O3 concentrations in the warm season. At low concentrations — less 

than 12 µg/m3 PM2.5 and less than 50 ppb O3 — the risk was 13.6% for PM2.5 and 1.0% for O3 for 

each 10 µg/m3 and 10 ppb increase in concentrations, respectively The concentration–response 

relationships from the two-pollutant models showed almost linear curves, with no suggestion of a 

threshold down to 5 µg/m3 PM2.5 and 30 ppb O3. 

In subgroup analyses for long-term PM2.5 exposure, the investigators found larger estimates of 

effect among males and among Hispanics, Asians, and particularly African Americans, compared 

with whites. Individuals with low socioeconomic status, as indicated by eligibility for Medicaid, 

appear to have a slightly higher risk per unit of PM2.5 exposure. For long-term O3 exposure, the 

subgroup analysis showed that the effect estimates were higher for Medicaid-eligible enrollees and 

slightly higher for whites, but these analyses also produced puzzling hazard ratios of less than 1 for 

certain subgroups, including Hispanics and Asians, and particularly for Native Americans, than the 

overall population.   

For short-term exposures, the investigators observed a 1.05% greater risk of mortality in two-

pollutant models for a 10-µg/m3 increase in PM2.5 concentrations and a 0.51% greater risk for a 10-

ppb increase in 8-hour warm-season O3 concentration. (Pollutant levels were averaged over the 

current and previous day.) At low concentrations (below 25 µg/m3 of PM2.5 and below 60 ppb of O3), 

the associations remained elevated for both pollutants (1.61% for PM2.5 and 0.58% for O3). The 

concentration–response curves showed the relative risk increasing sharply for both pollutants at a 

relatively low concentration and then leveling out at higher concentrations. The investigators 

observed evidence of effect modification for several variables, including a higher PM2.5 mortality 

risk for females than for males.  
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INTERPRETATION OF RESULTS  

In its independent review of the study, HEI’s Low-Exposure Epidemiology Studies Review 

Panel noted that the report by Dominici and colleagues summarizes an impressive amount of work 

completed in the first part of this HEI project. Particularly strong aspects of this work include the 

extremely large, national cohort, with high-resolution exposure assessment and development and 

application of state-of-the-art statistical techniques. The Panel also noted that additional research, 

including further development of causal methods that would properly allow for the complexities in 

the design of the studies and nature of the data, is currently ongoing. 

Exposure Assessment: The use of large, diverse, and existing data sets to generate estimates of 

PM2.5 and O3 concentrations on a 1 km × 1 km national grid for the entire continental United States 

(~8 million km2) is impressive, and allowed the investigators to estimate concentrations in areas 

where air monitors are sparse. However, as with any exposure assessment, it is critical to consider 

the potential for exposure prediction errors.  

Despite steps to correct for regional and compositional differences, both geographical and 

temporal variability in the errors of the concentration estimates persisted in the final estimates for 

PM2.5 and O3. The exposure model was trained by leaving out 10% of EPA air quality monitors. But 

because these monitors are generally located in areas with high population density, it is possible that 

the model is prone to larger error in areas with lower population density — which generally have 

lower PM2.5 concentrations and therefore are of greater interest in the context of this study. And, 

based on earlier work by the researchers that provides the basis for the exposure models used in these 

studies, it appears that the model may systematically underpredict concentrations for unexplained 

reasons. The nature, sources, size, and potential impact of the potential errors discussed here are 

important to understand and deserve attention in future analyses. 

Long-Term Health Effects, Cohort Study: Using the massive database of all Medicare recipients 

during 2000 to 2012, and combining it with the equally large exposure predictions, Dominici and 

colleagues have performed a study with extraordinary statistical power to investigate the association 

between all-cause mortality and long-term exposure to a range of PM2.5 and O3 levels. That they 

observed an association between annual average concentrations and mortality at higher 

concentrations was not the new finding of this research, but the findings at low levels, particularly at 

levels below the current NAAQS, are novel and potentially important.  

The greatest challenge to the internal validity of this study, as for all observational studies, is the 

potential for confounding, which can bias the results. To address such concerns, the investigators 
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performed numerous analyses with some 20 covariates. They also utilized findings from a smaller 

Medicare cohort that had a much richer set of potential confounding variables to assess the likely 

impact of having only a limited number of covariates in the main cohort analysis. In addition, to 

allow for the effects of time-dependent covariates known to vary from year to year, they utilized a 

variant of the classic Cox proportional hazards model, the Andersen-Gill formulation.  

However, this is a complex study. Health and personal characteristics are available for 

individuals, but ambient air pollutant exposure is estimated at the ZIP code level (averaged from the 

1 km × 1 km spatial scale of the prediction model). Additionally, the ZIP code scale is the smallest 

spatial unit at which individual residential and other covariate information is available. These factors, 

coupled with confounders that can act at the level of the individual, the community, or the regional 

environment, result in a complex hybrid model. These issues pose important challenges for the next 

phase of the work planned by the investigators, and the causal inference methods under development 

will need to focus on these challenges.  

Based on the current results, the Panel offers the following comments most relevant to the cohort 

analyses. The investigators performed various analyses to explore the potential impact of 

confounding; however, the Panel noted several areas with a potential for residual confounding in the 

cohort study. For example, some results from the subgroup analyses are puzzling, particularly the 

dramatically higher effect of PM2.5 in African Americans and the negative (protective) effects of O3 

for Native Americans, Hispanics, and Asians.  

Although the investigators have used the Andersen-Gill formulation to better model time-

dependent variables, the Panel’s biggest concern relates to the problem of potential for temporal 

confounding, with both overall nonaccidental mortality and PM2.5 levels declining steadily over the 

period of the study, 2000–2012. Because this is an open cohort (new individuals enter the cohort as 

they enroll for Medicare), age — which is controlled in the analyses — is not necessarily strongly 

correlated with calendar time. As a result, confounding could occur because of the contributions of 

both age and calendar time. The Panel believes that without accounting for confounding by time, the 

findings of the long-term exposure study should be viewed with caution. 

The Panel also has concerns about the impact of the likely exposure misclassification and 

confounding related to the hybrid nature of the study but appreciates that exposure measurement 

error correction methodology for spatially varying pollutants and methods to address confounding in 

such a complex study setting are still in their infancy. Additionally, the Panel notes that data on 

individual health-related behaviors, such as smoking, diet, and exercise, do not capture the full extent 

of variability in the behaviors, such as geographic variability. Finally, the presence of other 
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pollutants — such as NO2 — may also confound the associations between PM2.5 and O3 and 

mortality. 

Another important issue in interpretation of these results is related to the very large population 

studied here, and consequently the very high apparent precision of the results (i.e., the very small 

confidence intervals). Because the impact of bias and model misspecification is not reflected in 

standard uncertainty measures, one should be cautious about over-interpreting the narrow confidence 

intervals. The Panel’s comments and concerns about potential impacts of bias and of unmeasured 

confounding should be viewed in this broader context.  

Short-Term Health Effects, Case-Crossover Study: The second study in this report uses a case–

crossover design — a variant of the time-series design — to evaluate short-term effects of low-level 

air pollution in the Medicare population. One advantage this study design has over the long-term 

design is that it is based on variation in exposure and mortality experienced by an individual over 

short periods of time (days, rather than years). Therefore, only confounding factors that vary over 

short periods of time, such as weather, are of potential concern, rather than the much larger array of 

potential confounders that either do not vary with time or have long-term trends. On the other hand, 

by design, time-series analyses only address the immediate impact of air pollution on mortality rather 

than the pollutants’ role in the development of chronic morbidity and subsequent mortality. 

Dominici and colleagues report a relative risk increase of 1.05% and 0.51% in daily mortality 

rate for each 10-µg/m3 increase in PM2.5 and 10-ppb increase in O3, respectively. The concentration–

response analyses for PM2.5 and O3 suggest a nonlinear relationship, with a steeper slope at low 

concentrations and flattening at higher concentrations. They have also investigated effect 

modifications for a range of variables. For example, they report that the mortality effect of short-term 

exposure to PM2.5 is greater in women than in men, in contrast to the finding in the cohort study. The 

effects in other subgroup analyses were generally not significant, except Medicaid eligibility. Also, 

NO2 — another time-varying covariate — was not included in these analyses.  

Causal Modeling: There is increasing interest in research on casual inference methods because of 

the challenges in accounting for confounding in the preceding analyses of observational data, and 

Dominici and colleagues are devoting significant effort to the development and extension of two 

such methods.  

In the first method, the investigators have developed a generalized-propensity-score approach for 

confounding adjustment along with a regression calibration method to address exposure 

measurement error in health models. In the second approach, they have developed a new Bayesian 
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causal approach, known as local exposure–response confounding adjustment, to estimate exposure–

response curves accounting for differential effect of confounders at different levels of exposure. Both 

of these approaches serve as potentially useful starting points, and the Panel notes that current 

applications do not address the concerns raised about the long-term and short-term studies — in 

particular, concerns about residual confounding and impacts of the complex hybrid nature of the 

study designs — and so it looks forward to the full development and applications of these methods to 

the health analyses.  

Sharing of Models and Data: Dominici and colleagues have made a special effort to make available 

their data, workflows, and analyses, and have posted these at a secure high-performance computing 

cluster with the objective of developing an open science research data platform. Additionally, the 

codes and software tools are publicly available from another depository. The investigators’ work in 

these areas will continue. The Panel finds these efforts praiseworthy and encourages the Dominici 

team to continue sharing the unique resources they have developed. 

 

CONCLUSIONS 

Using very large air pollution model and health datasets, Dominici and colleagues have reported 

initial results using two types of analysis — a cohort analysis of long-term exposures and a case–

crossover analysis of short-term exposures. They and found positive associations of both PM2.5 and 

O3 with all-cause mortality, with associations extending to concentrations below the current NAAQS 

and with little evidence of a threshold. The investigators also conducted a range of sensitivity 

analyses and controlled for many confounders; these did not meaningfully change the initial findings 

of associations. These initial analyses are thorough and comprehensive, and make a valuable 

contribution to the literature. 

As extensive as these analyses are, as noted by the Panel and by the investigators, there are 

several key questions that need to be investigated further before drawing firmer conclusions. 

Particularly important among these are (1) issues around the potential for confounding by time trends 

and other variables, including other pollutants, such as NO2, and geographical patterns in exposure 

and health status; (2) impact of the different spatial scales of the variables in both the long-term and 

short-term the analyses, and the resulting complex quasi-ecologic (hybrid) nature of the models, with 

the potential for exposure misclassification and residual confounding; and (3) extension of their work 

on the development, testing, and application of causal inference methods in the full study population.  
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Dominici and colleagues have performed a set of extensive and creative analyses in the largest 

air pollution and health databases to date. While initial conclusions may be drawn from these first 

analyses, the Panel will wait for the planned extensive further analyses to be completed before 

reaching full conclusions on the air pollution and public health implications of this important 

research. 
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INTRODUCTION 

This Commentary was prepared by the HEI Low-Exposure Epidemiology Studies Review Panel 

for the study “Assessing Adverse Health Effects of Long-Term Exposure to Low Levels of Ambient 

Pollution.” This special Panel was convened to review HEI-funded studies on the health effects of 

exposure to low levels of ambient air pollution. The Commentary includes the scientific and 

regulatory background for the research, the Panel’s evaluation of the Phase 1 report from the 

investigator team led by Dr. Francesca Dominici, and the Panel’s conclusions. It is intended to aid 

the sponsors of HEI and the public by highlighting both the strengths and limitations of the study and 

by placing the Investigators’ Report into scientific and regulatory perspective. 

 

SCIENTIFIC AND REGULATORY BACKGROUND 

The setting of ambient air quality standards — at levels considered adequate to protect public 

health — is a central component of programs designed to reduce air pollution and improve public 

health under the U.S. Clean Air Act (U.S. CAA*), and similar measures in Europe and around the 

world. Although the process for setting such standards varies, they all contain several common 

components:  

• Identifying, reviewing, and synthesizing the scientific evidence on sources, exposures, and 

health effects of air pollution;  

• Conducting risk and policy assessments to estimate what public health effects are likely to be 

seen at different levels of the standard;  

• Identifying and setting standards based on scenarios considered in the risk analysis;  

• Air quality monitoring to identify geographic areas that do not meet the standards; and,  

• Implementing air quality control interventions to reduce ambient air concentrations to meet the 

standards.  

 

SETTING NATIONAL AMBIENT AIR QUALITY STANDARDS UNDER THE U.S. CAA 

The U.S. CAA requires that in setting the National Ambient Air Quality Standards (NAAQS), 

the U.S. Environmental Protection Agency (U.S. EPA) Administrator review all available science 

and set the NAAQS for all major (the “criteria”) pollutants (including ozone [O3], particulate matter 
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[PM], and nitrogen dioxide [NO2]) at a level “requisite to protect the public health with an adequate 

margin of safety.” In practice, since 2008 that review has had two principal steps: 

1. Synthesis and evaluation of all new scientific evidence since the previous review in what is now 

called an Integrated Science Assessment. This document reviews the broad range of exposure, 

dosimetry, toxicology, mechanism, clinical research, and epidemiology evidence. It then — 

according to a predetermined set of criteria (U.S. EPA 2015) — draws on all lines of evidence to 

make a determination of whether the exposure is causal, likely to be causal, or suggestive, for a 

series of health outcomes. 

2. Assessment of the risks based on that science is then conducted in a Risk and Policy Assessment. 

This further analysis draws on the Integrated Science Assessment to identify the strongest 

evidence — most often from human clinical and epidemiological studies — of the lowest 

concentration levels at which health effects are observed, the likely implications of such levels 

for health across the population, and the degree to which the newest evidence suggests that there 

are effects observed below the then-current NAAQS for a particular pollutant.  

The Risk and Policy Assessment also examines the uncertainties around estimates of health 

impact, and the shape of the concentration–response curve, especially at levels near and below 

the then-current NAAQS. Although a range of possible shapes of the concentration–response 

curves has been considered, including whether there is a threshold at a level below which effects 

are not likely, the U.S. EPA’s conclusions in these reviews thus far have not found evidence of a 

threshold (although studies to date have not always had the power to detect one) (U.S. EPA 

2004, 2013). Also, although the standard is set, according to statute, to protect public health with 

an adequate margin of safety, it has been generally understood that there are likely additional 

health effects below the NAAQS, although their presence and magnitude are more uncertain. 

Both of these documents are subjected to extensive public comments and reviewed by the Clean 

Air Scientific Advisory Committee (CASAC), which was established under the U.S. CAA. CASAC 

is charged with peer reviewing the documents — which includes providing guidance to the 

Administrator on the strength and uncertainties in the science and advising on alternative scenarios 

for retaining or changing the NAAQS.  
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EVOLUTION OF THE NAAQS 

The reviews of the criteria pollutants have been ongoing for nearly 50 years, since the passage of 

the Clean Air Act Amendments of 1970. As the science has evolved, each subsequent review has 

examined the strength of the evidence for retaining or tightening the NAAQS. Although the process 

has frequently resulted in a decision to retain the then-current NAAQS, the NAAQS of both O3 and 

fine PM (particulate matter 2.5 µm in aerodynamic diameter, or PM2.5) have seen substantial 

revisions, especially over the last twenty years: 

O3    Starting in 1997, the NAAQS was converted from a 1-hour maximum standard to a standard 

averaged over 8 hours. In 1997, the NAAQS was set at 80 ppb; subsequently in 2008 it was lowered 

to 75 ppb, and then in 2015 to 70 ppb. Although there was epidemiological evidence of effects at or 

near these levels, the changes relied heavily on a series of carefully conducted human controlled-

exposure studies. 

PM2.5    In 1997, based on dosimetric and biological information suggesting that fine particles less 

than or equal to 2.5 µg in diameter (PM2.5) were a more appropriate indicator than PM10, the U.S. 

EPA for the first time proposed and established a NAAQS for PM2.5. It set the annual standard at 15 

µg/m3 in part as a result of the new long-term cohort evidence of association of PM2.5 with adverse 

health effects (Dockery et al., 1993; Pope 1995) That was subsequently further reviewed in 2006 

with no change and again in 2012, when the NAAQS, based on additional epidemiological evidence, 

was reduced to 12 µg/m3 (U.S. EPA 2016). 

 

IMPACT OF THE NAAQS  

With the establishment of these standards, a host of national and regional regulatory actions 

began to reduce emissions from electric power plants, factories, motor vehicle, and other sources. As 

a result, there has been a steady and marked decline of ambient concentrations, so that much of the 

United States now attains the NAAQS (see, for example, the trend in PM2.5 concentrations in the 

Commentary Figure.)  
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Commentary Figure. Trends in PM2.5 concentration from 2000 to 2018 (seasonally weighted 

annual average) as monitored by the U.S. EPA (data from U.S. EPA). 

 

ADVENT OF RECENT STUDIES OBSERVING ASSOCIATIONS BELOW THE NAAQS 

As the data on levels of PM2.5 improved over the course of the first decade of this century, new 

studies began to emerge starting in 2012 (e.g., in Canada and New Zealand) suggesting that 

associations of PM2.5 and mortality could be observed down to levels well below the NAAQS of 12 

µg/m3 (Crouse et al. 2012; Hales et al. 2012). These studies found robust associations, with some 

evidence of even steeper slopes of effect at the lowest levels, findings which, if replicated in other 

populations and by other investigators, could change the basis for future determinations of the levels 

at which to set the NAAQS and other air quality standards.  

At the same time, they posed several questions, for example: 

• Would the results be robust to the application of a range of alternative analytic models and their 

uncertainty? 

• Could other important determinants of population health such as age, socioeconomic position, 

health status, and access to medical care, as well as differences in air pollution sources and time–

activity patterns modify or confound the associations seen?  

• Would the results change if risk estimates corrected for the effects of important potential 

confounding variables, such as smoking, in the absence of such data at the individual level? 

• What might be the effects of co-occurring pollutants on health effect associations at low ambient 

concentrations? 
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 As described in the Preface in this volume, the advent of these studies and the desire to 

address these important questions formed the basis for HEI’s decision in 2014 to issue a Request for 

Applications (RFA 14-3), which sought and ultimately supported this study by Dr. Dominici and 

colleagues and two other studies that make up HEI’s program to Assess Adverse Health Effects of 

Long-Term Exposure to Low Levels of Ambient Air Pollution. 

The Dominici research project encompasses a number of goals, which comprise nationwide 

exposure assessment and health impact studies, and causal modeling. Undergirding these studies is 

an effort to make the methods and data from this project available to the scientific community. The 

following evaluation is based on the initial results of the study described in the Phase 1 Investigators’ 

Report. 

 

SUMMARY OF THE STUDY 

SPECIFIC AIMS 

The full Dominici project, a four-year study funded by HEI, which began in 2016, has an 

expansive set of aims; however, for the purposes of this Phase 1 report, their aims are summarized as 

follows. 

Aim 1: Exposure Prediction and Data Linkage    Estimate long-term exposures to low levels of 

ambient PM2.5 mass and the gaseous air pollutant O3 by employing and extending hybrid prediction 

models that use satellite, land-use, emissions, ground monitoring, and weather data, in conjunction 

with chemical transport models, at a high spatial resolution (1 km × 1 km) for the continental United 

States.  

Aim 2: Causal Inference Methods for Exposure–Response    Develop a new framework in 

Bayesian causal inference to estimate the exposure–response function that is robust to model 

misspecification for confounding and accounts for exposure error.  

Aim 3: Evidence on Adverse Health Effects    Estimate mortality associated with exposure to 

ambient air pollution for all U.S. Medicare enrollees between 2000 and 2012 (61 million adults, 65 

years of age and older) and a representative subsample of Medicare participants with detailed 

personal information from the Medicare Current Beneficiary Survey (MCBS) (57,200 adults), using 

a cohort (long-term) and a case–crossover (short-term) design.  
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Aim 4: Tools for Data Access and Reproducibility    Develop approaches and tools for data sharing, 

record linkage, and statistical software.  

This commentary focuses in more detail on Aims 1 and 3, comprising initial results from the 

exposure and health effects research that have been published in peer-reviewed journals (Di et al. 

2017a, 2017c). Aims 2 and 4 (causal modeling and more advanced statistical analyses and data 

access) are discussed briefly here as this research is still in its initial stages; the Panel does offer 

some comments on this research, with suggestions for the conduct of these further analyses. 

 

EXPOSURE AND HEALTH EFFECTS STUDIES 

Data and Methods 

The investigators amassed very large amounts of data from many different sources and used 

them for their analysis:  

Ambient Air Pollution Concentrations     Since the emphasis in this study was to study the entire 

older U.S. population — including people living in rural, low ambient air pollution concentration 

areas — the investigators developed air pollution concentration models for the 48-contiguous states, 

relying on research that they had completed before the current study began. They estimated ambient 

PM2.5 concentrations for the period 2000 to 2012 using the following sources of data for their 

exposure model (for details, see Di et al. 2016): 

1. Air monitoring data were obtained from the U.S. EPA Air Quality System (AQS), used in both 

model building and for cross-validation.  

2. Aerosol optical depth (AOD) data were obtained from Moderate Resolution Imaging 

Spectroradiometer (MODIS).  

3. Surface reflectance data were also obtained from MODIS (MOD09A1). 

4. Chemical transport model outputs were derived from the widely used GEOS-Chem model, 

which uses meteorological inputs and emission inventories to simulate atmospheric components. 

Total PM2.5 was defined as the sum of nitrate, sulfate and ammonium ions and elemental carbon, 

organic carbon, sea salt aerosol, and dust aerosol. In addition to producing ground-level PM2.5 

estimates, the GEOS-Chem model is also useful for calibrating AOD because, being a three-

dimensional model, it simulates vertical distribution of aerosols. 

5. Meteorological data were obtained from the North American Regional Reanalysis project; the 

variables used included air temperature, accumulated total precipitation, downward shortwave 

radiation flux, accumulated total evaporation, planetary boundary layer height, low cloud area 
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fraction, precipitable water for the entire atmosphere, pressure, specific humidity at 2 meters, 

visibility, wind speed, medium cloud area fraction, high cloud area fraction, and surface 

reflectance. 

6. Aerosol index data were taken from the absorbing aerosol index measured by the ozone 

monitoring instrument (OMI), onboard the Aura satellite. These data are used to correct for the 

presence of other absorbing aerosols in the air (such as those from biomass burning and desert 

dust). 

7. Land-use terms were obtained as previously described by Kloog and colleagues (2012). These 

terms represent emissions and can help inform small spatial scale variations; land-use data 

incorporate a variety of variables (such as population and road densities, emissions inventory, 

elevation, percentage urban, etc.). 

8. In the regression models, the investigators also used regional and dummy variables to account 

for regional and temporal variability due to differences in meteorology and aerosol composition.  

For estimating O3 concentrations, the investigators used the same information for their models as 

listed for PM2.5, supplemented by the following sources of data (see Di et al. 2017b): 

1. Satellite-based O3 measurements obtained from the OMI onboard the Aura satellite and used to 

calculate vertical distribution of O3 levels.  

2. Ozone vertical profile obtained through using an approach similar to that used for modeling 

PM2.5. The GEOS-Chem model was used to estimate O3 levels at different layers, and a scaling 

factor was used to calibrate satellite-based estimates to ground level O3. 

3. Ozone precursors (such as nitrogen oxides [NOx], carbon monoxide, methane, and volatile 

organic compounds (VOCs), were estimated by the inclusion of AQS daily measurements of 

sulfur dioxide, NO2, NOx, and VOCs into the O3 model, followed by the use of distance–decay 

functions from air quality monitors and other approaches. 

With this large amount of data and using multiple approaches and input variables, the 

investigators developed a hybrid model to estimate daily PM2.5 and O3 levels at 1 km × 1 km grid 

level. Complex atmospheric processes were addressed using a neural network that modeled 

nonlinearity and interactions. Spatial correlation was addressed using convolutional layers in the 

neural network, which aggregate nearby information and can simulate autocorrelation. The neural 

network was trained for the study period for the United States and tested against 10% left-out 

monitors. They then used the neural network to produce daily PM2.5 levels (Di et al 2016). 

Essentially the same approach was used to estimate and validate a model to predict daily O3 

concentrations during warm months (April 1 to September 30) (Di et al 2017b). 
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Health Outcomes and Analyses    Health data for this study were obtained from the Centers for 

Medicare and Medicaid Services (CMS), after applying through the Research Data Assistance Center 

(ResDAC) (www.resdac.org). The investigators obtained information on all Medicare beneficiaries 

for the years 2000 through 2012, which represents more than 96% of the U.S. population 65 years of 

age or older. This is an open cohort where individuals enter when they enroll in Medicare at or after 

age 65 and stay until death. Individuals with an unverified date of death were excluded. For each 

beneficiary, the following data were extracted: the date of death (if applicable), age at year of 

Medicare entry, calendar year of entry, sex, race, ethnicity, ZIP Code of residence, and Medicaid 

eligibility (a proxy for low socioeconomic status (SES); note that these individuals were eligible for 

both Medicare and Medicaid). Thus, all deaths among Medicare recipients during 2000 to 2012 were 

captured. In all, the cohort had about 61 million persons, with 460 million person-years of follow up 

and 23 million deaths. 

Medicare data contain little information about individual-level covariates. Therefore, the 

investigators also obtained data from the MCBS, which is an annual phone survey of a nationally 

representative sample of Medicare beneficiaries and contains information on more than 150 potential 

individual confounders, including data on individual risk factors (e.g., smoking, body mass index 

[BMI], and income). Information on a sample of more than 57,000 enrollees was obtained for the 

period 2000 through 2012. Dominici and colleagues also analyzed data for a cohort of ~32,000 

beneficiaries from the MCBS-Medicare, which links data from MCBS interviews with Medicare 

claims data, and also contains information on confounders (see Di et al 2017c, Supplementary 

Appendix, Section 5; Makar et al. 2017). The Commentary Table is a summary of the potential 

confounders that were used during this study.   
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Commentary Table 1. Characteristics of potential confounders and variables* 
 

Potential 
Confounder 

Model Covariate Variable 
Level 

Variable type Data Source** 

Age Age at entry Individual Categorical (5 
year) 

Medicare 

Race White 
Black (%) 
Asian 
Hispanic (%) 
Native American 

Individual  
 

Binary and 
Continuous 
(% of 
population) 

Medicare and  
US Census, ACS 
 

Sex Sex Individual Binary Medicare 
Smoking Ever Smoker (%) Ecologic 

(county to 
Zip code) 

Proportion BRFSS (2000-
2012) 

Obesity BMI Ecologic 
(county to 
Zip code) 

Continuous BRFSS (2000-
2012) 

Diet Not included n/a n/a n/a 
Exercise Not Included n/a n/a n/a 
Socioeconomic 
status -- Individual 
level 

Medicaid Eligibility Individual Binary Medicaid 
Statistical 
Information 
System 

Socioeconomic 
Status – 
Community level 

Median Household 
Income 

Ecologic 
(Zip code) 

Continuous US Census, ACS 
 

 Median value of housing Ecologic 
(Zip code) 

Continuous US Census, ACS 
 

 % owner occupied Ecologic 
(Zip code) 

Continuous US Census, ACS 

 % below poverty level 
(age>65) 

Ecologic 
(Zip code) 

Continuous US Census, ACS 
 

 % below high school 
education 
(age>65) 

Ecologic 
(Zip code) 

Continuous US Census, ACS 
 

 Population Density Ecologic 
(Zip code) 

Continuous US Census, ACS 

Access to Health 
Care 

% with LDL-C 
% with HgbA1c test 
% with > 1 visit 

Ecologic 
(Zip code) 

Continuous  Dartmouth Atlas 
of Health Care 

Meteorological Temperature 
Relative humidity  

Area  
(32 km × 32 
km) 

Continuous North American 
Regional 
Reanalysis data 

Regional Dummy 
Variable 

10 geographical regions 
with similar PM2.5 
chemical profile  

Region  Categorical GEOS-Chem 3D 
global chemical 
transport model 

*Based on information in Di et al 2017c, Supplementary Materials. 

**American Community Survey (ACS); Behavioral Risk Factor Surveillance System (BRFSS) 
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The investigators used both cohort and case–crossover designs to analyze the association 

between exposure to PM2.5 and O3 and all-cause mortality in the Medicare cohort from 2000 to 2012. 

For the cohort study, they performed survival analyses using the Andersen-Gill (AG) method 

(Andersen and Gill 1982), a variant of the traditional Cox proportional hazards model that 

incorporates spatio–temporal features by allowing for covariates to vary from year to year. They 

estimated hazard ratios associated with a 10-µg/m3 increase in PM2.5 and a 10-ppb increase in O3 

exposure using this model in two-pollutant analyses.  

The investigators developed concentration–response curves for air pollution levels and mortality 

by fitting a log-linear model with a thin-plate splines of both pollutants while controlling for all 

individual and ecological variables that they had used in their main analyses (details in Di et al. 

2017c, Supplementary Appendix, Section 7). In view of the objective of this research, they explored 

the health effects at lower ambient concentrations by conducting separate analyses that included only 

person-years with PM2.5 exposures lower than 12 µg/m3 and O3 exposures lower than 50 ppb.  

To assess if any subgroups within the Medicare cohort were at higher or lower risk of mortality 

associated with air pollution, the investigators fitted the same Cox model as above for certain 

subgroups (e.g., male vs. female, white vs. black, and Medicaid eligible vs. Medicaid ineligible). To 

explore the robustness of the results, they performed sensitivity analyses and compared any changes 

in risk estimates with differences in confounder adjustment and estimation approaches. Finally, since 

Medicare data do not include information on many important individual-level covariates, the 

investigators utilized data from the MCBS. Using individual-level data (such as smoking status, 

BMI, and income) and data on many other covariates from the MCBS, they examined how the lack 

of adjustment for these risk factors could have affected the risk estimated for the Medicare cohort 

(Di et al. 2017c, Supplementary Appendix, Section 5). 

For the case–crossover study, the case day was defined as the date of death; the daily exposure to 

air pollution for the case day was defined as the mean of the ambient concentration on that day and 

the day before (that is mean of lag 0-day and lag −1-day). For each person, they compared daily air 

pollution concentration on the case day vs daily air pollution exposure on control days, which were 

chosen (1) on the same day of the week as the case day, to control for potential confounding effect 

by day-of-week; (2) before and after the case day to control for time trend; and (3) in the same month 

as the case day to control for seasonal and subseasonal patterns. They fitted a conditional logistic 

regression to all pairs of case and matched control days, thus estimating the relative risk of all-cause 

mortality associated with short-term PM2.5 and O3 exposure (Di et al. 2017a).  
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The investigators controlled for potential residual confounding by weather-related factors by 

using natural splines of air and dew point temperatures with 3 degrees of freedom. For subgroup 

analyses, the investigators used information on sex, race, or ethnicity (white, nonwhite, and others), 

age categories (69, 70–74, 75–84, and 85 years), eligibility for Medicaid, and population density 

at residence (in quartiles). Subgroup-specific estimates of relative risk and absolute risk difference 

were obtained by fitting separate conditional logistical regression models to the data for each 

subgroup. To test for statistically significant differences in estimated relative risk and the absolute 

risk difference between categories within each subgroup (e.g., male vs female), they used a 2-sample 

test, based on the point estimate and standard error. They explored the health effects at lower levels 

of exposure by performing subanalyses with cases restricted to those occurring on days with daily air 

pollution concentrations below 25 µg/m3 for PM2.5 and 60 ppb for O3.  

 

Key Findings Reported by the Investigators 

Exposure Assessment    Dominici and colleagues reported overall good performance for the PM2.5 

prediction model, with R2 of 0.84 (range 0.78 to 0.88) (Di et al. 2016). During the course of the 

study, annual PM2.5 concentrations ranged from 6.2 to 15.6 µg/m3 (5th and 95th percentiles, 

respectively). The average annual PM2.5 concentration was 11.0 µg/m3 during the study period, 

2000–2012. The model performed better in the eastern and central United States and less well in the 

western United States (Di et al. 2016, Supplementary Appendix Table S4). The highest PM2.5 

concentrations were predicted to be in the eastern and southeastern United States and in parts of 

California. The R2 values were lower after 2010, apparently as PM2.5 ambient levels decreased in the 

eastern United States (R2 in 2000 and 2001 of 0.86 and 0.84 vs. 2011 and 2012 of 0.81 and 0.74). In 

addition, the model performed better during the summer — when PM2.5 levels often tend to peak — 

followed by autumn, spring, and winter (mean R2 values of 0.88, 0.84, 0.84, and 0.80, respectively) 

(Di et al. 2016, supplementary materials).  

The O3 prediction model performed similarly well, with an overall R2 of 0.80 (Di et al. 2017b). (Note 

that this publication reports the R2 as 0.76 [range 0.74 to 0.80]; presumably this is because the 

authors improved the model after publication of the earlier article [Di et al. 2017b].) 

The average of 8-hour daily warm-season O3 concentrations across the country during the study 

period ranged from 36 to 56 ppb (5th and 95th percentiles, respectively), with an average of 46.3 ppb 

during the study period. The investigators found a west–east gradient in the O3 level, with the model 

performance being the best in the middle Atlantic, south Atlantic, east north Central, west south 



Preprint 

11/12/2019 

  26 

 

Central, and the Pacific States regions. Model performance was not affected by the year, so no year-

to-year trend in model fit was observed. Seasonal trends in model performance were also apparent, 

with the R2 being highest in the autumn, followed by summer, spring and winter (R2 values of 0.75, 

0.71, 0.68, and 0.67, respectively). Ozone concentrations were the highest in the Mountain region 

and in California and were lower in the eastern states. Annual PM2.5 and warm-season O3 

concentrations were only weakly correlated, with a Pearson correlation coefficient of 0.24. 

The Cohort Study    The 2000–2012 cohort of Medicare beneficiaries, with about 61 million 

enrollees and 23 million deaths, provided a very large population to study association with the long-

term exposure to ambient air pollution, including at concentrations below the current NAAQS for 

both PM2.5 and O3. In two-pollutant analyses, Dominici and colleagues report a 7.3% (95% 

confidence interval [CI], 7.1% to 7.5%) higher risk of all-cause mortality for each 10-µg/m3 increase 

in annual average PM2.5 concentrations and a 1.1% higher risk of (1.0% to 1.2%) mortality for each 

10-ppb increase in annual average O3 concentration in the warm season (Di et al. 2017c). At low 

concentrations — less than 12 µg/m3 PM2.5 and O3 of less than 50 ppb — the risk was 13.6% (13.1% 

to 14.1%) for PM2.5 and 1.0% (0.9% to 1.1%) for O3. Thin-plate-spline regression analysis for 

concentration–response relationship in two-pollutant models produced almost linear curves, with no 

suggestion of a threshold down to 5 µg/m3 of PM and 30 ppb of O3 (see Figure 7 in the Investigators 

Report and Supplementary Appendix, Section 5). 

In subgroup analyses for PM2.5, the investigators found larger estimates of effect among males 

and among Hispanics, Asians, and particularly African Americans, compared with whites. 

Individuals with low SES, as indicated by eligibility for Medicaid, appear to have a slightly higher 

risk per unit of air pollution (Di et al. 2017c, Supplementary Appendix, Table S3). For long-term O3 

exposure, the subgroup analysis showed that the effect estimates were higher for Medicaid-eligible 

enrollees and slightly higher for whites, but these analyses also produced hazard ratios of less than 1 

for certain subgroups, including Hispanics and Asians, and particularly for Native Americans, than 

the overall population.  

The Case–Crossover Study      The case–crossover analyses comprised more than 22 million deaths 

(case days) and more than 76 million control days among Medicare enrollees between 2000 and 

2012, again a very large population. For short-term exposures, the investigators observed a 1.05% 

(95% CI, 0.95%–1.15%) greater risk of mortality in two-pollutant models for a 10-µg/m3 increase in 

PM2.5 concentrations, and 0.51% (0.41%–0.61%) for a 10-ppb increase in average 8-hour warm-

season O3 concentration (pollutant levels were averaged over the current and previous day) (Di et al. 

2017a). At low concentrations (<25 µg/m3 of PM2.5 and <60 ppb of O3), the associations remained 
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elevated for both PM2.5 and O3, with relative risk increases (RRI) of 1.61% (95% CI, 1.48%–1.74%) 

and 0.58% (0.46%–0.70%), respectively. In exposure–response curves, the relative risk increase rises 

sharply for both pollutants at a relatively low concentration and then levels out at higher levels (see 

Figure 8 in the Investigators Report). 

In subgroup analyses for the case–crossover study, significant effect modifications were reported 

for several variables. For PM2.5, the investigators observed higher mortality risk for females and 

individuals who were older (age >70 years), black, or eligible for Medicaid (i.e., lower SES) (Di et 

al. 2017a, Figure 3). For O3, there was much less contrast between groups, except for age where the 

older group had a significantly higher risk of mortality (0.69 for 69 vs. 1.83 for 85) (Di et al. 

2017a, Figure 4). 

 

REVIEW PANEL EVALUATION 

This report by Dominici and colleagues summarizes an impressive amount of work completed in 

the first part of this project. There are several particularly strong aspects of this work: The 

investigators amassed an extremely large cohort by compiling a very large amount of data on health 

and related factors across the continental United States from national databases (Medicare and 

others). They also estimated U.S.-wide air pollution concentrations at high spatial resolution (with 1 

km × 1 km grids) and temporal resolution (enabling daily averages). Finally, they developed and 

applied state-of-the-art statistical techniques to the assessment of health effects of low levels of air 

pollution.  

The Panel’s evaluation of this report was made challenging by the nature of the report submitted; 

the Phase 1 study report was largely compiled from the initial published reports, as well as from 

some as-yet-unpublished methodological work. The Panel has therefore expanded the focus of this 

review to include — in addition to the investigators’ report — some of this recently published work 

(in particular, Di et al. 2017a and 2017c). Di and colleagues have provided many details in the 

supplemental materials of the two publications. Additionally, the Panel communicated with the 

investigators during the course of the review. In response to comments from the Panel, the 

investigators added an additional discussion to the Investigator’s Report of limitations and plans for 

future work. 

As stated earlier, the Phase 1 report represents a snapshot of the ambitious work undertaken by 

the investigators. Much work, including further development of causal methods that would properly 
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allow for the complexities in the design of the studies and nature of the data is currently ongoing. As 

a whole, this work is likely to represent an important contribution to the literature on the health 

impacts of air pollution on older adults in the United States. The current report represents a high-

quality and thorough investigation of some of the most challenging problems in environmental 

health.  

 

EXPOSURE ASSESSMENT 

The use of large, diverse, and existing data sets to generate estimates of PM2.5 and O3 

concentrations on a 1 km × 1 km national grid for the entire continental United States (~ 8 million 

km2) is impressive, both in terms of the vast amount and variety of data assembled and the 

tremendous computational requirements for the analysis (Di et al. 2016, 2017b). The methods 

developed should prove valuable to researchers studying air pollution and health, especially because 

the investigators have made efforts to make their modeling approach publicly available for others to 

use. 

Using a hybrid model, Dominici and colleagues estimated PM2.5 and O3 concentrations in areas 

where monitors are sparse, allowing estimates for a larger number of zip codes, and thus individuals, 

to be included within the analyses. However, as with any exposure assessment, it is critical to 

consider the potential for prediction errors, particularly those that may be systematic, and the 

implications for the interpretation of the associated epidemiological results. Specific strengths and 

weaknesses of the exposure assessment are discussed below. 

First, Dominici and colleagues used U.S. EPA ground-monitoring data to cross-validate their 

exposure models. Regional and monthly dummy variables were used in the model in an attempt to 

account for regional and daily variations related to differences in meteorology and aerosol 

composition (Di et al. 2016). However, both geographical and temporal variability in the errors of 

the concentration estimates remained in the final estimates for both PM2.5 and O3, as discussed 

earlier. The source(s) and impact of such variability are not understood and deserve attention.  

Second, because U.S. EPA monitors are located for the purpose of compliance with NAAQS, 

they are generally placed in the more populated, urban areas where air pollution levels are higher. 

Consequently, the rural areas — where population density is lower and lower pollutant 

concentrations are found — are not as intensively monitored, and the model may be more prone to 

larger error in such areas. Further, rural ZIP codes generally cover much larger areas than urban ZIP 
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codes. The potential impact of this on exposure estimates can be seen, for example, in the lower R2 

values for PM2.5 estimates for the mountain region (see Di et al. 2016, Figure 1). Although only 

about 25% of the U.S. population lives 20 km or farther away from the nearest monitoring station — 

primarily in rural areas — these are the residents of potentially greatest interest, in the context of this 

study, because of their lower exposures to pollutants; therefore, the nature, size, and potential impact 

of these errors is important to understand. 

Third, based on the relationship between the model predictions and observed PM2.5 and O3 levels 

(see Di et al. 2016, Figure 5, and Di et al. 2017b, Figure 6), it appears that the model may 

systematically underpredict concentrations (i.e., produce predictions below the 1:1 line). The impact 

of such underprediction may be important and should be explored in future research. (Both curves 

show much greater uncertainty at high pollutant concentrations, but few people live in such high-

concentration areas.)  

Finally, though the Panel recognizes that the investigators were building a very large, national-

scale model with a resolution of 1 km × 1 km; the model does not capture fine scale variability in 

ambient concentrations. Thus, the model at this scale does not capture local, high gradients in 

concentrations, such as those along roadways or near major point sources. The exposure estimation 

for those living in the vicinity of such areas is probably underestimated (for PM2.5) or overestimated 

(for O3, because of local area scavenging), though typically PM2.5 and O3 levels tend to be more 

uniform at urban and regional scales than pollutants such as NO2, which exhibit higher spatial 

variation.  

Using input from disparate sources to develop a model at the national scale, with a 1 km × 1 km 

resolution, is a major accomplishment, though the model has its limitations. The Panel has noted that 

the investigators are taking steps to improve their models — using three different machine-learning 

models that complement one another — and going forward to the year 2016. In addition to updating 

the PM2.5 and O3 models, they are also modeling NO2 (see the Next Steps section in the 

Investigator’s Report). The application of the improved and additional models for epidemiological 

analysis should prove useful and it is hoped to shed greater light on the exposure–response 

relationships described in these two studies.  

 

 

 



Preprint 

11/12/2019 

  30 

 

HEALTH EFFECTS: COHORT STUDY 

Using the massive database of all Medicare recipients during 2000 to 2012, and combining it 

with the equally large exposure predictions, Dominici and colleagues have performed a study with 

unsurpassed power to investigate the association between all-cause mortality and long-term exposure 

to a range of PM2.5 and O3 levels. That they observed an association between annual average 

concentrations and mortality at higher concentrations was not the new finding of this work, but the 

findings at low levels, particularly at levels below the current NAAQSs, are novel and potentially 

important.  

The greatest challenge to the internal validity of this study, as for all observational studies, is the 

potential for confounding, which can bias the results. To address such concerns, the investigators 

performed numerous analyses with some 20 covariates (Commentary Table) (for details, see Di et al. 

2017c, Supplementary Appendix). They also utilized findings from a smaller Medicare cohort that 

had a much richer set of potential confounding variables to assess the likely impact of having only a 

limited number of covariates in the main cohort analysis. To allow for the effects of time-dependent 

covariates that are known to vary from year to year, the investigators utilized a variant of the classic 

Cox proportional hazards model — the AG formulation (Andersen and Gill 1982).  

However, this is a complex study. Health and personal characteristics are available for 

individuals, but ambient air pollutant exposure is estimated at the ZIP code level (averaged from the 

1 km × 1 km spatial scale of the prediction model). Additionally, the ZIP code scale is the smallest 

spatial unit at which individual residential and other covariate information is available. These factors, 

coupled with confounders that can act at the level of the individual, the community, or the regional 

environment, result in a complex hybrid model. These issues pose important challenges for the next 

phase of the work planned by the investigators, and the causal inference methods under development 

will need to focus on these challenges. Based on the current results, the Panel offers the following 

comments.   

 

Temporal Confounding  

Although the investigators have used the AG formulation of the Cox proportional hazards model 

to better represent time-dependent variables, the Panel’s biggest concern relates to the problem of the 

potential for temporal confounding, with both the overall nonaccidental mortality and the PM2.5 

levels declining steadily over the period of the study, 2000 to 2012. Since this is an open cohort (new 
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individuals enter the cohort as they enroll for Medicare), age — which is controlled in the analyses 

— is not necessarily strongly correlated with calendar time. As a result, confounding can occur due 

to the contributions of both age and calendar time. In this study, however, there was no adjustment 

for calendar time and age was included in the models using five-year categories. Although the Panel 

understands that there are computational challenges to including a finer resolution for age, the 

supplementary materials accompanying the article by Di and colleagues (2017c, Supplementary 

Appendix) show that the hazard ratio drops from 1.07, when a five-year age category is used, to 1.05 

when it is replaced with a three-year age category. This suggests that this question is unresolved and 

deserves more attention. Similarly, the Panel acknowledges that disentangling secular trends from 

any possible causal effect of PM2.5 on mortality can be challenging and that including year in the 

models may over-adjust for exposure by removing true variability over time. Regardless, the 

inability to adequately account for potential bias due to temporal trends introduces a large element of 

uncertainty in interpreting the study’s findings to date.  

In summary, the Panel believes that, without accounting for confounding by time, the findings of 

the long-term exposure study should be viewed with caution. The Panel is glad to note that the 

investigators acknowledge these limitations and looks forward to the development of appropriate 

causal inference techniques and their application to the Medicare data set. 

 

Potential for Residual Confounding 

Dominici and colleagues have performed various analyses to explore the possible sources of 

residual confounding; however, as discussed below, the Panel identified several areas with a 

potential for residual confounding in the cohort study.  

Subgroup Differences    Some results from the subgroup analyses are puzzling, as acknowledged by 

the investigators’ team: for example, the dramatically higher effect of PM2.5 in African Americans 

and the negative (protective) effects of O3 for Native Americans, Hispanics, and Asians. It is 

possible that these observations reflect true intergroup differences; alternatively, it may be more 

likely that the subgroup designation serves as a surrogate for other risk factors not fully considered, 

resulting in residual confounding. Model misspecification is another possibility.  

Spatial Differences    Another issue here is the different scales at which the exposure and health 

models operate. The Panel has concerns about the impact of the likely exposure misclassification and 

confounding related to the spatial differences between aggregated summaries of exposures (1 km × 1 

km) and residential locations (at the ZIP code level). The Panel appreciates that the health and 
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covariate data are available only as aggregated ZIP-code-level values and looks forward to the 

results of the planned analyses in the Final Report, in which the investigators plan to explore 

exposure measurement error in the health analyses using a causal-inference framework. The Panel is 

also aware that the exposure measurement error correction methodology for spatially varying 

pollutants in multipollutant research is in its infancy (e.g., Bergen et al. 2016; Szpiro and Paciorek 

2013), and even more so in the causal inference framework — as duly acknowledged by the 

investigators — so it is not surprising that Dominici and colleagues did not yet address this in their 

extensive work.  

Smoking, Diet, and Exercise    Data on individual health-related behaviors, which are well known 

for affecting survival time, were available only at the ZIP code level. Some of the information — for 

example, binary variables for smoking behavior — does not capture the full extent of the variability 

in the behaviors. The Panel understands the complexity of these factors and the difficulty in finding 

data on a national scale to include in the model. However, some of these behaviors are known to 

vary regionally, and it is conceivable that one or the other is geographically correlated with PM2.5 or 

O3. For example, residents of the southeast have some of the highest PM2.5 exposure levels and also 

have the highest rates of obesity in the United States (Centers for Disease Control and Prevention 

2019).  

Socioeconomic Status (SES)    The investigators appropriately consider a variety of measures of 

SES at the individual and community level; these measures represent a variety of factors that might 

increase mortality risk. They include baseline health status, diet, exercise, psychosocial stressors, risk 

of violent crime, risk of exposure to chemical and microbial contaminants, and access to medical 

care. The only measure of individual-level SES available for the entire cohort is Medicaid eligibility 

status, which produced a fairly small difference in hazard ratios (eligible 1.080 vs. noneligible 1.075) 

(Di et al. 2017c, Supplementary Appendix, Table S3). To the extent that Medicaid eligibility is an 

imperfect measure of the relevant aspects of SES, additional sources for residual confounding may 

be present.  

The issues with individual-level SES notwithstanding, neighborhood SES factors — not 

individual SES — have been reported to be the more important confounders affecting air-pollution-

associated mortality (Hajat et al. 2013; Makar et al. 2017). The investigators used four different and 

reasonable measures of community SES: median household income, median housing price, 

percentage below poverty level, percentage of homes owner occupied, and percentage below high 

school education and report that none of these had a significant correlation with the observed 

outcomes (Di et al. 2017c, Supplementary Appendix). The adjustment for neighborhood SES partly 
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addressed concerns about the limitations of accounting only for individual-level SES, so the 

inclusion of these additional SES-related factors in the analyses is a strength of this study.  

Cohort vs. Case–Crossover Analysis    The Panel was not persuaded by the claim made in the 

Limitations section of the Investigators’ Report that estimating effects in both the case–crossover and 

cohort analyses provides some assurance against confounding. At best, this provides evidence that 

PM does affect mortality. However, the nature of the confounders, and the effects being estimated 

(Eftim and Dominici 2005; Künzli et al. 2001; Rabl 2003), are so different that consistency of 

findings across the two designs provides essentially no assurance against confounding. 

 

Precision of Effect Estimates 

Another issue to consider is related to one of the major strengths of the study: the extremely 

large number of observations. Statistical methods have been developed in light of the limitation that 

an entire population is generally not available for study, so one must study a sample of the 

population. Statistical methods related to the estimation of different parameters (e.g., bias) and 

related inferences (e.g., CIs and P values) are based on the premise that study participants are 

sampled from a larger existing or theoretical population. The Dominici study represents a growing 

trend in the new “Big Data” era in that the entire Medicare population of more than 60 million 

individuals has been studied. Though this enormous sample gave the study unprecedented power to 

investigate effects, it also raises questions about interpretation of the very narrow CIs and other 

comparative statistics reported for the cohort. In this situation, bias and model misspecification are 

likely to be more critical concerns than sampling variability. Because the impact of bias and model 

misspecification is not reflected in standard uncertainty measures, one should be cautious about 

overinterpreting the narrow CIs, as the interval width is driven by the very large sample size (see 

Meng 2018), and the Panel’s comments and concerns about the potential impacts of bias and of 

unmeasured confounding should be viewed in this broader context.  

 

Other Pollutants 

Dominici and colleagues have looked at mortality associations with both PM2.5 and O3; this is 

another strength of this study. However, other pollutants may also confound the associations between 

PM2.5 and O3 with mortality. The Panel looks forward to the results of ongoing work to strengthening 
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the current exposure models (e.g., using data from the IMPROVE network), including a model of 

NO2 and possibly PM composition.  

 

HEALTH EFFECTS: CASE–CROSSOVER STUDY 

Long-term studies are typically considered more important for risk and burden assessments as 

well as policy making, though short-term studies have played an important role as well in the 

development of air pollution epidemiology science and its applications to policy. The second 

epidemiology study in this report uses a case–crossover design — a variant of the time-series design 

— with the Medicare population to evaluate short-term effects of air pollution exposure. One 

advantage that this design has over the study of long-term health effects is that it is based on 

variation in exposure and mortality over short periods of time (days, rather than years). Therefore, 

only confounding factors that vary over short periods of time, such as weather, are of potential 

concern, rather than the much larger array of potential confounders that either do not vary with time 

or have long-term trends. On the other hand, by design time-series analyses only address the 

immediate impact of air pollution on mortality rather than on pollutants’ role in the development of 

chronic morbidity and subsequent mortality. The two designs are both valuable analyses but address 

different sets of covariates and different questions.  

Dominici and colleagues report an RRI of 1.05% (95% CI, 0.95%–1.15%) and 0.51% (0.41%–

0.61%) in daily mortality rate, respectively, for each 10-µg/m3 increase in PM2.5 and 10-ppb increase 

in O3 (Di et al. 2017a). The concentration–response analysis for PM2.5 and O3 suggests a nonlinear 

relationship, with a steeper slope at low concentrations and flattening at higher concentrations (see 

Figure 8, Investigators report). The investigators have provided the effect estimates for 

concentrations below 25 µg/m3 for PM2.5 and 60 ppb O3, which are the concentrations of interest for 

this study and below which the curves are linear.  

In addition to the main findings, the authors have investigated effect modification for a range of 

variables. For example, they report that the mortality effect of short-term exposure to PM2.5 is greater 

in women than in men (RRI of 1.20 vs. 0.86; Di et al. 2017a, Figure 3), in contrast to the finding in 

their cohort study. There is again a clear age effect, particularly for O3 exposure, with older 

individuals having a significantly higher RRI. The effects in other subgroup analyses were generally 

not significant, except Medicaid eligibility. An important group of time-varying covariates not fully 

included in these models is copollutants, such as NO2. 
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SHARING OF MODELS AND DATA 

From the inception of this project, the Panel was glad to note that the investigators planned to 

make available their methods, models, and data with other investigators. To facilitate this, they have 

posted their data, workflows, and analyses to a secure high-performance computing cluster with the 

objective of developing an open science research data platform (https://osf.io/2cg6v/). Additionally, 

the codes and software tools are available from the URL https://github.com/NSAPH/airpred. The 

investigators’ efforts in this area — to make both models and data available — will continue.  

Model      With an interest in making their model widely available, the investigators developed a 

flexible R package so that interested environmental health scientists may design and train 

spatiotemporal models that can predict air pollutants, including PM2.5 (Sabath et al. 2018). This is 

accomplished via neural network tools to produce exposure predictions with high spatial (1 km × 1 

km grids) and temporal (enabling daily averages) resolution. The adoption of the R platform is a 

major strength, as opposed to the less user-friendly MATLAB platform that was used by Di and 

colleagues (2016, 2017b) in their work upon which the airpred package is based, since it is likely to 

promote wider use of the modeling tools by other environmental health researchers. The use of an 

open source big data platform (H2O) for better computational efficiency and hence scalability is also 

another major strength. The R package airpred has the flexibility to allow specification of “different 

type of neural networks, with different parameters, or even perform ensemble modelling.”  

Data      In their research, Dominici and colleagues have made use of a great deal of data generated 

by public sources, including the National Aeronautics and Space Administration, the U.S. EPA, and 

the CMS; data from most of these sources are in the public domain and readily available to anyone. 

The one exception is the Medicare data, which the investigators are prohibited from sharing under 

terms of access of the data from CMS. However, these data are available from ResDAC; following 

an application, payment of fees and commitments to protect personal data and other requirements 

any investigator can access this information. For their part, the investigators have developed codes 

and packages to allow others to link the curated exposure and confounder data to the Medicare data, 

and they are prepared to provide the appropriate code and instructions.  

The investigators’ commitment to making their data and methods publicly available is 

noteworthy and welcomed, thereby enabling other investigators to access the data, to test different 

approaches to the analysis, and moving science forward. 



Preprint 

11/12/2019 

  36 

 

 

Causal Inference Models 

In addition to the research discussed earlier, Dominici and colleagues note in their report the 

importance of, and are devoting significant effort to, the development and extension of methods for 

causal analysis, an area where they have considerable expertise. This work is increasingly important 

because of the challenges in accounting for and analyzing all the covariates in the preceding analyses 

of observational data, and they have made some strides in this direction. The Investigator’s Phase 1 

Report includes only a relatively brief summary of this work — understandably still in progress — 

so interested readers are advised to go to the referenced papers, which the HEI Review Panel 

reviewed for details (Wu et al. 2019; Papadogeorgou and Dominici, forthcoming publication; see 

also Makar et al. 2017). The causal modeling work so far has taken two different directions, 

described and discussed as follows: 

Regression Calibration    In the first method, the investigators have developed causal inference 

approaches based on regression calibration (RC) to account for exposure prediction errors (Wu et al. 

2019). A generalized propensity score approach is utilized for confounding adjustment along with 

the RC to address exposure measurement error. The development of approaches to handle exposure 

measurement error and confounding in the causal setting would be an important advance given that 

environmental exposures are almost always prone to error (whether obtained through direct 

monitoring or via exposure modeling), and confounding bias is a persistent concern in observational 

studies. Hence, this research is potentially innovative and significant. 

However, in its current form this work has several potential limitations that might lower its 

effectiveness in the setting of ambient air-pollution-related models for which the method is primarily 

intended. For example: 

• It is not immediately clear whether PM2.5 concentrations monitored inside a grid cell are error-

free exposures for that grid cell, as the investigators assume. Ideally, one would use more 

flexible methods to allow for the possibility of such errors.  

• Given that the internal validation study for the RC step is based on data from monitored 

locations (likely higher pollution locations compared to nonmonitored locations), it is very likely 

this sample will be systematically different from the main study sample. Specifically, this 

situation might violate some of the assumptions such as “transportability” (i.e., relationship 

between true (X) and error-prone (W) exposures, conditional on covariates (D), would be the 

same in the validation study where X is observed and in the main study in which it is not). The 
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extensive simulation study does not appear to address this issue. Moreover, it doesn't grapple 

with the complexities of air pollution exposure, the impact of the complicated exposure 

modeling that produces the exposure estimates and their associated measurement error, or the 

complicated spatial structures of exposure, outcome, and covariates. This raises questions about 

the usefulness of this method in the real context of the epidemiological analyses performed in 

this study.  

• The investigators focus on settings for which they have a continuous monitoring data (with 

error), yet they convert the continuous values into a categorical scale, likely because of technical 

challenges. It is important that future work will attempt to develop similar methods, but for 

continuous exposure, which is more useful for the ultimate intended application. 

Local Exposure Response Confounding Adjustment    In the second approach, Dominici and 

colleagues have developed a new Bayesian causal approach known as local exposure–response 

confounding adjustment (LERCA), to estimate exposure–response curves accounting for 

confounding bias under low exposure settings (Papadogeorgou and Dominici, forthcoming 

publication). This work recognizes and addresses the potentially differential effects of confounders at 

different levels of exposure and also the model uncertainty associated with confounder selection. The 

development of an R package to implement the approach, the simulation study to assess performance 

and the application to a large data set are some of the notable strengths. 

Developing a preliminary directed acyclic graph would be informative in the design and 

interpretation of models such as the LERCA model. With that as a starting point — a Bayesian prior 

in essence — the investigation can use the models to inform our understanding of these relationships 

and modify the underlying conceptual model in what will likely be an ongoing, iterative process. The 

LERCA model has great potential as a useful new statistical tool, but it is not entirely clear what 

public health concerns about the data motivated the investigators to develop this specific model, and 

why differential confounding at different levels of exposure would be expected. It seems at least as 

likely that confounding might differ for different levels of the confounders given that, unlike the 

presumed effects of PM2.5, these are often not directly causal or have nonmonotonic relationships. 

Housing value, for example, does not directly cause disease or hospitalization and, as a surrogate for 

other factors with strong regional variation, is likely to have a complex relationship with this 

outcome. Temperature has a U-shaped relationship with biological stress and its role as a confounder 

is likely to vary strongly with temperature level. 

A common limitation of both these approaches stems from the different spatial refinement of the 

data, in other words, between ambient air pollution concentration estimates (at 1 km2, which are then 
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aggregated to the ZIP code level) and data on health and other covariates (available at the ZIP code 

level). Neither of the new techniques appears to try to deal with this complexity. This continues to 

raise questions of exposure error and confounding that potentially affects the primary analyses, a 

limitation which the investigators specifically note as well. As this work proceeds, a clarification and 

better understanding of these issues and their impact would be important to the successful 

completion of the full analyses in this project.  

Fully exploring and explaining the observed relationships between air pollution and mortality 

will necessarily be an iterative process, and the Panel was glad to learn that the investigators plan to 

spend considerable efforts in this direction in their future work. However, although promising, the 

current state of methods development is only the first step and may not be a match for the 

complexity in study design (particularly its hybrid nature), exposure measurement error, and 

modeling structure of the analysis that has been published using traditional regression-based 

methods. The investigators have also indicated their plan to develop less computationally intensive 

methods for analyzing the entire air pollution and health database; it will be informative if the causal 

models can be applied to those large data sets using these more efficient methods. Given that each of 

these models relies on assumptions (e.g., accurate measurement of confounders and their full and 

appropriate specification) to make them mathematically tractable, it is important that the potential 

impact of these assumptions be explicitly and carefully considered in any interpretation of results as 

these methods are applied to the larger data sets. 

 

CONCLUSIONS OF THE PANEL’S EVALUATION OF THE PHASE 1 INITIAL ANALYSES 

Dominici and colleagues have conducted an extensive and innovative set of initial analyses in 

these extraordinarily large air pollution and health data sets. They have conducted two distinct types 

of analyses: a cohort-based analysis of long-term exposures and a case–crossover-based analysis of 

short-term exposures. They report positive associations of both PM2.5 and O3 with all-cause 

mortality, with associations extending to the lowest concentrations and with little evidence of a 

threshold in these initial analyses. These findings met the criteria for statistical significance, 

although, as noted earlier, it is important to not over-interpret the statistical robustness of results 

derived from such a very large data set (Meng 2018). To their credit, the investigators also conducted 

a range of sensitivity analyses, and they also attempted to control for many key potential 

confounders in their cohort study that were available in the larger data set, as well as in the smaller 
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Medicare Beneficiaries Survey; in all the analyses to date, these further analyses did not 

meaningfully change the initial findings of associations.  

These initial analyses do make a valuable contribution to the literature, and while these analyses 

are thorough and extensive, there is still more work to be done to understand fully the importance of 

the findings. The investigators are well aware of many of the issues brought up in this commentary 

and acknowledge them, both in the Introduction section and in the Limitations section of their 

Investigators’ Report. The Panel was also glad to note that the investigators are proceeding, in 

completing their project for HEI, with additional analyses and are also developing a less 

computationally intensive analytic approach in the full cohort. As noted in their discussion of 

limitations, there are several important analyses that will need to be undertaken before firmer 

conclusions can be drawn from these studies. Key among important further analyses are: 

• Further analyses of measured and unmeasured confounders: While the investigators applied the 

range of data on confounders available to them and adopted the AG approach, which offered 

some advantage over the traditional Cox proportional hazards method in addressing some 

confounding due to time-dependent covariates, significant questions remain. The Panel discussed 

these in some detail and would like to highlight here some that will need to be further analyzed: 

o Potential confounding by time trends: With air pollution and death rates having declined 

over the course of the cohort analyses, the degree to which potential confounding of the 

results may have been affected by time was not adequately analyzed in these initial analyses. 

The investigators have acknowledged this and indicated their plan to further analyze this 

important question, by conducting sensitivity analyses using a newly developed causal 

inference approach.  

o Potential confounding by other pollutants: Other air pollutants may also confound the 

estimates of exposure and effects seen in these analyses. The investigators did test the 

potential influence of O3 exposure on PM effects — and vice versa — which was an 

important strength of their work. In addition, they are now developing an exposure model for 

NO2 that will allow adjustment for this pollutant in their final models. 

o Analysis of spatial confounding and geographical patterns: As the Panel noted earlier and 

the investigators acknowledge, the current analyses are conducted at a national level, without 

fully addressing potentially significant geographical variation in air pollution (both 

concentrations and composition) and the underlying health status (i.e., variability in PM2.5 

levels and substantial diversity in levels of obesity across different regions). 

 



Preprint 

11/12/2019 

  40 

 

• Spatial scales and the hybrid model: There are several spatial scales of the many variables in 

both the long-term and short-term analyses, and the resulting complex quasi-ecologic (hybrid) 

nature of these analyses make it difficult to fully understand the implications of these. For 

example, as the Panel noted earlier — and despite the considerable efforts by the investigators to 

estimate exposure accurately — there are some potential sources of error that may affect results. 

These include, though may not be limited to (1) potential underestimation of rural concentration 

levels due to the relative paucity of ground monitors for evaluation and training in those areas; 

and (2) the potential differences between exposures estimated at a 1 km2 grid but then applied to 

health data at the ZIP code level. Although it may not be possible to fully eliminate exposure 

error from an observational study such as this, the investigators will greatly enhance their final 

efforts by making every effort to quantify these errors and ideally to account for them in the 

health analyses. 

• Development, testing, and application of causal inference methods in the full population: As 

noted earlier, these analyses would benefit from rigorous application of causal inference methods 

to the full cohort. To their credit, the investigators have taken initial steps toward developing two 

such methods and continuing to work on them. Properly developed and applied, these methods 

can also address concerns about residual confounding. The Panel has noted some important 

questions about these and recommends that the methods be fully evaluated and then applied.  

The investigators are to be congratulated for a set of extensive and creative analyses conducted 

in the largest air pollution and health data base to date. While initial conclusions may be drawn from 

these first analyses, the Panel will wait for the planned extensive further analyses to be completed 

before reaching full conclusions on the air pollution and public health implications of this important 

research. 
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