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Responses to CASAC Questions on the PM PA from Consultant Dr. Frederick W. Lipfert 

 

I organized my responses as follows. First, a background discussion based on observations that may 
differ from the PA and ISAs that are requisite to “policy relevant” discussions. Then I address specific 
questions and summarize my responses. Appendix A presents background issues in more detail. 
Appendix B contrasts short- and long-term studies. Appendix C Iists my relevant publications that have 
not been included in an ISA or the PA 

Background on Air Pollution, PM2.5, and Human Mortality 

The Clean Air Act is not specific; pollutants of concern were defined in the 1970s and remain today 
although the definition of particulate matter has changed. Concentrations of CO and SO2 have dropped 
to trivial levels but are still monitored. The most hazardous pollutants such as benzene, formaldehyde, or 
benzo(alpha)pyrene are not monitored in the atmosphere. PM2.5 might be considered a “target of 
choice”. “Ambient” was intended to represent outdoor air quality alone, perhaps because it was much 
worse than indoors at that time. This is no longer the case. 

PM2.5 is not really a pollutant in the sense of defined chemicals (CO, O3, SO2). It is a regulatory 
construct defined solely by particle size and based on the total mass of a mixture of many kinds of 
particles, some toxic, most not. Those of most concern (metals, ultrafines, carbon compounds) comprise 
a small fraction of the total mass. No sources emit PM2.5 as measured in the ambient; source abatement 
strategies for specific constituents can thus be arbitrary without evidence of attained health benefits. We 
are exposed to PM2.5 from both indoor and outdoor sources, regulated or not.  

Excess mortality has been a focus of air pollution health effects since the advent of regulation; it is an 
accurate end point for which nationwide individual data have readily been available for decades. 
Monetary values may be assigned in various ways for cost-benefit analysis. Relative risk can be 
converted to longevity loss, which may be a more cogent endpoint than numbers of victims. 

Epidemiology is concerned with establishing cause and effect, often beginning with statistical 
associations. However, some cautions are in order. Beyond statistical significance, we need to 
understand the entire system beginning with emissions. Replication of observational studies based on the 
same model does not confer validity to any of them. The mere presence of a pollutant in the atmosphere 
does not constitute a “cause”, for which personal exposures and translation to a target organ are 
required. An “effect” should relate to a target organ and imply specific mechanisms; excess mortality or 
admissions to hospital may be consequences of such clinical effects.  

In order to do its job, CASAC must evaluate the extant concentration-response (C-R) functions and the 
exposure data used to drive them, which should represent actual exposures if the responses are to 
represent actual health effects. This evaluation should consider three types of C-Rs: 

Short-term (days) fluctuations in air quality that may trigger sudden death in vulnerable 
individuals. Causality in this mode has been demonstrated by heat wave mortality.  

Long-term (decades) individual differences that affect incidence of new cases of chronic disease, 
for which the extended effects of cigarette smoking are a causal example. 
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Long-term differences among populations that may involve both of the above as well as 
attributes of their locations per se, such as climate, green spaces, traffic density, or characteristics 
of housing stock that affect indoor air quality. 

It is possible for all three of these relationships to be involved in a given situation. These responses to 
the CASAC questions reflect these distinctions, specifically the timing of responses relative to exposures 
and the detailed nature of PM2.5 exposures.  
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Responses to Questions from Dr. Boylan 

Chapter 2 - PM Air Quality 

Chapter 2 – PM Air Quality 
• Is the discussion on sources of emissions accurate and complete? If not, what additional 

information needs to be included?  
 

 No, indoor sources were not discussed. 
 

• Is the discussion on ambient monitoring accurate and complete? If not, what additional 
information needs to be included?  
 
No, ultrafine PM (UFP) needs more attention. Given the importance of short-term effects, the 
need for more daily monitoring should be recognized. The need to understand indoor air quality 
should be recognized. 
 

• To what extent are biases associated with PM10, PM2.5, and ultrafine measurements discussed?  
 
Insufficiently. 
 

• Is the discussion on background concentrations accurate and complete? If not, what additional 
information needs to be included?  

•  
• I have no response here. 

 
Chapter 3 – Review of the Primary PM2.5 Standards 
 

• Is the evidence-based analysis presented in Chapter 3 scientifically sound? 
 
No. Accountability was not established. Relationships between short- and long-term effects were 
not discussed.  
 

• Are the areas for additional research adequate and complete? If not, what additional areas need 
to be included? 
 
The needs to consider latency and cumulative exposure were not discussed. The need to consider 
the sum of short-term effects over the lag period was not recognized. Difficulties in defining 
thresholds were not discussed. 
 

 
Appendix C – Supplemental Information Related to the Human Health Risk Assessment 
 

• Is the air quality modeling approach to projecting PM2.5 concentrations to correspond to just 
meeting the NAAQS (AQS, CMAQ, Downscaler, SMAT-CE, project monitors to just meet 
NAAQS, project spatial fields to correspond to just meeting the NAAQS) scientifically sound? If 
not, what are your concerns and how should they be addressed? 
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Historical data are required to estimate cumulative exposures needed for valid long-term C-Rs. 
 

• Is the health risk modeling approach using BenMAP-CE appropriate for this application? If not, 
what are your concerns? 

 

I find the bulk of the PA dedicated to regulatory issues, ignoring the scientific issues that are central to 
supporting them. The Appendices are intended to discuss an illustrate those issues. I searched the PA to 
determine inclusion of specific terms central to my discussions and issues. The following were not 
mentioned in the PA text: indoor, frailty, latent, cumulative exposure, acute. The time-series studies by 
Murray and Lipfert (2012, 2013) were not cited. The only citation of the Veterans Cohort Study, for 
which 8 papers have been published (Lipfert et al., 2000, 2003, 2006a, 2006b, 2008a, 2008b, 2009, 
2018, 2019 [accepted]) was for the only significant positive PM2.5 risk among many negatives and was 
thus “cherry-picked”.  
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Responses to Questions from Dr. Cox 

1. Are the beta coefficients in Table C-1 of the PA conceptually well defined? That is, are their 
intended conceptual meanings and causal interpretations clear and unambiguous?  

 
My answer is “no”. Beta coefficients are outputs of models intended to describe the real world so that 
their increments may be interpreted as specifying effects of changes in inputs. Above I proposed 3 
different C-R models that pertain to specific situations and differ from the PA. Their validity depends on 
the validity of inputs (exposures) and their timing. The PA does not consider indoor exposures and thus 
strictly applies only to the 10-15% of the time, if that. It does not consider timing of exposures, notably 
cumulative exposures. A more general discussion of causality and accountability is presented below. 
Suffice it to note that no victim of long-term exposure to ambient air pollution has ever been identified 
by autopsy, by contrast with 1952 London fog disaster (Bradley, 1957). The present C-Rs must be 
regarded as primarily a regulatory device. 

 
2. On the same topic of clear definitions, does the discussion of the BenMAP-CE beta coefficients in 

the PA and underlying documentation (described as typically representing “the percent change in a 
given adverse health impact per unit of pollution”) unambiguously specify which of the following 
concepts the coefficients represent?  

 
My answer is “no”. Those concepts are not physiologically defined, only operationally. 

 
3. Is the definition of “concentration-response (C-R) relationships” in the PA and its Appendices (cf p. 

C-38) adequately clear and unambiguous to support simulation of well-defined causal effects of 
interventions that change pollution levels?  
 

My answer is “no”. Those interventions are not well defined. Ambient PM2.5 is a mixture of various 
types of particles from specific types of sources, some from combustion, some from various types of 
processes, some from natural sources. PM2.5 as measured in the ambient is not emitted from any source. 
The notion that a given percent reduction of emissions from any of those distinct types of sources would 
have the same benefit on the various health endpoints that have been considered is patently absurd.  

 
4. Do the beta coefficients in the PA overcome these methodological objections to using relative risks, 

regression coefficients, and related measures of association to predict (or simulate) effects of 
interventions? If so, how were they overcome? If not, does this imply that the simulations in the PA 
are not necessarily reliable or valid predictors of the real-world effects on public health of reducing 
PM2.5? Why or why not? 

 
5. My answer is “no”. I get the impression that none of these basic flaws have been considered in 

conjunction with the establishment or modification of NAAQS. 
 

6. On the same methodological issue, which, if any, of these measures (relative risks, odds ratios, 
attributable risks, and regression coefficients) are currently generally accepted in contemporary 
causal analysis and epidemiology as valid measures of how changing one variable (e.g., exposure) 
will cause another (e.g., population health responses) to change?  
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My problems are with the underlying conceptual model, not the expressions of outputs. I would note 
however that no lives have ever been “saved” by air pollution control, but some may have been 
extended. Those longevity extensions under current conditions have ranged from a few days to a few 
months. The underlying health status of those putative victims has not been considered. 
 

7. More generally, do the ∆y/∆x values calculated by BenMAP-CE have valid interpretations as causal 
impacts on y of interventions that change x?  

 
As discussed elsewhere, my answer is “no”. Such predictions have never been verified; they are 
statistical but not operational. As I understand it, BenMap would have us believe that moving from say, 
Steubenville, OH, to Madison, WI, would instantly clear our lungs, unclog our arteries, and stop our 
metastasizing lung cancer, which is clearly nonsense and statistical confidence intervals tell us nothing 
about this unreality. One might argue that only a few percent of those movers might actually benefit in 
this way, which would then raise the question of selection: random or according to pre-existing 
conditions? The more cogent questions, for which we have no answers, might be what role did 
Steubenville’s dirty air play in creating those conditions and how long did it take? Common sense must 
prevail here.  

 
8. Have the beta coefficients in the PA been empirically validated?  
 
As discussed elsewhere, my answer is “no”. Long-term effects have never been verified by intervention; 
short-term effects were validated in London 1952 (Bradley, 1957). 

 
9. Does the discussion of beta values in the PA, including the discussions of uncertainty, confidence 

intervals, and sensitivity analyses, adequately describe and discuss the extent (if any) to which their values 
reflect potential omitted confounders of the association between mortality risks and PM2.5 levels (e.g., 
lagged daily high and low temperatures and humidity in the weeks preceding mortality, if these contribute 
both to (possibly delayed) mortality and increased energy usage and PM2.5 pollution?)  
 

My answer is “no”. Statistical confidence intervals portray the precision of a model and depend on 
sample size. Uncertainties about the validity of the model can be far more important and confounders 
can depend on model structure and the data available. The sample size of a cohort can only be increased 
by extending follow-up time, which entails temporal gradients and depletion of its most vulnerable 
members. I would argue that the more a cohort study is extended the less we know about its members. 
Only the Veterans Cohort (described below) has considered nonlinear relationships with subjects’ 
physiology (blood pressure) climate, poverty, neighborhood racial mix, exposure timing over 26 y, and 
age-specific risk estimates. It produced statistically significant negative risks of PM2.5 and strong 
positive risks associated with vehicular traffic density. These findings have never been included in an 
ISA or PA.  

 
10. Does the discussion of beta values in the PA, including the discussions of uncertainty, confidence 

intervals, and sensitivity analyses, adequately address the extent (if any) to which their values reflect 
residual confounding of the association between mortality risks and PM2.5 levels (e.g., by daily high and 
low temperatures and humidity in the weeks preceding mortality in models that only address seasonal, 
annual, or averaged temperatures)?  
 

My answer is “no”. The models used to set PM2.5 NAAQS did not control for climate. 
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11. Does the discussion of beta values in the PA, including the discussions of uncertainty, confidence 
intervals, and sensitivity analyses, adequately address model uncertainty (e.g., the possibility that the 
linear no-threshold model specification is incorrect, e.g., because sufficiently low exposure concentrations 
do not cause pulmonary inflammation and adverse health effects that occur at higher concentrations)? 

 
My answer is “no”. 

 
12.  Does the PA’s discussion of beta values, including the discussions of uncertainty, confidence intervals, 

and sensitivity analyses, adequately address effects on the estimated values of the beta values of exposure 
uncertainties and estimation errors? 

 
My answer is “no”. 
 
13. Does the PA adequately assess the suitability of the designs of the studies used to estimate beta values for 

purposes of valid causal inference and simulation?) 
 
My answer is “no”. 

 
14. Does the PA’s discussion of beta values adequately address attribution of risk in the presence of joint 

causes? Conversely, how well does the discussion in the PA make clear how much of the estimated 
beta value for PM2.5 is actually contributed by other variables (such as temperature extremes and 
poverty) that would not necessarily be changed by an intervention that reduces PM.5 levels? 

 
My answer is “no”. 

 
15. How confident can policy analysts and decision makers be in the predictive validity of the simulated 

results? 
 
There can be no confidence absent accountability through intervention analysis or autopsy; see 
Henneman et al. (2019). Below I summarized the current state of knowledge and what remains to be 
determined. 
 
16. Are there other statistical or methodological issues that you would like to comment on that you 

believe might help the CASAC to assess the validity and soundness of the PA and its simulations for 
effects on health risks of changing PM2.5 levels, or that might help to improve the technical and 
scientific quality of the final PA?  

 
I discuss these issues in detail below.  

 
17. How can techniques of formal causal modeling and analysis best be applied to improve the clarity of 

definitions and communication and scientific soundness of simulations, inferences, causal 
interpretations, generalizations, and policy-relevant conclusions in the PA?  

 
I conclude that this PA is essentially beyond redemption, as discussed below. More research on 
exposure timing and physiological modeling are required. 
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Responses to Questions from Dr. Frampton 

1. Is there evidence that would support a reconsideration of the current and long-held views of this 
causal relationship as expressed in the PA and ISA?  

3. Also please comment on the implications, of any changes in the causality framework that you 
would recommend, for the analyses and conclusions in this current PA.  

 
It is my position that causality must be established through observations, in conjunction with statistical 
analyses. Causality was established in the short term when exposures and responses cycle in concert as 
in daily mortality or hospitalization. It was proven through autopsies in the 1952 London fog episode 
(Bradley, 1957). In long-term epidemiology, causality must meet five requirements, none of which has 
been established for PM2.5:  

Exposure. Indoor exposures and the contributions of daily peaks have not been considered in long-term 
studies. Initiation of chronic disease can only occur after a latency period and then depends on 
cumulative exposures. This has been established for smoking but not for air pollution epidemiology. 

Toxicity. PM2.5 is not really a pollutant in the sense of defined chemicals (CO, O3, SO2). It is a 
regulatory construct based on mixtures of many kinds of particles, some toxic, others not. Given the 
multiplicity of health endpoints that have been considered, a statistically significant combination with a 
PM constituent is likely.  

Translocation. Inhalation of a pollutant is not sufficient to imply contact with an organ and initiation of 
chronic disease. PM2.5 translocation from the lung to the bloodstream has not been demonstrated, by 
contrast with ultrafine particles, for example. 

Susceptibility. Given the diversity of the population, the notion that a healthy person could be randomly 
selected to die coincidently with normal levels of ambient air quality is patently absurd. Time-series 
studies have shown that acute mortality is associated with both underlying frailty and daily air pollution 
peaks (Murray and Lipfert, 2012, 2013). Differential susceptibility is also likely the case for incidence of 
chronic disease, but making this case would require tracking individual cohort members during the 
latency period. 

Accountability. The ultimate test of causality is whether public health has actually improved in response 
to reduced PM2.5 (by a factor of 3 since ca. 1980), after accounting for coincident trends in spatial 
patterns of reduced smoking and improved medical care. The extant literature does not support this test; 
Henneman et al. (2019) showed no effect on total mortality (-0.011 [-0.92 – 0.71]) after reducing PM2.5 
from 10.0 μg/m3 in 2005 μg/m3 to 7.2 in 2012. However their analysis did not account for latency or 
cumulative exposures. 

By contrast, the epidemiology of smoking has all of these elements. Exposure is self-reported on an 
individual basis, and the importance of cumulative exposure is shown by the use of pack-years as a 
predictor of disease after accounting for latency. Toxicity of smoke constituents has been determined by 
laboratory and animal tests, especially for benzo(alpha)pyrene (B[a)P) which is also an (unmonitored) 
ambient air pollutant. Translocation is not an issue for the gaseous pollutants and the most serious health 
effects (cancer, COPD) occur in the lung. Susceptibility comes into play when frail smokers are urged to 
quit. Accountability is shown by the improved health of quitters. 
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2. Please opine on the level of uncertainty that is represented by this heterogeneity, and the impact if 
any, on the conclusions in the PA.  
 
Heterogeneity between cities must be controlled through the use of contextual variables in the regression 
models, in addition to personal information. This was first shown in the Veterans Cohort Study (Lipfert 
et al., 2000) in which the inclusion of variables dealing with climate, neighborhood poverty, and 
neighborhood racial distribution changed the mortality risks for PM2.5 and SO4

2- from positive to 
negative. However, those contextual variables have not been used in other cohort studies. Heterogeneity 
within cities includes house-to-house variability in indoor air quality and local features like green spaces 
and high-traffic areas. Figure 1 shows lack of correlation between indoor and outdoor across American 
cities (Lipfert, 2015) which has also been shown in EPA studies (Baxter et al.1994, 2007, 2010, 2013, 
2014, 2017). While indoor PM2.5 is about half of outdoor because of infiltration as shown in the Figure, 
personal exposure can be much higher because of indoor sources like environmental tobacco smoke. 
EPA has confirmed these observations but they have not been used in EPA-sponsored epidemiology. 

 
4. The CASAC letter to the Administrator (April 11, 2019) states, “There is inadequate evidence for the 
‘likely to be causal’ conclusion for long-term PM2.5 exposure and cancer.” exposure time frames for 
most of these studies are insufficient to draw conclusions about incident cancer. Do you agree with the 
CASAC’s findings in this matter?  

While response must always follow exposure, the delay depends on the latency period of the endpoint. 
Sudden death may occur within a week, as shown in time-series analysis; initiation of chronic disease 
may require decades. Figure 2 shows temporal trends for lung cancer, smoking, and PM2.5. based on 
population-average data. Cancer lags smoking by about 18 years, consistent with cohort and individual 
data. We would expect a similar relationship for atmospheric particles, for which sufficient historical 
data are lacking. However, if latency were neglected, a (spurious) longitudinal relationship between lung 
cancer and PM2.5 would be seen in Figure 2, as has been the case in long-term cross-sectional cohort 
studies. We would expect this concept to pertain to initiation of other diseases as well.  

 
5. Please comment on the appropriateness and completeness of the approaches used in this PA to assess 
the risks of exposure, and the assessments of risk reduction of alternate standards, for PM2.5 and PM10 
(sections 3 and 4, respectively). 
 

The concepts of causality and appropriate exposures are universal and thus would affect any differences 
resulting from alternative NAAQS levels. However, estimating any resulting monetary benefits must be 
revisited. The current practice is to assign a value of several million $ to each life “saved” regardless of 
the resulting change in life expectancy. Recent analyses have estimated longevity extensions from 
several days to several months that would have substantially lower value. The current monetization 
algorithm must be changed.  

 
 

https://yosemite.epa.gov/sab/sabproduct.nsf/264cb1227d55e02c85257402007446a4/6CBCBBC3025E13B4852583D90047B352/$File/EPA-CASAC-19-002+.pdf
https://yosemite.epa.gov/sab/sabproduct.nsf/264cb1227d55e02c85257402007446a4/6CBCBBC3025E13B4852583D90047B352/$File/EPA-CASAC-19-002+.pdf
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Figure 1. Relationships between indoor and outdoor PM2.5 for selected U.S. cities. 

 
Figure 2. Comparison of trends in annual cigarette sales, estimated PM2.5, and lung cancer 
mortality 18-y later (deaths/10,000 population) 
 
 

6. Are there additional key studies that should be considered in sections 3 and 4 of the PA? 
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Here are citations and summaries of some of my relevant publications that have not appeared in the PA 
or an ISA. 

Measurement error and uncertainties 

These papers examine the effects of bias and noise in independent variables used in linear regression, 
especially from correlated air pollutants. They show that the pollutant with the least error will prevail in 
co-pollutant models. Random measurement error biases the slope of an exposure response function 
toward the null, which also biases the x-intercept toward the origin and obscures any threshold that may 
have existed in the absence of measurement error. “Measurement error” may be random (instrumental) 
or the result of mis-specification or mis-location of monitors. 

F.W. Lipfert and R.E. Wyzga (1995), Uncertainties in Identifying "Responsible" Pollutants in 
Observational Epidemiology Studies, Inhalation Toxicology 7:671-89.  
 
F.W. Lipfert and R.E. Wyzga, Air Pollution and Mortality: Issues and Uncertainties, J.AWMA 45:949-
66 (1995). 
 
F.W. Lipfert and R.E. Wyzga (1997), Air Pollution and Mortality: The Implications of Uncertainties in 
Regression Modeling and Exposure Measurement, J.AWMA 47 517-523. 
 
F.W. Lipfert and R.E. Wyzga (1998), Effects of Exposure Error on Environmental Epidemiology, proc. 
International Symposium on the Health Effects of Particulate Matter, Prague. AWMA Publ. VIP-80, pp. 
155-166. 
 
F. W. Lipfert and R.E. Wyzga, Statistical Considerations in Determining the Health Significance of 
Constituents of Airborne Particulate Matter, J.AWMA. 49:PM-182-191 (1999). 
 
Lipfert, F.W., The Use and Misuse of Surrogate Variables in Environmental Epidemiology, J.  
Environmental Medicine 1:267-278 (1999). 
 
 
Time-series studies 
 
Time-series studies of daily mortality predict acute responses on the first few days of exposure, usually 
persisting less than a week. Responses are limited to the elderly and are stronger among the most 
susceptible subjects. Similar risks have been associated with various air pollutants and are strongest for 
cardiac and respiratory deaths. Murray and Lipfert (2010) considered a new model that predicts the 
magnitude of an elderly subpopulation most at risk of imminent death on a daily basis, rather than the 
general population. In this model two conditions are required for an acute air pollution-related death: 
increased frailty (inability to maintain homeostasis) and increased pollution exposure. Extreme values of 
either parameter can result in death, thus precluding air pollution thresholds. Acute frailty is represented 
by membership in a small fluctuating sub-population (Pt) at high risk that is depleted by daily deaths 
(Dt) and replenished by new entries (Nt). Dt and Nt may be affected by current or previous 
environmental conditions. The ratio of Pt to Dt is a measure of survival time (i.e., daily life expectancy) 
in the frail state. The Kalman filter is used to solve these equations. Pt fluctuates with season and 
averages ~0.08% of the elderly. Life expectancies of subjects in the at-risk pool are about 5-7 days and 
robust to alternative models and environmental fluctuations. Daily mortality risk estimates are similar to 
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those from conventional time-series analyses, but information on the accompanying life expectancies 
provided by this model is novel.  

Murray CJ, Lipfert FW. Revisiting a Population-Dynamic Model of Air Pollution and Daily Mortality of 
the Elderly Population in Philadelphia. J Air Waste Manag Assoc. 2010 60:611-629. 
 
Murray CJ, Lipfert FW. A new time-series methodology for estimating relationships between elderly 
frailty, remaining life expectancy, and ambient air quality. Inhalation Toxicology 2012 24:89-98. 
 
Lipfert FW, Murray CJ. Air pollution and daily mortality: A new approach to an old problem. Atmos 
Environ 55; 467-74 (2012). 
 
Murray CJ, Lipfert FW. Inferring frail life expectancies in Chicago from daily fluctuations in elderly 
mortality. Inhal Toxicol. 2013 Jul;25(8):461-79.  
 
Other time-series papers. 
 
These papers provided short-term risk estimates for numerous pollutants that have not been considered 
by others: a wide range of particulate measures in which TSP was the most important, and a complete 
set of PM chemical components from which carbon compounds were the most important. 
 
Lipfert, F.W., Morris, S.C., and Wyzga, R.E. (2000), Daily Mortality in the Philadelphia  
Metropolitan Area and Size-Classified Particulate Matter, J.AWMA 50:1501-13. 
 
Klemm, R.J., Lipfert, F.W., Wyzga, R.E., Gust, C. Daily mortality and air pollution in Atlanta: Two 
years of data from ARIES. Inhal Toxicology 16 (Suppl 1):131-41 (2004). 
 
 
The Veterans Cohort Study 
 
The Veterans Cohort Mortality Study began as a cooperative venture with Washington University at St. 
Louis (WUSTL), who developed the cohort and originated the study. It is based on a cohort of about 
70,000 male veterans who were recruited in 1976 and followed for 26 y This is an important period of 
study because of the substantial improvements in ambient air quality that were achieved following 
passage of the 1970 Clean Air Act. The cohort was 37.7% black and 81% had smoked at one time; they 
were recruited at VA 32 clinics nationwide. it is the first cohort study to examine long-term all-cause 
mortality risks associated with air pollution for a variety of pollutants by race. The study considered the 
overall follow-up period (1976-2001) and four sequential mortality periods (1976-81, 1982-88,1989-96, 
and 1997-2001). The WUSTL proportional hazards model included non-linear terms for age, smoking, 
body-mass index (BMI), blood pressure, and interaction terms. The first paper showed that the relative 
importance of PM2.5 and SO4 is contingent on the inclusion of contextual predictor variables in the 
model including climate, poverty and neighborhood characteristics in the proportional hazards model. 
Those variables were retained in subsequent analyses. Later papers examined PM2.5 constituents, 
hazardous pollutants, and county-level traffic density, which was the most important predictor along 
with NOx and elemental carbon. The 2018 paper examined the effects of cohort aging with respect to 
temporal trends and found the former to be more important with stronger risks in middle age. PM2.5 had 
consistently negative (beneficial) effects; no effects of accumulated exposures were evident. The most 
recent (2019) paper found that black veterans were more heavily exposed to traffic, with significantly 
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negative effects of PM2.5 but significantly positive risks for whites similar to those found in other 
cohorts. This explains the apparently anomalous (negative) PM2.5 effects for the entire cohort. It also 
supports the hypothesis that cross-sectional studies essentially consider differences among places per se 
(counties, zip-codes, etc.) rather than the personal exposures of residents. Traffic effects were found to 
be stable over the 26-y period; however, those actual risk agents remain unknown, comprising engine 
exhaust, noise, tire/road dust, undesirable residential locations, but not indoor air pollution.  

 
Lipfert, F.W., Perry, H.M. Jr., Miller, J.P., Baty, J.D., Wyzga, R.E., Carmody, S.E. (2000) The 
Washington University-EPRI Veterans' Cohort Mortality Study: Preliminary Results, Inhalation 
Toxicology 12 (Suppl 4):41-73. 
 
Lipfert, F.W., Perry, H.M. Jr., Miller, J.P., et al., 2003. Air Pollution, Blood Pressure, and Their Long-
Term Associations with Mortality. Inhalation Toxicology 15, 493-512.  
 
Lipfert, F.W., Wyzga, R.E., Baty, J.D., Miller, J.P., 2006a.Traffic Density as a Surrogate Measure of 
Environmental Exposures in Studies of Air Pollution Health Effects: Long-term Mortality in a Cohort of 
U.S. Veterans, Atmospheric Environment 40, 154-169. 

Lipfert, F.W., Wyzga, R.E., Baty, J.D., Miller, J.P., 2006b. PM2.5 Constituents and Related Air Quality 
Variables as Predictors of Survival in a Cohort of U.S. Military Veterans, Inhalation Toxicology 18:645-
57. 
 
F.W. Lipfert, R.E. Wyzga, Jack D. Baty, J. Philip Miller. Vehicular Traffic Effects on Survival within 
the Washington University - EPRI Veterans Cohort: New Estimates and Sensitivity Studies, Inhalation 
Toxicology 20:949-960 (2008). 
F.W. Lipfert, R.E. Wyzga On Exposure and Response Relationships for Health Effects Associated with 
Exposure to Vehicular Traffic. J Expos Sci Environ Epidem 18: 588-599 (2008). 
 
Lipfert FW, Wyzga RE, Baty JD, Miller JP. Air pollution and survival within the Washington 
University-EPRI Veterans Cohort: risks based on modeled estimates of ambient levels of hazardous and 
criteria air pollutants. J Air Waste Manag Assoc. 2009 59:473-89. 
 
Lipfert FW, Wyzga RE. Revisiting the Veterans Cohort Mortality Study: New results and synthesis. J 
Air Waste Manag Assoc. 2018 Nov;68(11):1248-1268.  
 
Lipfert FW, Wyzga RE. Environmental Predictors of Survival in a Cohort of U.S. Military Veterans: A 
Multi-level Spatio-temporal Analysis Stratified by Race. Envir Res (accepted 2019). 

 

Trend analysis 
 
Lipfert FW (1998), Trends in Airborne Particulate Matter in the United States. Applied Occupational 
and Environmental Hygiene 13:370-384  
 
Lipfert FW, Morris SC, Temporal and spatial relationships between age-specific mortality and ambient 
air quality in the United States: Regression results for counties, 1960-97, Occup Env Med 59:156-74 
(2002). 
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This paper used population data to show how mortality risks associated with air pollution decline with 
age and are stronger when mortality and exposure are measured coincidentally during a given follow-up 
period.  

 
Review papers. 
 
Lipfert, F.W., Commentary on the HEI Reanalyses of the Harvard Six Cities Study and the American 
Cancer Society Study of Particulate Air Pollution and Mortality, J. Toxicology and Environmental 
Health 66:1705-14 (2003).  
 
Lipfert FW. An assessment of air pollution exposure information for health studies. Atmosphere 2015, 6, 
1736-1752.  

Detailed analyses of indoor air quality data showing indoor infiltration rates and short- but not long-term 
relationships between indoor and outdoor concentration.  

Lipfert FW. Long-Term Associations of morbidity with air pollution: A catalogue and synthesis. 
JAWMA 2018 68:12-26.  

This catalog lists 417 long-term studies of cardiovascular, respiratory, cancer, diabetes, hospitalization, 
neurological, and pregnancy-birth endpoints with respect to PM2.5, PM10, TSP, carbon, ozone, sulfur, 
vehicular traffic, radon, and indoor air quality. Durations of exposure range from 60 d to 35 y. Most 
studies were cross-sectional over limited time spans with no consideration of lag or disease latency. 220 
studies indicated significant adverse effects. Associations with cardiovascular indicators, lung function, 
respiratory symptoms, and low birth-weight were more likely to be significant than with disease 
incidence, heart attacks, diabetes, or neurological endpoints. Elemental carbon (EC), and NOx were most 
likely to be significant for cardiovascular outcomes. For all diagnoses, the highest fractions of 
significant findings were for “other” pollutants including TSP, EC, and metals. PM2.5 and PM10 had 
lower risk ratios. Overall, these studies support non-lethal physiological effects of various pollutants, 
more so for non-life-threatening endpoints and for non-criteria pollutants (TSP, EC, PM2.5 metals).  

 
Editorial comments 
 
Lipfert FW. Clean air skepticism. Science. 1997 Oct 3;278(5335):19-20.  
 
Lipfert FW. Air pollution and life expectancy. N Engl J Med. 2009 May 7;360(19):2033.  
 
Lipfert FW. Air pollution and life expectancy. Epidemiology. 2014 Sep;25(5):776-7. 
 
Lipfert FW. Letter to the Editor Re: Enstrom JE. Fine particulate and total mortality in Cancer 
Prevention Study cohort reanalysis. Dose-Response. 22;16(1):1559325817746304.  
 
Lipfert FW. Re: Chemical Composition of Fine Particulate Matter and Life Expectancy in 95 US 
Counties. Epidemiology. 2017 Mar;28(2):e18.  
 
Lipfert FW. Air Pollution and Mortality in the Medicare Population. JAMA. 2018 May 
22;319(20):2133-2134.  
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Lipfert FW, Explain ill effects of airborne particles. Nature 2019 570:446. 
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Responses to Questions from Dr. Lange 

1) Is it appropriate to compare daily PM2.5 concentrations to the annual average? 
 

This distinction is an artifice of the extant regulatory framework; these are simply two measures of the 
same typically log-normal frequency distribution of ambient air quality measures. To my knowledge, all 
C-R functions are essentially linear, including those for health, vegetation damage, and tombstone 
erosion, but they all require durations of exposure. Short- vs. long-term health effects are discussed 
below; cumulative exposures should be used for the latter (but seldom have been), just as the number of 
pack-years is used in smoking epidemiology or working years in occupational epidemiology.  

 
2) Is it informative to derive annual average pseudo-design values for study areas in short-term 

studies (that look at effects of day-to-day PM2.5 concentration changes), in order to determine 
whether these study areas attained the current annual standard? Although the EPA can 
technically determine if daily changes in PM2.5 concentration increased health effects in an 
area meeting the annual standard, does this really inform the health protectiveness of the annual 
standard? It seems that whether an area showed a positive effect or not could be completely 
independent of the annual standard and instead dependent on how much the PM2.5 
concentrations changed from day-to-day.  

 
As I understand them, design values are only used for regulatory but not scientific purposes and I have 
no direct comments about them. “Informing health protectiveness” can only be accomplished by 
comparing health effects measured before and after pollution abatement. This is shown directly in time-
series analysis when death counts track pollution peaks, first up and then back down to normal. Such 
tests have not been successful for long-term pollution abatement, in part because of the time required for 
cumulative exposures to decrease. This is analogous with the time required to realize health benefits 
after smoking cessation. 

 
3) In contrast to short-term studies that investigate the effects of day-to-day changes in PM2.5 

concentrations within a certain geographic area, long-term cohort studies often look at the 
association between annual average PM2.5 concentrations and time-to-event data (such as the 
time from cohort entry to death) over long periods of time. For these studies, it is not uncommon 
for all study subjects in a single geographic area to have the same (or very similar) exposure 
assignments (e.g. Jerrett et al., 2017; Thurston et al., 2016), in which case the study is assessing 
the effects of PM2.5 between geographic areas, instead of within geographic areas. In this case, 
is the pseudo-design value in a single geographic area particularly informative, when the 
association between PM2.5 and the health effect is driven by the differences between study 
areas? 

 

If we define the “area” as based on the surroundings of an ambient monitoring station, uniformity is 
assumed in cross-sectional epidemiology and the lack thereof constitutes “measurement error” and 
biases the slope of the C-R function downward. However, this common scenario is at odds with the real 
world because each affected individual within that area will have had his/her own personal exposure that 
tend to be controlled by indoor rather than the outdoor conditions where we typically spend only 10-
15% of our time. Indoor air quality is in synch with the outdoors because of infiltration from the 
outdoors, but each residence has its own long-term offsets from smoking, gas cooking, pets, cleaning 
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agents, fireplaces, etc. I found no long-term spatial correlation between indoor and outdoor PM levels as 
shown in Figure 1 above (Lipfert, 2015). These indoor-outdoor relationships are consistent with reports 
from EPA (Baxter et al. 1994, 2007, 2010, 2013, 2014, 2017).  

(4) Results of Risk Analysis 
 
Table 1. An incomplete list of possible uncertainties in deriving risk estimates from reductions in PM2.5 
concentrations. 

Source of Uncertainty Example Magnitude Example Reference 
Generating the Concentration-Response (C-R) Function in Epidemiology Studies 

Exposure Measurement Error 31-85%  Spatial error + population error 
(Dionisio et al., 2016) 

Model Misspecification Error 50% Generalized linear vs 
generalized additive models for 
PM10 (Sheppard, 2003) 

Alternative C-R Functions 
within One Study 

200% Range of HRs generated using 
different exposure models 
(Jerrett et al., 2017) 

Causal Relationship 0.35-1 US EPA Expert Elicitation of 
PM2.5 causality – provided is 
the range of probabilities that 
PM2.5 is causing mortality 
(Mansfield et al., 2009) 

Air Quality Monitoring/Modeling 
Air Monitoring ± 10% Allowable variation in 24-hour 

PM2.5 monitored 
concentrations 

Air Modeling ± 30% 10-90% range for prediction of 
change in PM2.5 concentrations 
(Mansfield et al., 2009) 

Applying the Concentration-Response Function 
Choice of C-R Function 400% Variability in PM2.5 long-term 

all-cause mortality estimates 
presented in Table 3-7 using C-
R functions from different 
studies (PM PA 2019) 

Baseline Incidence Rates ± 5% Influence Analysis 10-90% 
range for prediction of base 
mortality rates (Mansfield et al., 
2009) 

Population Forecasts ± 10% Influence Analysis 10-90% 
range for census 2020 
population forecasts (Mansfield 
et al., 2009) 

Use of National Estimates ± 1000% Range of C-R estimates across 
77 study cities, compared to the 
national estimate (Baxter et al., 
2017) 



18 
 

Threshold in C-R 6-90% Change in premature mortality 
from CPP repeal cutpoint 
analysis (LML cutpoint on low 
end of scale; NAAQS on high 
end of scale) (USEPA, 2017) 

 

Re: Table 1. “Causal Relationships” vary by PM composition, disease, age, race, season, and exposure 
time. Most of these factors have not been explored or discussed in the PA. “Air Monitoring” is 
inadequate because indoor exposures have not been considered and the databases for daily values and 
PM constituents are too sparse. There is virtually no ambient data on the ultrafine particles that can enter 
the bloodstream. I did not respond to questions on the present “C-R functions” because I do not find 
them credible, as discussed above. 

 
(5) Is there a quantitative uncertainty analysis method that the EPA could use for this risk 

assessment that captures more of the uncertainty and variability of the risk estimates (such as 
those described in Table 1), in order to better inform CASAC and the EPA Administrator about 
the impact of these uncertainties? 

 
Statistical methods are available for within-model random uncertainties, but the questions raised above 
about appropriateness of specific models have not been addressed and are far more important. There are 
also uncertainties as to responsible pollutants. PM2.5 is featured in part because of is extensive ambient 
monitoring network and the use of mathematical models to estimate more detailed locations. However, 
considering the time periods (decades) and spatial scale (the entire U.S.) it is likely that other pollutants 
may be involved, especially PM2.5 constituents.  

 
(6) Could different magnitudes of error amongst different variables in regression analyses be 

masking the effect of a speciated constituent of PM2.5. 
 
In general, the database for PM constituents is much more sparse than for PM2.5 per se; there are 
fewer locations, shorter periods of record and limited daily data. I searched for relevant mortality 
studies from the US, UK, or Canada and found the following papers, none of which were cited in the 
PA: 

Olstrup H, Johansson C, Forsberg B. The Use of Carbonaceous Particle Exposure Metrics in Health 
Impact Calculations. Int J Environ Res Public Health. 2016 Feb 24;13(3). pii: E249.  

Kim SY, Dutton SJ, Sheppard L et al. The short-term association of selected components of fine 
particulate matter and mortality in the Denver Aerosol Sources and Health (DASH) study. Environ 
Health. 2015 Jun 6;14:49.  

Atkinson RW, Analitis A, Samoli E et al. Short-term exposure to traffic-related air pollution and 
daily mortality in London, UK. J Expo Sci Environ Epidemiol. 2016 Mar-Apr;26(2):125-32.  

Ozkaynak H, Baxter LK, Dionisio KL, Burke J. Air pollution exposure prediction approaches used 
in air pollution epidemiology studies. J Expo Sci Environ Epidemiol. 2013 Nov-Dec;23(6):566-72.  
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Cakmak S, Dales RE, Rubio MA, Vidal CB. The risk of dying on days of higher air pollution among 
the socially disadvantaged elderly. Environ Res. 2011 Apr;111(3):388-93.  

Mar TF, Norris GA, Koenig JQ, Larson TV. Associations between air pollution and mortality in 
Phoenix, 1995-1997. Environ Health Perspect. 2000 Apr;108(4):347-53.  

Zhou J, Ito K, Lall R, Lippmann M, Thurston G. Time-series analysis of mortality effects of fine 
particulate matter components in Detroit and Seattle. Environ Health Perspect. 2011 
Apr;119(4):461-6.  

Ostro B, Roth L, Malig B, Marty M. The effects of fine particle components on respiratory hospital 
admissions in children. Environ Health Perspect. 2009 Mar;117(3):475-80.  

Ostro BD, Feng WY, Broadwin R et al. The impact of components of fine particulate matter on 
cardiovascular mortality in susceptible subpopulations. Occup Environ Med. 2008 Nov;65(11):750-
6.  

Ostro B, Feng WY, Broadwin R, Green S, Lipsett M. The effects of components of fine particulate 
air pollution on mortality in California: results from CALFINE. Environ Health Perspect. 2007 
Jan;115(1):13-9.  

Sarnat SE, Suh HH, Coull BA et al. Ambient particulate air pollution and cardiac arrhythmia in a 
panel of older adults in Steubenville, Ohio. Occup Environ Med. 2006 Oct;63(10):700-6.  

Burnett RT, Brook J, Dann T et al. Association between particulate- and gas-phase components of 
urban air pollution and daily mortality in eight Canadian cities. Inhal Toxicol. 2000;12 Suppl 4:15-
39.  

Klemm, R.J., Lipfert, F.W., Wyzga, R.E., Gust, C. Daily mortality and air pollution in Atlanta: Two 
years of data from ARIES. Inhal Toxicology 16 (Suppl 1):131-41 (2004). 

 
Lipfert, F.W., Wyzga, R.E., Baty, J.D., Miller, J.P., 2006b. PM2.5 Constituents and Related Air 
Quality Variables as Predictors of Survival in a Cohort of U.S. Military Veterans, Inhalation 
Toxicology 18:645-57. 

 
Lipfert FW, Wyzga RE, Baty JD, Miller JP. Air pollution and survival within the Washington 
University-EPRI Veterans Cohort: risks based on modeled estimates of ambient levels of hazardous 
and criteria air pollutants. J Air Waste Manag Assoc. 2009 59:473-89. 

 

Most of these studies were from localized areas. None of them used long-term data from the Harvard Six 
Cities, American Cancer Society, or Medicare cohorts; the Veterans Cohort Study used nationwide data 
(Lipfert et al., 2006b). Measurement errors relative to PM2.5 are likely since it tends to be regionally 
distributed while most of its constituents are more local. There may also be uncertainties in the chemical 
analyses, notably for carbon compounds that appear to be the most important constituents. 

 
(7) What happens when multiple potential explanatory factors are included in a single variable in an 

already-complex multiple regression system? Presumably each PM2.5 component has a different 
C-R relationship with the health effect (even if that relationship is zero), and each is a somewhat 
better or worse surrogate for the relationship between actual exposure vs measured exposure. 
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What kind of an impact would this inclusion of multiple potential explanatory factors into one 
variable have on the final C-R function, and how accurate would that C-R function be? 

 
A common problem is that of multicollinearity, since many PM constituents are interrelated. A better 
procedure might be to develop hypotheses from toxicity data and test them against specific causes of 
death, relying more on physiology than statistics per se.  

 
 

 
 
 
 

 

Responses to Questions from Dr. Packham 

(1) Are there areas (e.g., specific aspects of biological causation, pulmonary toxicology, or causality 
in epidemiology) in which additional knowledge is required to appraise the adequacy and basis 
of existing, new, or revised PM NAAQS to protect public health with an adequate margin of 
safety? 

 
Biological causation has not been addressed by health endpoint. A critical issue is translocation of PM 
from lung to bloodstream according to particle size and whether PM2.5 as measured in the ambient is 
capable of doing so. Health effects centered in the respiratory system must be evaluated in terms of 
deposition, clearance, and importance of cumulative deposition. All of this must be characterized by PM 
constituent; if only EC could be shown to be harmful, then control strategies and accountability must 
focus on EC. This is especially important for ultrafines (UFP), for which exposures are essentially 
unknown.  
 The findings of strong effects of traffic density (the 3rd type of C-R mentioned in the 
Introduction) should be replicated in other cohorts. Such data are readily available.  

 
(2) Can you suggest additional specific scientific disciplines and areas of biomedical informatics 

and research (e.g., systems biology methods for clarifying biological causal pathways, 
mechanisms, modes of action, quantitative causal dose-response relationships) that should be 
included in future reviews of other criteria pollutants. 

 
Causality, speciation, and accountability go together. Short-term causality was shown in London 1952 
by autopsy (Bradley, 1957) that indicated black carbon deposits. Accountability in short term effects is 
shown by synchronicity of exposure and response after controlling for weather, the only rational 
confounder. No such demonstrations have been reported for long-term effects. Animal tests in the 1970s 
were inconclusive and there have been no sufficiently long morbidity experiments that might 
demonstrate associations between PM2.5 as measured in the ambient and development of atherosclerosis, 
for example. Human (or animal) experiments on concentrated particles (CAPS) in previous decades 
should be reviewed and possibly extended to PM components or UFPs. 
 

(3) Can you describe the research efforts necessary to provide the required information?  
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Long-term morbidity experiments or evaluation of associations with long-term hospitalizations, nursing 
home stays, etc. Occupational studies on PM components, especially EC, OC, SO4, NO3. Existing cohort 
studies should be reevaluated using lags and cumulative exposures. Within- and between-city data on 
indoor air quality are needed (See Figure 1, above).  
 

(4) To what extent has the needed research already been done, or started? For example, are there 
crucial experiments or research initiatives that could clarify the shape of the PM2.5-chronic 
inflammation causal dose-response relationships at relevant exposure concentrations?  

 
Not that I’m aware of. 
 

(5) Are there specific data analyses (e.g., testing for confounding by weather variables over more 
days prior to mortality) that could clarify the causal interpretation of epidemiological 
associations relied on in the draft PA to simulate effects of interventions?  

 
Yes. See sensitivity studies of temperature and air pollution lags in Murray and Lipfert (2012, 2013). 
Those studies should be replicated for other times and places. Short-term studies essentially comprise 
“interventions” (caused by atmospheric changes, week-days vs. weekends). 
 

(6) Can you suggest additional areas of scientific literature review on species and individual human 
organism’s capacities of adaptation to inhaled environmental stressors that might help establish 
margins of safety when exposed to ambient levels of air pollution?  

 
Respiratory effects of cumulative exposures are well known for smoking and occupational exposures. 
Parallel information is needed for CVD, stroke, etc.  

 
(7) Could you provide additional information on the relative contributions to air pollution 

concentrations and resulting health effects of natural and anthropogenic activity? For example, 
is either one alone, or are both natural and anthropogenic activities together, sufficient to cause 
the magnitudes of adverse health effects attributed to PM2.5 in the Draft PA?  

 
This requires PM speciation and is important for indoor sources and wood smoke, including wildfires. 

 
(8) Could you provide additional information on any adverse public health, welfare, social, 

economic, or energy effects which may result from various strategies for attainment and 
maintenance of such national ambient air quality standards? No. 

 
 

Discussion of Issues 

A. Causality 

A causal relationship between exposure and response is required to justify regulation intended to benefit 
public health. Causality in air pollution epidemiology must rest on five requirements, none of which has 
been established for PM2.5. The purpose of this exposition is not to demolish the existing regulatory 
structure but to advocate for reframing it by addressing each of the 5 points.  
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1. Exposure. Indoor exposures and daily peaks have not been considered in long-term studies. 
Initiation of chronic disease only occurs after a latency period and responds to cumulative 
exposures. This has been established for smoking but not for air pollution epidemiology. 

2. Toxicity. PM2.5 is not really a pollutant in the sense of defined chemicals (CO, O3, SO2). It is a 
regulatory construct based on mixture of many kinds of particles, some toxic, others not. These 
mixtures will have varied or time and among locations. Given the multiplicity of health 
endpoints that have been considered, some statistically significant combinations with a PM 
constituent are likely.  

3. Translocation. Inhalation of a pollutant is not sufficient to imply contact with an organ and 
initiation of chronic disease. PM2.5 translocation from the lung to the bloodstream has not been 
demonstrated, by contrast with ultrafine particles, for example. 

4. Susceptibility. Given the diversity of the population, the notion that a healthy person could be 
randomly selected to die coincidently with normal levels of ambient air quality is patently 
absurd. Time-series studies have shown that acute mortality is associated with both underlying 
frailty and daily air pollution peaks. Such differential susceptibility is also likely the case for 
incidence of chronic disease, but cohort members would have to be tracked during the disease 
latency period to make this case. 

5. Accountability. The ultimate test of causality is whether public health has actually improved in 
response to reduced PM2.5 (by a factor of 3 since ca. 1980), after accounting for coincident trends 
in spatial patterns of reduced smoking and improved medical care. The extant literature does not 
support this test; Henneman et al. (2019) showed no effect on total mortality (-0.011 [-0.92 – 
0.71]) after reducing PM2.5 from 10.0 μg/m3 in 2005 μg/m3 to 7.2 in 2012. Note that their 
analysis did not account for latency or cumulative exposures. 

By contrast, the epidemiology of smoking has all of these elements (Lipfert, 2019). Exposure is self-
reported on an individual basis, and the importance of cumulative exposure is shown by the use of pack-
years as a predictor of disease after accounting for latency. Toxicity of smoke constituents has been 
determined by laboratory and animal tests, especially for benzo(alpha)pyrene (B[a)P) which is also an 
(unmonitored) ambient air pollutant. Translocation is not an issue for the gaseous pollutants and the 
most serious health effects (cancer, COPD) occur in the lung. Susceptibility comes into play when frail 
smokers are urged to quit. Accountability is shown by the improved health of quitters.  

B. Interactions between short- and long-term air pollution effects 

Consider time-lines for daily deaths, frailty (morbidity), and air pollution (AP) exposure, for a 
population with no secular or seasonal trends over a period of decades. Each parameter progresses 
through daily peaks and valleys over time. When death and air quality peaks preceded by sufficient 
frailty coincide, a sudden AP death occurs. That person is replaced by a healthy person and the process 
continues along the time-lines. Frailty may also be affected by AP. The remaining deaths and air quality 
exposures accumulate, also with replacement. However, deaths would not be replaced in cohort 
analyses, leading to depletion of the most susceptible subjects. A non-peak AP death occurs when 
exposure accumulates to a level sufficient to initiate a specific disease. The total AP death count for the 
overall period includes peak and non-peak AP deaths.  

This process is carried out in other locations and their total death counts are compared with their 
accumulated exposures to derive the ratio of total AP deaths to exposure for the group using cross-
sectional analysis. Each AP death would have been preceded by an exposure of duration depending on 
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frailty level and cause of death. The short-term peak deaths are of separate interest because they are 
limited to the most-frail subjects and do not constitute incidence of a new disease. Incidence of cancer or 
COPD may require 20-30 y exposures, cardiovascular diseases somewhat less. There may be other 
causes of death associated with intermediate exposure periods about which we have no information. 
These exposure differences suggest cause-specific analyses, each with its own exposure timing.  

This scenario is straightforward, absent secular trends. However, air quality and medical care have been 
improving since about 1970, and relevant exposures for deaths in say, 2000, may reach back to the 
1970s when air quality was much worse. The upshot is that we can’t estimate appropriate long-term AP 
exposures for all-cause deaths, but they are surely higher than exposures at the time of death. 
Corresponding risk coefficients would thus be reduced. Table 1 compares the attributes and 
shortcomings of short- and long-term studies.  

 

Table 1. Characteristics of time-series and cross-sectional mortality studies  

    time-series   long-term populations  long-term cohorts 

dependent variable  death count  mortality rate   dead (yes, no) 

subjects  subpopulations  populations   individuals 

likely causes sudden death  ----------- ischemic heart disease -------------- 

confounders weather   city characteristics personal characteristics holidays   
 climate     contextual variables 

exposures  daily   cumulative annual av’g cumulative annual av’g  

timing  lag days   after latent period  after latent period 

indoor exposure effects attenuation   confounding, bias  confounding, bias 

secular trend  accounted for  exposure bias  cohort depletion by age 

threshold   frailty dependent ----------obscured by measurement error---------- 

Issues of exposure timing  

Above I defined three types of C-R relationships that may be involved in a given situation:  

(a) Short-term (days) fluctuations in air quality that may trigger sudden death in vulnerable 
individuals. Causality in this mode has been demonstrated by heat wave mortality.  
 

(b) Long-term (decades) individual differences that affect incidence of new cases of chronic 
disease, for which the extended effects of cigarette smoking are a causal example. 

(c) Long-term differences among populations that may involve both of the above as well as 
attributes of their locations per se, such as climate, green spaces, traffic density, or characteristics 
of housing stock that affect indoor air quality. 
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The sum of pollution-related deaths from (a) and (b) comprises the total long-term mortality effect, as 
derived from cross-sectional cohort analysis and reported by most of the PM2.5 analyses used in the PA. 
However, there are no short-term effects involved with the contextual variables in type (c) and those 
effects are likely to have been stable over time so that cumulative exposures introduce no bias. The 
Veterans Cohort Study (Lipfert, et al., 2006 a,b) introduced the traffic density variable, the logarithm of 
which was a highly significant predictor of all-cause mortality over the 26-y follow-up period, better 
than either population or housing densities. In a 2-pollutant model, both traffic density and ozone were 
significant, comprising a combination of all three C-R modalities. However, ozone effects were sensitive 
to exposure timing (Lipfert et al., 2000). 

Including additional lags in a short-term study may attribute more deaths to the previous exposures, thus 
increasing the risk coefficient. By contrast, considering prior cumulative exposures in a long-term study 
increases the exposure associated with the observed mortality, thus decreasing the risk coefficient. The 
effects of stable contextual variables are not sensitive to timing issues for long-term residents of a given 
location (e.g., county). 

 

C. Summary  

The current EPA paradigm linking mortality from chronic diseases with long-term air pollution 
exposure does not comport with observations. Here’s what’s been observed: 

1. Exposure to high levels of black smoke and SO2 for a few days has been linked with excess 
mortality by autopsies that show lung deposits of carbonaceous material. Those identified 
victims had suffered from preexisting cardiopulmonary diseases. Causality was supported by 
mortality levels returning to normal after air quality returned to normal.  

2. Responses to daily fluctuations are included in annual variations. 
3. Chronic effects should be characterized by cumulative exposures, similar to observations of 

smoking effects based on pack-years.  
4. The timing of response following exposure depends on latency that varies by disease.  
5. Adults typically spend 85-90% of their time indoors. 
6. Long-term levels of outdoor air quality can be worse than indoors because of unregulated indoor 

sources that vary substantially within cities. 
7. Short-term (daily) fluctuations in indoor air quality follow the outdoors with concentrations 

reduced by about 50%. 
8. Some pollutants (O3, SO2) are adsorbed onto indoor surfaces and are thus not at issue. 
9. Not all potentially important pollutants have been monitored adequately.  
10. Frailty plays an important role in short-term health effects. 
11. Ischemic heart disease (IHD) has been associated with long-term exposure to air pollution. 

Sudden death comprises about half of IHD and thus could be an outcome of short-term 
exposures consistent with relationships between the long- and short-term effects.  

This is what has not been observed: 

12. Deaths attributed to long-term exposure verified by autopsy. 
13. Sufficient data on personal exposures to airborne pollutants adequate for epidemiology. 
14. Translocation of inhaled particles from lung to blood stream. 
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15. Long-term morbidity effects that could support pollution-related incidence of chronic disease or 
onset of frailty. 

The following may be inferred from statistical modeling: 

16. Time-series analyses show similar short-term relationships with various pollutants including 
black smoke and other PM constituents, worldwide. 

17. Short-term effects may persist for several days; total responses are given by the sum over the lag 
period.  

18. A new time-series mortality model that includes frailty in conjunction with air quality shows that 
healthy individuals are not affected by air quality fluctuations. Since there is no upper limit on 
the severity of frailty (life expectancies can be as short as one day), there can be no short-term air 
quality threshold. 

19. Remaining life expectancy is a better outcome metric than numbers of lives “saved” and has 
been estimated to range from days to months (but not years).  

20. The validity of long-term dose-response modeling depends on controlling a wide variety of 
potential confounders including contextual variables that describe places of residence. 

21. Long-term air pollution studies have inadequately controlled confounding including climate and 
personal income for cohort studies and smoking, obesity, and poverty for population-based 
studies. 

22. Those confounders are not important for short-term effects.  
23. Mortality differentials have been associated with places per se such as green spaces or traffic hot 

spots rather any accompanying air pollution exposure differentials. Such long-term associations 
may be affected by age but not by timing, confounded by indoor air pollution, nor limited by the 
available ambient air quality monitoring. 

Here’s what can be concluded from the above: 

24. Short-term effects have been substantially underestimated since most have been based on 1-2 
day average exposures rather than sums over lags. Short-term indoor exposures are attenuated, 
thus increasing their risk coefficients. 

25. Long-term effects have been overestimated since cumulative exposures are much higher and 
latency pushes the applicable air quality levels back in time when they were much worse.  

26. Any true long-term effects must be based on differences between estimates derived from annual 
vs. daily averages and would thus be problematic after adjusting for the above. 

27. Long-term personal exposures are unknown because of variable contributions from indoor 
sources. 

28. Responsible pollutants cannot be confirmed because of inadequate ambient monitoring. 
29. Increased research on short-term effects will require substantial expansion of daily monitoring. 
30. More attention should be given to ultrafine particles that can enter the blood stream.  
31. “Safe” air quality levels cannot be defined because of the controlling effects of physical frailty. 

Society must judge how much (non-zero) risk can be tolerated.  
32. Accountability for long-term air pollution abatement is problematic due to lingering effects of 

prior cumulative exposures. 
33. Long-term health effects associated with places of residence rather air pollution exposures per se 

are not subject to these limitations and are thus more rational. 
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34. Future research should try to account for these limitations and focus on pollution-related 
morbidity that may lead to frailty and short-term effects. 

 

References are listed after Appendix C 

 

 

  



27 
 

Appendix A. Background Issues  

1.1 The potential lethality of ambient air pollution was established by the 1952 London fog disaster 
though autopsies that found black carbon deposits in the lungs of victims. Subsequent time-series 
analyses at various locations during normal atmospheric conditions found associations between 
mortality and daily air pollution peaks over several days, some of which also involved black carbon. 
Summing those deaths over lag periods provides larger estimates of excess deaths than previously 
reported. Time-series analyses using econometric methods found that these excess deaths were 
limited to previously frail subpopulations rather than the population at large. These procedures are 
consistent with analyses of heat wave mortality, when victims were also limited to the frail. Short-
term effects are thus controlled by frailty as well as environmental conditions and are not mutually 
exclusive. A sufficiently frail subject may succumb to minor pollutant exposures and vice-versa, 
precluding observation of thresholds in either. Short-term effects have been well established; proof 
of existence through statistical testing is no longer required.  
 

1.2 Particulate pollutants have been measured in various ways over time, beginning with filter staining, 
referred to as British smoke, black smoke, smokeshade, or coefficient of haze (COH) and equivalent 
to elemental carbon mass (EC). Early U.S. data were measured in terms of the total mass collected 
on filters: total suspended particulate matter. Atmospheric visibility has also been used. Sulfate 
content was also reported then but those early readings are suspect because gaseous SO2 reacted 
passing through the alkaline filters, creating artifact sulfates. Beginning ca. 1980 better sampling 
methods were devised, with segregation by particle size, originally PM3.5 and PM15 and later 
changed to PM2.5 and PM10. Daily TSP ranked highest in a comprehensive comparison of PM 
metrics in Philadelphia (Lipfert et al., 2000). 

 
1.3 PM2.5 infiltrates indoors but not uniformly (Sarnat et al., 2012). Penetration varies by season (and 

presumably climate), time of day, composition, and particle size. Submicron particles have the 
largest indoor/outdoor ratio, peaking at about 0.3 μm; EC penetrates indoors better than PM2.5. Part 
of the focus on PM2.5 came from the Acid Precipitaion Program that posited that acidity (H+) of filter 
deposits was a human health hazard. Subsequent epidemiology ruled this out but concern about 
PM2.5 remained, originally about respiratory effects that had been demonstrated in the Harvard Six 
Cities program. Based on subsequent epidemiology, emphasis shifter to heart disease for which 
mechanistic support remains incomplete.  

 
1.4 Estimates of long-term effects of air pollution on specific cohorts or populations at large have been 

limited to cross-sectional comparisons across locations for which outdoor ambient air quality levels 
were estimated. These associations have been interpreted as evidence for causing new cases of 
chronic disease; however, neither latency periods nor cumulative exposures have been considered 
nor have pollutants toxic to specific organs been identified. These cross-sectional analyses are thus 
inconsistent with well-established protocols for analyzing smoking effects (Lipfert, 2019). By 
contrast with effect of smoking, death by long-term air pollution exposure has never been confirmed 
by autopsy. In addition, there have been no sufficiently long-term morbidity or animal studies to 
provide support for the chronic effect hypothesis. 
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1.5 The timing of exposures relative to responses is important. Exposure must precede response, as has 
been shown in time-series studies. Long-term studies have been based on annual averages, but those 
averages include the daily peaks for which short-term responses were estimated separately. Any true 
long-term effects must thus be defined as differences between those based on annual averages and 
those based on daily peaks. Short-term effects should be summed over lags and long-term effects 
should account for latency and cumulative exposures. These fundamental requirements have not 
been recognized in the extant literature.  

 
1.6 Only outdoor air pollution has been assumed to be relevant even though we spend ~85% of our time 

indoors, more for the severely frail. Indoor air pollution was not addressed in the Clean Air Act, is 
not regulated, and is thus not routinely monitored. In much of the United States, outdoor air may be 
dirtier than indoors for some pollutants, in which case further improvements in outdoor air quality 
would be moot. EPA has a separate entity for indoor air quality but those concerns have not been 
recognized in epidemiology and differ between short- and long-term exposures. About half of 
outdoor air pollution infiltrates indoors with the same frequency distributions; short-term effects 
may thus be experienced indoors but with larger risk coefficients. Long-term effects are dominated 
by unregulated indoor sources including environmental tobacco smoke, gas stoves, pets, candles, 
hobbies, etc., for which few data are available. Cross-sectionally, there are no long-term 
relationships between indoor and outdoor air quality, especially for particulate matter that has many 
types of indoor sources. The victims of air pollution occupy only a tiny fraction of a community’s 
residences, practically precluding estimating their indoor exposures.  

1.7 The implications of future climate change and of the likely efforts to ameliorate it should also be 
considered. There may be less vehicle exhaust but not tire and road dust. Rising temperatures will bring 
increased demand for residential air conditioning. The accompanying reduced infiltration of outside air 
will exacerbate effects of indoor air pollution sources.  

1.8 The selection of criteria pollutants has involved circularity: The agency suspects health effects for a 
given pollutant based on prior information. It then deploys a monitoring network designed solely for that 
pollutant. The resulting data are used in epidemiology studies that find significant effects for that 
pollutant (alone), thus justifying the original decision. However, that decision would have been made in 
the absence of parallel counterfactual information for comparison, which would have required 
monitoring other candidate pollutants in parallel. Epidemiology can only consider the pollutants that 
have been measured that are typically designed to support the a priori decision to regulate.  

A good example involves constituents of PM2.5, such as metals, carbon compounds (black smoke), or 
ultrafines (UFPs). The limited information available, including from foreign sources, suggests that each 
of these alternatives may be more toxic than PM2.5 per se. But lacking parallel monitoring data, 
especially on a daily, these hypotheses cannot be tested. This lack of more specific information is critical 
in designing abatement strategies. There are no sources that directly emit the PM2.5 used in 
epidemiology studies; they only emit specific constituents, making it difficult to design an efficient 
abatement strategy. This may help explain the lack of successful PM2.5 accountability studies. 

1.9 How can these concepts be reconciled with the extensive archive of existing studies that found 
significant risks? The subdivision of the total mortality effect into short-term and differential (true) long-
term components does not invalidate the estimated total risks from existing epidemiology studies but 
drastically changes their interpretation. The total risk remains the same (those existing studies are not 
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“wrong”) but a portion of the risk must be ascribed to short-term daily effects, discussed below under 
“causality”. Finding a threshold in the short-term portion is extremely unlikely since in a sufficiently 
large population during a sufficiently long lag period there will always be at least one person sufficiently 
frail so as to succumb to a minor excursion in ambient air quality. The difference between total cross-
sectional risk and the acute portion of the risk cannot be assumed to have resulted in chronic disease 
incidence without considering cumulative exposures prior to the latency period. These determinations 
have not been made. Lacking defined thresholds, society must decide how much risk it will tolerate.  

2.0 All epidemiology is concerned with both time and place. Results from time-series analyses are more 
credible when those from different cities agree. However, most long-term (i.e., spatial) studies have 
been limited to fixed time periods; longitudinal studies are rare but are required to establish 
accountability for the predicted benefits of improved air quality. Only one study has evaluated the 
effects of cohort aging separately from temporal trends (Lipfert and Wyzga, 2018). Cohort studies often 
give the impression that they are about people, but exposure to ambient air quality inevitably involves 
geography. In the absence of personal exposure data, the extant long-term cohort studies are about 
places rather than their residents. They cannot identify individual risks but may indicate that living in 
City A may be riskier than in City B for any of several possible reasons other than ambient air quality: 

• climate, which can affect time spent outdoors and exposure to extreme weather conditions 
• physical characteristics such as green space or traffic density 
• differences in housing stock such as high-rises or dilapidated construction.  

Literal interpretation of a cross-sectional study implies that moving from City A to City B would 
instantly confer health benefits. However, as shown by the delay involved in benefiting from smoking 
cessation, this could only be the case with acute effects. 

2.1 The Clean Air Act requires that thresholds be identified with an “adequate margin of safety”. Such 
thresholds have not been identified for particulate matter, for any or all of the following reasons: 

• Underestimated exposures (indoor sources) 
• PM constituents that change with PM2.5 concentration level 
• Mixtures involving different copollutants 
• Daily effects on frail subjects that are embedded with long-term effects 
• Measurement errors that bias the slope of the dose-response function downward.  

This situation was inconceivable to the framers of the 1970 Clean Act or even its subsequent 
amendments, but it suggests that society may now have to decide how much risk may be tolerated; zero 
risk can never be achieved or maintained. 
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Appendix B. Air pollution epidemiology 

Acute exposures.  

Following the disastrous London fog of 1952 that increased daily and air pollution mortality rates by an 
order of magnitude, accountability was obtained by autopsy. Under these conditions, the probability of 
having randomly selected a victim of the episode was around 90%, by contrast with current conditions 
(fortunately). The working hypothesis was that this extreme excess mortality had been caused by 

a. black smoke.  
b. SO2.  
c. dense fog. 
d. adverse ambient temperature levels. 
e. Combinations of the above. 

Air quality including indoors was so bad that it was reported that cinemas had to close because the 
projected images could not reach the screen. This episode lasted for a few days and the excess death 
count was the sum over that period.  

At that time, emissions from traffic (NOx, CO, VOCs) would not have been involved because travel was 
curtailed by the dense fog. Ozone would not have formed due to the absence of sunlight. Particulate 
matter would have comprised elemental carbon (EC), organic compounds from incomplete coal 
combustion, and sulfates, and would have been ascertained by filter staining rather than by mass. Heavy 
metals such as Pb would not have been an issue. Autopsies found lungs that contained black carbon 
particles which then became the prime suspect although sulfates could not be ruled out. These sulfate 
compounds tended to be acidic and soluble and may have been overwhelmed the natural ammonia 
defenses. Individual victims could be identified with relative certainty and they were found to largely 
comprise persons with preexisting cardiorespiratory conditions. 

The working hypothesis was then supported by analysis of subsequent but milder episodes in London, 
New York City and elsewhere. As air quality improved such episodes became rare and continuous time-
series analyses were performed by OLS regression over periods long enough to attain statistical 
significance. They were limited to SO2 and black smoke, the only pollutants monitored daily at that 
time. The most comprehensive such analysis was published by Schimmel (1980) and showed that black 
smoke was the likely culprit over 14 y in New York City. Heavy residual oil containing metals was the 
main fuel. Excess mortality was only of the order of a few percent, precluding the identification of 
specific victims. 

Hundreds of similar daily mortality and hospitalization studies followed, limited mainly by the 
availability of daily air quality data. In the United States, particulate matter was then ascertained by the 
mass collected on filters without regard to particle size; sulfur was the only PM constituent identified. 
The only classification of victims was by age group, usually aged 65 and over. Allowance for 
coincident weather effects such as heat waves is also important, including lagged effects. The most 
recent nationwide analysis of daily mortality and PM2.5 (Di et al., 2018) considered only the average of 
lags 0,1, thus underestimating the effects by about a factor of 3 that would have yielded a risk of 3.3% 
per 10 μg/m3. Blomberg et al. (2019) investigated interactions between radon and PM2.5 and estimated 
the PM2.5 effect at about 2.8% per 10 μg/m3 at the mean radon level but lag assumptions were not 
specified. 
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Around 2000, a new time-series methodology appeared that identified the subpopulations most at risk 
using Kalman filter methods as developed by econometricians. It postulates the existence of a 
fluctuating group of extremely frail elderly that is depleted by daily deaths and augmented by newly 
frail individuals. The life expectancies of such groups were of the order of weeks; the fractions of 
deaths associated with air pollution were similar to those from conventional time-series. Kundi et al. 
(2019) noted that prediction of post-hospital cardiovascular outcomes was significantly improved by 
considering a “frailty score” index. The important feature of the new model is that excess deaths are 
driven by the product of the population at risk and the air pollution level. An excess death can result 
from either extreme frailty or bad air quality or both. As a result, there is no threshold for air pollution 
exposure alone. Wen (2017) reported mortality hazard ratios around 5.0 for severe frailty while air 
pollution ratios are typically around 1.05. 

This model has been applied to Philadelphia, Chicago, and Atlanta, with similar findings for several 
pollutants (Murray and Lipfert, 2012, 2013). For example, we typically found that these frail 
subpopulations had remaining life expectancies of a few weeks, a small fraction of which was 
associated with air pollution with about 2% excess mortality. For comparison, assuming that life 
expectancies for those aged 65 ranged from 1 day to 30 y with a log-normal distribution the bottom 2% 
of which would have a life expectancy of 24 days, in rough agreement with the new model. Another 
element of this methodology is the extent to which air pollution may been involved in worsening the 
onset of the severe frailty required for an acute. This possibility has been explored but not resolved. No 
other investigators have since adopted this new modeling protocol. 

Another important aspect of time-series analysis is that of delayed responses. Some studies have 
considered lag periods up to 7 days, but most of them were aimed at identifying the lag days of greatest 
statistical significance, as if to establish the existence of such relationships. However, the validity of 
these findings was established by the 1952 London event; the magnitudes of subsequent events are now 
of primary interest based on excess deaths accumulated over the lag period as was the case in London. It 
thus appears that most of the extant literature may have underestimated the severity of short-term effects 
on mortality, perhaps by a factor of 2-3.  

Long-term exposures.  

Long-term studies are based on annual average concentrations over various aggregation or follow-up 
periods. Such studies began in the 1970s based on differences in annual mortality rates among the 
populations of various cities or counties, for which personal data such as smoking habits or 
socioeconomic status were not available. Beginning with the Harvard Six Cities Study (Dockery et al., 
1993), mortality rates were studied in defined cohorts having such personal data. However, no 
published long-term study has recognized that the deaths accumulated over a year in a given location 
include those precipitated by daily peak exposures, as discussed above. The true long-term effect is thus 
the difference between long-term and short-term analyses. The largest long-term mortality risks have 
been ascribed to ischemic heart disease (IHD), which includes “sudden” death and heart attacks, thus 
showing overlap between acute and chronic causes of death. 

For example, daily mortality across those 6 cities increased by 1.5 (1.1-1.9) percent per 10 μg/m3 for a 
2-day average of PM2.5 (Schwartz et al., 1996). The cumulative effect for the 2 days was thus 3.0 (2.2-
3.8)% which might increase to 4.5 (3.3-5.7)% when additional days are considered (Staniswallis et al. 
2009). For comparison, the long-term effect of PM2.5 for these cities was reported as 12 (4-21)% per 10 
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μg/m3
. Dockery et al. (1993) commented that cumulative exposures over prior years should have been 

considered (especially for lung cancer) and that not all confounding variables had been controlled 
(notably climate and personal income). Both of these considerations would reduce the long-term effect 
estimates and render the difference between long- and short-term effects nonsignificant.  

In general, short-term mortality effects have been underestimated by not summing over sufficient lag 
periods, and long-term effects have been overestimated by not considering prior cumulative effects and 
a complete suite of potential confounders. Most daily analyses have focused on statistical significance 
for the most lethal day instead of the total “yield”. In a long-term study, the risk coefficient is reduced 
when the true exposure is increased. When the early studies based on annual averages found risk 
estimates that exceeded those from daily studies, they assumed that the effect pertained to the incidence 
of chronic disease. However, this hypothesis has not been tested or confirmed. 

Latency is a further issue in long-term studies. Lung cancer incidence lags smoking by 15-30 y, perhaps 
less for heart disease. Thus, mortality from 1982-8 studied by Pope et al. (2002) should have been 
linked to pollution data as far back as 1952 when urban air was far more polluted (Lipfert, 1994). The 
total mortality risk coefficient should have been around 2% per 10 μg/m3, again not significantly 
different than typical short-term values when summed over lag periods. Latency may also explain why 
it has been difficult to establish accountability for air quality improvement. Just as the benefits of 
smoking cessation appear only after a 5-10 y abstinence, similar lags may delay the effects of cleaner 
air.  

Long-term studies are generally conducted over decades to increase the number of deaths and for 
stability. Doing so invokes temporal trends in air quality and medical care, during which a cohort may 
be depleted of its most susceptible subjects. Lipfert and Wyzga (2018) found that cohort aging was 
more important than secular trends and that risks decreased with age. Lipfert et al. (2002) used 
population data to also show this aged effect and found stronger risks when mortality and exposure 
were measured coincidentally rather than lagged. 

Classification of air pollution exposures is an important issue seldom considered in the extant literature, 
especially for cohorts; exposures have been based on measurements or estimates of outdoor air quality 
at fixed times and locations. They represent characterizations of those locations (places) but not the 
personal exposures of inhabitants; by contrast with smoking habits, education, body mass, etc; they do 
not travel with the subject during follow-up. Cumulative exposures have not been considered, by 
contrast with smoking. Some long-term analyses have considered characteristics directly and found 
significant associations, notably “green” spaces and vehicular traffic density (VMT). The latter was 
considered extensively in the Veterans Cohort Study (the only cohort analysis to do so), where it was 
the most important predictor of mortality risk (as ln[VMT]) along with NOx and elemental carbon (EC). 
The geographic distribution of ln(VMT) has been stable over decades; temporal trends are thus not at 
issue. VMT is a true geographic descriptor that could entail engine exhaust and lubricant residues, tire 
and road dust, or socioeconomic effects associated with undesirable residential locations. It is integrated 
over counties so that local changes in residence are not an issue nor are commuting patterns. VMT per 
se is not amenable to regulatory abatement and is likely to increase over time. However, the engine 
exhaust pollution should diminish over time with increased use of electric vehicles. In addition to 
neglecting personal exposures, epidemiology studies have not considered the ultimate fates of inhaled 
particles, most of which are retained in the lung (Churg and Brauer, 1997). Only ultrafine particles 
(UFP) are likely to translate into the bloodstream and travel to other organs (Wichmann et al., 2000 ). 
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UFPs are a tiny fraction of PM2.5 and thus studies that attribute incidence cardiovascular, cancer, 
diabetes, or neurological effects to PM2.5 are ipso facto problematic. 
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Appendix C. Publications by Lipfert and colleagues not considered in the ISA, by subject area. 

Measurement error and uncertainties 

These papers examine the effects of bias and noise in independent variables used in linear regression, 
especially correlated air pollutants. They show that the pollutant with the least error prevails in co-
pollutant models. Random measurement error biases the slope of an exposure response function toward 
the null, which then biases the x-intercept toward the origin and obscures any threshold that may have 
otherwise existed. ”Measurement error” may be random (instrumental) or the result of mis-specification 
or mis-location of monitors. 

F.W. Lipfert and R.E. Wyzga (1995), Uncertainties in Identifying "Responsible" Pollutants in 
Observational Epidemiology Studies, Inhalation Toxicology 7:671-89.  
 
F.W. Lipfert and R.E. Wyzga, Air Pollution and Mortality: Issues and Uncertainties, J.AWMA 
45:949-66 (1995). 
 
F.W. Lipfert and R.E. Wyzga (1997), Air Pollution and Mortality: The Implications of 
Uncertainties in Regression Modeling and Exposure Measurement, J.AWMA 47 517-523. 
 
F.W. Lipfert and R.E. Wyzga (1998), Effects of Exposure Error on Environmental 
Epidemiology, proc. International Symposium on the Health Effects of Particulate Matter, 
Prague. AWMA Publ. VIP-80, pp. 155-166. 
 
F. W. Lipfert and R.E. Wyzga, Statistical Considerations in Determining the Health Significance 
of Constituents of Airborne Particulate Matter, J.AWMA. 49:PM-182-191 (1999). 
 
F.W. Lipfert, The Use and Misuse of Surrogate Variables in Environmental Epidemiology, J. 
Environmental Medicine 1:267-278 (1999). 

 
A new time-series model 
 
Time-series studies of daily mortality predict acute responses on the first few days of exposure, usually 
persisting less than a week. Responses are limited to the elderly and are stronger among the most 
susceptible subjects. Similar risks have been associated with various air pollutants and are strongest for 
cardiac and respiratory deaths. Murray and Lipfert (2010) considered a new model that predicts the 
magnitude of an elderly subpopulation most at risk of imminent death on a daily basis, rather than the 
general population. In this model two conditions are required for an acute air pollution-related death: 
increased frailty (inability to maintain homeostasis) and increased pollution exposure. Extreme values of 
either parameter can result in death, thus precluding air pollution thresholds. Acute frailty is represented 
by membership in a small fluctuating sub-population (Pt) at high risk that is depleted by daily deaths 
(Dt) and replenished by new entries (Nt). Dt and Nt may be affected by current or previous 
environmental conditions. The ratio of Pt to Dt is a measure of survival time (i.e., daily life expectancy 
[DLE]) in the frail state. The Kalman filter is used to solve these equations. Pt fluctuates with season and 
averages ~0.08% of the elderly. Life expectancies of subjects in the at-risk pool are about 5-7 days and 
robust to alternative models and environmental fluctuations. Daily mortality risk estimates are similar to 
those from conventional time-series analyses, but information on the accompanying life expectancies 
provided by this model is new.  
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Murray CJ, Lipfert FW. Revisiting a Population-Dynamic Model of Air Pollution and Daily 
Mortality of the Elderly Population in Philadelphia. J Air Waste Manag Assoc. 2010 60:611-629. 
 
Murray CJ, Lipfert FW. A new time-series methodology for estimating relationships between 
elderly frailty, remaining life expectancy, and ambient air quality. Inhalation Toxicology 2012 
24:89-98. 
 
Lipfert FW, Murray CJ. Air pollution and daily mortality: A new approach to an old problem. 
Atmos Environ 55; 467-74 (2012). 
 
Murray CJ, Lipfert FW. Inferring frail life expectancies in Chicago from daily fluctuations in 
elderly mortality. Inhal Toxicol. 2013 Jul;25(8):461-79.  

 
Other time-series papers. 
 
These papers provided short-term risk estimates for numerous pollutants that have not been considered 
by others: a wide range of particulate measures in which TSP was the most important in Philaelphia, and 
a complete set of PM chemical components was consideeed kn Atlanta of which carbon compounds 
were the most important. 
 

Lipfert, F.W., Morris, S.C., and Wyzga, R.E. (2000), Daily Mortality in the Philadelphia  
Metropolitan Area and Size-Classified Particulate Matter, J.AWMA 50:1501-13. 
 
Klemm, R.J., Lipfert, F.W., Wyzga, R.E., Gust, C. Daily mortality and air pollution in Atlanta: 
Two years of data from ARIES. Inhal Toxicology 16 (Suppl 1):131-41 (2004). 

 
The Veterans Cohort Study 
 
The Veterans Cohort Mortality Study began as a cooperative venture with Washington University at St. 
Louis (WUSTL), who developed the cohort and originated the study. It is based on a cohort of about 
70,000 male veterans who were recruited in 1976 and followed for 26 y This is an important period of 
study because of the substantial improvements in ambient air quality that were achieved following 
passage of the 1970 Clean Air Act. The cohort was 37.7% black and 81% had smoked at one time; they 
were recruited at VA 32 clinics nationwide. it is the first cohort study to examine long-term all-cause 
mortality risks associated with air pollution for a variety of pollutants by race. The study considered the 
overall follow-up period (1976-2001) and four sequential mortality periods (1976-81, 1982-88,1989-96, 
and 1997-2001). The WUSTL proportional hazards model included non-linear terms for age, smoking, 
body-mass index (BMI), blood pressure, and interaction terms. The first paper showed that the relative 
importance of PM2.5 and SO4 was contingent on the inclusion of contextual predictor variables in the 
model including climate, poverty and neighborhood characteristics in the proportional hazards model. 
Those variables were retained in subsequent analyses. Later papers examined PM2.5 constituents, 
hazardous pollutants, and county-level traffic density, which was the most important predictor along 
with NOx and elemental carbon. The 2018 paper examined the effects of cohort aging with respect to 
temporal trends and found the former to be more important with stronger risks in middle age. PM2.5 had 
consistently negative (beneficial) effects; no effects of accumulated exposures were evident. The most 
recent (2019) paper found that black veterans were more heavily exposed to traffic, with significantly 
negative effects of PM2.5 and significantly positive risks for whites similar to those found in other 
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cohorts. This explains the apparently anomalous (ngative) PM2.5 effects for the entire cohort. It also 
supports the hypothesis that cross-sectional studies essentially consider differences among places per se 
(counties, zip-codes, etc.) rather than the personal exposures of residents. Traffic effects were found to 
be stable over the 26-y period; however, those actual risk agents remain unknown, comprising engine 
exhaust, noise, tire/road dust, undesirable residential locations, but not indoor air pollution.  

 
Lipfert, F.W., Perry, H.M. Jr., Miller, J.P., Baty, J.D., Wyzga, R.E., Carmody, S.E. (2000) The 
Washington University-EPRI Veterans' Cohort Mortality Study: Preliminary Results, Inhalation 
Toxicology 12 (Suppl 4):41-73. 
 
Lipfert, F.W., Perry, H.M. Jr., Miller, J.P., et al., 2003. Air Pollution, Blood Pressure, and Their 
Long-Term Associations with Mortality. Inhalation Toxicology 15, 493-512.  
 
Lipfert, F.W., Wyzga, R.E., Baty, J.D., Miller, J.P., 2006a.Traffic Density as a Surrogate 
Measure of Environmental Exposures in Studies of Air Pollution Health Effects: Long-term 
Mortality in a Cohort of U.S. Veterans, Atmospheric Environment 40, 154-169. 

Lipfert, F.W., Wyzga, R.E., Baty, J.D., Miller, J.P., 2006b. PM2.5 Constituents and Related Air 
Quality Variables as Predictors of Survival in a Cohort of U.S. Military Veterans, Inhalation 
Toxicology 18:645-57. 
 
F.W. Lipfert, R.E. Wyzga, Jack D. Baty, J. Philip Miller. Vehicular Traffic Effects on Survival 
within the Washington University - EPRI Veterans Cohort: New Estimates and Sensitivity 
Studies, Inhalation Toxicology 20:949-960 (2008a). 
 
F.W. Lipfert, R.E. Wyzga On Exposure and Response Relationships for Health Effects 
Associated with Exposure to Vehicular Traffic. J Expos Sci Environ Epidem 18: 588-599 
(2008b). 
 
Lipfert FW, Wyzga RE, Baty JD, Miller JP. Air pollution and survival within the Washington 
University-EPRI Veterans Cohort: risks based on modeled estimates of ambient levels of 
hazardous and criteria air pollutants. J Air Waste Manag Assoc. 2009 59:473-89. 
 
Lipfert FW, Wyzga RE. Revisiting the Veterans Cohort Mortality Study: New results and 
synthesis. J Air Waste Manag Assoc. 2018 Nov;68(11):1248-1268.  
 
Lipfert FW, Wyzga RE. Environmental Predictors of Survival in a Cohort of U.S. Military 
Veterans: A Multi-level Spatio-temporal Analysis Stratified by Race. Envir Res (accepted 2019) 

Trend analyses 
 

Lipfert FW (1998), Trends in Airborne Particulate Matter in the United States. Applied 
Occupational and Environmental Hygiene 13:370-384  
 
Lipfert FW, Morris SC, Temporal and spatial relationships between age-specific mortality and 
ambient air quality in the United States: Regression results for counties, 1960-97, Occup Env 
Med 59:156-74 (2002). 
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This paper used population data to show how mortality risks associated with air pollution decline with 
age and are stronger when mortality and exposure are measured coincidentally during a given follow-up 
period.  

Review papers. 
 
Lipfert, F.W., Commentary on the HEI Reanalyses of the Harvard Six Cities Study and the American 
Cancer Society Study of Particulate Air Pollution and Mortality, J. Toxicology and Environmental 
Health 66:1705-14 (2003).  
 
Lipfert FW. An assessment of air pollution exposure information for health studies. Atmosphere 2015, 6, 
1736-1752.  

Detailed analyses of indoor air quality data showing indoor infiltration rates and short- but not 
long-term relationships between indoor and outdoor concentration.  

Lipfert FW. Long-Term Associations of morbidity with air pollution: A catalogue and synthesis. 
JAWMA 2018 68:12-26.  

The catalog comprises 417 long-term studies of cardiovascular, respiratory, cancer, diabetes, 
hospitalization, neurological, and pregnancy-birth endpoints with respect to PM2.5, PM10, TSP, 
carbon, ozone, sulfur, vehicular traffic, radon, and indoor air quality. Durations of exposure 
range from 60 d to 35 y. Most studies were cross-sectional over limited time spans with no 
consideration of lag or disease latency. 220 studies indicated significant adverse effects. 
Associations with cardiovascular indicators, lung function, respiratory symptoms, and low birth-
weight were more likely to be significant than with disease incidence, heart attacks, diabetes, or 
neurological endpoints. Elemental carbon (EC), and NOx were most likely to be significant for 
cardiovascular outcomes. For all diagnoses, the highest fractions of significant findings were for 
“other” pollutants including TSP, EC, and metals. PM2.5 and PM10 had lower risk ratios. Overall, 
these studies support non-lethal physiological effects of various pollutants, more so for non-life-
threatening endpoints and for non-criteria pollutants (TSP, EC, PM2.5 metals).  

Editorial comments 
 

Lipfert FW. Clean air skepticism. Science. 1997 Oct 3;278(5335):19-20.  
 
Lipfert FW. Air pollution and life expectancy. N Engl J Med. 2009 May 7;360(19):2033.  
 
Lipfert FW. Air pollution and life expectancy. Epidemiology. 2014 Sep;25(5):776-7. 
 
Lipfert FW. Letter to the Editor Re: Enstrom JE. Fine particulate and total mortality in Cancer 
Prevention Study cohort reanalysis. Dose-Response. 22;16(1):1559325817746304.  
 
Lipfert FW. Re: Chemical Composition of Fine Particulate Matter and Life Expectancy in 95 US 
Counties. Epidemiology. 2017 Mar;28(2):e18.  
 
Lipfert FW. Air Pollution and Mortality in the Medicare Population. JAMA. 2018 May 
22;319(20):2133-2134.  
 
Lipfert FW, Explain ill effects of airborne particles. Nature 2019 570:446. 
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