Overview of the Draft IRIS Assessment of Ammonia

Presentation for the Ammonia Augmented Chemical Assessment Advisory Committee of the Science Advisory Board
July 14, 2014

Susan Rieth, MPH
Audrey Galizia, M.S., M.S., Dr.PH. (Assessment Manager)
National Center for Environmental Assessment
Office of Research and Development
U.S. Environmental Protection Agency
This presentation will cover:

• Key aspects of the Ammonia Toxicological Review
• Clarification of issues raised by public commenters and CAAC panel members at the teleconference held on May 23, 2014
• RfC: 0.3 mg/m³, based on decreased lung function and respiratory symptoms found in occupational epidemiology studies
• RfD: Not derived because data are not available
• Cancer: Inadequate information to assess carcinogenic potential
Respiratory Effects Associated with Chronic Exposure

<table>
<thead>
<tr>
<th>Epidemiology study</th>
<th>Evidence of respiratory effects</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Respiratory symptoms?</td>
<td>Decreased lung function?</td>
</tr>
<tr>
<td>Industrial settings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rahman et al. (2007)</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Ballal et al. (1998)</td>
<td>yes</td>
<td>[not evaluated]</td>
</tr>
<tr>
<td>Holness et al. (1989)</td>
<td>no (workplace concentration lower than other studies)</td>
<td>no (workplace concentration lower than other studies)</td>
</tr>
<tr>
<td>Health care/hospital workers</td>
<td>yes (asthma or respiratory symptoms)</td>
<td>yes (one study)</td>
</tr>
<tr>
<td>Livestock farmers</td>
<td>generally no</td>
<td>generally yes</td>
</tr>
</tbody>
</table>
RfC Derivation

<table>
<thead>
<tr>
<th>Principal Study / Critical Effect</th>
<th>Point of Departure (mg/m³)</th>
<th>UF</th>
<th>Chronic RfC (mg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreased lung function and respiratory symptoms</td>
<td>NOAEL<sub>ADJ</sub>: 3.1</td>
<td>UF<sub>H</sub> = 10</td>
<td>0.3</td>
</tr>
<tr>
<td>Occupational epidemiology studies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holness et al. (1989); supported by Rahman et al. (2007), Ballal et al. (1998), and Ali et al. (2001)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOAEL_{ADJ} = no-observed-adverse-effect level (workplace exposure of 8.8 mg/m³) adjusted to continuous exposure:
- Human occupational default min volume (10 m³ breathed during 8-hr workday) ÷ Human ambient default min volume (20 m³ breathed during 24-hr day)
- Exposure of 5 days out of 7 days
 = 8.8 mg/m³ x 10 m³/20 m³ x 5/7

UF = uncertainty factor (standard UF_H applied for absence of data on variability of response in human population)
Not derived; available oral toxicity information considered inadequate for derivation of an RfD

- **Human studies:**
 - Case reports of intentional or accidental ingestion of household cleaning solutions or ammonia inhalant capsules

- **Animal studies:**
 - Studies in rats designed to investigate the mechanism of ammonia action on the gastric mucosa; gastric mucosal thinning reported in the absence of microscopic lesions
Inhalation:

1. The RfC should be based on the same point of departure (21 mg/m³), uncertainty factors (AEGL: UF = 1), and time adjustment factor (AEGL: no adjustment) as the Acute Exposure Guideline Level (AEGL-1). [Public comment]

2. In deriving an AEGL, is it general practice to apply an intraspecies UF_H (for human variability) of 3 when the endpoint is irritation, where the UF_H of 10 is split into TK and TD and the TK component is set to 1? [Question raised by CAAC Panel Member]

Oral:

1. Short-term and subchronic administration of ammonia in drinking water to rats was associated with changes in the gastric mucosa, including reduced thickness and changes in epithelial cell migration/proliferation. What is the nature of these gastric mucosal changes? Are they progressive? [Question raised by CAAC Panel Member]
Basis of Ammonia AEGL and RfC

<table>
<thead>
<tr>
<th>Reference value type</th>
<th>Duration</th>
<th>Reference value (mg/m³)</th>
<th>Health effect</th>
<th>POD (mg/m³)</th>
<th>Duration adjustment</th>
<th>UF</th>
</tr>
</thead>
<tbody>
<tr>
<td>A EGL-1 (emergency response)</td>
<td>10 min</td>
<td>21</td>
<td>Faint nasal & eye irritation in 2 of 5 healthy subjects exposed to 21 mg/m³ for 10 min (MacEwen and Vernot, 1972)</td>
<td>21</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30 min</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 hr</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 hr</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 hr</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRIS RfC – proposed (chronic exposure)</td>
<td>Chronic</td>
<td>0.3</td>
<td>Decreased lung function and respiratory symptoms (Holness et al., 1989; supported by other cross-sectional epidemiology studies)</td>
<td>3.1</td>
<td>10 m³/20 m³ x 5 days/7 days</td>
<td>Total UF = 10, UF_H = 10</td>
</tr>
</tbody>
</table>
Public Comment: The RfC should be based on the same point of departure (21 mg/m³), uncertainty factors (AEGL: UF = 1), and time adjustment factor (AEGL: no adjustment) as the Acute Exposure Guideline Level (AEGL-1).
RfC: An estimate (with uncertainty spanning perhaps an order of magnitude) of a continuous inhalation exposure to the human population (including sensitive subgroups) that is likely to be without an appreciable risk of deleterious effects during a lifetime.

It can be derived from a NOAEL, LOAEL, or benchmark concentration, with uncertainty factors generally applied to reflect limitations of the data used. Generally used in EPA's noncancer health assessments.

Source: IRIS Glossary
http://ofmpub.epa.gov/sor_internet/registry/termreg/searchandretrieve/glossariesandkeywordlists/search.do
Acute Exposure Guideline Level (AEGL) Definitions

CHARACTERISTICS OF AEGLs

HAZARD ASSESSMENT

<table>
<thead>
<tr>
<th>THRESHOLD LEVELS</th>
<th>EFFECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEATH</td>
<td>• Increasing likelihood of death</td>
</tr>
<tr>
<td>AEGL-3</td>
<td>• Impairment of ability to escape</td>
</tr>
<tr>
<td></td>
<td>• Increasing severity of irreversible or other serious, long-lasting effects</td>
</tr>
<tr>
<td>DISABLING</td>
<td>• Increase in notable discomfort</td>
</tr>
<tr>
<td></td>
<td>• Increasing severity of reversible effects (with or without signs / symptoms)</td>
</tr>
<tr>
<td>AEGL-2</td>
<td>• Increasing complaints of objectionable odor, taste, sensory irritation or other mild, non-sensory or asymptomatic effects</td>
</tr>
<tr>
<td>DISCOMFORT</td>
<td>• Notable discomfort</td>
</tr>
<tr>
<td>AEGL-1</td>
<td>• Notable irritation</td>
</tr>
</tbody>
</table>

AEGL-1: the airborne concentration (ppm or mg/m³) above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort (such as odor detection), irritation, or certain asymptomatic non-sensory effects. Effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL-2: the airborne concentration above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL-3: the airborne concentration above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Source: AEGL Standard Operating Procedures (SOPs)

http://www.epa.gov/oppt/aegl/pubs/sop.htm
• AEGLs are developed with an assumption of a “once-in-a-lifetime” exposure scenario

• AEGLs do not take into account:
 – Potential for repeated spikes in exposure
 – Repeated injury leading to the potential for a cumulative increase in effect
Ammonia: Comparison of Reference Values

- **ACUTE**
- **Short Term**
- **Subchronic**
- **Chronic**

*Indicates an occupational value: expert judgment necessary prior to applying these values to the general public.
CAAC Question: In deriving an AEGL, is it general practice to apply an intraspecies U_{FH} (human variability) of 3 when the endpoint is irritation, where the U_{FH} of 10 is split into TK and TD and the TK component is set to 1?

AEGL SOPs:

- “In general, in the absence of data or information to the contrary, the default value for the intraspecies UF is 10. However, a UF of 3, or even 1, may be used if credible information or data are available.” (SOPs; Section 2.5.3.4)

- For some AEGL values, U_{FH} may take TK and TD into consideration, but there is no general policy on doing so.
Intraspecies UF Values for Irritants

• AEGL SOPs do not offer specific guidance on the UFₜ to use for irritants.

• UFₜ for sensory irritants -- typically a UF of 3
 – For many irritants (including ammonia, chlorine, hydrochloric acid), UFₜ = 1

• Rationale for applying a UFₜ of 1 for AEGL-1 and AEGL-2 for ammonia:
 – “Ammonia is a contact irritant and is efficiently scrubbed in the upper respiratory tract, particularly at the low AEGL-1 concentration; therefore, members of the population are not expected to respond differently to effects confined to the upper respiratory tract. Atopics, including asthmatics, and nonatopics responded similarly to a brief nasal exposure to ammonia. Exercising subjects showed only a clinically nonsignificant decrease in pulmonary function after exposure to ammonia.”

Source: Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 6 (Appendix B)
CAAC Question: Short-term and subchronic administration of ammonia in drinking water to rats was associated with changes in the gastric mucosa, including reduced thickness and changes in epithelial cell migration/proliferation. What is the nature of these gastric mucosal changes? Are they progressive?

Overview of ammonia literature related to gastric effects:

- Three in vivo drinking water studies of ammonia in the rat
 - Designed to investigate the role of ammonia in the pathogenesis of chronic atrophic gastritis caused by *Helicobacter pylori*
 - *H. pylori* is a bacterium that produces urease that increases ammonia production in the stomach
 - Responsible for gastric disease in human populations
 - Study designs:

<table>
<thead>
<tr>
<th>Study</th>
<th>Drinking water conc (ppm)</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kawano et al. (1991)</td>
<td>0, 0.01, 0.1%</td>
<td>2, 4 wks</td>
</tr>
<tr>
<td>Tsujii et al. (1993)</td>
<td>0, 0.01%</td>
<td>3 days, 1, 2, 4, 8 wks</td>
</tr>
<tr>
<td>Hata et al. (1994)</td>
<td>0, 0.02, 0.1%</td>
<td>1, 3, 5 days, 1, 4, 8, 12, 24 wks</td>
</tr>
</tbody>
</table>
H. pylori-induced gastric changes

- Chronic gastritis: gastric atrophy (loss of glands) and chronic inflammation
- Progression:
 → ulcer
 → metaplasia and gastric cancer
- Pathogenesis is complex, multifactorial

Ammonia-induced gastric changes

- Concentration- and duration-related changes in:
 - gland height/thickness (mucosal atrophy) [presented as morphometric change]
 - PAS-positive mucus
 - cell cycling, rate of epithelial cell migration/proliferation
- Evidence of lack of progression:
 - Kawano et al. (1991) and Tsujii et al. (1993): “No mucosal lesions were found macroscopically or microscopically in the stomach…”
 - Hata et al. (1994): “Histological observation did not reveal inflammatory cell invasion or ulceration of the mucosa…”
Interpretation of gastric mucosal changes should take into consideration:

- Context: e.g., severity, incidence, associated changes
- Quality of the study, including documentation of slide review by a qualified pathologist

In the absence of reported histopathology, ammonia-associated gastric effects in the rat are difficult to interpret.
Summary of Major Issues Raised during June 2 Teleconference

- Public commenter recommended that the RfC be based on the same POD, UF, and time adjustment factor as the AEGL-1.
 - By definition RfCs and AEGLs are not the same; RfCs apply to chronic (lifetime) exposures, while AEGLs are used for emergency response situations and apply to acute (10-minute to 8-hour) exposures.
 - Study used to derive the ammonia AEGL-1 is not an appropriate basis for the chronic RfC:
 - Irritation only evaluated in 5 subjects exposed to ammonia for 10 minutes (MacEwen and Vernot, 1972)

- CAAC Question: Is it general practice to apply an intraspecies UF\textsubscript{H} (human variability) of 3 when the endpoint is irritation, where the UF\textsubscript{H} of 10 is split into TK and TD and the TK component is set to 1?
 - AEGL SOPs:
 - Default value for UF\textsubscript{H} is 10; however, UF \leq 3 may be used if credible information or data are available.
 - No specific guidance on the UF\textsubscript{H} to use for irritants; for sensory irritants, typically UF\textsubscript{H} = 1 or 3 applied
 - No general policy for taking TK and TD components of UF\textsubscript{H} into consideration.
 - RfC for ammonia based on respiratory symptoms and lung function changes (not specifically irritation)

- CAAC Question: What is the nature of changes to the gastric mucosa associated with short-term and subchronic administration of ammonia in drinking water to rats? Are such changes progressive?
 - Ammonia exposure associated with concentration- and duration-related changes in: gland height/thickness, PAS-positive mucus, epithelial cell migration/proliferation
 - Evidence of lack of progression (no histopathological lesions identified)
 - Insufficient information to characterize the adversity of gastric mucosal changes