June 3, 2019

Thomas Armitage, Ph.D.
Designated Federal Officer
EPA Science Advisory Board (1400R)
U.S. Environmental Protection Agency
1200 Pennsylvania Ave., NW
Washington, DC 20460-0001

Dear Members of EPA’s Chartered Scientific Advisory Board:

The American Petroleum Institute (API) is pleased to provide comments on the updating of the 2005 EPA Guidelines for Carcinogen Risk Assessment (“Guidelines”) and creation of guidelines for non-cancer risk assessment. API is a national trade association that represents all facets of the oil and natural gas industry, with more than 600 members that include large integrated companies, as well as exploration and production, refining, marketing, pipeline and marine businesses, and service and supply firms. As a core component of our business model, we prioritize the promotion of public health and environmental safety while ensuring a strong, viable and sustainable U.S. oil and natural gas economy. Many API members are impacted by EPA’s cancer and non-cancer risk assessments, as industry continuously works to ensure safe operations. API supports risk assessment processes that use the best available science, are transparent, and provide opportunities for public engagement.

API applauds EPA’s efforts in updating the 2005 Guidelines and in creating guidelines for non-cancer risk assessment. Recently, API has noticed inconsistencies across the Agency in the application of both carcinogen and non-carcinogen risk assessment methodologies, along with opportunities for improvement. In recent years, API has communicated concerns relevant to EPA’s cancer and non-cancer assessments to the National Research Council (NRC) of the National Academies of Science (NAS),¹ EPA’s IRIS Program,² EPA’s Chemical Assessment

¹February 1-2, 2018. Oral and written comments provided at the National Research Council (NRC) of the National Academies of Science, Engineering, and Medicine entitled “Review of Advances Made to the IRIS Process”.

An equal opportunity employer
Advisory Committee (CAAC),3 Attachment 1, and EPA’s Science Advisory Board4 Attachment 2 in the context of IRIS assessments for the chemicals ETBE and TBA. We anticipate that these concerns may extend to other chemicals. Our support for EPA’s initiation of this guideline revision and development process, as well as suggestions for improvement, are summarized and explained in detail below. Additionally, API cites previous NRC and/or API recommendations that may provide a path forward for EPA in this endeavor.

1) **API strongly supports an update of the 2005 Guidelines for Carcinogen Risk Assessment and the creation of new guidelines for non-cancer risk assessment that embody the principles of sound science, transparency, and meaningful opportunities for public engagement.**

API notes below examples of inconsistencies in carcinogen risk assessment practice at EPA, as well are areas for improvement in both carcinogen and non-carcinogen assessment. As such, API strongly supports an update of the 2005 Guidelines for Carcinogen Risk Assessment and the creation of guidelines for non-carcinogen risk assessment to improve the clarity, consistency, and scientific quality of EPA assessments. It is important that these guidelines be updated/created with a view toward transparency so that it is clear to stakeholders exactly how toxicity values are derived, as well as the choices made by EPA during this derivation that impact the magnitude of the result. API looks forward to continued opportunities for meaningful engagement as EPA moves forward with this process.

2) **There are inconsistencies across EPA in quantification of cancer risk when the descriptor “Suggestive evidence of carcinogenic potential” is used. It is important that EPA clarify when a threshold vs. non-threshold approach should be used. For non-cancer risk assessment, EPA should also provide guidance on the strength of the evidence required for formal dose-response assessment.**

Below we provide an example of inconsistencies across the Agency in adoption of the use of a threshold or low-dose linear extrapolation approach for the descriptor “suggestive evidence of carcinogenic potential.” We suspect that these inconsistencies are not limited to this example. It important to note that the impact on toxicity values for a (threshold) reference dose/reference concentration (RfD/RfC) approach vs. a dose-response assessment and low-dose linear extrapolation is profound, often impacting risk estimates by orders of magnitude. Depending on

\begin{footnotesize}
\begin{itemize}
\item[3]March 13, 2018 Memorandum from Ryman-Rasmussen to Chambers. “RE: Notification of a Public Teleconference of the Science Advisory Board Chemical Assessment Advisory Committee Augmented for the Review of EPA’s Draft Ethyl Tertiary Butyl Ether (ETBE) and tert-Butyl Alcohol (tBBA) Assessments [FRL-9973-47-OA].”
https://yosemite.epa.gov/sab/sabproduct.nsf/520B0D5561CA43668525825000637CE0/$File/API_Comments_ETBE_TBA_CAAC_03-13-2018_unsigned_final.pdf.
\item[4]September 20, 2018 Memorandum from Ryman-Rasmussen to Carpenter. “Re: Notification of a Public Teleconference of the Chartered Scientific Advisory Board (SAB) [FRL-9983-39-OA].”
https://yosemite.epa.gov/sab/sabproduct.nsf/8CE7046C46D714D68525830E0066E6F7C/$File/94654192.pdf
\end{itemize}
\end{footnotesize}
the exposure scenario, the difference between a threshold (RfD/RfC) or non-threshold (slope factor, inhalation unit risk estimate) approach could be the difference between identifying a risk or concern or being able to provide assurances to the public that an exposure level is orders of magnitude below a safe level.

For the 2017 and Peer Review Draft for ETBE, EPA’s 2005 Guidelines for Carcinogen risk assessment were cited in support of a decision to conduct a dose-response assessment and low-dose linear extrapolation for a selected descriptor of “suggested evidence of carcinogenic potential.”

According to EPA’s 2005 Guidelines for Carcinogen Risk Assessment:\(^5\):

“When there is suggestive evidence, the Agency generally would not attempt a dose-response assessment, as the nature of the data generally would not support one; however, when the evidence includes a well-conducted study, quantitative analyses may be useful for some purposes, for example, providing a sense of the magnitude and uncertainty of potential risks, ranking potential hazards, or setting research priorities. In each case, the rationale for the quantitative analysis is explained, considering the uncertainty in the data and the suggestive nature of the weight of evidence.”

Although the above language indicates that there may be some situations and purposes for which a dose-response assessment could be warranted for a “suggestive” descriptor, more recent correspondence by other EPA offices (i.e., Office of Pesticide Programs) indicate that, in practice, this is simply not done:\(^6\):

“The classification descriptors “not likely to be carcinogenic to humans” and “suggestive evidence of carcinogenic potential” both utilize a reference dose approach; therefore, a quantitative cancer risk assessment would not be required for either of these descriptors.”

The NRC has offered a recommendation that may provide a path forward for both cancer and non-cancer risk assessment. In the 2014 NRC Review of the EPA’s IRIS Process, the NRC states:\(^7\):

“Recommendation: EPA should develop criteria for determining when evidence is sufficient to derive toxicity values. One approach would be to restrict formal dose-response assessments to

when a standard descriptor characterizes the level of confidence as medium or high (as in the case of noncancer end points) or as “carcinogenic to humans” or “likely to be carcinogenic to humans for carcinogenic compounds.”

From these examples and from the NRC recommendation above, it is clear that for both cancer and non-cancer assessment, guidance on the strength of the evidence is warranted to inform when a threshold vs. non-threshold approach should be used. The current action of updating the 2005 Guidelines and drafting new guidelines for non-cancer assessment provides an opportunity for clarification and harmonization across the Agency on the issue of linear vs. threshold approaches to risk assessment.

3) Both cancer and non-cancer guidelines should be clear that EPA should not substitute science policy for scientific expertise and that scientific defensibility ultimately supersedes consistency with science policy.

Pathology is one area of expertise in which API has noticed a tendency for EPA to substitute science policy for scientific expertise. One of the potential consequences of so doing is that assessments may result that are consistent with Agency policy but scientifically indefensible.

In previous comments to the SAB and to EPA, API documented a lack of expertise in pathology on the IRIS assessments for ETBE and TBA at key stages, up through and including peer review, as well as the substitution of statistical analysis and science policy for expertise in pathology. API noted that this was inconsistent with responsible scientific practice and EPA’s Peer Review Handbook. API also noted that this was not without apparent consequence, as no consensus could be reached on the human relevance of pathologic effects at the advisory board level. In order to resolve outstanding issues with pathology in these particular assessments, API made the unusual request to the SAB that an additional SAB or a workshop with expertise in pathology be supported.

In the 2014 NRC Review of the EPA’s IRIS Process, the NRC recognized the importance of expert judgement and provided specific recommendations for how expert judgement should be recognized and applied:

“Recommendation: More details need to be provided on the recognition and applications of expert judgment throughout the assessment-development process, especially in the later stages of the process. The points at which expert judgment is applied should be identified, those applying the judgment should be listed, and consideration should be given to harmonizing the use of expert judgment at various points in the process.”

Regarding the interaction between expert judgement and Agency science policy, API has recommended that expert judgement should be applied before, during, and after application of Agency science policy to ensure scientific credibility. API has stated that an approach that would be consistent with responsible science, NRC recommendations, and EPA science policy would be to first consult experts. This would help ensure that the interpretation of the underlying science is scientifically defensible. The next step would be to have experts work with persons experienced in applying the relevant EPA science policy to ensure that the resulting product is both scientifically defensible and consistent with EPA science policy. Expert judgement should also be applied after this step to ensure that the risk assessments remain scientifically defensible after they are fed through the mill of the relevant science policy. In the event that applying the relevant EPA science policy results in a scientifically indefensible assessment, the applied science policy should be suspected of generating artefacts and should be subsequently revised. API provided these recommendations in the context of pathology, but the recommendations are also relevant to other domains of expertise.

In closing, API supports EPA’s efforts to revise to 2005 Cancer Guidelines and to develop new guidelines for non-cancer assessment. API has given considerable thought to the lessons learned from ETBE and TBA that can inform the revised and new guidelines going forward. API also looks forward to being an active stakeholder as the guideline process evolves.

Sincerely,

Jessica Ryman-Rasmussen, PhD, DABT
Scientific Advisor, Regulatory and Scientific Affairs
VIA Email

March 13, 2018

Janice E. Chambers, PhD (Chair)
Chemical Assessment Advisory Committee Augmented for the ETBE and tBA Review
Environmental Protection Agency

RE: Notification of a Public Teleconference of the Science Advisory Board Chemical Assessment Advisory Committee Augmented for the Review of EPA’s Draft Ethyl Tertiary Butyl Ether (ETBE) and tert-Butyl Alcohol (tert-butanol; tBA) Assessments [FRL-9973-47-OA]

Dear Dr. Chambers:

The American Petroleum Institute (API) is pleased to submit written comments regarding the Public Teleconference of the Science Advisory Board Chemical Assessment Advisory Committee Augmented for the Review of EPA’s Draft Ethyl Tertiary Butyl Ether (ETBE) and tert-Butyl Alcohol (tert-butanol; tBA) Assessments [FRL-9973-47-OA]. API will also provide oral comment during the meeting. API is a national trade association that represents all facets of the oil and natural gas industry, with 625 plus members that include large integrated companies, as well as exploration and production, refining, marketing, pipeline and marine businesses, and service and supply firms. As a core component of our business model, we prioritize the promotion of public health and environmental safety while ensuring a strong, viable and sustainable U.S. oil and natural gas economy. Many API members are impacted by IRIS assessments. API advocates for risk assessment processes that use the best available science, are transparent, and provide opportunities for public engagement.

API’s comments are summarized below and are subsequently explained in detail. These comments recapture and elaborate upon oral and written comments that API provided at a February 1-2, 2018 workshop at the National Research Council (NRC) of the National Academies of Science, Engineering, and Medicine entitled “Review of Advances Made to the IRIS Process”.

1) The lack of expert judgement in the ETBE and tBA assessments is inconsistent with responsible scientific practice, NRC recommendations and EPA policy. This is a substantive scientific concern because expert judgement in pathology is necessary to determine the human relevance of the non-cancer endpoints selected by EPA for both risk assessments.

2) Derivations of toxicity values for cancer endpoints for ETBE and tBA were inconsistent with NRC recommendations, EPA guidelines, and the statements of
other EPA offices. This is a substantive scientific concern because the low dose linear extrapolations applied could result in risks of concern at levels orders of magnitude lower than a threshold (reference dose, aka RfD) approach.

3) The numerical value for the oral slope factor for ETBE differs in the Public and Peer Review drafts for ETBE but no rationale was provided for this difference. This is not transparent. This is a substantive scientific concern because this value drives the oral cancer risk assessment for this chemical and because the NRC has voiced concerns about transparency in IRIS assessments.

4) The inconsistencies with responsible scientific practice, NRC recommendations, EPA policy, the decisions of other EPA offices, and the lack of transparency noted above have substantively impacted both assessments. These indicate that recent improvements in the IRIS process have yet to result in improved risk assessment products. The ETBE and tBA assessments should be revised to address these substantive scientific concerns.

DETAILED EXPLANATION OF COMMENTS

1) The lack of expert judgement in the ETBE and tBA assessments is inconsistent with responsible scientific practice, NRC recommendations and EPA science policy. This is a substantive scientific concern because expert judgement in pathology is necessary to determine the human relevance of the non-cancer endpoints selected by EPA for both risk assessments.

- Lack of expert judgement is inconsistent with responsible scientific practice

Expert judgement in pathology requires, among other things, subject matter expertise sufficient to evaluate pathological data in in-life research studies and pathology working group reports, both of which are generally performed by expert pathologists. Subject matter expertise in (veterinary) pathology is refined to such an extent that training and board certification beyond MD, DVM, and graduate degrees are evident amongst professional pathologists.

Generally speaking, the decision to use data related to pathological effects in animals for human risk assessment is arguably a decision for which responsible scientific practice would indicate that expert judgement in pathology should be applied. This point is even more salient in the specific cases of ETBE and tBA, which require expert-level ability to distinguish between non-human relevant pathological effects due to chronic progressive nephropathy (CPN) or α2u-microglobulin and any human-relevant pathological effects that may be attributable to the test substance.

The listed credentials and biographies of the authors, contributors, reviewers and EPA personnel who drafted and reviewed these assessments, as well as this Committee (e.g. EPA’s Chemical Assessment Advisory Committee (CAAC)), provided no indications to API of subject matter expertise in pathology (on an individual or aggregate basis) equivalent to or exceeding that of professional pathologists that commonly interpret pathological data and that participate on
pathology working groups. API notes that other public commenters had previously requested that expertise in pathology be included.

API recognizes that expertise in pathology can be difficult to find and retain. However, a lack of expertise due to resource or logistical issues does not justify conducting these assessments in its absence.

- **Lack of expert judgement is inconsistent with NRC recommendations**

In the 2014 NRC Review of the EPA’s IRIS Process, the NRC recognized the importance of expert judgement and provided specific recommendations for how expert judgement should be recognized and applied:

“Recommendation: More details need to be provided on the recognition and applications of expert judgment throughout the assessment-development process, especially in the later stages of the process. The points at which expert judgment is applied should be identified, those applying the judgment should be listed, and consideration should be given to harmonizing the use of expert judgment at various points in the process.”

Instead of following responsible scientific practice and NRC recommendations, the ETBE and tBA assessments substituted expert judgement in pathology with statistical analysis and EPA science policy to determine human relevance. While statistical analysis and science policy can be valuable tools when appropriately applied, API does not consider them a suitable substitute for scientific expertise in pathology. Inconsistent with the NRC language above, the IRIS assessments for ETBE and tBA fail to clearly describe the points at which expert judgement in pathology was applied or the identities of those applying it. Instead, both assessments justify conclusions based largely on comparison to the relevant EPA science policy. This approach has the potential to result in risk assessments that are defensible and consistent within the context of EPA science policy, yet scientifically indefensible. API contends that this has indeed happened for both the ETBE and tBA assessments for which the human relevance of kidney effects is largely supported by EPA science policy, even though pathological expertise is apparently absent.

- **Lack of expert judgement is inconsistent with EPA’s Peer Review Handbook**

Importantly, the apparent lack of subject matter experts with actual expertise and credentials in (veterinary) pathology is also inconsistent with the description of peer review in EPA’s Peer Review Handbook:

“It is conducted by qualified individuals (or organizations) who are independent of those who performed the work and who are collectively equivalent in technical expertise to those who performed the original work (i.e., peers).”

API notes that this apparent lack of subject matter expertise in pathology was not without apparent consequence. The meeting Minutes of the 2017 CAAC meeting of ETBE and tBA state:

“Considerable discussion with divergent viewpoints occurred with respect to how the ETBE database for noncancer kidney effects should be interpreted, with no clear consensus reached.”

- **The substantive impact on ETBE and tBA assessments**

The assessments for ETBE and tBA rely heavily upon interpretation of complex and nuanced rodent kidney pathology and assessment of human relevance. It cannot be overstated that the human relevance of these pathological lesions is a crucial point for both assessments that should be informed by expert opinion in pathology in addition to applicable EPA policy. The rationale is that there are few (if any) suitable alternative non-cancer endpoints for the ETBE and tBA assessments. The consequence is that if the kidney effects in rodents for ETBE and tBA were judged to be not relevant to humans, it may not even be possible to conduct a non-cancer risk assessment for ETBE and tBA if suitable alternative endpoints could not be identified.

- **Expert judgement in pathology should be applied before, during, and after application of EPA science policy to ensure scientific credibility**

An approach for ETBE and tBA that would be consistent with responsible science, NRC recommendations, and EPA science policy would be to first consult expert pathologists for hazard characterization and human relevance. This would ensure that the interpretation of the underlying science is scientifically defensible. The next step would be to have expert pathologists work with experts in applying the relevant EPA science policy to ensure that the resulting product is both scientifically defensible and consistent with EPA science policy. Expert judgement should also be applied after this step to ensure that these risk assessments remain scientifically defensible after they are fed through the mill of the relevant science policy. In the event that applying the relevant EPA science policy results in a scientifically indefensible assessment, the applied science policy should be suspected of generating artefacts and should be revised.

2) **Derivations of toxicity values for cancer endpoints for ETBE and tBA were inconsistent with NRC recommendations, EPA guidelines, and the decisions of other EPA Offices. This is a substantive scientific concern because the low dose linear extrapolations applied could result in risks of concern at exposure levels that are orders of magnitude lower than if a threshold (reference dose, aka RfD) approach was used.**

- **Derivation of toxicity values was inconsistent with NRC recommendations**

In the 2014 NRC Review of the EPA’s IRIS Process, the NRC recognized the need for EPA IRIS to determine when toxicity values should be derived:\(^6\):

“**Recommendation:** EPA should develop criteria for determining when evidence is sufficient to derive toxicity values. One approach would be to restrict formal dose-response assessments to when a standard descriptor characterizes the level of confidence as medium or high (as in the case of noncancer end points) or as “carcinogenic to humans” or “likely to be carcinogenic to humans for carcinogenic compounds.””

- **Derivation of toxicity values was inconsistent with EPA guidelines/other Offices**

For the 2017 Peer Review Draft for ETBE, EPA’s 2005 Guidelines for Carcinogen risk assessment were cited in support of a decision to conduct a dose-response assessment and low-dose linear extrapolation for a selected descriptor of “suggested evidence of carcinogenic potential”. This is a lower level of confidence than that suggested in the NRC Recommendation above and is also apparently inconsistent with EPA’s 2005 guidelines and the decisions of other EPA offices.

According to EPA’s 2005 Guidelines for Carcinogen Risk Assessment\(^7\):

“*When there is suggestive evidence, the Agency generally would not attempt a dose-response assessment, as the nature of the data generally would not support one; however, when the evidence includes a well-conducted study, quantitative analyses may be useful for some purposes, for example, providing a sense of the magnitude and uncertainty of potential risks, ranking potential hazards, or setting research priorities. In each case, the rationale for the quantitative analysis is explained, considering the uncertainty in the data and the suggestive nature of the weight of evidence.”*

Although the above language indicates that there may be some situations and purposes for which a dose-response assessment could be warranted for a “suggestive” descriptor, more recent correspondence by other EPA offices (the Office of Pesticide Programs) indicate that, in practice, this is simply not done\(^8\):

“*The classification descriptors “not likely to be carcinogenic to humans” and “suggestive evidence of carcinogenic potential” both utilize a reference dose approach; therefore, a quantitative cancer risk assessment would not be required for either of these descriptors.”*

- **The substantive impact on ETBE and tBA assessments**

The impact on toxicity values for a (threshold) reference dose/reference concentration (RfD/RfC) approach versus a dose-response assessment and low-dose linear extrapolation is profound, often impacting risk estimates by orders of magnitude. Depending on the exposure scenario, the difference between a threshold (RfC/RfC) or non-threshold (slope factor, inhalation unit risk

\(^6\) Reference 2 at Page 129.

estimate) approach could be the difference between identifying a risk or concern or being able to provide assurances that an exposure level is orders of magnitude below a safe level.

3) The numerical value for the oral slope factor for ETBE differs in the Public and Peer Review drafts for ETBE but no rationale was provided. This is not transparent. This is a substantive scientific concern because this value drives the oral cancer risk assessment for this chemical.

The oral slope factor in the June 2017 IRIS assessment for ETBE is 0.001 mg/kg/day, compared to 0.0009 mg/kg/day in the 2016 Assessment. API could find no explanation for the differences in the numerical values.

The substantive impact on ETBE assessments

The (1.1X) difference is slight in magnitude. As such, it is unlikely to substantively impact a risk assessment. The impact is more in the areas credibility and transparency. If values change without reason, then credibility and transparency are damaged.

4) The inconsistencies with NRC recommendations, EPA policy, the practices of other EPA Offices, and the lack of transparency noted above have substantively impacted both assessments. These indicate that recent improvements in the IRIS process have yet to result in improved risk assessment products. The ETBE and tBA assessments should thus be revised to address these substantive concerns.

API has identified herein scientifically substantive issues that impact the ETBE and tBA risk assessments. Based on the issues and rationale presented above, API maintains that both assessments should be substantially revised. API is well aware that EPA’s IRIS process is in the midst of wide-spread implementation of change. However impressive these changes in process may be, changes in process are ultimately irrelevant if they do not result in improved and scientifically defensible risk assessment products. It is our hope that our comments will assist the CAAC in advising EPA such that the quality of these IRIS assessments will ultimately be commiserate with the levels of effort that have gone into IRIS reform.

In closing, API appreciates the opportunity to provide comments on the ETBE and tBA assessments to the CAAC.

VIA Email

September 20, 2018

Mr. Thomas Carpenter
Sr. Biologist and Designated Federal Officer
U.S. EPA: Office of the Administrator, Science Advisory Staff Office
1200 Pennsylvania Ave, NW (1400R)
Washington, DC 20460-4164

RE: Notification of a Public Teleconference of the Chartered Scientific Advisory Board (SAB) [FRL-9983-39-OA]

Dear Mr. Carpenter:

The American Petroleum Institute (API) is pleased to submit written comments regarding the Public Teleconference of the Chartered Scientific Advisory Board (SAB) [FRL-9983-39-OA]. These comments pertain to the Advisory Activities Discussed of the IRIS Assessment for Ethyl Tertiary Butyl Ether (ETBE) and the IRIS Assessment for tert-Butyl Alcohol (tert-butanol) as well as the 08-30-2018 Drat Review of EPA’s Draft Toxicological Review of Ethyl Tertiary Butyl Ether and Draft Toxicological Review of tert-Butyl Alcohol.

API is a national trade association that represents all facets of the oil and natural gas industry, with 625 plus members that include large integrated companies, as well as exploration and production, refining, marketing, pipeline and marine businesses, and service and supply firms. As a core component of our business model, we prioritize the promotion of public health and environmental safety while ensuring a strong, viable and sustainable U.S. oil and natural gas economy. Many API members are impacted by IRIS assessments. API advocates for risk assessment processes that use the best available science, are transparent, and provide opportunities for public engagement.

API is requesting that EPA’s Science Advisory Board (SAB) Staff remedy the situation in which the SAB was unable to reach consensus on critical aspects of the IRIS assessments for ETBE and TBA by supporting a subsequent SAB that includes pathology expertise and/or supporting a recommendation that EPA/IRIS hold a transparent scientific workshop that includes expert pathologists in order to resolve these critical issues.

The rationale for this request is subsequently described and defended in detail.
In the 8-30-2018 SAB draft report\(^1\) the SAB was unable to reach consensus on the human relevance of the kidney effects of ETBE and tBA as indicated by the following:

“Regarding noncancer kidney outcomes from exposure to ETBE, the SAB did not reach consensus on an oral reference dose. The difference in opinion is based on the extent of confidence in a CPN-based mechanism for these ETBE effects. Similarly, the SAB did not reach a consensus regarding the oral reference dose for noncancer kidney outcomes for tBA. The difference in opinion relates to the extent of confidence in CPN and/or alpha \(2\mu\)-globulin -based mechanisms for these tBA effects.”\(^2\)

“A consensus was not reached for tBA concerning the scientific support for the conclusion that male rat kidney tumors are relevant to human hazard identification.”\(^2\)

“No consensus, however, was reached regarding the EPA’s calculation of inhalation unit risk (IUR) for ETBE. Some members conclude that the data are not suitable for developing an IUR due to a potential lack of biological relevance for ETBE. Other members note that the data are appropriate for dose-response analysis for ETBE.”\(^2\)

As a result, the IRIS Program is now in the very unfortunate position of not having consensus support from independent scientific peer review for key endpoints used in the ETBE and TBA assessments. Going forward, this can reasonably be anticipated to increase the level of difficulty for the IRIS Program in defending its risk assessments at a time in its history when it is already under a high level of scrutiny and pressure.

According to a 2002 document produced by the US EPA Science Advisory Board (SAB)\(^3\):

“The goal of the panel formation process is to assemble an appropriate panel of experts to provide sound, independent, balanced, and useful scientific and technical advice”

and

“Expertise, knowledge, and experience are primary factors that determine whether an individual is invited to serve on a SAB Panel.”\(^4\)

\(^2\) Ibid. Page 2.

\(^4\) Ibid. Page 9.
API has previously noted in written comments\(^5\) that there was no apparent representation of expertise in pathology on this SAB and that this is also inconsistent with EPA's Peer Review Handbook.

API therefore requests the SAB Staff to remedy this situation in which the SAB was unable to reach consensus on critical aspects of these IRIS assessments by supporting a subsequent SAB that includes pathology expertise and/or supporting a recommendation that EPA/IRIS hold a transparent scientific workshop that includes expert pathologists in order to resolve these critical issues. API notes that if a scientific workshop were to be recommended, it could be expanded to include other substances that cause similar kidney effects in rodents, as these endpoints are applicable to substances other than ETBE and TBA.

Sincerely,

Jessica Ryman-Rasmussen, PhD, DABT

\(^5\) Written comments submitted by Jessica Ryman-Rasmussen on behalf of the American Petroleum Institute (API). https://yosemite.epa.gov/sab/sabproduct.nsf/520B0D5561CA43668525825000637CE0/$File/API_Comments_ETBE-TBA_CAAC_03-13-2018_unsigned_final.pdf