
1 
 

Version Control Framework for the SAGE Model 

Prepared by National Center for Environmental Economics (NCEE), U.S. EPA 

SAB CGE Model Review 

August 22, 2019 

 

The purpose of this memo is to describe the proposed version control framework for the computable 

general equilibrium (CGE) model, SAGE.1 The SAGE model refers to a collection of inter-related files - 

containing source code and data - that is designed to construct datasets and simulate the effects of policy 

changes on the United States economy. Aligning SAGE with the latest economics literature and the best 

available data is a moving target. Incorporating changes in the model files might encompass relatively 

small bug fixes to the code, moderate updates to underlying baseline data or parameter estimates, or 

larger structural changes that better represent the nature of the simulated regulatory changes on the 

affected universe of regulated sources. Ensuring transparency and consistency across the application of 

these improvements to SAGE requires a version control system.  

Version control is a management tool that tracks changes to a collection of files. In its simplest 

manifestation, a version control system is a unique identifier, a number or letter code; the higher the 

number, the more recent the version. Print editions of books are an example of this type of simple version 

control system. In the digital world, changes to software or models often occur more frequently and the 

changes may vary in importance and magnitude. In these instances, more nuanced systems of unique 

identifiers can be used to communicate routine changes to model structure and/or underlying data. When 

applied in a consistent fashion a version control system enhances long-term model use and maintenance 

by enforcing a logical structure on the management of changing source code. Documentation of the 

specific model changes that correspond to a given version is also important for implementing a 

transparent version control system. 

This memo is organized as follows: The first section of this memo describes the proposed version control 

structure for the SAGE model. The second section discusses the relationship between the version control 

structure and peer review of model updates. The appendix illustrates the application of this version 

control framework by describing the historical development process of SAGE. 

                                                           
1 SAGE is a recursive acronym, as in SAGE is an Applied General Equilibrium model. 



2 
 

1 Versioning Control Framework 

A relatively common approach to digital version control is to use a series of numbers (and/or letters) 

where each number can change independently, and a number’s placement in the sequence 

communicates the nature of the underlying change relative to the previous version. For instance, a change 

in a number at the end of a sequence typically indicates a more minor change, while a change in a number 

at the beginning of a sequence often indicates a larger scale change. We view the collection of the source 

code, documentation, and data build stream files as key components of the model and opt for a version 

control system that is applied to the overall collection of files.  Thus, a single change in the version control 

number may indicate changes to multiple files. This makes documentation of changes between versions 

more essential but ultimately allows for a more tractable system over time.   

The SAGE model is regularly revised to update and improve its representation of the U.S. economy and 

ability to model environmental regulations. To manage these changes, semantic versioning is employed 

to codify versions of SAGE following updates. Semantic versioning is a sequence-based scheme designed 

to distinguish between major, minor and patch changes to the modeling framework by assigning a 

cumulative, three-digit unique identifier. This methodology is often used in software development. A 

semantic version identifier looks like: Major.Minor.Patch, where each segment of the identifier is a 

numeric value. When new versions of the code are made available, it is necessary to also change some 

component of the version identifier. Small edits to address bugs or streamline code are associated with 

an increase in the patch component (e.g. 1.0.1 to 1.0.2). Increases in the minor component are either 

characterized as a collection of patch edits or moderate changes (e.g. 1.0.2 to 1.1.0). Increases in the 

major component may be reflective of a collection of minor version updates that, cumulatively, 

substantially distinguish the modeling framework from previous major versions, a singular significant 

change to the underlying model structure, and/or changes that prevent backward compatibility of the 

model to previous versions (e.g. 1.1.0 to 2.0.0).2 Updating the model to a new major version would require 

setting the minor and patch components of the version identifier to zero (e.g., from 1.7.1 to 2.0.0). 

Similarly, updating the model to a new minor version would require resetting the patch identifier to zero 

(e.g., from 1.1.4 to 1.2.0).  

                                                           
2 Backward compatibility in reference to models differs somewhat from the case of software development. In this 
context we use backward compatibility to refer to the extent that code for conducting previous analyses can be 
easily used to replicate the analyses with newer versions of the model or the extent to which new versions of the 
model can operate using data from previous versions of the model. 



3 
 

The semantic version identifier helps distinguish between public facing versions of SAGE. The top portion 

of Figure 1 depicts an illustrative example of this framework (the internal process in the bottom portion 

will be explained later in the memo). Each level of the diagram can be thought of as a distinct branch of 

code. Here, branches essentially refer to separate snapshots of model code allowing for storage of 

multiple versions of the model (for release or subsequent code development).3 The “Master” branch holds 

all publicly released versions of the SAGE model. The “Rules” and “Publications” branches highlight the 

anticipated method for storing instances of model code used in rule making or in applications outside of 

the regulatory context such as publications. Updates to the three components of the identifier are 

represented as different shapes. Starting from major version, 1.0.0, the diagram illustrates an update in 

the patch component following a bug fix to 1.0.1. Additional model development results in a minor 

update, 1.1.0 and the inclusion of a new feature results in a major update (to 2.0.0).  

 

Figure 1: Illustrative Versioning Design4 

 

                                                           
3 Technically speaking, this process is more complex than described here. See: https://git-scm.com/book/en/v1/Git-
Branching-What-a-Branch-Is. 
4 Note that this diagram is for illustrative purposes only and represents a hypothetical versioning sequence. It is not 
reflective of an actual rule making or model development process. 



4 
 

 

There are two contexts in which version control for the SAGE model is relevant within the EPA: general 

model updates, and modifications to the model for a specific regulatory application. General model 

updates are changes that become fully integrated into the core model. Best professional judgement 

should be used to designate general model updates as either major, minor, or patch changes. Patch level 

changes are more obvious: they typically are restricted to bug fixes and changes to streamline code or 

enhance backward compatibility. Examples of minor changes might include updates to the underlying 

data or assumed elasticity values drawn from peer-reviewed literature or estimated based on peer-

reviewed methods using more recent data. Major changes would include significant new features that 

fundamentally change some aspect of the model. For instance, this might include re-specifying consumer 

preferences through functional form assumptions.  

There is a gray area when determining whether a change is a major or minor update. A variety of factors 

should be considered in judging the significance of changes in the model and whether a major version 

update is warranted. For instance, if many minor changes are made simultaneously, this may rise to the 

level of a major change. In some cases, it may be possible to judge whether updates are minor or rise to 

the level of a major change based on the output from a series of standardized runs. If the model produces 

output that is sufficiently different from the previous version following the implementation of new 

features, then the modifications may be considered a major change. In keeping with EPA’s Peer Review 

Handbook (2015), we would take a case-by-case discretionary approach to minor vs. major designations 

with care taken to document the justification.5  

1.1 Single Use Regulatory Applications 

General model changes are distinct from modifications to the model for use in a single regulatory 

application or a potential study outside of the regulatory context. These changes may be rule or problem 

specific and not reflective of general modeling needs in other contexts. For instance, analysts may decide 

to further disaggregate one of the SAGE industrial sectors to more closely identify the subset of sources 

subject to a proposed regulation and/or to better reflect substitution possibilities between these plants 

                                                           
5 The EPA’s Peer Review Handbook (4th Edition) notes that the EPA has “significant discretion in deciding the timing 
and frequency of peer review”. In a similar context, EPA also has discretion over whether modeling updates are 
interpreted as “major” as this relates to the peer review process as illustrated in the next section. Further, any use 
of words like “may” or “should” does not create a mandatory requirement for the agency but indicates a preference 
toward a specific course of action (U. S. EPA, 2015). 



5 
 

and closely related subsectors. Likewise, the way in which pollution abatement possibilities are captured 

in the model may differ with the specifics of a given regulation. These changes would not necessarily be 

incorporated into the core model. 

It is important to track one-time modifications to SAGE for specific regulatory applications or other studies 

to ensure transparency and reproducibility. Figure 1 illustrates this in the top two branches. If the model 

is modified for use in a regulatory application, for example to analyze the costs of rule “rule1”, the 

modified version of the model will be denoted as major.minor.patch-rule1, where major.minor.patch 

refers to the base version of the model prior to the regulation specific modifications. Because regulatory 

analysis undergoes various stages of development, model use in the early stages (here labeled as 

“proposal”) versus the later stages (here labeled as “final”) may use a different base model version if 

updates have been made since the model’s previous use for the rule. If different versions of the model 

are used in the analysis, the stage of the rule is appended to the version identifier. For instance, in Figure 

1, version 1.0.0 is used in the proposal stage of the rule and version 1.0.1 is used in the final stage of the 

rule. Correspondingly, there are two versions of the model for “rule1”: 1.0.0-rule1_proposal and 1.0.1-

rule1_final.  

Holding the identifier major.minor.patch constant will allow analysts to rely on documentation for the 

core model to explain structural aspects and key parameter assumptions. Analysts will then only need to 

document (and justify) the changes made to SAGE for the regulatory application relative to the core 

model.6 The extent to which these changes may be subject to peer review is discussed in Section 2. To 

enhance transparency and the ability of stakeholders to replicate results reported in a regulatory analysis, 

the branch of the model and its data used for the regulatory analysis will not be further updated, except 

in the context of the rulemaking, and will retain the same version identifier that is referenced in the rule 

package. If any of the features implemented for the regulatory analysis are deemed useful for other 

applications, they may be brought back into the core model through a patch or minor update.  

1.2 Internal Model Development and Versioning 

Underpinning the publicly facing branches is an internal process that establishes the rules for organizing 

the development of model code between versions.7 Not all internal code development will be individually 

stored in separate versions of the model. The bottom part of Figure 1 depicts this process in an illustrative 

                                                           
6 The same is true for studies outside of the regulatory context. 
7 This process is an adaptation from the one proposed at: https://nvie.com/posts/a-successful-git-branching-model/. 



6 
 

setting. There are four main branch types in the internal organizational structure: the patches branch, 

feature branches, the development branch, and release branches.  

The patches branch houses code for quick bug fixes. Once the code has been sufficiently reworked to 

correct the issue in question, the code is merged into the master branch as a new patch version of the 

model (e.g. 1.0.0 to 1.0.1).  Model updates can either be small patch fixes or longer-term significant 

feature developments. Feature developments that fundamentally change some aspect of the model are 

housed in feature branches. In Figure 1, a longer-term feature development is stored in the bottom 

branch. Version 1.0.0 of the model is merged into this branch to act as a starting place for this feature.  

Between the initialization and completion of a feature, smaller changes are stored in the development 

branch. The development branch represents the ongoing development of the model and may accumulate 

several updates before the changes are pushed to the master branch as a new version. All completed 

model developments following the establishment of a new model version are stored in this branch. In 

Figure 1, each additional circle in the development branch indicates some type of update to the model 

code. The development branch is held in perpetuity alongside the master branch. Note that when a patch 

is applied, all changes are pushed both to the master branch and development branch to correct for the 

issue. When the development of the model reaches a point where the updates are determined to be ready 

for elevation to the master branch, the code in the development branch is first sent to a release branch. 

The release branch is used to run quality assurance and quality control (QA/QC) tests to verify the efficacy 

of the model code before publicly releasing a new version. 

The diagram indicates the potential for updates as the result of the QA/QC process after the release 

branch was created (denoted as additional circles). All changes in the release branch are pushed both to 

the new version in the master branch and back into the development branch. These changes would also 

be merged into any active feature branches to sync code with the most recent publicly available version 

of the model. Following the completion of the feature development, this code is merged back into the 

development branch, and in this example, eventually constitutes a new major version of the model. Note 

that feature branches are finite. Following the completion of the feature development, this branch is no 

longer in use. 

This version control framework is implemented using the Git version control system.8 Git provides an 

efficient means of implementing the described versioning strategy, in part, because the branching 

                                                           
8 https://git-scm.com/ 



7 
 

structure was designed in tandem with the capabilities of the software, which tracks incremental changes 

between versions for a detailed (i.e., line specific) changelog. “Tags” are used within the Git system to 

designate major, minor, patch, or regulatory specific model versions so they may be preserved.   

2 Peer Review and Versioning 

While the main purpose of this SAB panel is to review SAGE’s current core modeling framework, future 

major and minor changes to the model also may warrant additional peer review. This section describes 

how the version control system relates to and might help inform the determination of whether model 

changes are substantial enough to require additional peer review. 

According to the EPA’s Peer Review Policy, “[p]eer review of all scientific and technical information that 

is intended to inform or support agency decisions is encouraged and expected,”9 though the Agency also 

recognizes that peer reviews can be time consuming and costly. Scientific and technical work products 

that are more likely to warrant peer review include those that establish a significant precedent, model, or 

methodology; address a controversial issue; focus on significant emerging issues; involve a significant 

investment of agency resources; or consider an innovative approach for a previously defined problem, 

process, or methodology, among others (U.S. EPA , 2015). In addition, the U.S. EPA recommends peer 

review of its scientific models “to evaluate whether the assumptions, methods, and conclusions…[are] 

based on sound scientific principles, and to check the scientific appropriateness of a model for informing 

a specific regulatory decision” (U.S. EPA, 2009). Criteria that should be used to judge whether peer review 

of changes to existing models is warranted are the level of scientific/technical complexity and/or the 

novelty of the change (U.S. EPA, 2009).  

While establishing explicit criteria to judge a priori what SAGE model changes may warrant additional peer 

review is difficult, it is expected that major updates will generally meet the threshold for additional peer 

review. This is particularly true in cases where the update significantly changes the model structure and 

key assumptions.10 For example, when an update is associated with implementing concepts that are well 

established in the economics literature but are significant enough to qualify as a new major model version, 

                                                           
9 See: https://www.epa.gov/sites/production/files/2015-01/documents/peer_review_policy_and_memo.pdf. 
10 U.S. EPA (2009) lists aspects of a model that should be judged independently for scientific credibility. These 
include: the appropriateness of input data, boundary condition specifications, and parameter values; documentation 
of adjustments to model inputs to improve model performance (calibration) as well as key assumptions; model 
application with respect to the range of its validity; and supporting empirical data that strengthen or contradict 
conclusions that are based on model results. 

 

https://www.epa.gov/sites/production/files/2015-01/documents/peer_review_policy_and_memo.pdf


8 
 

the peer review will likely focus on whether these practices have been properly incorporated into the 

model. The form this peer review will take, the selection of peer reviewers, and the charge will be 

consistent with EPA’s peer review guidance (U.S. EPA, 2015). Note that the U.S. EPA also has considerable 

discretion regarding the timing and the frequency of peer review (U.S. EPA, 2015).11    

The level of peer review required for minor updates is a gray area that will require the modeling 

development team to exercise its professional judgement. One possible criterion the team might use is 

the degree to which minor changes are relatively routine.  For example, incorporating the latest data from 

the Bureau of Economic Analysis or Annual Energy Outlook requires little or no change to underlying 

model structure. These changes likely will not require additional peer review. Likewise, while 

disaggregation of sectors for a specific regulatory application that proceeds along dimensions already 

clearly delineated in the data will need to be clearly documented, these changes may not require 

additional peer review. On the other hand, a minor update to incorporate new elasticity estimates from 

the literature may qualify for peer review if these changes have a significant effect on the model output 

or are utilized in a novel regulatory application.  

When model modifications are made for a specific regulatory application, stakeholders may comment on 

the use, inputs, and interpretation of the output if used to inform a rulemaking. The EPA often engages 

with stakeholders, or individuals potentially impacted by the outcome of the policy, to ensure that all 

relevant information is considered. The Agency must respond to comments received during the 

rulemaking process. While analysis conducted as part of the rulemaking process must be transparently 

documented so that stakeholders can review it via the notice and comment period for a proposed 

regulation, updates to the SAGE model for one-time regulatory applications may still require additional 

peer review. Public comments can help inform the peer review process through suggestions of related 

experts and isolating technical issues to be considered by independent peer reviewers (U. S. EPA, 2015). 

If changes made to the model in the context of a one-time application are a general improvement in the 

way SAGE captures certain aspects of economic behavior, then EPA also may ask peer reviewers whether 

these modifications should be incorporated into the core model. 

  

                                                           
11 Scientific or technical work products that are deemed “influential scientific information” (ISI) are also required to 
undergo peer review per the Office of Management and Budget’s Peer Review Bulletin. See: 
https://obamawhitehouse.archives.gov/omb/memoranda_fy2005_m05-03/.  

https://obamawhitehouse.archives.gov/omb/memoranda_fy2005_m05-03/


9 
 

References 

Marten, A., R. Garbaccio, and A. Wolverton. Forthcoming. “Exploring the General Equilibrium Costs of 

Sector-Specific Environmental Regulations.” Journal of the Association of Environmental and Resource 

Economists. 

U.S. EPA. 2015. Peer Review Handbook. 4th Edition. Science and Technology Policy Council. EPA 100-B-15-

001. Available at: https://www.epa.gov/sites/production/files/2016-

03/documents/epa_peer_review_handbook_4th_edition.pdf  

U.S. EPA. 2009. Guidance on the Development, Evaluation, and Application of Environmental Models. 

Office of the Science Advisor. Council for Regulatory Environmental Modeling. EPA/100/K-09/003. 

Available at: https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P1003E4R.PDF 

  

https://www.epa.gov/sites/production/files/2016-03/documents/epa_peer_review_handbook_4th_edition.pdf
https://www.epa.gov/sites/production/files/2016-03/documents/epa_peer_review_handbook_4th_edition.pdf
https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P1003E4R.PDF


10 
 

Appendix: History of SAGE Versioning 

This section describes a partial history of SAGE developments up to version 1.1.0 as a way to further 

illustrate the proposed versioning strategy. Figure 2 illustrates this in the context of a flow diagram. A 

description of incremental changes between patch and minor versions is contained in Table 1. Most code 

developments from versions 1.0.0 and 1.1.0 were patch edits. This is reflective of early stage model 

development, and the structure of the versioning framework is expected to converge to something like 

Figure 1 in the long-term. Long-term features such as the reconciliation of marginal income tax rates 

within the model dataset and updates to the model documentation, depicted at the bottom of Figure 2, 

are eventually incorporated into the new minor version of the model (1.1.0). Note that transparent gray 

arrows reflect updates to feature branch code following a patch fix. Version 1.0.7-cost_paper is the 

version of the model used in Marten et al. (forthcoming). 

Figure 2: Flow Chart Depicting a Partial History of SAGE Versioning 

 

 

 

 



11 
 

 

Table 1: A Partial History of SAGE Versions 

Type ID Description of Change 

Minor 1.0.0  Initial version of the model. 

Patch 1.0.1 – 1.0.7 

o Improve calculation of equivalent variation 
o Fix division by zero error in the static model. 
o Allow for user defined time steps between model periods. 
o Fix production calibration in resource sectors in the static 

model. 
o Update example policy shock representation to account for 

previous changes. 
o Remove outdated and unused code or files. 

Minor 1.1.0 

o Inclusive of all previous patches.  
o Update effective marginal labor income tax rates by region 

and household. 
o All capital is extant in the initial year by default. 
o Update documentation on running the model and modeling 

separate abatement activities for each sector. 
o Performance improvements. 

 

 


