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1. Background and Focus of These Remarks 

On October 23, 2018, EPA released its external review draft of the Integrated Science Assessment (ISA) 
for Particulate Matter (PM).  Comments, which are due to be submitted to the docket by December 11, 
2018, may be summarized orally during the public comments segment of the Clean Air Scientific 
Advisory Committee (CASAC) meeting on December 12, 2018.  To assist CASAC members in preparing 
for that meeting, individuals intending to speak before CASAC have been asked to submit copies of their 
presentation materials by December 5.  In response to this request, this document provides an overview of 
key points that the author intends to present to CASAC.  The points herein will be more completely 
developed in written comments that will be submitted to the docket on December 11, 2018.   

The ISA, at nearly 2,000 pages in length, covers a wide range of issues of relevance to the setting of both 
primary and secondary national ambient air quality standards (NAAQS) for PM, including fine PM 
(PM2.5).  This set of comments focuses on what the ISA reports on evidence regarding a specific policy-
relevant question: the shape of the PM2.5 concentration-response (C-R) relationship.  This evidence is 
summarized for mortality risk C-R relationships, for all nonaccidental deaths and for deaths attributed to 
cardiovascular disease (CVD).  Most of the C-R evidence is derived from studies of long-term PM2.5 
exposure, but the ISA also summarizes a few studies addressing the potential shape of a C-R function for 
acute PM2.5 exposure.  The acute risk studies in the ISA are all for all-cause mortality; none are for CVD 
mortality risk. 

In general, the ISA finds that among recent (2009-2018) epidemiological studies that provide any 
indication of potential C-R shape, most conclude that the null hypothesis of linearity across the range of 
observed PM2.5 concentrations cannot be rejected.  The ISA notes that some recent studies have suggested 
the possibility of an increasing C-R slope at lower concentrations, which is often referred to as 
“supralinearity.”  However, the ISA does not appear to assign much weight to findings of supralinearity. 

These comments support the caution with which the ISA addresses the evidence of supralinearity in C-R 
shape.  We review the papers cited in the sections of the ISA discussing C-R shape, identify a few 
additional papers that contain evidence on C-R shapes that are not currently cited in those sections, and 
provide a synthesis of these papers that we believe underscores the appropriateness of caution in making 
any conclusions on C-R shape at this time.  In brief, when the various C-R relationships estimated in the 
cited papers are compared in an apples-to-apples format, the primary finding would seem to be a lack of 
consistency in their shapes.  While many results are described by the authors (and by the ISA) as “linear,” 
the actual C-R relationships reported in the papers take on a variety of shapes, from sublinear to 
supralinear.  In this context, the evidence of supralinearity appears to be just one end of a spectrum of 
shapes that have been estimated, with little reason to separate any of them out as more indicative of the 
“true” C-R shape rather than simply a manifestation of the significant uncertainty on shape that is 
inherently difficult to resolve using the tools of population-wide epidemiology. 
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The ISA contains references to several non-U.S./non-Canadian epidemiological studies.  These comments 
do not include these papers in its syntheses for two reasons.  The first is that we believe it is important 
that a comparison of available evidence on shape for a particular region include all known papers that 
explored shape, regardless of their results.  While we feel we are able, within the available time, to assess 
the ISA’s completeness in representation of the relevant U.S. and Canadian papers, we do not have such 
confidence for the literature world-wide.  Second, given the possibility that varying toxicities of the PM 
mix in different regions may result in different C-R shapes, results from entirely different parts of the 
world could confuse rather than refine the ability to detect policy-relevant patterns.  In fact, we will show 
that this could be a concern even for use of Canadian studies, and we separate our summary of results in 
Canadian papers from those in U.S. papers.  We believe the ISA should also give less weight to the 
European papers, particularly on the question of C-R shape.  

2. The Basics of Estimating the Shape of the C-R Relationship 

Much of the epidemiological evidence on long-term C-R relationships has been derived from parametric 
estimation methods such as Cox Proportional Hazards (CPH) analysis.  A standard CPH analysis 
produces a single estimate of the slope of the C-R relationship that is invariant with respect to the 
exposure level.  Efforts to explore the shape of the C-R relationship are effectively efforts to determine 
whether the slope of the C-R relationship varies with the exposure level.  This is done by any of a variety 
of methods, but the most commonly used method found in the recent literature summarized in the ISA is a 
smoothing method called “splines.”   

Graphs must be used to present results on C-R shape because the results of the spline-based nonlinear 
estimation methods most of these studies have applied cannot be readily summarized with a few 
parameter estimates, as can be done for the estimates resulting from a standard CPH analysis.  Thus, the 
comments that follow rely heavily on graphical comparisons of results of different studies rather than 
summary tables.1   

3. Synthesis of C-R Evidence Cited in ISA 

Shapes of Long-term Nonaccidental Mortality C-R Relationships Cited in the ISA 

ISA Section 11.2.4 provides a review of the papers that consider possible shapes for long-term C-Rs for 
nonaccidental mortality risk from PM2.5, which are summarized in Table 11-7.  It accounts for 5 Canadian 
papers2 and 5 U.S. papers.3  All but one of these papers (Hart et al., 2015) presents graphs of their 
preferred estimate of the C-R relationship.  The ISA provides some examples of those graphs in Figures 
11-22 and 11-23, which show a wide variety of shapes.  However, those figures are reported in different 
relative risk units, with different reference points, and on very different scales.  While the scales have 
been selected by their respective authors to best represent their individual C-R curve estimate, it is not 
easy for a reader of the ISA to understand how these results compare and contrast to each other.  A 
distinctive shape in one graph may appear much like all the rest when restated in comparable units.  

Figure 1 presents the curves (without their associated confidence intervals) for the 4 U.S. papers that 
contain such graphs, and Figure 2 presents the curves for the 5 Canadian papers.  (Figures appear at the 

                                                      
1 We have had to make our own approximations of the shapes in the original papers in order to consolidate them into a single 

chart to enable the inter-study comparisons that are a part of these comments.  There may thus be some minor differences in the 
figures in these comments and those in the original studies, but we believe that any inaccuracies in our graphical 
approximations, if they are evident at all, will not affect any of the points that we make in these comments. 

2 Chen et al. (2016); Crouse et al. (2012); Crouse et al. (2015); Pinault et al. (2016); Villeneuve et al. (2015). 
3 Di et al. (2017a); Hart et al. (2015); Lepeule et al. (2012); Shi et al. (2016); Thurston et al. (2016). 
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end of this document.)  In both figures, the curves provided in the original papers have been rescaled 
where necessary so that all have the following consistent presentation.  The y-axis is stated as relative 
risk, and the curves are graphed to show their risk relative to the lowest measured level (LML) of PM2.5 in 
each respective study.4  That LML’s value is indicated by a circle at the left-hand end of each curve.  (It 
always sits at 1.0 on the y-axis, given our construction of the LML as the point of reference.)  The curves 
are not continued to levels below their LML, as that would represent an extrapolation outside of the 
observations defining each C-R curve. 

These two figures show a range of shapes, with relatively substantial differences in estimates of shape 
across the Canadian papers.  Supralinearity does appear among the Canadian papers, but it is not among 
the U.S. papers: 

• Two of the 4 U.S. papers (Shi et al. and Thurston et al.) present best fit shapes that are sublinear 
(even though the ISA reports that Thurston et al. “observed [a] linear relationship”).  The other 2 
of the 4 U.S. papers present C-R curves that are essentially linear (Lepeule et al., and Di et al.)  

• Two of the 5 Canadian papers present shapes that are sublinear (Chen et al., and Villeneuve et 
al.), even though Chen et al. state that they found no “departure from linearity,” which appears to 
be a statement that the somewhat sublinear shape that they present is not statistically significantly 
different from linear.  Two of the 5 Canadian papers (Pinault et al., 2016, and Crouse et al., 2015) 
present shapes that are supralinear.  The notably high degree of supralinearity appears in the 
paper by Pinault et al. (2016).5   The remaining paper presents a best-fit shape that has both 
sublinear and supralinear aspects, although neither portion of the C-R shape is dramatically 
different from linear (and the authors report it is not statistically significantly different from a 
curve that assumes linearity). 

Shapes of Long-term Cardiovascular Mortality C-R Relationships Cited in the ISA 

ISA Section 6.2.16 provides a review of the papers that consider possible shapes for long-term C-Rs for 
cardiovascular mortality risk from PM2.5, which are summarized in Table 6-52.  That table accounts for 3 
Canadian papers6 and 4 U.S. papers.7  All but one of these papers (Gan et al., 2011) presents graphs of 
their preferred estimate of the C-R relationship’s shape.8  The ISA provides just two examples of those 
graphs in Figures 6-26 and 6-27.  As for nonaccidental mortality risk, we have graphed all of the curves in 
common units.  Figures 3 and 4 (at the end of the document) present U.S. and Canadian shapes, 
respectively, for those C-R shapes that are specific to CVD or circulatory mortality.  Again, these two 
figures show a range of shapes: 

                                                      
4 All C-R curves report risk relative to an arbitrary reference point within the range of observations.  There appears to be no 

standard practice for which observation is used as the reference point, with some papers placing the reference point at or near 
the mean concentration in the observed data and some at the LML.  To enable comparability across reported C-R curves, we 
have scaled all of the reported curves to have their respective LMLs as the reference point.  Those curves that have been 
rescaled from the original document are identified in the figure notes. 

5 All of the other papers shown in Figures 1 and 2 use natural splines, although two use a penalized splines method that constrains 
the natural spline to always be monotonically (i.e., smoothly) increasing, and one uses a two-dimensional extension of natural 
splines (called a “thin plate spline”) to estimate a joint C-R for both PM2.5 and ozone.  Pinault et al. (2016) uses an R function 
called “smoothHR” that searches for the best spline fit. 

6 Crouse et al. (2012); Gan et al. (2011); Villeneuve et al. (2015). 
7 Jerrett et al. (2017); Lepeule et al. (2012); Weichenthal et al. (2014); Thurston et al. (2016). 
8 Again, graphs are used because nonlinear estimation methods cannot be readily summarized with a few numerical parameter 

estimates. 
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• Two of the 4 U.S. shape estimates (Lepeule et al. and Thurston et al.) are linear.  One paper 
(Jerrett et al.) finds a classically supralinear shape.  The fourth (Weichenthal et al.) might be 
described as supralinear, but it actually has a negative slope, and one must ask whether this is 
evidence of supralinearity or data that are inconsistent with dose-response more generally. 

• Of the 2 Canadian CVD estimates, one is sublinear and one is supralinear. 

Shapes of Short-term Mortality C-R Relationships Cited in the ISA 

Section 11.1.10 of the ISA addressed recent evidence on C-R shape for short-term exposure, or acute risk, 
citing three papers.9  All three are based on U.S. populations and address all-cause mortality.  Figure 5 (at 
the end of this document) presents the shapes of the estimated acute C-R relationships for the two papers 
that provide such shape estimates (Shi et al., and Di et al.). These use the same relative risk scale on the y-
axis as for the long-term mortality risk figures but expand the x-axis to higher PM2.5 concentrations to 
reflect that daily concentrations in acute studies vary more widely than the annual averages used in long-
term studies.  The truncation of the Shi et al. curve at 30 µg/m3 reflects that fact that the Shi et al. curve 
was estimated only on the subset days in that study’s dataset for which 24-hour average PM2.5 was less 
than 30 µg/m3.  In that sense, the two curves are not exactly comparable to each other.  With that 
limitation in mind, we note that the available curves in this endpoint category again indicate different 
types of C-R shapes:  one is either sublinear or nearly linear (Shi et al.) while the other indicates 
supralinearity (Di et al.).   

The third paper (Lee et al.) did not estimate a C-R shape, but instead first applied standard CPH 
estimation to the entire range of PM2.5 concentrations and then applied CPH to the subset of days where 
PM2.5 concentrations were below the current NAAQS.  The CPH-based slope estimate for the full range 
of PM2.5 was lower than that for the lower-PM2.5 subset of exposures, and this is construed as evidence of 
supralinearity, even though it does not indicate what that shape looks like as a function of PM.   

4. Papers Reporting Evidence on C-R Shapes Not Cited in ISA 

The section above has summarized the key recent evidence on C-R shape mentioned in the ISA, focusing 
on long-term and short-term nonaccidental/all-cause risk, and on long-term CVD risks.    In conducting 
our review of the ISA, we relied on our own database of epidemiological studies to determine whether the 
ISA has been thorough.  In general, we have found this to be the case for papers that have relied on some 
form of smoothing such as splines.  However, we have identified a few papers not cited that have reported 
results using the subcategorization method to test for possible nonlinearities and two papers using a 
relatively new method devised specifically to assess alternative shapes.  The latter papers present the 
more significant gap in the ISA review and are thus discussed first in this section. 

Papers Using SCHIF 

In recent years, a method that might be viewed as an alternative to splines for assessing shape has been 
developed called shape-constrained health impact functions (SCHIF).  The original paper describing this 
method appears to be Nasari et al. (2016).  That paper contains illustrative examples of the method using 
data from the American Cancer Society (ACS) cohort and from the 1991 Canadian Community Health 
Environmental Cohort (CanCHEC91).  The latter cohort was analyzed in Crouse et al. (2015), with the 
estimated shape illustrated in Figure 2 of these comments.  Although Nasari et al. appears intended to be 
illustrative only, its SCHIF application to the CanCHEC91 appears to have reasonably well matched that 
of Crouse (2015).   

                                                      
9 Shi et al. (2016); Lee et al. (2016); Di et al. (2017b). 
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One might infer that the SCHIF method would produce results little different than those from the more 
common spline-based methods.  However, for the reasons described below, we are concerned that this 
may not be the case, and we feel that the SCHIF method of estimating shapes needs closer study and 
inspection before it should be relied upon for making policy judgments.  It appears that the ISA authors 
may have already made that determination by not mentioning SCHIF at all.  Should the lack of citations 
to SCHIF-based PM2.5 papers turn out to be a mere oversight, however, we explain why such papers 
should not be given as much weight as spline-based methods until it has been explored and tested in more 
depth. 

We have identified two Canadian papers that rely on SCHIF for estimating PM2.5 C-R shapes for 
mortality:  Pinault et al. (2017) and Weichenthal et al. (2017).  In the former, the authors both developed a 
new CanCHEC cohort using 2001 data (CanCHEC01) and then developed “ensemble” estimates of C-R 
functions by likelihood function-weighted averaging of a family of pre-specified potential shapes (defined 
by the setting of multiple different parameters of a complex C-R formula that allows for the shape to vary 
away from the linear shape of a standard CPH model).  The second paper also used the new CanCHEC01 
cohort and used the SCHIF formula to estimate a C-R function for PM2.5 in which the rate of increase in 
relative risk for increasing PM2.5 exposures can vary depending on the level of oxidants in the ambient 
atmosphere.10  They reported significant effect modification of the PM2.5 C-R by oxidants.  Indeed, when 
oxidant levels were below their top tertile, the standard CPH estimate of the PM2.5 association was null, 
yet it was strongly significant when oxidant levels were in the top tertile.11   

In both papers, when SCHIF was applied, the resulting estimates of best-fit shapes were strongly 
supralinear.  In fact, these C-R results stand out as dramatically different from almost all of the literature 
that has been based on spline-based estimates.  This can be seen in Figure 6 (at the end of this document), 
which has added the nonaccidental risk curves from these two papers to those in Figure 2 for all other 
Canadian nonaccidental risk shape estimates.12  Before giving weight to these new results from a new 
estimation method, one ought to carefully consider the degree of incremental mortality risk that is being 
predicted between 0 and 5 µg/m3:  a 30% higher risk of nonaccidental death if exposed to 5 µg/m3 as 
relative to that at 0 µg/m3.13  These two papers are the only ones in the evidence base using the 
CanCHEC01 cohort, so it is not possible to determine if these results might be attributable to the use of 
SCHIF or to some feature of this study’s datasets.  We also note that the only other C-R relationship that 
matches these results is another one by the same lead author, Pinault et al. (2016).  Interestingly, that 
analysis has only the authorship in common, as it is based on a different Canadian cohort and used a more 
traditional spline-based shape estimation method.14  Even if the results could be verified, one would be 
left to wonder whether there is something very unique about the PM2.5 constituent mix that exists in 
Canada within that very low concentration range (which may also prevail in areas of Canada far from the 
U.S. border). 

                                                      
10 Oxidant concentrations were estimated as a redox-weighted average of ambient ozone (average of 8-hour maximum values 

May to October and ambient NO2 (annual average).  The formula is [(1.07*NO2)+(2.075*O3)]/3.145. 
11 Figure 1 of Weichenthal et al. (2017). 
12 For Weichenthal et al., we present the curve estimated for an oxidant level of 37.6 ppb, which appears to be a level consistent 

with U.S. conditions (and found mainly along the U.S.-Canadian border inside Canada). 
13 SCHIF-based curves are not defined solely on their range of observations, as they have parametric definitions just like CPH.  

However, the minimum PM2.5 exposure in this cohort is reported to be 0.01 µg/m3 (Pinault et al., 2017, p. 410). 
14 We also note that Pinault is one of the three authors of Weichenthal et al., and all three of those authors are also co-authors of 

Pinault et al. (2017), albeit with many other co-authors.  While overlapping co-authorship does not imply any issue with the 
credibility of these papers, we note that these papers should not be viewed as completely independent of each other for reasons 
beyond their common cohort and estimation method. 
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In conclusion, although we raise attention to the missing evidence on C-R shape in the ISA, we caution 
that these two papers are extremely different and that too many questions remain for explaining those 
differences to give weight to the supralinear nature of their results.  More study is in order first, and if 
they are added to the ISA, we would recommend that these questions be clearly laid out. 

Papers Using Subcategorization 

A less sophisticated and generally less powerful method for exploring shape of C-Rs is to subcategorize 
the exposure observations into either quantiles or other subsets of the exposure observations.  We note 
that a few of the papers cited in the ISA do use this method, and we have identified a couple of other such 
papers.  Table 1 (on the next page) summarizes all the papers cited in the ISA and the others we have 
identified that use some form of subcategorization to estimate apparent shape.  An interesting result is that 
there are 5 instances in which a subcategorization method was used in addition to directly estimating 
shape using smoothing methods.  Of these, 2 seem to detect supralinearity with the subcategorization 
method, while their associated direct shape estimates indicated sublinearity.15  Thus, one must conclude 
that subcategorization is not a reliable method.  For this reason, we describe shape results from the 
subcategorization method as an “apparent” shape. 

Papers with Shape Information for Other Endpoints     

Our comments have focused on the two key mortality endpoints:  nonaccidental and cardiovascular.  We 
note that the ISA also discusses C-R shape with respect to diabetes/metabolic risk, and lung cancer.  In 
the interests of completeness, we note two additional papers that we believe have relevant information on 
shape in these other mortality endpoint categories: 

• Lim et al. (2018) – diabetes (linear) 

• Deng et al. (2017) – mortality from liver cancer among those diagnosed already (sublinear) 

                                                      
15 The two are the long-term C-R relationships in Di et al. (2017a) and in Shi et al. (2016). 
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Table 1.  Summary of Papers Using Subcategorization to Explore Shape  

Cited 
in 
ISA? 

Paper Mortality 
Endpoint 

Form of 
subcategories 

Result Result if 
smoothing 
also used 

Yes Gan et al. (2011) Cardiovascular  Quintiles Same slope in all 
quintiles, but all were 
statistically insignificant 
(apparent linearity, if any 
effect at all) 

No 

Yes  Lee et al. (2016) Acute all-cause  Low PM2.5 subsets of 
exposure vs. full 
cohort 

Higher CPH RR in low 
exposure conditions 
(possible supralinearity) 

No 

Yes Di et al. (2017a)  Long-term all-
cause 

Subset of person-years 
with PM2.5< 12 
µg/m3 annual average 
and ozone < 50 ppb 

Higher slope in subset 
(apparent supralinearity) 

Yes – linear 
(slight 
sublinearity at 
lowest 
concentrations) 

Yes Di et al. (2017b) Acute all-cause Subset of days with 
PM2.5< 25 µg/m3 or 
ozone < 60 ppb 

Higher slope in subset 
(apparent supralinearity) 

Yes – 
supralinear 

Yes Shi et al. (2016) Acute all-cause  Subset of days <30 
µg/m3 vs. all days of 
data 

Same slope in subset 
(apparent linearity) 

Yes – slightly 
sublinear 

Long-term all-
cause 

Subset of person times 
<10 µg/m3 annual 
average vs. all cohort 

Higher slope in subset 
(apparent supralinearity) 

Yes – sublinear 

No Deng et al. (2017) Survival times 
for liver cancer 

Categorized PM2.5 into 
6 levels 

Increasing hazard ratios 
by category (apparent 
sublinearity) 

Yes – sublinear 

No Schwartz et al. 
(2017) 

Acute all-cause  Subset of days <30 
µg/m3 vs. all days of 
data 

Slightly lower RR for the 
low-PM subset of data 
(apparent sublinearity) 

No 

No Makar et al. (2017) Long-term all- 
cause  

Subset of person-years 
with PM2.5< 12 
µg/m3 annual average  

Higher slope in subset, 
but neither estimate was 
statistically significant 
(apparent supralinearity) 

No 

No Corrigan et al. 
(2018) 

Long-term all- 
cause  

Categorized regions 
by NAAQS attainment 

Larger life expectancy 
gain in attainment areas 
(apparent supralinearity) 

No 
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5. C-R Shapes Are Still Subject to Both Statistical and Model Uncertainty  

Up to this point in these comments we have presented only the “best estimate” of the C-R shapes 
presented in each of the papers (i.e., in Figures 1 through 6).  This emphasis on the “best estimate” shapes 
was necessary just to be able to show that a wide diversity of shape estimates presently exists, even if one 
limits oneself to “best estimates” of C-R shape.  However, it is important to also realize that each one of 
those shape estimates is subject to statistical uncertainty due to the variance (or “noise”) that is inherent in 
the data on which each of them was estimated.  Information on such uncertainty is important to the 
question of whether the reported C-R relationship actually continues to exist down to the LML in each 
study – a question that is fundamental to the policy judgment that must be made regarding the level at 
which to set a NAAQS when the evidence of effect is primarily from epidemiological studies.16 

The statistical uncertainty associated with each estimated C-R curve is most frequently summarized by 
confidence bounds (also presented as curves) around each curve.  Figure 7 shows the confidence bounds 
around the C-R curve from Chen et al. (2016).  The solid curve in Figure 7 is the “best estimate” of the 
shape of the C-R relationship implied by the dataset that Chen et al. used and is the C-R shape estimate 
that appears as the red curves in Figures 2 and 6.  Figure 7 also reveals that the C-R shape implied by that 
solid curve is far from well-defined:  the dotted curves that surround the solid curve represent the 95% 
confidence interval around that shape and can be thought of as representing the statistical error on the 
estimated slope of the solid curve at each point along that curve from the lowest to the highest measured 
level in the dataset used to estimate the curve.  

One way to interpret the two dotted curves in Figure 7 is that their slopes at any given PM2.5 level 
represent the upper and lower ends of the 95-percent statistical uncertainty range around the best estimate 
of the slope of the C-R at that PM2.5 exposure level.  These values frame the best estimate of the slope of 
the C-R relationship at that exposure level, which is defined by the slope of the solid curve at that same 
PM2.5 level.  For example, in the exposure zone near the LML in Figure 7 the solid curve is nearly flat 
(suggesting very little incremental risk for the first few increments of exposure above the LML), and the 
confidence intervals on that slope range from negative (the slope of the upper dotted curve near the LML) 
to positive (the slope of the lower dotted curve).  Thus, just above the LML, the estimated C-R 
relationship has a very small positive slope with a confidence interval from quite negative to quite 
positive.  This is equivalent to saying that the slope at that point is not statistically significant or cannot 
be said to be different from zero.  A zero slope is equivalent to there being no C-R relationship at that 
level of exposure.  Thus, for this particular study, although a “best estimate” shape (solid curve) is 
reported down to the study’s LML, the “existence” of such a curve does not mean this study provides 
support for the hypothesis that the C-R relationship continues to exist down to the LML.   

The example considers the confidence interval on the slope at or just above the LML for the Chen et al. 
(2016) study.  The same logic can be applied at any exposure level within the observed range.  That is, 
using C-R curves allows the estimate of relative risk per unit of incremental PM2.5 exposure to vary with 
the PM2.5 level, in contrast to the result from a standard CPH model in which only a single relative risk 
estimate is attributed to the entire exposure range.  The curves that represent the 95-percent bounds 
around a given curve estimate similarly allow the confidence range on the C-R’s slope to also vary with 
the PM2.5 level.  Statistically significant evidence of non-zero risk at a particular exposure depends on the 
confidence range on C-R slope at that exposure level rather than on whether the best estimate of the slope 
(i.e., the solid curve’s slope) is positive.   

                                                      
16 For a discussion of the importance of uncertainty in the continued existence of the C-R relationship in setting the PM2.5 

NAAQS, see Smith (2018). 
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The same observations apply to the other papers we have examined in these comments:  each study 
reported here has its own PM2.5-varying confidence intervals to determine where its slope estimate is 
statistically-significantly positive.  Some studies reflect greater uncertainty than others toward their 
respective LMLs, just as they also vary in their best estimate of C-R shape.  These study-specific 
confidence bounds, however, reflect only the statistical variance component of uncertainty in the true C-R 
relationship.  Model uncertainty is an important additional consideration when evaluating the strength of 
evidence for the continued existence of a PM2.5 C-R relationship at relatively low PM2.5 concentrations.   

Model uncertainty arises because the functional form of the true C-R relationship is unknown.  Thus, each 
of the papers we discuss here had to select one (or a set) of plausible models of this relationship.  The 
curves presented in Figures 1 through 6 depend in part on these modeling assumptions.  For instance, 
those papers that modeled the curves with splines had to select the number of knots that define the spline, 
as well as the location of each knot along the range of PM2.5.  Different choices of the number or location 
of these knots would have led to different shapes.  Similarly, the C-R shapes in those papers that use the 
SCHIF method may be defined in part by parameter values selected by the researcher for their “family” of 
curves.  Again, different choices of these researcher-defined parameters will lead to different curves.  
Many of these papers identify the best-fitting model from among their candidates through a comparison 
of statistical goodness-of-fit measures, but this does not address the model uncertainty that arises from 
multiple plausible candidate models. 

Thus, evaluating model uncertainty also requires inter-study comparisons.  To a partial degree, the inter-
study comparisons of the solid curves provided in Figures 1 through 6 indicate a substantial degree of 
model uncertainty, possibly exceeding their individual statistical uncertainties.  That is, those inter-study 
comparisons based solely on the “best estimates” of each study’s shape indicate a wide range of 
uncertainty in slopes, with wider uncertainty at the lower concentration levels.  However, a more 
comprehensive evaluation of both model and statistical uncertainty is warranted to fully address the issue 
of where confidence in the C-R relationship’s continuation becomes unacceptably low to warrant a 
NAAQS. 

6. Conclusions 

The following is a brief synopsis of the key points in these comments, which have focused solely on the 
ISA’s discussions of evidence on the shape of the C-R relationship: 

• There are more examples in the literature of shape estimates than in earlier reviews. 

• Those estimates of shape are highly varied, ranging from sublinear to supralinear. 

• Although there has been much recent discussion of emerging evidence of a supralinear C-R 
relationship, the ISA is correct to recognize that such evidence is counterbalanced by less widely 
discussed offsetting examples in which the estimated shapes are sublinear. 

• The confidence intervals around the reported shape estimates further erode the view that there is 
strong evidence on shapes, particularly as concentrations decline toward the LMLs in these 
studies. 

• Understanding the evidence in favor of continued existence of a C-R relationship at relatively low 
exposures will require a synthesis of both model uncertainty and statistical uncertainty that the 
ISA has not yet conducted. 

 



10 
 

References 

Chen, H; Burnett, RT; Copes, R; Kwong, JC; Villeneuve, PJ; Goldberg, MS; Brook, RD; van Donkelaar,  
A; Jerrett, M; Martin, RV; Brook, JR; Kopp, A; Tu, JV. (2016). Ambient fine particulate matter and 
mortality among survivors of myocardial infarction: population-based cohort study. Environ Health 
Perspect 124: 1421-1428. 
 
Corrigan, AE; Becker, MM; Neas, LM; Cascio, WE; Rappold, AG. (2018). Fine particulate matters: The 
impact of air quality standards on cardiovascular mortality. Environ Res 161: 364-369.  
 
Crouse, DL; Peters, PA; van Donkelaar, A; Goldberg, MS; Villeneuve, PJ; Brion, O; Khan, S; Atari, DO; 
Jerrett, M; Pope, CA; Brauer, M; Brook, JR; Martin, RV; Stieb, D; Burnett, RT. (2012). Risk of 
nonaccidental and cardiovascular mortality in relation to long-term exposure to low concentrations of fine 
particulate matter: a Canadian national-level cohort study. Environ Health Perspect 120: 708-714.  
 
Crouse, DL; Peters, PA; Hystad, P; Brook, JR; van Donkelaar, A; Martin, RV; Villeneuve, PJ; Jerrett, M; 
Goldberg, MS; Pope, CA; Brauer, M; Brook, RD; Robichaud, A; Menard, R; Burnett, RT. (2015). 
Ambient PM 2.5, O 3, and NO 2 exposures and associations with mortality over 16 years of follow-up in 
the Canadian Census Health and Environment Cohort (CanCHEC). Environ Health Perspect 123: 1180-
1186.  
 
Deng, H; Eckel, SP; Liu, L; Lurmann, FW; Cockburn, MG; Gilliland, FD. (2017). Particulate matter air 
pollution and liver cancer survival. Int J Cancer 141: 744-749. 
 
Di, Q; Wang, Y; Zanobetti, A; Wang, Y; Koutrakis, P; Choirat, C; Dominici, F; Schwartz, JD. (2017a). 
Air pollution and mortality in the Medicare population. N Engl J Med 376: 2513-2522. 
 
Di, Q; Dai, L; Wang, Y; Zanobetti, A; Choirat, C; Schwartz, JD; Dominici, F. (2017b). Association of 
short-term exposure to air pollution with mortality in older adults. JAMA 318: 2446-2456.  
 
Gan, W; Koehoorn, M; Davies, H; Demers, P; Tamburic, L; Brauer, M. (2011). Long-term exposure to 
traffic-related air pollution and the risk of coronary heart disease hospitalization and mortality. Environ 
Health Perspect 119: 501-507.  
 
Hart, JE; Liao, X; Hong, B; Puett, RC; Yanosky, JD; Suh, H; Kioumourtzoglou, MA; Spiegelman, D; 
Laden, F. (2015). The association of long-term exposure to PM2.5 on all-cause mortality in the Nurses' 
Health Study and the impact of measurement-error correction. Environ Health 14: 38.  
 
Jerrett, M; Turner, MC; Beckerman, BS; Pope, CA; van Donkelaar, A; Martin, RV; Serre, M; Crouse, D; 
Gapstur, SM; Krewski, D; Diver, WR; Coogan, PF; Thurston, GD; Burnett, RT. (2017). Comparing the 
health effects of ambient particulate matter estimated using ground-based versus remote sensing exposure 
estimates. Environ Health Perspect 125: 552-559. 
 
Lee, M; Koutrakis, P; Coull, B; Kloog, I; Schwartz, J. (2016). Acute effect of fine particulate matter on 
mortality in three southeastern states from 2007-2011. J Expo Sci Environ Epidemiol 26: 173-179.  
 



11 
 

Lepeule, J; Laden, F; Dockery, D; Schwartz, J. (2012). Chronic exposure to fine particles and mortality: 
an extended follow-up of the Harvard Six Cities study from 1974 to 2009. Environ Health Perspect 120: 
965-970.  
 
Lim, CC; Hayes, RB; Ahn, J; Shao, Y; Silverman, DT; Jones, RR; Garcia, C; Thurston, GD. (2018). 
Association between long-term exposure to ambient air pollution and diabetes mortality in the US. 
Environ Res 165: 330-336. 
 
Makar, M; Antonelli, J; Di, Q; Cutler, D; Schwartz, J; Dominici, F. (2017). Estimating the Causal Effect 
of Low Levels of Fine Particulate Matter on Hospitalization. Epidemiology 28: 627-634. 
 
Nasari, MM; Szyszkowicz, M; Hong, C; Crouse, D; Turner, MC; Jerrett, M; Pope, CA; Hubbell, B; Fann, 
N; Cohen, A; Gapstur, SM; Diver, WR; Stieb, D; Forouzanfar, MH; Kim, S; Olives, C; Krewski, D; 
Burnett, RT. (2016). A class of non-linear exposure-response models suitable for health impact 
assessment applicable to large cohort studies of ambient air pollution. Air Qual Atmos Health 9: 961-972.  
 
Pinault, L; Tjepkema, M; Crouse, DL; Weichenthal, S; van Donkelaar, A; Martin, RV; Brauer, M; Chen, 
H; Burnett, RT. (2016). Risk estimates of mortality attributed to low concentrations of ambient fine 
particulate matter in the Canadian community health survey cohort. Environ Health 15: Article #18. 
 
Pinault, LL; Weichenthal, S; Crouse, DL; Brauer, M; Erickson, A; Donkelaar, AV; Martin, RV; Hystad, 
P; Chen, H; Finès, P; Brook, JR; Tjepkema, M; Burnett, RT. (2017). Associations between fine 
particulate matter and mortality in the 2001 Canadian Census Health and Environment Cohort. Environ 
Res 159: 406-415. 

Schwartz, J; Bind, MA; Koutrakis, P. (2017). Estimating Causal Effects of Local Air Pollution on Daily 
Deaths: Effect of Low Levels. Environ Health Perspect 125: 23-29. 

Shi, L; Zanobetti, A; Kloog, I; Coull, BA; Koutrakis, P; Melly, SJ; Schwartz, JD. (2016). Low-
concentration PM2.5 and mortality: estimating acute and chronic effects in a population-based study. 
Environ Health Perspect 124: 46-52. 

Smith, AE. (2018). Setting air quality standards for PM2.5: A role for subjective uncertainty in NAAQS 
quantitative risk assessments? Risk Analysis 38: 2318-2339. 

Thurston, GD; Ahn, J; Cromar, KR; Shao, Y; Reynolds, HR; Jerrett, M; Lim, CC; Shanley, R; Park, Y; 
Hayes, RB. (2016). Ambient particulate matter air pollution exposure and mortality in the NIH-AARP 
Diet and Health Cohort. Environ Health Perspect 124: 484-490. 

Villeneuve, PJ; Weichenthal, SA; Crouse, D; Miller, AB; To, T; Martin, RV; van Donkelaar, A; Wall, C; 
Burnett, RT. (2015). Long-term exposure to fine particulate matter air pollution and mortality among 
Canadian women. Epidemiology 26: 536-545. 

Weichenthal, S; Pinault, LL; Burnett, RT. (2017). Impact of Oxidant Gases on the Relationship between 
Outdoor Fine Particulate Air Pollution and Nonaccidental, Cardiovascular, and Respiratory Mortality. Sci 
Rep 7: 16401. 

Weichenthal, S; Villeneuve, PJ; Burnett, RT; van Donkelaar, A; Martin, RV; Jones, RR; Dellavalle, CT; 
Sandler, DP; Ward, MH; Hoppin, JA. (2014). Long-term exposure to fine particulate matter: association 
with nonaccidental and cardiovascular mortality in the agricultural health study cohort. Environ Health 
Perspect 122: 609-615. 



12 
 

Figure 1.  U.S. Long-term Nonaccidental C-R Shape Estimates for 4 of the 5 Papers Cited in ISA. 
(Hart et al. (2015) not included: does not provide any of its non-linear estimates, just states they were not significantly different from linear.) 
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Figure 2.  Canadian Long-term Nonaccidental C-R Shape Estimates for 5 Papers Cited in ISA 
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Figure 3.  U.S. Long-term Cardiovascular C-R Shape Estimates for 4 Papers Cited in ISA 
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Figure 4.  Canadian Long-term Cardiovascular C-R Shape Estimates for 2 of 3 Papers Cited in ISA 
(Gan et al. (2011) not included: used CPH by quintile rather than smoothing; no quintile shows statistically significant PM2.5 relative risk.) 
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Figure 5.  U.S. Short-term All-Cause C-R Shape Estimates for 2 of 3 Papers Cited in ISA 
(Lee et al. (2016) not included: it compares CPH slopes estimated over all PM and only on days below current NAAQS rather than estimating 
shape directly; its results suggested supralinearity.  Note that the shape from Shi et al. is estimated on the subset of days <30 µg/m3.) 
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Figure 6.  Canadian Long-term Nonaccidental C-R Shape Estimates for 5 Papers Cited in ISA, Plus C-R Shapes from 2 SCHIF-Based 
Estimations Not Cited in ISA (i.e., Pinault et al., 2017 and Weichenthal et al., 2017) 

 



18 
 

Figure 7.  Example of Confidence Intervals That Surround Each C-R Curve from Chen et al. (2016) 
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