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On our call today, Dr. Chris Frey asked for references on empirical validation of methods of modern 
causal analysis (referred to several times on our call as “emerging” methods).  A full review would be 
time-consuming, as these methods have been extensively developed, applied, and validated in a wide 
variety of scientific applications over the past century (e.g., Wright, S. (1921). “Correlation and 
causation,” J. Agricultural Research. 20: 557-585; Neyman J (1923), ‘‘Statistical Problems in 
Agricultural Experiments,’’ Journal of the Royal Statistical Society Series B (suppl.) (2):107–80; Yule 
GU. 1926. “Why do we sometimes get nonsense-correlations between time-series? – A study in 
sampling and the nature of time series.” J R Stat Soc. 89:1–63.Simon HA (1952) “On the definition of 
the causal relation,” Journal of Philosophy 49 (16):517-528; Wiener N. (1956) “The theory of 
prediction,” In E. F. Beckmann, editor, In Modern Mathematics for the Engineer. McGraw-Hill, New 
York; Blalock HM (1961) “Correlation and causality: The multivariate case.” Social Forces, 
39(3)March: 246-251; Campbell DT and Stanley JC (1963), Experimental and Quasi-Experimental 
Designs for Research; Granger, CWJ (1969). "Investigating causal relations by econometric models and 
cross-spectral methods". Econometrica. 37 (3): 424–438; Heckman JJ (2005) “The scientific model of 
causality,” Sociological Methodology, 35(1), 1–97; Pearl J (2009) “Causal inference in statistics: An 
overview” Statist. Surv. Volume 3 (2009), 96-146.)  Since about 2000, these methods have been 
synthesized and integrated into a largely unified framework (see comments of Drs. Aliferis and North), 
based largely on the ideas of nonparametric structural equations, directed graph models, conditional 
independence tests, and invariance of causal relationships, developed since about 1918.   Advances and 
applications in epidemiology and many other scientific fields continue in journals such as the Journal of 
Causal Inference (www.degruyter.com/view/j/jci).   
 
Although a comprehensive review of validation techniques and results for these methods would be 
lengthy, the following references provide a sample of relevant work, heavily biased toward recent 
literature.  If needed, I will be pleased to provide additional references and/or a more comprehensive 
discussion.  Briefly, validation techniques now in widespread use in a variety of scientific fields that use 
modern causal inference include  

• K-fold cross-validation (i.e., using multiple disjoint training and test sets) 
• Competitions (e.g., Kaggle competitions) in which different algorithms seek to infer causal 

relationships from observational data,  
• Empirical tests in which already known causal relationships (e.g., connectivity patterns in 

neuroscience) are used to assess the validity of the causal relationships inferred from 
observations. 
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