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EPA and NOAA Co-Organizers 
Invited Scientists 
33 authors contributing to 6 technical presentations and 

synthesis manuscripts 

25 panelists providing critical independent 
comments/discussion 

6 Federal Agencies and 18 academic institutions 
represented 
~ 150 total registrants 

Topics/Issues Addressed 
Characterization and Long-Term Trends of Hypoxia (Lead: N Rabalais)


Characterization of Nutrient and Organic Matter Loads (Lead: E Turner)


Physical Oceanographic Processes (Lead: S DiMarco)


Water Column Processes (Lead: M Dagg)


Benthic Processes (Lead: J Morse)


Modeling Applications (Lead: D Justic)
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Summary Conclusions 

Multiple lines of evidence from multiple sources are consistent w th the general pattern 
of coastal eutrophicat on observed in other U.S. systems and around the world 

Long-term increases in nutrient loads to the Louisiana continental shelf (LCS) has 
resulted in excess primary production and ultimately bottom water hypoxia 

Increased concentrations of nitrate-nitrogen delivered to the Gulf is the predominant 
factor contributing to excess primary production and increased bottom water hypoxia 

Management strategies for LCS hypoxia should include n trogen as well as 
phosphorus since both nutrients (and their ratio) are important in primary productivity 

Long Term Trends 
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Since mid 1990s, the 5-yr running average size of hypoxic zone has 
hovered around 15,000 km
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Long Term Trends in Flow: 

(R2 on of USGS 
Nutrient Mon

Long-term annual mean flow 
=~600,000 cfs ~ +

(Poore, et al., 2006. USGS 
Bulletin 2187

1817-1998 MSR @ Vicksburg, MS 

Long-term trend: y = 615847 - 9.8x  = 1.6E-05; p = 0.96) 
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Long Term Trends in Flow, Load, & Conc 
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MSR @ St Francisville 
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Annual nitrate fluxes are poorly related to area of hypoxia 

Hypoxia area (km2) = 0.0998 x May NOx flux + 672 x Year -13.4 x 105 (R2 = 0.82) 

(Turner et al., 2006) 
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Annual NOx Flux vs Hypoxic area 

y = 0.0131x + 840.63 
R2 = 0.269 
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Statistical models suggest that spring/early summer 
nutrient fluxes (primarily May NO3+NO2) are good 
predictors of mid summer size of hypoxia 
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May NOx flux vs Hypoxic area 
y = 0.1058x - 570.32 

R2 = 0.5764 
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Regression Analysis of the relationship betweenRegression Analysis of the relationship between
MSR (MSR (TarbertTarbert Landing + ORO) Flow andLanding + ORO) Flow and

midmid--summer size of hypoxiasummer size of hypoxia
(1985(1985--2006)2006)

Flow Parameter R2 p 
May Flow 0.253 0.0201 

Prior 3 mo mean (April to June) Flow 0.247 0.0218 

Prior 6 mo mean (Jan to June) Flow 0.128 0.1114 
Prior 9 mo mean (Oct to June) Flow 0.082 0.2084 
Annual Flow 0.191 0.0309 

MSR flow explains between 8 to 25% of the variability in midMSR flow explains between 8 to 25% of the variability in mid--summer size of hypoxiasummer size of hypoxia

Current USGS monitoring of freshwater discharge as well as sediment and nutrient 
loads/concentrations was not designed to resolve monthly (or shorter) time scale 
processes influencing hypoxia 
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Atchafalaya River plume

Southwest Pass plume

Hypoxia 21-25 July 2004

Timing and Development 

Temporal characteristics of hypoxia are fairly well known, 
Station C6* (Rabalais et al., 1998) except for timing of development in spring 

Density stratification is key – disruption of pycnocline by 
weather events is not uncommon. Hypoxia can develop 
in 9-18 day following stratification 

Atchafalaya River fw discharge and nutrients may have 
relatively larger influence on hypoxia across the LCS, 
at least equivalent to MSR 

Increased N loads have altered N:P ratios such that 
P limitation occurs in the near-field at certain times of 
the year, including the spring bloom period 

l

Atchafalaya River plume 

Southwest Pass p ume 

Hypoxia 21-25 July 2004 

Physical Oceanography and Biogeochemistry 
Fairly complete description and basic 
understanding of physical oceanography 

Winds stress and fw discharge dominate 
physical processes influencing hypoxia 

Along shelf currents reverse during summer 

Elevated Chl and production in the LCC 
(along inshore edge of hypoxic zone) may be 
significant source of organic matter to LCS 
bottom waters 

Non Summer 
) 

Summer 

(Sept – May

(June – Aug) 

downcoast 

upcoast 

upcoast 

10m alongshelf current velocity 

Biogeochemical and physical processes vary spatially (along and across shelf) and 
temporally (seasonal) in the region where hypoxia develops 

– thus mechanisms of hypoxia development, sources of nutrients driving production and 
OM fueling respiration are expected to vary along the LCS 
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Benthic Processes 
Below pycnocline and benthic processes (aerobic & anaerobic respiration) contribute to 
seasonal depletion of bottom water O2 and maintenance of hypoxic bottom waters – yet 
available information is surprisingly small 

Abundant unconsolidated ‘mobile muds’ may be important in the transport and reactivity of 
organic matter and nutrients derived from the river plume and associated plankton 
processes – resuspension may stimulate decomposition and biogeochemical cycling 

Terrigenous sediments deposited from the MSR plume are thought to be high in [Fe] and 
[Mn] – the influence on sulfide and phosphate flux is unclear 

Development of a sediment diagenesis model for 
LCS provides a useful tool for understanding 
benthic biogeochemical processes 

Hypoxia modeling 
Existing Gulf hypoxia models range from simple 
regression models to complex 3-D simulation models, 
and include different aspects of physics, chemistry 
and biology. 

Assumptions, limitations and/or shortcomings of 
existing models are known and documented 

Existing models provide scientific rationale for a N 
load reduction target of 30 - 45% to achieve Action 
Plan target of 5,000 km2 

Existing models are not sufficient for estimating P 
load reductions 
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Hypoxia modeling 
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Further model developments and improvements 
should occur along multiple fronts, and address; 

hydrodynamic processes 
open boundary conditions 
benthic-pelagic coupling and vertical flux 
sediment processes 
multiple nutrients (N, P, Si) 
model domain 
biogeochemical processes 
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