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Questions for Non-Member Consultants on the PM PA from Dr. Sabine Lange 
 
 
Ambient PM2.5 Concentrations in Locations of Epidemiology Studies 
 
In section 3.2.3.2 the EPA summarizes the mean ambient PM concentrations measured in various key 
epidemiology studies (section 3.2.3.2.1); and then for a subset of these studies, the EPA considers 
whether the paper’s study areas would have been in attainment for the current PM standards by deriving 
pseudo-design values for those study areas (section 3.2.3.2.2). When summarizing mean ambient PM 
concentrations measured in key epidemiology studies, the EPA includes studies that are investigating 
effects of both short-term exposure (on the scale of daily to weekly) and long-term exposure (on the 
scale of one to multiple years). The total mean concentrations of PM2.5 from both study types are then 
considered in the context of the current annual standard (section 3.2.3.3). 
 
I looked at measured PM2.5 concentrations from one of the monitors in the Houston area (ID # 
48211035) for a better general understanding of short-term and long-term PM2.5 concentrations. 
Included here is a figure that shows the daily and annual average PM2.5 concentrations from 2010 
(Figure 1). This information helps to inform some of the questions that I ask below. 
 
A 

 
 
Figure 1. Daily and annual average PM2.5 concentrations measured at monitor 48211035 in Houston, 
Texas in 2010.  
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While it seems appropriate to compare the study mean PM2.5 concentration from a long-term exposure 
to the annual design value (both are on similar time scales), my question is: 
 

1) Is it appropriate to compare daily PM2.5 concentrations to the annual average? Typically, 
this kind of comparison would not be done when deriving a toxicity factor, with short-term 
exposures being used to derive short-term toxicity factors, and long-term exposures for long-
term toxicity factors. The concentration-response functions in the short-term epidemiology 
studies are derived using day-to-day changes in PM2.5, which doesn’t seem like it would be 
captured in an overall average concentration (as in Figure 1). 

 
In section 3.2.3.2.2 the EPA asks the question: are positive associations between PM2.5 and health 
effects occurring in areas that meet the current or potential alternative PM2.5 NAAQS standards? To 
answer this question, they calculate pseudo-design values for each of the study areas in the key papers 
that have monitoring data available for the DV calculation. With this information the EPA then 
summarizes the pseudo-design values associated with a proportion of the population in each study. The 
EPA does this for both the annual and 24-hour standard, and for both short-term and long-term studies. 
My questions are: 
 

2) Is it informative to derive annual average pseudo-design values for study areas in short-
term studies (that look at effects of day-to-day PM2.5 concentration changes), in order to 
determine whether these study areas attained the current annual standard? Although the 
EPA can technically determine if daily changes in PM2.5 concentration increased health effects 
in an area meeting the annual standard, does this really inform the health protectiveness of the 
annual standard? It seems that whether an area showed a positive effect or not could be 
completely independent of the annual standard and instead dependent on how much the PM2.5 
concentrations changed from day-to-day. 

3) In contrast to short-term studies that investigate the effects of day-to-day changes in PM2.5 
concentrations within a certain geographic area, long-term cohort studies often look at the 
association between annual average PM2.5 concentrations and time-to-event data (such as the 
time from cohort entry to death) over long periods of time. For these studies, it is not uncommon 
for all study subjects in a single geographic area to have the same (or very similar) exposure 
assignments (e.g. Jerrett et al., 2017; Thurston et al., 2016), in which case the study is assessing 
the effects of PM2.5 between geographic areas, instead of within geographic areas. In this case, 
is the pseudo-design value in a single geographic area particularly informative, when the 
association between PM2.5 and the health effect is driven by the differences between study 
areas? 

 
Results of Risk Analysis 
 
In section 3.3.2.4 the EPA presents information about the variability and uncertainty in their risk 
estimates. They capture some quantitative estimates of uncertainty and variability, such as using 
concentration-response (C-R) functions from different studies, and deriving estimates using the 95% 
confidence intervals of the C-R functions. However, many more uncertainties are assessed only 
qualitatively, and several of those uncertainties are considered to have medium to high impacts on the 
risk estimates, including: simulating air quality to just meet current and alternative standards, 
representing population-level exposure in 12x12-km grid cells, and the shape of the C-R relationship at 
low PM concentrations. In addition to these considerations, there are multiple other aspects of the risk 
assessment that confer uncertainty on the risk estimate. Table 1 below shows very generally some 
example magnitudes of the potential uncertainties. 



3 
 

 
Table 1. An incomplete list of possible uncertainties in deriving risk estimates from reductions in PM2.5 
concentrations. 

Source of Uncertainty Example Magnitude Example Reference 
Generating the Concentration-Response (C-R) Function in Epidemiology Studies 

Exposure Measurement Error 31-85%  Spatial error + population error 
(Dionisio et al., 2016) 

Model Misspecification Error 50% Generalized linear vs 
generalized additive models for 
PM10 (Sheppard, 2003) 

Alternative C-R Functions 
within One Study 

200% Range of HRs generated using 
different exposure models 
(Jerrett et al., 2017) 

Causal Relationship 0.35-1 US EPA Expert Elicitation of 
PM2.5 causality – provided is 
the range of probabilities that 
PM2.5 is causing mortality 
(Mansfield et al., 2009) 

Air Quality Monitoring/Modeling 
Air Monitoring ± 10% Allowable variation in 24-hour 

PM2.5 monitored 
concentrations 

Air Modeling ± 30% 10-90% range for prediction of 
change in PM2.5 concentrations 
(Mansfield et al., 2009) 

Applying the Concentration-Response Function 
Choice of C-R Function 400% Variability in PM2.5 long-term 

all-cause mortality estimates 
presented in Table 3-7 using C-
R functions from different 
studies (PM PA 2019) 

Baseline Incidence Rates ± 5% Influence Analysis 10-90% 
range for prediction of base 
mortality rates (Mansfield et al., 
2009) 

Population Forecasts ± 10% Influence Analysis 10-90% 
range for census 2020 
population forecasts (Mansfield 
et al., 2009) 

Use of National Estimates ± 1000% Range of C-R estimates across 
77 study cities, compared to the 
national estimate (Baxter et al., 
2017) 

Threshold in C-R 6-90% Change in premature mortality 
from CPP repeal cutpoint 
analysis (LML cutpoint on low 
end of scale; NAAQS on high 
end of scale) (USEPA, 2017) 
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The EPA notes that they lack the information to conduct a full probabilistic uncertainty analysis, which 
is the type of analysis recommended by the World Health Organization (WHO) for this level of 
complexity of a risk assessment. However, this does not remove the need for a more quantitative 
assessment of the many sources of uncertainty in the risk estimates. 
 

4) Is there a quantitative uncertainty analysis method that the EPA could use for this risk 
assessment that captures more of the uncertainty and variability of the risk estimates (such 
as those described in Table 1), in order to better inform CASAC and the EPA 
Administrator about the impact of these uncertainties? 

 
Potential Alternative Standards 
 
In section 3.4.2.1 the EPA discusses whether the available data warrant a different indicator for the 
PM2.5 standard. This determination is primarily based on whether particular PM2.5 species show more 
consistent associations with health effects than total PM2.5. This kind of determination seems like it 
would fall prey to a specific problem that can be caused by exposure measurement error: namely, that 
having different levels of error associated with different explanatory variables in a regression can cause 
misleading results such that, for example, the variable measured with the least error is identified as the 
primary “culprit” for the health effect regardless of whether it is causally associated with the health 
effect (Carrothers and Evans, 2000; Fewell et al., 2007; Lipfert and Wyzga, 1996; USEPA, 2018). 
Because of monitoring technology and precision, as well as spatial variability in total PM2.5 compared 
to speciated PM2.5, total PM2.5 could be measured with less error than its constituents. My questions 
are: 
 

5) Could different magnitudes of error amongst different variables in regression analyses be 
masking the effect of a speciated constituent of PM2.5? 

6) What happens when multiple potential explanatory factors are included in a single variable 
in an already-complex multiple regression system? Presumably each PM2.5 component has a 
different C-R relationship with the health effect (even if that relationship is zero), and each is a 
somewhat better or worse surrogate for the relationship between actual exposure vs measured 
exposure. What kind of an impact would this inclusion of multiple potential explanatory 
factors into one variable have on the final C-R function, and how accurate would that C-R 
function be? 
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