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Near-road NO,
concentrations can Initial comments on near-road monitoring
be theoretically
H impl iptionis th hemi h h; in the sh
inferred from Nox ) ) The key to a simple description is t at.notmuch chemistry has a chance to occurin t s f:r!
time air spends nearthe road. A cross-road wind componentofonly1 m/s, for example, carries air from
concentratlons, 150 m on one side to 150 m on the otherin justS minutes. On such a time scale the complex chemistry
of smog formation can be considered determined by the surrounding air, independent of the fresh
the NO,/NO, . v ke

emissions. More precisely, the only reactions needing consideration are the rapid scavenging of O3 by

fraction in exhaust, wo
UV, and 0;+NO = 0,+NO;, 1]
backérou nd and the rapid photolysis of NO2 to yield

. 0, +NO; 2 0s + NO [2
oxidant levels.

after additional steps. These reactions leave unchanged the concentrations of odd oxygen
[0.] = [05] + [NO;] and nitrogen oxides [NO.] = [NO] + [NO;], and their relative rates establisha
photostationary state thatis generally fairly well approximated in the atmosphere:

[0;]1[NO]/INO] = ka/ks. [3

since O, and NO, are chemically conserved near the road, their concentrations respond only to
physical dilution and mixing. They can be modeled as the sum of a variable contribution from roadway
vehicle exhaustand a uniform background supplied by the surroundingair. For given concentrations
[0.]; and [NO,]; at the monitor, the reactive species can be expressed interms of NO;:

[NO] = [NO,]o—[NO;] and [O05] = [O.]s— [NO2].
Substituted into the photostationary equilibrium [3], these identities yield a quadratic equationin [NO;]

that can be solved for [NO;] in terms of [0,]o, [NO.]¢, and kz/k;. The following plots illustrate some
features of the relationship.
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Is this theory
realistic?
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The information used is the first available data from our air quality monitoring network.
The values have not been verified for accuracy or been through the appropriate quality e and control validation procedures.
For valdated data contact the Bureau of Arr Quality Survellance at (518) 402-8508
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The March 19t NO, spike came during an episode of
elevated oxidant levels throughout the city.
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Hourly oxidant (O, = O; + NO,) concentrations show
little spatial variation at the urban scale.
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The near-road conversion of NO (most of the exhaust NO,)
to NO, is limited by O, concentrations in the surroundings.
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The only other source of near-road NO, is its direct
emission as a fraction of the exhaust NO, .
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The dependence of near-road NO, on NO, exhibits the expected
reduction in sensitivity at NO, > background O,, which in this
case was around 0.05 ppm.
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NO, = f(NO,) for 0.05 ppm [O,],, 10% exhaust NO,, diurnal UV
Nominal constant values for background oxidant and exhaust
NO,/NO,, plus a simplistic diurnal modulation of the photolysis
rate, yield adequate predictions of near-road NO, from NO,.
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Assuming the background oxidant to vary as observed at the
NYBG yields a relationship that holds throughout the year.
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We have used NO, only as a proxy for emission rates and
dispersion. Given a value for NO,/CO in exhaust, we could
equally well use CO. Unfortunately, CO data are cruder.
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Crude as they are, however, CO data are still good enough to

identify the probable NO, violations.
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SUMMARY:

The near-road increment in NO, is no more mysterious
than the increment in NO, or CO or BC or any other
traffic-related species.

It can be understood directly from exhaust emissions
and atmospheric dispersion, with no need for complex
chemistry.
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