Subject: SAB Review of EPA’s Accounting Framework for Biogenic CO2 Emissions from Stationary Sources

Dear Administrator Jackson:

TO BE WRITTEN……………………………….

Sincerely,

Dr. Deborah L. Swackhamer
Chair
Science Advisory Board

Dr. Madhu Khanna
Chair
SAB Biogenic Carbon Emissions Panel

Enclosure
Table of Contents

1 Executive Summary ... 1
2 1. The Science of Biogenic CO₂ Emissions ... 9
3 2. Biogenic CO₂ Accounting Approaches ... 15
4 3. Methodological Issues .. 17
5 4. Accounting Framework .. 25
6 5. Case Studies ... 38
7 6. Overall Evaluation ... 41
8 7. Alternative Approaches for the Agency’s Consideration 45
9 Works Cited .. 48
10 Appendix A: Fate of Residue after Harvest and Landscape Storage of Carbon A-1
11 Appendix B: Relevant Publications ... B-1
List of Figures

Figure 1: Surface temperature change from biogenic emissions and fossil emissions 12
Figure 2: Fate of residue/slash left after harvest as function of k and time since harvest. A-1
Figure 3: Landscape average store of residue/slash as function of k and harvest interval. A-2
Executive Summary

This Advisory responds to a request from the EPA Office of Air and Radiation for EPA’s Science Advisory Board (SAB) to review and comment on EPA’s Accounting Framework for Biogenic CO₂ Emissions from Stationary Sources (Framework, September 2011). The Framework considers the scientific and technical issues associated with accounting for emissions of biogenic carbon dioxide (CO₂) from stationary sources and develops a framework to adjust the stack emissions from stationary sources using bioenergy based on the induced changes in carbon stocks on land (in soils, plants and forests). To conduct the review, the SAB Staff Office formed the Biogenic Carbon Emissions Panel with experts in forestry, agriculture, greenhouse gas measurement and inventories, land use economics, ecology, climate change and engineering.

The SAB Biogenic Carbon Emissions Panel was asked to review and comment on (1) EPA’s characterization of the science and technical issues relevant to accounting for biogenic CO₂ emissions from stationary sources; (2) EPA’s framework, overall approach, and methodological choices for accounting for these emissions; and (3) options for improving upon the framework for accounting for biogenic CO₂ emissions. In the context of EPA’s Framework, the term “biogenic carbon emissions” refers to emissions of CO₂ from a stationary source directly resulting from the combustion or decomposition of biologically-based materials other than fossil fuels. During the course of deliberations, the SAB Panel reviewed background materials provided by the Office of Air and Radiation and heard from numerous public commenters. This Executive Summary highlights the SAB’s main conclusions. Detailed responses to the individual charge questions are provided in the body of the report.

Context

EPA provided very little written description of its motivation for the Framework in the document itself. However, through the background information provided and discussion at the public meeting on October 25 – 27, 2011, EPA explained that the context for the report is the treatment of biogenic CO₂ emissions in stationary source regulation. Specifically, under the Clean air Act, stationary sources (e.g. power plants) are often regulated at the point of emissions. In the case of greenhouse gases and this Framework, the question EPA is considering is whether and how to count the biogenic CO₂ emissions from a stationary source.

On June 3, 2010, EPA finalized new thresholds for greenhouse gas emissions that define when Clean Air Act permits under the New Source Review (Prevention of Significant Deterioration program) and Title V operations program would be required (also known as the “Tailoring Rule”). In the Tailoring Rule, EPA did not initially exclude biogenic emissions from the determination of applicability thresholds, however in July 2011, EPA deferred for a period of three years the application of permitting requirements to biogenic carbon dioxide (CO₂) emissions from bioenergy and other biogenic stationary sources. In its deferral, EPA committed to conducting a detailed examination of the science and technical issues associated with biogenic CO₂ emissions and submitting its study for review by the Science Advisory Board. The motivation for considering whether or not to adjust biogenic carbon emissions from stationary
sources stems from the way the carbon in these feedstocks interacts with the global carbon cycle. Plants take up carbon from the atmosphere to produce products that are consumed by humans and animals for food, shelter and energy. Plants convert raw materials present in the ecosystem such as carbon from the atmosphere and inorganic minerals and compounds from the soil including nitrogen, potassium, and iron and make these elemental nutrients available to other life forms. Carbon is returned to the atmosphere through respiration by plants and animals and by industrial processes, including combustion and by natural decomposition. Thus, the use of biogenic feedstocks results in both carbon emissions and carbon sequestration.

Categorical inclusion or exclusion

The SAB Panel was asked whether it supported EPA’s conclusion that categorical approaches are inappropriate for the treatment of biogenic carbon emissions. A categorical inclusion would treat biogenic carbon emissions as equivalent to fossil fuel emissions while a categorical exclusion would exempt biogenic carbon emissions from greenhouse gas regulation. The decision about a categorical inclusion or exclusion will likely involve many considerations that fall outside the SAB’s scientific purview such as legality, feasibility and, possibly, political will. The SAB cannot speak to the legal or implementation difficulties that could accompany any policy on biogenic carbon emissions but this Advisory offers some scientific observations that may inform the Administrator’s policy decision.

Carbon neutrality cannot be assumed for all biomass energy a priori. There are circumstances in which biomass is grown, harvested and combusted in a carbon neutral fashion but carbon neutrality is not an appropriate a priori assumption; it is a conclusion that should be reached only after considering a particular feedstock’s production and consumption cycle. There is considerable heterogeneity in feedstock types, sources and production methods and thus net biogenic carbon emissions will vary considerably. Only when bioenergy results in additional carbon being sequestered above and beyond the anticipated baseline (the “business as usual” trajectory) can there be a justification for concluding that such energy use results in little or no increase in carbon emissions.

Given that some biomass could have positive net emissions, a categorical exclusion would remove any responsibility on the stationary source for CO₂ emissions from its use of biogenic material from the entire system (i.e., the global economy) and provide no incentive for the development and use of best management practices. Conversely, a categorical inclusion would provide no incentive for using biogenic sources that compare favorably to fossil energy in terms of greenhouse gas emissions.

Biogenic Accounting Factor (BAF) Calculation

The Framework presents an alternative to a categorical inclusion or exclusion by offering an equation for calculating a Biogenic Accounting Factor (BAF) that adjusts the onsite biogenic emissions at the stationary source based on feedstock growth, decomposition, carbon stored in products, leakage and site sequestration effects.
To calculate BAF for biomass from roundwood trees, EPA conjured the concept of regional carbon stocks (with the regions unspecified) and posed a “rule” whereby any bioenergy usage that takes place in a region where carbon stocks are increasing would be automatically assigned a BAF of 0. This leads to the nonsensical conclusion that a ton of carbon emitted in one part of the country may be treated differently from a ton of carbon emitted elsewhere. The atmospheric response to an additional ton of carbon is the same, regardless of its geographic origin. Thus, EPA’s creation of artificially contrived regions and the assignment of BAF based on geography is not justified scientifically.

While EPA’s proposed equation for BAF has overarching problems, the variables in the equation capture many of the factors necessary for estimating the offsite carbon change associated with stationary source biomass emissions from short rotation (agricultural) feedstocks. These include factors to represent the carbon embodied in products leaving a stationary source, the proportion of feedstock lost in conveyance, the offset represented by sequestration, the site-level difference in net carbon flux as a result of harvesting, the emissions that would occur anyway from removal or diversion of nongrowing feedstocks (e.g. corn stover) and other variables. For short rotation feedstocks where carbon recovery and “anyway” emissions are within one to a few years (i.e., agricultural residues, perennial herbaceous crops, mill wood wastes, other wastes), the Framework may, with some adjustments and appropriate data, accurately represent direct carbon changes in a particular region. For logging residues, decomposition cannot be assumed to be instantaneous and the Framework could be modified to incorporate the time path of decay of these residues if they are not used for bioenergy. For waste materials (municipal solid waste), the Framework needs to consider the mix between biogenic and fossil carbon as well as the emissions and partial capture of methane (CH$_4$) emissions from landfills. For long rotation feedstocks (roundwood), the Framework does not capture the carbon outcome given its omission of the time path for carbon recovery following harvest. For these feedstocks, the Framework does not allow determination of the incremental impact of a stationary facility holding everything else the same. It does not establish causality between bioenergy use and observed carbon outcomes. Additionally, the Framework’s measurement of the carbon impact of the facility is scale sensitive. These issues are discussed in greater detail below.

Leakage is a phenomenon by which efforts to reduce emissions in one place affect market prices that result in a shifting of emissions to another location or sector. The Framework’s equation for BAF includes a term for leakage, however EPA decided that calculating values for leakage was outside the scope of the Framework. While that decision was expedient, it should be recognized that incorporating leakage, however difficult, may change the BAF results radically. “Bad” leakage (called “positive” leakage in the literature) occurs when the use of biogenic feedstocks causes price changes which, in turn, drive changes in consumption and production outside the boundary of the stationary source, even globally, that lead to increased carbon emissions. One type of positive leakage could occur if land is diverted from food/feed production to bioenergy production which increases the price of conventional agricultural and forest products in world markets and leads to conversion of carbon rich lands to crop production and the release of carbon stored in soils and vegetation. The use of biogenic feedstocks can also affect the price of fossil
fuels by lowering demand for them and thereby increasing their consumption elsewhere. “Good” leakage (called “negative” leakage in the literature) could occur if the use of biomass leads to carbon offsetting activities elsewhere. The latter could arise for example, if increased demand for biomass and higher prices generates incentives for investment in forest management which increases net forest carbon sequestration.

The existing literature in the social sciences shows that the overall magnitude of leakage is highly uncertain and differs considerably across studies and within a study, depending on underlying assumptions. Rather than eschewing the calculation of leakage altogether, EPA might instead, try to ascertain the directionality of net leakage, whether it is positive (leading to increased carbon emissions elsewhere) or negative (leading to carbon offsetting activities) and incorporate that information in its decision making. Moreover, EPA should investigate leakage that may occur in other media, e.g. fertilizer runoff into waterways. In cases where prior research has indicated directionality, if not magnitude, such information should be used.

Causality and Additionality

EPA’s stated objective was to accurately reflect the carbon outcome of biomass use by stationary sources. For forest biomass, the Framework did not achieve this objective. To accurately capture the carbon outcome, this requires selecting a time period and determining what would have happened anyway without the harvesting and comparing that impact with the carbon trajectory associated with harvesting of biomass for bioenergy. Although any “business as usual” projection would be uncertain, it is the only means by which to gauge the incremental impact of woody biomass harvesting. The Framework discusses this approach, calling it an “anticipated future baseline” approach but does not attempt it. Instead a fixed reference point and an assumption of geographic regions were chosen to determine the baseline for whether biomass harvesting for bioenergy facilities is having a negative impact on the carbon cycle. The choice of a fixed reference point may be the simplest to execute, but it does not properly address the additionality question, i.e. the extent to which forest stocks would have been growing or declining over time in the absence of bioenergy. The use of a fixed reference point baseline coupled with a division of the country into regions implies that forest biomass emissions could be considered carbon neutral simply because forest stocks are increasing in a particular region from the base year. This is not justified scientifically. From a mass balance perspective, a reduction in the rate of increase of carbon stocks is equivalent to an increase in emissions. The reference point estimate of regionwide net emissions or net sequestration does not indicate, or estimate, the difference in greenhouse gas emissions (the actual carbon gains and losses) over time that are associated with biomass use. Instead, the Framework captures changes over an undefined space, in a sense, substituting space for time. As a result, the Framework fails to capture the causal connection between forest biomass harvesting and atmospheric impacts. For faster growing biomass like agricultural crops, the anticipated future baseline approach is not necessary because the temporary loss of carbon storage upon harvest is short-lived. …..
The Framework seeks to determine annual changes in emissions and sequestration rather than assessing the manner in which these changes will impact the climate over longer periods of time. In so doing, it does not consider the different ways in which use of bioenergy impacts the carbon cycle and global temperature over different timescales. Some recent studies have shown some intertemporal tradeoffs that should be highlighted for policymakers. In the short/medium run there is a lag time between emissions (through combustion) and sequestration (through regrowth) with the use of forest biomass. In the long run, any harvesting of biomass for bioenergy will have minimal effect on peak warming if net emissions after regrowth are the same as what would happen if the biomass had not been harvested (NRC 2011, Allen et al., 2009, (Cherubini, et al., 2012). Similarly, any intervention in forests or farming that results in an increase in storage of carbon or emissions reductions must endure for significantly longer than 100 years (or be “permanent”) in order to have a significant effect on the peak climate response.

A more precise picture of intertemporal effects is shown by Cherubini et al (2012). Cherubini et al. (2012) have shown that if biomass is harvested and the carbon is reabsorbed within a 100 year timescale, the global temperature increase averaged over that 100 year period is roughly 50% of the temperature increase caused by an equivalent amount of fossil carbon. We might conclude, then, the BAF for this scenario should be set to 0.5, meaning biogenic emissions are roughly 50% as damaging as fossil fuels. However the high point of temperature increase created by biogenic emissions occurs early in the 100 year cycle and is back to nearly zero by the time the carbon is reabsorbed. Using this 100 year time horizon completely discounts the substantial benefits of bioenergy in this scenario beyond 100 years; if one valued these benefits, the BAF would be much lower than 0.5. As this example shows, there are difficult intertemporal tradeoffs that may become apparent for policymakers, and a scientific perspective does not point to a single, correct answer. The Framework needs to investigate options for assessing delayed and distributed carbon recovery/emissions for biogenic sources over time using different metrics, particularly temperature changes (not just emissions) and make these tradeoffs transparent.

Even if a time frame of 100 years or more is considered for carbon accounting from biogenic facilities, a framework is needed to determine the time path of recovery of forest stock after harvest and the rate of carbon sequestration and to establish additionality. The recovery of forest and soil carbon should not be assumed to occur automatically or to be permanent; rather it should be monitored and evaluated for changes resulting from market forces or natural causes.

Spatial Scale

The use of a regional scale is a central weakness of the Framework. EPA employed regions as an artificial construct to avoid the need for site-specific chain of custody carbon accounting with separate streams for each feedstock and as an alternative to capturing changes in carbon stocks over time. EPA used a variable for the Level of Atmospheric Reduction (LAR) to capture the proportion of potential gross emissions that are offset by sequestration during feedstock growth, however the calculation of LAR captures landscape wide changes rather than facility-specific carbon emissions associated with actual fuelsheds. As a result, the estimates of the BAFs are sensitive to the choice of the spatial region as shown in EPA’s own case study leaving a
misleading impression that emissions have differential impacts depending on their geographic origin. The use of a national scale instead of a regional scale would avoid this problem while also accounting for domestic leakages.

Recommendations for Revising BAF

To implement the Framework, EPA faces daunting technical challenges, especially if a facility-specific BAF approach is retained. If EPA decides to revise the Framework, the SAB recommends consideration of the following improvements.

- Incorporate a time scale and consider the tradeoffs in choosing between different time scales.

- Develop a separate BAF equation for each feedstock category. Feedstocks could be categorized into short rotation dedicated energy crops, crop residues, forest residues, perennial crops, municipal solid waste, long rotation trees and waste materials.
 - Separate out feedstocks which could be classified as “anyway” emissions so that their BAF would automatically be either set to 0.
 - For long-recovery feedstocks like woody biomass, use an anticipated baseline approach to compare emissions from increased biomass harvesting against a baseline without increased biomass demand.
 - For residues, incorporate information about decay, replacing the assumption of instantaneous decomposition with decay functions which reflect the storage of ecosystem carbon.
 - For municipal solid waste, take into account the mix of biogenic and fossil carbon when waste is combusted as well as incorporate emissions of methane from landfills.

- For all feedstocks, consider information about leakage to determine its directionality as well as leakage into other media.

Alternatives to BAF

In a perfect world with full information and unlimited policy choices, carbon limits (or prices) would be implemented economy-wide and not selectively enacted for particular sources or sectors. Economic research has shown that the most cost-effective way to reduce greenhouse gas emissions (or any other pollution) is to regulate or tax across all sources until they face a marginal cost of emissions reduction that equals the marginal benefit of emissions reduction and is equal across sources. In EPA’s less perfect world with limited authority under the Clean Air Act, the most efficient economy-wide solution is not within its menu of choices. EPA’s regulation of stationary sources will exclude other users of biomass (e.g. consumers of ethanol) that have equivalent impacts on the carbon cycle as well as downstream consumers of products produced by these facilities.
In this second-best world with limited policy instruments that can be applied only to limited sources, it would be desirable for EPA to ascribe all changes in greenhouse gas emissions (both upstream and downstream of the stationary source) caused by the operation of the stationary facility to that source. Ideally, these emissions would need to be determined on a facility-specific basis however facility-specific calculations face some daunting practical challenges, including chain of custody accounting and estimation of market mediated effects or “leakage.”

Given the conceptual deficiencies, described above, and prospective difficulties with implementation, the SAB urges the Agency to “think outside the box” about policy options that go beyond categorical inclusion, exclusion or calculating a BAF for each facility. Section VII does not respond to charge questions from EPA. Rather, it presents options for the Agency’s consideration while recognizing that all options carry their own uncertainties, technical difficulties and implementation challenges. The final section of this report briefly discusses two alternatives for EPA’s consideration.

Option 1: Consider developing a generic BAF for each feedstock category. An alternative to revising the Framework and calculating a BAF for each stationary facility is to develop general (default) BAFs for each category of feedstocks, differentiating among feedstocks using general information on how their harvest and combustion interacts with the carbon cycle. EPA might need to develop a separate BAF equation for each of the other categories of feedstocks, using forest growth models to plot carbon paths that track regrowth following harvest. Many more case studies would be needed to develop an accounting focused on feedstocks rather than the facility. These generic BAFs would be applied by stationary facilities to determine their quantity of biogenic emissions that would be subject to EPA’s tailoring rule. Facilities could be given the option of demonstrating a lower BAF for the feedstock they are using.

Option 2: Consider certification systems. This option would require stationary facilities to use only “certified” feedstocks based on a certification (to be developed) of carbon neutrality. Such “sustainability” would need to be certified by an authority using valid scientific measurements. Such a system would be administratively simpler than quantifying a specific net change in greenhouse gases associated with a particular stationary facility. A certification approach can be done at a fuelshed level thus avoiding the arbitrary scale issues and could be designed to incorporate concerns about leakage.

The SAB cannot offer an opinion on the legal feasibility of any of these options. Certification systems have been successfully employed in Europe and, to a lesser extent, in the U.S. via the Sustainable Forestry Initiative.

Conclusion

As EPA has recognized, the greenhouse gas implications of bioenergy are more complex and subtle than the greenhouse gas impacts of fossil fuels. Given the complicated role that bioenergy plays in the carbon cycle, the Framework was written to provide a structure to account for net
climate impacts. The *Framework* is a step forward in considering biogenic carbon emissions. It has forced important questions and laid the groundwork for future developments in carbon accounting.

The focus of the *Framework* is on point source emissions from stationary facilities with the goal of accounting for any offsetting carbon sequestration that may be attributed to the facility’s use of a biogenic feedstock. To create an accounting structure, EPA drew boundaries narrowly around the stationary source in accordance with its regulatory domain. These narrow regulatory boundaries are in conflict with a more comprehensive carbon accounting that considers the entire carbon cycle upstream and downstream as well as through time. By staying within boundaries drawn narrowly around the stationary source, the *Framework* also eclipses more efficient policy solutions to greenhouse gas reductions that would address all sources and sinks. A more comprehensive accounting would extend through time to show the long-run effects of biogenic feedstocks on the carbon cycle. It would also expand downstream—to emissions from by-products and co-products, e.g. ethanol combustion or ethanol by-products, as well as upstream to the use of fertilizer to produce the biogenic feedstock.
1. The Science of Biogenic CO₂ Emissions

Charge Question 1: In reviewing the scientific literature on biogenic CO₂ emissions, EPA assessed the underlying science of the carbon cycle, characterized fossil and biogenic carbon reservoirs, and discussed the implications for biogenic CO₂ accounting.

1.1. Does the SAB support EPA’s assessment and characterization of the underlying science and the implications for biogenic CO₂ accounting?

EPA has done an admirable job of reviewing the science behind the carbon cycle and greenhouse gas emissions and their relationship to climate change, extracting some of the critical points that are needed to create the proposed accounting framework. At the same time, there are several important scientific issues that are not addressed in the EPA document, as well as scientific issues that are briefly discussed but not sufficiently explored in terms of how they relate to the Framework. In the following section, we describe a series of deficiencies with the EPA assessment and characterization of the science behind biogenic CO₂ accounting, and suggest some areas where the treatment of the existing scientific understanding of ecosystems and the carbon cycle could be strengthened.

Timescale

One fundamental deficiency in the EPA report is the lack of discussion of the different timescales inherent in the carbon cycle and the climate system that are critical for establishing an accounting system. This is a complicated subject because there are many different timescales that are important for the issues associated with biogenic carbon emissions. At the global scale, there are multiple timescales associated with mixing of carbon throughout the different reservoirs on the Earth’s surface. When carbon dioxide is released into the air from burning fossil fuels, roughly 45% stays in the air over the course of the following year. Of the 55% that is removed, roughly half is taken up by the ocean, mostly in the form of bicarbonate ion, and the other half is taken up by the terrestrial biosphere, primarily through reforestation and enhanced photosynthesis. The airborne fraction (defined as the fraction of emissions that remains in the air) has been remarkably constant over the last two decades.

There is considerable uncertainty over how the magnitude of ocean and terrestrial uptake will change as the climate warms during this century. If the entire ocean were to instantly reach chemical equilibrium with the atmosphere, the airborne fraction would be reduced to 20% to 40% of cumulative emissions, with a higher fraction remaining in scenarios with higher cumulative emissions. In other words, the ocean chemical system by itself cannot remove all the CO₂ released in the atmosphere. Because carbon uptake by the ocean is limited by the rate of mixing between the shallow and deeper waters, this complete equilibration is expected to take thousands of years. Over this century, if global CO₂ emissions continue to rise, most models predict that ocean uptake will stabilize between 3 to 5 GtC/y, implying that the fraction of emissions taken up by the ocean will decrease. For the terrestrial biosphere, there is a much
wider envelope of uncertainty; some models predict that CO₂ uptake will continue to keep pace with the growth in emissions, while other models suggest that CO₂ uptake will decline, even becoming a net source of CO₂ to the atmosphere if processes such as release of carbon from the tundra or aridification of the tropics were to occur.

Over the timescale of several thousand years, once ocean equilibration is complete and only 20% to 40% of cumulative emissions remains in the atmosphere, dissolution of carbonate rocks on land and on the ocean floor will further reduce the airborne fraction to 10% to 25% over several thousand years to ten thousand years. This last remnant of anthropogenic CO₂ emissions will stay in the atmosphere for more than 100,000 years, slowly drawn down by silicate weathering that converts the CO₂ to calcium carbonate, as well as slow burial of organic carbon on the ocean floor. The size of this “tail” of anthropogenic CO₂ depends on the cumulative emissions of CO₂, with higher cumulative emissions resulting in a higher fraction remaining in the atmosphere.

Another important timescale for considering accounting systems for biogenic carbon emissions is the period over which the climate responds to carbon dioxide and other greenhouse gases. Several different climate modeling studies have demonstrated that the peak warming in response to greenhouse gas emissions is primarily sensitive to cumulative greenhouse gas emissions over a period of roughly 100 years, and is relatively insensitive to the emissions pathway within that time frame (Allen, et al. 2009). What this means is that an intervention in forests or farming that results in an increase in storage of carbon or emissions reductions must endure for significantly longer than 100 years in order to have any real influence on the peak climate response. Conversely, any harvesting of biomass for bioenergy or any other purpose that results in the release of carbon dioxide will have minimal effect on peak warming if the biomass is regrown within a roughly 100-year timescale. The details of how the transient release of carbon dioxide within that 100-year period affects the climate and creates climate change impacts is discussed below.

Timescales are also important at a more local scale. Given the EPAs objective is to account for the atmospheric impact of biogenic emissions, it is important to consider the turnover times of different biogenic feedstocks in justifying how they are incorporated into the Framework. The fundamental differences in stocks and their turnover times as they relate to impact on the atmosphere is not well discussed or linked. (Page 6 raises the issue but does not delve into what it means for biogenic carbon accounting). If a carbon stock is cycling quickly on land, turning over and being replaced fully in less than 100 years (as discussed above), it may have a beneficial impact when it displaces fossil fuel. If the carbon stock, or some part of it, turns over more slowly, i.e., much longer than 100 years, the timing of release begins to matter.

There is a continuum of carbon stock size and turnover among the biogenic feedstock sources included in this framework, but there is little background discussion of the variation in the stock and turnover and how that informs the accounting method. The current framework sets up categories of feed stocks based on their source, but these groupings do not translate into differential treatment in the Framework. The science section could walk through the carbon stocks covered by the scope of the Framework and their relevant turnover times.
The timescale over which land carbon may change, coupled with the scientific understanding of the timescale of the climate system response, could have been used in the report to support the EPA accounting method against criticisms from several environmental groups who point to the idea of a carbon debt when biomass is harvested and taken from a forest. The idea of a carbon debt is technically correct, but fails to recognize that peak climate response is based on cumulative emissions over 100 years and should not be evaluated on an annual basis. This means that the climate system is not sensitive to the imbalance in the carbon cycle that might occur over decades from harvesting of biomass for bioenergy facilities. The carbon debt is a serious problem if the time for regrowth is much more than 100 years. However, the annual accounting method proposed by the EPA does not take the long view. A scientifically rigorous evaluation of the biomass harvest on the carbon cycle must consider what the impact will be on the 100 year timescale and beyond. Annual accounting of carbon stocks is likely to give inaccurate assessments of the overall carbon cycle impacts.

A set of insightful studies by Cherubini and co-authors (Cherubini et al., 2011, 2012) provides an interesting framework for estimating carbon outcome from biomass harvesting and “what the atmosphere sees” by framing the issue in terms of global warming potentials (GWP) and global temperature potentials (GTP) for harvested biomass. The difference between GWP and GTP is that GWP is the time integral of the radiative forcing from a pulse emission of CO2 (in this case, from harvested biomass), whereas GTP is the actual temperature response to the CO2 release from harvested biomass. In this context, the GTPbio, discussed by Cherubini (2012) is a more accurate metric for the actual climate response. The idea of the GTPbio is simple: it represents the contribution to global average temperature from the transient time the carbon dioxide is in the atmosphere between the initial biomass combustion or respiration and the ultimate regrowth of the carbon stock relative to the temperature response to a release of an equivalent amount of fossil CO2 (expressed as a fraction between 0 and 1). For each GTPbio value, a recovery timescale must be specified as well as a time horizon of interest. The calculation for GTPbio is the ratio of the average temperature increase with biogenic emissions followed by reabsorption over, say, 100 years divided by the average temperature increase for an initial emission alone over 100 years. For short recovery time feedstocks, such as perennial grasses, the difference in global warming potential is almost identical to CO2 emissions minus carbon change on the land (CO2 eq). For feedstocks with long recovery time, one must compute the change in global temperature over time, accounting for the decline in temperature change as carbon is reabsorbed.

What remains an issue with the GTPbio approach is the appropriate time horizon. A common approach with GWP and GTP values is to use a 100 year time horizon, although this has a serious drawback in that it devalues consequences beyond a 100 years. Consider a scenario in which biomass is harvested, but the carbon stock is replaced within a 100 year time scale. The GTPbio for a 100-year regrowth and a 100 year time horizon is roughly 0.5, meaning that the time-integrated global average temperature increase within that 100 year period is 50% of the temperature increase caused by an equivalent amount of fossil carbon (or straight CO2 release without regrowth of biomass). However, using the average temperature increase for the biogenic case over 100 years masks the fact that although there will be an initial increase in temperature
near the beginning of the 100 year period the reabsorption of carbon in the forest will bring the
effect on ground temperature to nearly zero by year 100, giving an average temperature that was
50% of the average fossil temperature increase over 100 years. In fact the temperature effect for
the biogenic case falls below zero slightly before 100 years because oceans initial absorb extra
CO₂ in response to the initial biogenic emission (Cherubini 2012, fig 5a). The temperature effect
equilibrates to zero as the ocean CO₂ is balanced. A more precise picture of intertemporal effects
is shown in Figure 1, adapted from Cherubini et al (2012).

Figure 1: Surface temperature change from biogenic emissions with 100 year carbon recovery and fossil emissions.

Adapted from Cherubini, F., Guest, G. and Strømman, A. H. (2012), Application of probability distributions to the

Cherubini et al. (2012) have shown that if biomass is harvested and the carbon is reabsorbed
within a 100 year timescale, the global average temperature increase over that 100 year period is
50% of the temperature increase caused by an equivalent amount of fossil carbon. We might
conclude, then, the BAF should be set to 0.5, meaning biogenic emissions are roughly 50% as
damaging as fossil fuels, however the high point of temperature increase created by biogenic
emissions occurs early in the 100 year cycle and is back to zero by the time the carbon is
reabsorbed. For the case where carbon is recovered within 100 years Cherubini et al. (2012)
have shown that at 20 years, the average temperature increase (over 20 years) from biogenic fuel is 97% of the temperature increase caused by an equivalent amount of fossil carbon; at 100 years, it is 50%, at 150 years it is 30%, and at 500 years, it is 10%.

Thus, choosing a 100-year time horizon would completely ignore the long-term consequences of the difference between biomass and fossil CO2 emissions. The GTPbio value would continue to decline for time horizons beyond 100 years since there is no net temperature increase after 100 years! There is no scientifically correct answer here for choosing a time horizon to estimate GTPbio, although the Framework should be clear about what time horizon it uses, and what that choice means in terms of valuing long term versus shorter term climate impacts. If a high value is placed on the longer term temperature impact, i.e. beyond the period when forests recover emitted carbon – relative to shorter term increases then the effect of the initial biogenic emission would be near zero. A nice discussion by Kirschbaum (2003, 2006) of the impact of temporary carbon storage (the inverse of temporary carbon release from biomass harvesting for bioenergy) points out that the exact climate impact of temporary CO2 storage (or emissions) depends on the type of impact, as some depend on peak temperature, whereas others, such as melting of polar ice sheets, depend more on time-averaged global temperature.

Information from modeling the time path of land carbon recovery after initial emissions suggested under question 4.6 could be used to examine the average temperature response during the period of recovery as well as the long run temperature response after recovery to estimate “BAF” or another time weighted temperature metric.

Disturbance
Because ecosystems respond in complicated ways to disturbances (e.g. harvesting, fire) over long periods of time, and with a high degree of spatial heterogeneity, the state of knowledge about disturbance and impacts on carbon stocks and turnover should be reviewed within the context of relevant timescales. This is highly relevant to producing accurate estimates of biogenic emissions from the land. There is also insufficient treatment given to the existing literature on the impact of different land management strategies on soil carbon, which is important for understanding how carbon stocks may change over many decades. A short list of relevant publications is provided in the Reference section.

Non-CO2 Greenhouse Gases
The Framework does not incorporate greenhouse gases other than CO2. This fails to account for the difference between biomass feedstocks in terms of their production of other greenhouse gases. The most important of these is likely to be N2O produced by the application of fertilizer (Crutzen, et al. 2007). In particular, if the biomass feedstock is from an energy crop that results in different N2O emissions vis-a-vis other crops, should this be counted? Is it negligible? This issue is not introduced in the science section. N2O is relatively long-lived (unlike methane), and therefore the climate impacts of heavily fertilized biomass (whether in forests or farms) are greater than non-fertilized biomass. There is a substantial literature on N2O from fertilizer use.
that was not discussed in the Framework. If the decision to not count non-CO$_2$ greenhouse gases stems from a need to render the carbon accounting for biogenic sources parallel with fossil fuels, this needs to be explicitly discussed.
2. Biogenic CO₂ Accounting Approaches

Charge Question 2: Evaluation of Biogenic CO₂ Accounting Approaches

In this report, EPA considered existing accounting approaches in terms of their ability to reflect the underlying science of the carbon cycle and also evaluated these approaches on whether or not they could be readily and rigorously applied in a stationary source context in which onsite emissions are the primary focus. On the basis of these considerations, EPA concluded that a new accounting framework is needed for stationary sources.

2.1. Does the SAB agree with EPA’s concerns about applying the IPCC national approach to biogenic CO₂ emissions at individual stationary sources?

Yes. The IPCC national approach is an inventory of global greenhouse emissions (i.e., all emissions are counted). It is comprehensive in quantifying all emissions sources and sinks, but does not describe linkages among supply chains. In other words, it is essentially a “production-based inventory” or “geographic inventory” rather than a “consumption-based inventory” (Stanton, et al. 2011). Moreover, it offers a static snapshot of emissions at any given time, but it does not expressly show changes in emissions over time. As such, the IPCC national approach does not explicitly link biogenic CO₂ emission sources and sinks to stationary sources, nor does it provide a mechanism for measuring changes in emissions as a result of changes in the building and operation of stationary sources using biomass.

2.2. Does the SAB support the conclusion that the categorical approaches (inclusion and exclusion) are inappropriate for this purpose, based on the characteristics of the carbon cycle?

Note that the Panel sought and got clarification from EPA that this question refers to “a priori” categorical inclusion and exclusions as inappropriate.

A decision about a categorical inclusion or exclusion will likely involve many considerations that fall outside the SAB’s scientific purview such as legality, feasibility and, possibly, political will. The SAB cannot speak to the legal or implementation difficulties that could accompany any policy on biogenic carbon emissions but below are some scientific observations that may inform the Administrator’s policy decision.

The notion that biomass is carbon neutral arises from the fact that the carbon released as CO₂ upon combustion was previously removed from the atmosphere as CO₂ during plant growth. Thus, the physical flow of carbon in the biomass combusted for bioenergy represents a closed loop that passes through a stationary source. Under an accounting framework where life cycle emissions associated with the production and use of biomas are attributed to a stationary source, assuming carbon neutrality of biomass necessarily implies that the net sum of carbon emissions
from all sources and sinks is zero, including all supply chain and market-mediated effects. Therefore, carbon neutrality cannot be assumed for all biomass energy a priori (Rabl, et al. 2007)(E. Johnson 2009),(Searchinger, et al. 2009). There are circumstances in which biomass is grown, harvested and combusted in a carbon neutral fashion but carbon neutrality is not an appropriate a priori assumption; it is a conclusion that should be reached only after considering a particular feedstock production and consumption cycle. There is considerable heterogeneity in feedstock types, sources, production methods and leakage effects; thus net biogenic carbon emissions will vary considerably.

Given that some biomass could have positive net emissions, a categorical exclusion would remove any responsibility on the stationary source for CO2 emissions from its use of biogenic material from the entire system (i.e., the global economy) and provide no incentive for the development and use of best management practices. Conversely, a categorical inclusion would provide no incentive for using biogenic sources that compare favorably to fossil energy in terms of greenhouse gas emissions.

The commentary above merely reflects some scientific considerations. The SAB recognizes that, in reality, EPA may face difficult tradeoffs between ease of implementation and other goals. While some options are offered in Section 7 for the Agency’s consideration, the SAB cannot offer an opinion on the legal feasibility of any approach.

2.3. Does the SAB support EPA's conclusion that a new framework is needed for situations in which only onsite emissions are considered for non-biologically-based (i.e., fossil) feedstocks?

Through discussions with the Agency at the public meeting, EPA agreed that this question is redundant with other charge questions and therefore does not need to be answered here.

2.4. Are there additional accounting approaches that could be applied in the context of biogenic CO2 emissions from stationary sources that should have been evaluated but were not?

Several other agencies are developing methods for assessing greenhouse gas emissions by facilities that could inform the approach developed by the EPA. These include the DOE 1605(b) voluntary greenhouse gas registry targeted to entities which has many similar characteristics to the approach proposed by EPA for stationary sources. There is also the Climate Action Registry developed in California that uses a regional approach to calculate baselines based on inventory data and may inform the delineation of geographic regions and choice of baselines in the EPA approach. USDA is also developing in parallel an accounting approach for forestry and agricultural landowners. It would be beneficial if the EPA and USDA approaches could be harmonized to avoid conflicts and take advantage of opportunities for synergy.
3. Methodological Issues

Charge Question 3: Evaluation of methodological issues. EPA identified and evaluated a series of factors in addition to direct biogenic CO$_2$ emissions from a stationary source that may influence the changes in carbon stocks that occur offsite, beyond the stationary source (e.g., changes in carbon stocks, emissions due to land-use and land management change, temporal and spatial scales, feedstock categorization) that are related to the carbon cycle and should be considered when developing a framework to adjust total onsite emissions from a stationary source.

3.1. Does SAB support EPA’s conclusions on how these factors should be included in accounting for biogenic CO$_2$ emissions, taking into consideration recent advances and studies relevant to biogenic CO$_2$ accounting?

The SAB’s response to this question differs by feedstock.

For agricultural feedstocks, the factors identified by EPA to adjust the CO$_2$ emissions from a stationary source for direct off-site changes in carbon stocks are appropriate but suffer from significant estimation and implementation problems.

Municipal solid waste biomass is either disposed of in a landfill or combusted in facilities at which energy is recovered. Smaller amounts of certain waste components (food and yard waste) may be processed by anaerobic digestion and composting. The CO$_2$ released from the decomposition of biogenic waste in landfills, compost facilities or anaerobic digesters could reasonably be assigned a BAF of 0 but applying a 0 to all municipal solid waste does not take into account the fact that when waste is burned for energy recovery, both fossil and biogenic CO are released. The Framework should take into account the mix of biogenic waste with fossil carbon containing waste since the combustion of municipal solid waste results in the production of both biogenic and fossil carbon. In addition, given that methane is so much more important than CO$_2$, the Framework should account for the fact that CH$_4$ emissions from landfills as not all of the methane is captured.

For forest-derived woody biomass, the calculation of BAF would need to account for the time path of carbon recovery and emissions from logging residue. The Framework recognizes some of the challenges associated with defining the spatial and temporal timescale and in choosing the appropriate baseline but ultimately chooses an approach that disregards any consideration of the timescales over which biogenic carbon stocks are accumulated or depleted. Instead the Framework substitutes a spatial dimension for time in assessing carbon accumulation; and creates an accounting system that generates outcomes sensitive to the regional scale at which carbon emissions attributed to a stationary source are evaluated.

Below are some comments on particular factors.
Level of Atmospheric Reduction (LAR): The scientific justification for constraining the range of LAR to be greater than 0 but less than 1 is not evident since it is possible for feedstock production to exceed feedstock consumption. The term also combines two very separate concepts, regrowth of feedstock (GROWTH) and avoided emissions (AVOIDEMIT) from the use of residues that would have been decomposed and released carbon emissions anyway. These two terms are not applicable together for a particular feedstock and representing them as additive terms in the accounting equation can be confusing. Additionally, the value of LAR, for forest biomass, is sensitive to the size of the region for which growth is compared to harvest.

Loss (L): This is included in the Accounting Framework to explicitly adjust the area needed to provide the total feedstock for the stationary facility. It is a term used to include the emissions generated by the feedstock lost during storage, handling and transit based on the strong assumption that most of the carbon in the feedstock lost during transit is immediately decomposed. It is therefore important to separate the use of this Loss term for estimating the area needed to provide the feedstock and for estimating the carbon emissions released by the operation of the stationary source. To more accurately estimate the actual loss of carbon due to these losses one would need to model the carbon storage and fluxes associated with the feedstock lost, which is likely to be a function of time. The number of years considered would be a policy decision; the longer the period, the larger the proportion of loss that would be counted. The Accounting Framework tacitly assumes an infinitely long horizon that results in the release of all the carbon stored in the lost feedstock.

Products (PRODC). The removal of products from potential gross emissions is justified scientifically, however, the scientific justification for treating all products equally in terms of their impact on emissions is not clear. For some products (e.g., fuels like ethanol and paper), the stored carbon will be released rapidly while for other products, such as furniture, it might be released over a longer period of time. The Framework implicitly assumes that all products have infinite life-spans, an assumption with no scientific foundation. For products that release their stored carbon rapidly, the consequences for the atmosphere are the same as those associated with the carbon stored in the underlying feedstock; thus a distinction between the two is not scientifically justified. To precisely estimate the stores of products so as to estimate the amount released, one would need to track the stores as well as the fluxes associated with products pools. The stores of products could be approximated by modeling the amount stored over a specified period of time; the exact time period would have to be a policy decision.

A second way in which PRODC is used is as a means of pro-rating all area based terms such as LAR, SITE-TNC and Leakage. This is potentially problematic because it makes the emissions embodied in co-products dependent on the choice of regional scale at which LAR is estimated. As the size of the region contracts, LAR tends towards zero and the amount of gross emissions embodied in PRODC increases and exacerbates the implications of the scale sensitivity of the LAR value.

Avoided Emissions (AVOIDEMIT): This term refers to transfers of emissions within the system or to emissions that occur regardless, although in different places (i.e., at the point source or at
the field site). Since the concept reflected in “avoided emissions” is actually “equivalent field-site emissions” it would be clearer to refer to it by a term that reflects the actual concept being used. Some of the materials that are harvested might take decades to centuries to fully decompose. To be scientifically-based the hypothetical store of harvested fuel stock would have to be tracked. To approximate these stores one could compute the average amount remaining after a period of years. The number of years considered would be a policy decision; the longer the period, the less would be counted.

As with the Loss term, the assumption of instantaneous decomposition or total combustion of the crop or forest residue lacks scientific support. The scientific theory behind losses and stores of ecosystem carbon was developed by Olson (1963) and should be applied to the fate of residues and slash. The store of carbon in an ecosystem depends upon the amount of carbon being input (I) and the proportion of carbon lost per time unit referred to as the rate-constant of loss (k). Specifically the relationship is I/k. In the case of residues or slash that are burned in the field or in a bioenergy facility, the store of carbon is essentially zero because most of the input is lost within a year (k> 4.6 per year assuming at least 99% of the material is combusted within a year). On the other hand, if the residue or slash does not lose its carbon within a year, the store of carbon would be greater than zero, and depending on the interval of residue or slash creation could be greater than the initial input (see Appendix A for more information on the rate of residue after harvest and landscape storage of carbon). For example, if slash is generated every 25 years (I=100 per harvest area/25=4 per year) and the slash is 95% decomposed within 25 years (k=0.12 per year), one cannot assume a store of zero because the average landscape store in this case would actually be 33% of the initial input (4/0.12=33.3). If the input occurred every 5 years (I=100 per harvest/5=20 per year) for the same decay rate-constant, then the landscape average store would be 167% of the initial input (20/0.12=167). Moreover, it cannot be assumed that because the rate-constant of loss k is high, that the stores will always be low. That is because the input (I) is a function of the interval of residue or slash generation; the shorter the interval of generation, the higher the effective landscape input because a higher proportion of the landscape is contributing inputs. For example, if there is one unit of residue/slash generation per harvest, then an annual harvest on a landscape basis creates 1 unit of material; if there is one unit of residue/slash generation per harvest, then a harvest every 10 years creates an average landscape harvest of 0.1 units (1 unit/10 years = 0.1 unit per year). This relationship means that if residue or slash is generated annually and 95% is lost to decomposition in that period, that the landscape could store 33% of the initial input (I/k=1/3). For the values of k usually observed in agricultural setting (50% per year), an annual input would lead to a landscape store in excess of 145% of the initial input (I/k=1/0.69). This is far from the proposed framework assumption of zero storage. Burning of this material would cause a decrease in carbon stores analogous to that of reducing mineral soil stores as accounted for in Site_TNC, but this loss is not accounted for in the proposed framework.

There are several ways in which losses from residue/slash decomposition could be used in the current framework. One is to track the annual loss of carbon lost from site storage from decomposition. This would be analogous to tracking the regrowth of feedstock annually, but in this case it would be the annual decomposition loss. The annual decomposition loss would then
be credited as equivalent to combustion as fuel. The advantage of this system is that it would
track the time course of release. The disadvantage is that it increases transaction costs. An
alternative based on a fuel-shed (or other larger area) would be to calculate the average fraction
of residue or slash would remain over the harvest interval and subtracting that from the amount
harvested. The difference between the amount harvested and the amount that would have
remained is an index of the equivalent amount of release via decomposition. For example, if 10
metric tons of either residue or slash is created per year in a fuel shed and 65% of the slash
would have decomposed on average over a given harvest interval, then decomposition would
have been equivalent a release 65% of the amount of fuel used (6.5 metric tons). This would
mean that 3.5 metric tons that would have been stored was lost by combustion; hence 6.5 metric
tons would be credited in the current calculation of LAR. However, if 35% of the slash would
have decomposed on average over the harvest interval, then use of 10 metric tons as fuel would
reduce carbon stores of residues and slash by 6.5 metric tons. This would result in a so-called
avoided emissions credit of 3.5 metric tons.

In addition to accounting for actual decomposition losses, the Framework needs to consider the
starting point of residue and slash harvest. The carbon released by combustion will be a function
of the starting point, with systems that start with residues and slash having a different timeline of
release than those that newly create residue and slash. The former will have the release rate
linearly related to the harvest interval, whereas the latter will likely have a curvilinear
relationship that is a function of the rate-constant of loss (k).

Instead of a priori assigning a BAF of 0 to forest residues (treating them as “anyway”
emissions), a scientifically-based system could be developed that acknowledges that
decomposition is not an instantaneous process. This would involve determining a loss rate-
constant appropriate to the material and climate to estimate the amount of carbon that could have
been stored had the material not been burned. This amount could be approximated by using the
relationships developed by Olson (1963) and reducing the number of calculations involved.
When approximations are used, they should be checked against more precise methods to
determine the magnitude of possible approximation errors. Several mechanisms could be used
to simplify the estimation of these numbers ranging from calculators that require entry of a few
parameters (e.g., average amount of residue or slash generated, the area of source material, the
interval of harvest) to look-up tables that are organized around the parameters used to generate
them. While there is some uncertainty regarding the loss rate-constants, these sorts of
parameters are routinely used in scientific assessments of the carbon cycle and their uncertainty
is not much greater than any other parameter required by the Framework. It should be pointed
out that while uncertainty is important to consider, alternative frameworks (e.g., categorical
inclusion and exclusion) do not have parameter uncertainty but also entail uncertainty as to their
effect on atmospheric carbon.

The Framework should provide guidance on how logging residue will be distinguished from
forest feedstock since that will influence the BAF for that biomass and create incentives to
classify as much material as possible as residue and slash despite the fact that some of the
“residue/slash” material such as cull trees would be “regenerated” via feedstock regrowth.
Sequestration (SEQP). This term refers to the proportion of feedstock carbon embodied in post-combustion residuals such as ash or biochar. Including sequestration in the Framework is appropriate, however, the approach taken is subject to the same problems as those described for Products. There is no scientific literature cited to support the idea that all the materials produced by biogenic fuel use do not decompose. This is the subject of ongoing research, but it seems clear that these materials do decompose. The solutions to creating a more realistic and scientifically justified estimate are the same as for the Products term (see above).

Leakage. The Framework includes a term for leakage but is silent on the types of leakage that would be included and how leakage would be measured. EPA said it was not providing a quantification methodology for leakage because assessing leakage requires policy- and program-specific details that are beyond the scope of the report. There are several conceptual and implementation issues that merit further discussion in the Framework.

The use of biogenic feedstocks could lead to leakage by diverting feedstocks and land from other uses and affecting the price of conventional forest and agricultural products which can lead to indirect land use changes that release carbon stored in soils and vegetation. The use of these feedstocks can also affect the price of fossil fuels by lowering demand for them and increasing their consumption elsewhere (also referred to as the rebound effect on fuel consumption) (Chen and Khanna in press, 2012). These leakage effects could be positive (if they lead to carbon emissions elsewhere) or negative (if they lead to carbon uptake activities). As will be discussed in Section 4.6, the latter, could arise for example, if increased demand for biomass and higher prices generates incentives for investment in forest management that increases forest carbon sequestration. Some research has shown that when a future demand signal is strong enough, expectations about biomass demand for energy (and thus revenues) can reasonably be expected to produce anticipatory feedstock production changes with associated changes in land management and land-use (e.g. (Sedjo and Sohngen 2012, forthcoming). Thus price changes can lead to changes in consumption and production decisions outside the boundary of the stationary source, even globally.

While the existence of non-zero leakage is very plausible, the appropriateness of attributing emissions that are not directly caused by a stationary facility to that facility is questionable. While first principles in environmental economics show the efficiency gains from internalizing externalities by attributing direct environmental damages to responsible parties that are directly responsible for them, they do not unambiguously show the social efficiency gains from attributing economic or environmental effects (such as leakage) that occur due to price changes induced by its actions to that facility (Holcombe and Sobel 2001). Moreover, leakage caused by the use of fossil fuels, is not included in assessing fossil emissions generated by a stationary facility. Liska and Perrin (2009) show that military activities to secure oil supplies from the Middle-East lead to indirect emissions that could double the carbon intensity of gasoline. Thus, the technical basis for attributing leakage to stationary sources and inherent inconsistency involved in including some types of leakage and for some fuels makes the inclusion of leakage and its magnitude a subjective decision. Including some types of leakage (for e.g., due to
agricultural commodity markets) and not others (such as those due to the rebound effect in fossil fuel markets) and for biomass and not fossil fuels would be a policy decision without the underlying science to support it.

The empirical assessment of the magnitude of leakage and the method for attributing it to different stationary sources would need to be based on complex global economic modeling that involves comparisons of production, consumption and land use decisions with the use of a biogenic feedstock to those in a baseline scenario without the use of this feedstock. Thus it would require the use of an anticipated baseline approach, as discussed in Section 4.6. The existing literature assessing the magnitude of leakage shows that its overall magnitude is highly uncertain and differs considerably across studies and within a study depending on underlying assumptions (Khanna, et al., 2011, Khanna and Crago, in press, 2012).

The use of a regional scale for assessing LAR implies that there could be cross-regional leakage; its presence and magnitude will be a function of the characteristics of the regions created (size and composition). The more regions created from a given area, the more leakage will occur from each region. If this leakage is not accounted for elsewhere in the Framework, for e.g., increased harvesting of biomass for pulp and paper manufacture in one region due the operations of a stationary facility in a different region, then this leakage could have an atmospheric outcome. With many regions involved, it would become extremely difficult to determine which of the multiple regions generated a particular leakage observed. Where many regions are involved simultaneously, disturbances may make identifying the unique leakage from a particular region almost impossible to determine. In sum, the precision associated with qualitatively estimating negative leakage accurately may involve huge errors that could be so great as to overwhelm any usefulness of the development of high quality data for other interrelated parts of the assessment. If the magnitude of leakage cannot be calculated, however, its direction should at least be stated and recognized in making policy choices.

Thus, on balance, the Framework, while including many important elements suffers from significant estimation and implementation problems. Some of these implementation issues with estimating BAF and leakage that will be discussed further in Section 4.

3.2. Does SAB support EPA’s distinction between policy and technical considerations concerning the treatment of specific factors in an accounting approach?

A clear line cannot be drawn between policy and technical considerations. There is insufficient information given on EPA’s policy context and menu of options to fully evaluate the Framework. Because the reasonableness of any accounting system depends on the regulatory context to which it is applied the Framework should describe the Clean Air Act motivation for this proposed accounting system, how it regulates point sources for greenhouse gases and other pollutants, making explicit the full gamut of Clean Air Act policy options for how greenhouses gases could be regulated, including any potential implementation of carbon offsets or certification of sustainable forestry practices, as well as its legal boundaries regarding upstream and downstream emissions. Technical considerations can influence the feasibility of
implementing a policy just as policy options can influence the technical discussion. The two
need to go hand in hand rather than be treated as separable.

The Framework explicitly states that it was developed for the policy context where it has been
determined that a stationary source emitting biogenic CO$_2$ requires a means for “adjusting” its
total onsite biogenic emissions estimate on the basis of information about growth of the
feedstock and/or avoidance of biogenic emissions and more generally the carbon cycle.
However, in the discussion on the treatment of specific factors it states in several places that this
treatment could depend on the program or policy requirements and objectives. Certain open
questions described as “policy” decisions (e.g. the selection of regional boundaries, marginal
versus average accounting, inclusion of working or non-working lands, inclusion of leakage)
made the evaluation of the Framework difficult. Clearly, the policy context matters and EPA’s
erticence in describing the policy context and in taking positions on open questions (as well as
lack of implementation details) meant that the Framework was inadequately defined for proper
review and evaluation.

Specifically, if the policy context is changed, for example, if carbon accounting is needed to
support a carbon cap and trade or carbon tax policy, then the appropriateness of the Framework
needs to be evaluated relative to alternative approaches such as life cycle analysis for different
fuel streams. Modifying how certain factors are measured or included may not be sufficient. In
fact, a different Framework would probably make sense if a national or international greenhouse
gas reduction commitment exists. Furthermore, the BAFs developed for regulating the emissions
from stationary sources would likely conflict with measures of greenhouse gas emissions from
bioenergy used in other regulations such as California’s cap and trade system for regulating
greenhouse gases.

In a perfect world with full information and unlimited policy choices, carbon limits (or prices)
would be implemented economy-wide and not selectively enacted for particular sources or
sectors. Economic research has shown that the most cost-effective way to reduce greenhouse gas
emissions (or any other pollution) is to regulate or tax across all sources until they face a
marginal cost of emissions reduction that equals the marginal benefit of emissions reduction and
is equal across sources. In our less perfect world with EPA’s limited authority under the Clean
Air Act, the most efficient economy-wide solution is not within EPA’s menu of policy choices.
EPA’s regulation of stationary sources will exclude other users of biomass that have equivalent
impacts on the carbon cycle as well as downstream emissions from consuming the products
produced by these facilities.

In this second-best world with limited policy instruments that can be applied only to limited
sources, it would be desirable for EPA to ascribe all changes in greenhouse gas emissions (both
upstream and downstream of the stationary source) caused by the operation of the stationary
source to that source. Ideally, these emissions would need to be determined on a facility-specific
basis but facility-specific calculations would require a chain of custody accounting and involve
other daunting challenges such as estimating leakage effects.
3.3. Are there additional factors that EPA should include in its assessment? If so, please specify those factors.

As stated above, for agricultural biomass from energy crops and crop residues, the factors included in the Framework capture most of the direct off-site adjustments needed to account for the changes in carbon stocks caused by a facility using agricultural feedstocks although they do not account for leakage. For forest biomass, the Framework needs to incorporate a) the time path of carbon recovery in forests (after energy emissions from harvested roundwood) or b) the time path of the “anyway” emissions that would have occurred on the land if logging residue were not used for energy production. For municipal solid waste biomass, the Framework needs to consider other gases and CH$_4$ emissions from landfills. Given that methane emissions from landfills are often captured, crediting waste material for avoided emissions of methane may be inappropriate as this would typically be done in a life-cycle analysis which was not suggested. The carbon impact of using waste for energy production in combustion facilities should nonetheless be measured relative to the CH$_4$ emissions, if any, that would be released during decomposition in a landfill. Note that the Framework should account for the fact that CH$_4$ emissions from landfills are sometimes captured already. N$_2$O emissions, especially from fertilizer use, should also be considered. Furthermore, the inclusion of non-CO$_2$ greenhouse gases in general should be consistent between biogenic and fossil fuel accounting. For instance, there are also transportation related emissions losses in the delivery of natural gas.

3.4. Should any factors be modified or eliminated?

For reasons discussed above, factors such as PRODC, AVOIDEMIT and SEQP need to be modified to include the timescale over which carbon is decomposed or released back to the atmosphere. LAR needs to be modified to be scale insensitive and to address additionality. Factors can be separated by feedstocks according to their relevance for accounting for the carbon emissions from using those feedstocks. For example, GROW and leakage may not be relevant for crop and forest residues.
4. Accounting Framework

Charge Question 4: EPA's Accounting Framework is intended to be broadly applicable to situations in which there is a need to represent the changes in carbon stocks that occur offsite, beyond the stationary source, or in other words, to develop a "biogenic accounting factor" (BAF) for biogenic CO₂ emissions from stationary sources.

4.1. Does the Framework accurately represent the changes in carbon stocks that occur offsite, beyond the stationary source (i.e., the BAF)?

For agricultural biomass, the variables in EPA’s proposed equation for BAF represent the basic factors necessary for estimating the offsite carbon change associated with stationary source biomass emissions, including changes in storage of carbon at the harvest site. For short recovery feedstocks, where carbon recovery and “anyway” emissions are within one to a few years (i.e., agricultural residues, perennial herbaceous crops, mill wood wastes, other wastes), with some adjustments and appropriate data, the Framework can accurately represent carbon changes offsite. However, for long recovery feedstocks where carbon recovery and most “anyway” emissions occur over decades (i.e., wood harvested specifically for energy use (roundwood) and logging residue), the Framework does not accurately account for carbon stocks changes offsite for several reasons discussed below in response to charge question 4.2.

The Framework also does not consider other greenhouse gases (e.g. N₂O from fertilizer use and CH₄ emissions from landfills). Excluding CH₄ because it is not “CO₂” is not a legitimate rationale. It would need to be included to estimate the “difference in CO₂ (equivalent)” the atmosphere sees. In addition, excluding CH₄ from landfills is inconsistent with the Framework’s desire to account for displaced on-site changes in CO₂. For the same reasons, the basis for excluding N₂O emissions is unclear. It also needs to be included to estimate the net changes in atmospheric greenhouse gases. Accounting for N₂O from fertilization would be consistent with tracking changes in soil carbon which are a response to agricultural management systems, which includes fertilizer decisions.

4.2. Is it scientifically rigorous?

The SAB did not find the Framework to be scientifically rigorous. Specifically, we identified a number of deficiencies that need to be addressed.

The following issues require additional scientific support.

Timescale: As discussed in Section 1, one deficiency in the Framework is the lack of discussion and proper consideration of the different timescales inherent in the carbon cycle and the climate system that are critical for establishing an accounting system. This is a complicated subject because there are many different timescales that are important for the issues associated with biogenic carbon emissions.
Scientific understanding of the timescale over which the climate system responds to cumulative emissions implies that the carbon release caused by harvesting and combusting biomass at stationary sources is a serious problem if the time for regrowth is much more than 100 years. This means that the climate system is not sensitive to the imbalance in the carbon cycle that might occur over decades from harvesting of biomass for bioenergy facilities. A scientifically rigorous evaluation of the biomass harvest on the carbon cycle must consider the temporal characteristics of the cycling. Annual accounting of carbon stocks is likely to give highly distorted assessments of the overall carbon cycle impacts.

The Framework also does not consider the length of time it takes ecosystems to respond to disturbances, such as those due to the harvesting of biomass, nor does it consider the spatial heterogeneity in this response. This has implications for the accuracy with which the impact of different land management strategies on carbon stocks in soil and vegetation is estimated.

The Accounting Framework subtracts the emissions associated with products, including ethanol, paper, and timber, from the calculation of emissions from a stationary source, through the PRODC term. While EPA may not have the discretion to treat all emissions equally, distinguishing between immediate emissions from the facility and downstream emissions (as these products will inevitably be consumed within a short period of time) does not make sense scientifically. From the perspective of the carbon cycle and the climate system, there is no difference between these two types of emissions. All these facilities extract biomass from the land, and the vast majority of that biomass is converted to carbon dioxide, adding to cumulative emissions and, hence, a climate response.

Spatial scale: There is no peer reviewed literature cited to support the delineation of spatial scales for biogenic CO₂ accounting. In addition, the Framework allows different carbon pools to be accounted for at different spatial scales with little justification. The atmospheric impact of feedstocks is gauged on a regional basis in terms of its impact on forest carbon stocks (except for case study 5). On the other hand, impacts due to land use change or removal of residues such as corn stover (as captured in the SITE-TNC variable) which impact soil C pools are accounted for using site specific accounting.

The Framework’s use of a regional scale for accounting for the net changes to the atmosphere is an artificial construct developed to (a) avoid the need for site-specific chain of custody carbon accounting with separate streams for each feedstock and (b) as an alternative to capturing changes in carbon stocks over time. The calculation of LAR captures landscape wide changes rather than facility-specific carbon emissions associated with actual fuelsheds. Thus, the Framework captures changes over space, in a sense, substituting space for time. This approach attempts to simplify implementation using available forest inventory data and avoids the need for accounting for changes in carbon stocks specific to the site or feedstock sourcing region (fuelshed) which may be more complex and costly and difficult to verify. However, it makes the estimate of the BAFs sensitive to the choice of the spatial region chosen for accounting purposes. There is no peer reviewed literature to support a decision about the appropriate spatial scale for
determining LAR, and as shown by case study #1, there are significant implications of this choice for the emissions attributed to the facility. Specifically, a ton of carbon emitted in one part of the country may be treated differently from a ton of carbon emitted elsewhere.

Additionality: A key question is whether the harvesting of biomass for bioenergy facilities is having a negative impact on the carbon cycle relative to emissions that would have occurred in the absence of biomass usage. This requires determining what would have happened anyway without the harvesting and comparing the impact with the harvesting of biomass for a bioenergy facility in order to isolate the incremental or additional impact of the bioenergy facility. However, while the Framework discusses the “business as usual” or “anticipated future baseline” approach, it implements a reference point approach that assesses carbon stocks on a regional basis at a given point in time relative to a historic reference carbon stock.

For forest carbon stocks, the choice of a fixed reference point may be the simplest to execute, but it does not actually address the question of the extent to which forest stocks would have been growing/declining over time in the absence of this bioenergy facility. The use of a fixed reference point baseline implies that forest biomass emissions could be considered carbon neutral if forest stocks are increasing. This is simply an artifact based on the choice of the baseline that will be used. The problem is thus: a region with decreasing carbon stocks may in actuality have more carbon than what would have happened without the facility using biomass. Similarly, a region with increasing carbon stocks may have less than would have happened without the facility using biomass. By default, this approach creates “sourcing” and “non-sourcing” regions. Thus, a carbon accumulating region is a “source” of in situ carbon that can be given to support biomass use, and a carbon losing region is a “non-source” of carbon and cannot support biomass use. The reference year approach provides no assurances at all that a “source” region is gaining carbon due to biomass use, or that a “non-source” region is losing carbon due to biomass use.

For example, for roundwood use, a region may have carbon accumulation with respect to the reference year (and be assigned LAR=1 according to the Framework); however, harvest of a 150+ year old forest in the region for energy production would be regarded as a carbon stock gain even though there is less carbon than there would have been otherwise and we would recover only a portion of its carbon within the next 100 years. Likewise, a region which has a slight overall annual loss of carbon (LAR=0), could actually provide roundwood from light thinning of a mid-aged forest, yielding greater regional carbon than there would have been otherwise, where most of the carbon would recover within 100 years. The Framework, however, would view the roundwood supply as carbon stock loss. Since we want to estimate the “difference in atmospheric greenhouse gases” over some period we must estimate how carbon recovery differs between a biomass use case and a case without biomass use (business as usual case).

Assessing uncertainty: The Framework acknowledges uncertainty but does not discuss how it will be characterized and incorporated to assess the potential uncertainty in the estimate of the “carbon outcome” and the BAF value. There are numerous drivers that can change biogenic
carbon stocks, even in the absence of biomass harvesting for energy. These include changes in
economic conditions, domestic and international policy and trade decisions, commodity prices,
and climate change impact. There is considerable uncertainty about the patterns of future land
use, for example, whether land cleared for bioenergy production will stay in production for
decades to come. The potential impact of these forces on biogenic carbon stocks and the
uncertainty of accounting needs to be considered further. Ideally, EPA should put their BAF
estimates into context by characterizing the uncertainties associated with BAF calculations and
estimating uncertainty ranges. This information can be used to give an indication of the
likelihood that the BAFs will achieve the stated objective. The uncertainty within and among
variables for any estimate may vary widely between feedstocks and across regions. If a regional
BAF is to be used, and there is not scientifically justifiable reason for doing so, at the very least,
the uncertainty evaluation should be able to assess if an assigned BAF value for one feedstock in
one area can be confirmed to be significantly different than a BAF estimated and assigned in
another case. If there is no significant difference then they should be assigned one common
value. In addition, uncertainty information would allow policy makers to assign BAF values
after deciding on their aversion to the risk of assigning values that are too high or too low.
Characterizing the uncertainty and risks is a scientific question. Selecting an acceptable risk level
is a policy decision.

Leakage: The Framework states that the likelihood of leakage and the inclusion of a leakage
term will be based on a qualitative decision. There is essentially no science in the document
about how leakage might be quantified and no examination of the literature regarding possible
leakage scenarios (consider Murray et al 2004). A number of statements/assumptions were made
regarding the area and intensity of wood harvest increases to accommodate biomass access.
There was no examination of the scientific literature on wood markets and therefore no science-
based justification for these statements/assumptions.

Other areas: Other areas that require more scientific justification include assumptions regarding
biomass losses during transport and their carbon implications, the choice of a 5 year time horizon
instead of one that considered carbon cycling, and the decision to include only CO2 emissions
and exclude other greenhouse gas emissions need more science based justification. Additionally,
assumptions about the impacts of forest harvests on soil carbon and land use changes on carbon
sequestration need to be more rigorously supported.

Inconsistencies: We found a number of inconsistencies within the proposed framework that
should be resolved or justified:

(1) Biogenic and fossil fuel emissions accounting for losses: The Framework’s handling of
carbon losses during handling, transport, and storage introduces an inconsistency between
how fossil emissions are counted at a stationary source and how biomass emissions are
counted. For biomass emissions the Framework includes emissions associated with loss
of feedstock between the land and the stationary source. For natural gas the emissions
attributed to the stationary source do not include fugitive greenhouse gas emissions from
gas pipelines. Why would loss emissions be included for biomass when they are not included for natural gas?

(2) Inconsistency in the consideration of land management and the associated greenhouse gas flux accounting: The Framework accounts for soil carbon stock changes, which are a function of the land management system, soil, and climatic conditions. However, it does account for the non-CO2 greenhouse gas changes that are jointly produced with the soil carbon changes, as well as influence both the below and above ground carbon stock changes associated with the land management system.

(3) Reference year and BAU baseline use: The Framework proposes using a reference year approach: however, it implicitly assumes projected behavior in the proposed approach for accounting for soil carbon changes and municipal waste decomposition.

(4) Definition of soil. There is a good deal of variation in the Framework as to what soil is: at one point it appears to be defined as all non-feedstock carbon such as slash, surface litter, and dead roots as well as carbon associated with mineral soil, but in other places, the Framework seems to only consider the carbon associated with mineral soil. Unfortunately this inconsistency in the use of the term soil creates confusion regarding interpretation and implementation. When soil is defined as non-feedstock carbon (that is all forms of dead carbon) and then implemented as mineral soil carbon (one form of dead carbon), it is impossible to ensure a mass balance as dead material above- and below ground is accounted for in one place, but then not elsewhere. Inconsistent use of soil carbon means that statements regarding the impact of management cannot be unequivocally assessed. For example, if the broader definition of soil is being invoked, then the statement that management of forests can reduce soil carbon could be justified (Harmon, Ferrell and Franklin 1990), (Johnson and Curtis 2001). However, if the narrower definition of mineral soil carbon is being invoked, then there is very little empirical evidence to justify this statement (Johnson and Curtis 2001); and in fact there is evidence that forest management can at least temporarily increase mineral soil carbon (refs). It is not clear how soil carbon is being used in the Framework.

Soil carbon should be defined and used consistently throughout the document. If defined broadly, then consistent use of subcategories would eliminate much confusion. For example, if organic horizons such as litter are part of the soil, then consistently referring to total soil, organic soil horizons, and mineral horizons would be essential. Had that been done, the confusion about the impact of forest management on soil carbon would have been eliminated as management can greatly influence organic horizons, but have little effect on mineral horizons. If defined narrowly to only include mineral soil, then EPA should develop a terminology for the other carbon pools (e.g., organic horizons, aboveground dead wood, and belowground dead wood) that ensures that mass balance is possible.
To define soil carbon, EPA should consider the merits of an aggregated soil term versus subcategories based on source of the carbon, the controlling processes, and their time dynamics. While the aggregated term “soil” is simple, it potentially combines materials with very different sources, controlling processes, and time dynamics, creating an entity that will have extremely complex behavior. It also creates the temptation of a broad term being used for a subcategory. Separating into woody versus leafy materials would account for different sources and to some degree time dynamics. In contrast, separating into feedstock versus non-feedstock material (as appears to be done in the Framework) creates a poorly defined boundary as woody branches would be soil if they are not used, but could be viewed as not being soil if they are. A feedstock-based system also does not separate materials into more uniform time dynamics (if leaves and wood are not harvested, then materials with lifespans that differ an order of magnitude are combined). Controlling processes, be they management or natural in nature, differ substantially for above- versus belowground carbon; hence they should be divided.

Underlying the need for clear definition of soil in the document is the complexity of soil outcomes that differ based on conditions. Appendix B: Relevant Publications includes a very short list of references from forest science not considered in the Framework. These citations reflect a small subset of those for forest soil science although a number of these articles synthesize information from many publications, in some cases more than 100.

4.3. Does it utilize existing data sources?

First, and most importantly, the Framework does not provide implementation specifics. Therefore, it is difficult to assess data availability and use. These issues are discussed here and in Sections 4.4 and 4.5 that follow.

A more meaningful question is “Are the proposed data sets adequate to account for the effects of biogenic carbon cycling on CO2 emissions from a facility?” The Framework does use existing data, but the data are not adequate to attribute emissions to a facility. For example, the Framework mentions the use of the USDA Forest Service’s Forest Inventory and Analysis (FIA) data at some unspecified scale. However, carbon stock change data are likely not very accurate at the scale of the agricultural or forest feedstock source area for a facility.

The Framework requires data and/or modeling of land management activities and their effects on CO2 emissions and stock changes. For example for agricultural systems, data are required on the type of tillage and the effect of such tillage on soil carbon stocks for different soil types and climatic conditions. Such data are not likely to be available at the required scales. For example, in one of the case studies, the Century model is used to model soil C stocks. Is the use of this particular model proposed as a general approach to implement the Framework? Since this model generally addresses soil carbon only to a depth of 20 centimeters, does that represent a boundary for the Framework? Recent work has shown that such incomplete sampling can grossly
misestimate changes in soil carbon for agricultural practices such as conservation tillage (Baker, et al. 2007, Kravchenko and Robertson 2011);. Which version of the model? Would EPA run this model, and select parameters appropriate for each feedstock production area for each facility? How robust are the predictions of this model for the range of soils, climatic conditions, and management practices expected to be covered by the Framework? Could some other model be used that produces different results for a given facility?

The Framework implies that data are required from individual feedstock producers. Collecting such data would be costly and burdensome. Additionally, to the extent that feedstocks are part of commodity production and distribution systems that mix material from many sources, it is not likely to be feasible to determine the source of all feedstock materials for a facility.

The Framework includes a term for leakage but eschews the need to provide any methodology for its quantification. Mysteriously, example calculations are carried out for leakage in one of the case studies. However, leakage can be positive or negative, and while many publications speculate about certain types of leakage, no data are presented, nor are data sources for different types of leakage discussed and suggested. The Framework does provide an example calculation of leakage in the footnote to a case study, but this does not a substitute for a legitimate discussion of the literature and justification and discussion of implications of choices. In addition, such data are unlikely to be available at the scales required. The implications and uncertainties caused by using some indicator or proxy to estimate leakage need to be discussed. If leakage cannot be estimated well is it possible to put an error range on the leakage value (e.g., a uniform distribution) and assess the impact of this uncertainty on the overall uncertainty in the BAF value? For some cases, such as the conversion of agricultural land to biomass production from perennial crops, leakage may be described as likely increasing net emissions. In cases such as this where prior research has indicated directionality, if not magnitude, such information should be used. As previously noted, there is also a consistency issue with the reference year approach because leakage estimates implicitly assume an anticipated baseline approach of some sort.

In summary, it is not clear that all of the data requirements of the Framework can be met. Furthermore, even if the data are acquired, they may not be adequate to attribute emissions to a facility.

4.4. Is it easily updated as new data become available?

The details of implementing the Framework are not clear, as discussed for other sub-questions. Thus it is also not clear how feasible it would be to update the calculations. However, if many of the data requirements cannot be met currently, as stated above, it is very likely that many of the data will not be easy to update.

In principal it would be feasible to update the calculations as new data become available. Some kinds of data, such as those from FIA are updated periodically, thus it would be feasible to update the analysis. However, as discussed for other sub-questions, it is not clear exactly what data and resolution are required and whether all the required data are readily available.
An annual or five-year time frame is suggested for updating calculations. For some kinds of data, such as soil and forest carbon stocks, these time frames are too short to detect significant changes based on current or feasible data collection methodologies; implying that statistical or process models would be used to estimate short-term changes for reporting purposes.

Lastly, if BAF is not under the control of the facility, it would introduce considerable uncertainty for the facility if the BAF were recalculated frequently. If the goal of a policy using this framework was to reduce greenhouse gas emissions, an overly costly or burdensome accounting framework might not achieve that goal.

However, if the accounting is infrequent, shifts in the net greenhouse gas impact may not be captured.

4.5. Is it simple to implement and understand?

It is neither. While the approach of making deductions from the actual emissions to account for biologically-based uptake/recovery is conceptually sound, it is not intuitive to understand because it involves tracking emissions from the stationary source backwards to the land that provides the feedstock rather than tracking the disposition of carbon from the feedstock and land forwards to combustion and products. The Framework also appears to be difficult to implement, and possibly unworkable, especially due to the requirements for the many kinds of data required to make calculations for individual facilities. Additionally, the categories (variable names) in the Framework do not match those used in the scientific literature and are therefore not intuitive. Lastly, many elements of the Framework are implicit rather than explicit. For example, we assume that there should be a time frame during which changes in atmospheric greenhouse gases will be assessed, but this time frame is not explicit. The time frame for specific processes is often implicit, such as the emissions of CO₂ from biomass that is lost in transit from the production area to the facility; this loss is assumed to be instantaneous.

Much more detailed information is required about how the Framework would be implemented. For example, the specific data sources and/or models to be used and frequency of updating calculations and crediting as discussed under other sub-questions. To assess the adequacy of data, more information is needed on implementation and the degree of uncertainty acceptable for policymakers to assign BAF values.

4.6. Can the SAB recommend improvements to the framework to address the issue of attribution of changes in land-based carbon stocks?

The Framework uses a reference year baseline approach to determining BAF in combination with a regional spatial scale. As mentioned in response to charge question 4.2, this approach is not adequate in cases where feedstocks accumulate over long time periods such as forest sources of wood for energy because it does not allow for the estimation of the incremental effect of wood biomass harvesting on greenhouse gas emissions over time. A way to gauge the difference in
greenhouse gas emissions associated with the use of forest-derived woody biomass would be to
adopt an anticipated baseline approach of estimating a “business as usual” trajectory of
emissions and forest stocks and comparing it with alternate trajectories that incorporate increased
demand for forest biomass, and the associated changes in emissions and forest stocks over time.
The anticipated baseline approach should be applied to determine changes in forest stocks due to
the use of forest material for bioenergy as well as to determine the changes in land use and soil
carbon for all types of feedstocks.

Baseline levels of forest stocks in the future (in the absence of any demand for bioenergy) could
be projected using dynamic models that combine the economic behavior of landowners with the
associated dynamics of forest management and growth while allowing for competing uses of
land for forestry, agriculture and other activities. The use of wood biomass for energy could
result in direct land use (carbon stock) change in areas where wood was removed. It could also
result in indirect land use changes or “leakages” that affect carbon storage and emissions
changes. These indirect changes could be positive or negative and arise due to current or
expected changes in the price of forest and agricultural products. As discussed in Section 3.1,
positive leakage results in an increase in carbon emissions elsewhere due to changes in land use
or forest harvests that result in a release of stored carbon that could offset at least in part the
carbon savings from using bioenergy to displace fossil fuels. Negative leakages refer to enhanced
sequestration of carbon in forest biomass or land due investment in forests—existing and new—
in anticipation of future markets that results in more carbon being sequestered than is directly
harvested to meet the demand for bioenergy. This additional carbon sequestration could arise in
response to price changes that lead landowners to expand forest areas by converting non-forest
land to forests, replant after harvest with new species or improved seeds and other forest
investments.

Any framework to estimate the difference in greenhouse gas emissions between an anticipated
baseline and alternate projections with increased wood energy use must ideally consider both
direct land carbon change and indirect effects. Indirect land use changes could occur both within
the U.S. and elsewhere. US models of the agricultural and forestry sectors could capture indirect
effects in the US, while global models could capture indirect effects internationally.

These models could be used to project an anticipated baseline with no increase in wood use for
energy. The anticipated baseline could be compared to several alternate projections with higher
wood energy use over several decades to isolate the incremental effects of growth in demand for
bioenergy. The anticipated baseline and biomass harvest projections could also be compared to
observed data on forest inventory. A comparison of the projections (and observed forest
inventory) with higher demand for wood energy with the counterfactual baseline would provide
an estimate of the change in forest carbon due to the use of forest biomass for energy. If the
projected carbon inventory with increased demand for bioenergy by a point in time in the future
is not diminished (compared to the projected anticipated baseline by that point in the future),
then enough carbon is gained to offset the emissions from biomass combustion. If the change in
forest carbon in the bioenergy case is less than the additional emissions of bioenergy, then the
recovery of carbon would cover only a part of bioenergy emissions. Validation of the
projections for the bioenergy case with observed data – over time - will be critical to ensure that
the models being used represent changing conditions and observations.
The models used to develop the baseline and alternative scenarios should have several important features:

First, in developing the alternate projections (with bioenergy demand) the framework should recognize the role of markets in responding to increases in demand. In the case of long lived trees, investment in forests is driven by expectations about wood product prices and biomass prices, leading landowners to expand or retain land in forests, plant trees, invest in faster growing species and adjust the timing of harvests. The role of demand and price expectations/anticipation is well developed in the economics literature (e.g., see Muth 1992) and also in the forest modeling literature (Sedjo and Lyon 1990, Adams 1996; Sohngen and Sedjo 1998), which includes anticipatory behavior of future forest carbon prices and markets (USEPA, 2005; Sohngen and Sedjo, 2007; Rose and Sohngen, 2011). There is also empirical evidence for anticipatory behavior in forest investments. For example, over the last 40 years almost 50 million acres of commercial forest have been established in the U.S. as investors anticipated future wood markets for pulpwood, sawlog and veneer logs and associated wood prices. In the absence of anticipation of future markets, there would be no investments in commercial forestry (e.g., no plantings). Anticipatory planting of forest stocks that might occur specifically in response to expectations about biomass prices (as opposed to prices for other forest products) in the future should be incorporated in determining the extent to which the emissions from biomass can be offset by forest carbon change.

The U.S. Energy Information Agency (EIA) has projected rising energy demands for biogenic feedstock based on market and policy assumptions, which could be met from a variety of sources, including energy crops and residues, but also short rotation woody biomass and roundwood (EIA 2012; Sedjo 2010; Sedjo and Sohngen 2012). This could lead to additional investment in forest management in anticipation of future demand, including planting of short rotation woody crops and increased investment in private forests.

Some modeling studies for private forest land that include price expectation effects on investment estimate anticipatory planting at a pace similar to anticipatory planting for short rotation woody crops dedicated to a particular energy plant and result in forest carbon change in a decade (and thereafter) that exceeds the modeled increased cumulative wood energy emissions over the decade (Sedjo and Tian forthcoming). Others models suggest more limited but still notable anticipatory responses to increased wood energy demand that differ across regions. One such model indicates a large response in the South, in the form of less forest conversion to non forest use, but much less response in the North and West (USDA FS 2012, Wear 2011).

As with any modeling, uncertainties will need to be assessed. Models that include price expectations effects or the impact of current year prices would need to be validated. However, validation means different things for different kinds of models. For an econometric model, reproducing history is a form of validation, as is evaluating errors in near-term forecasts. Simulation models are not forecast models. They are designed to entertain scenarios. Validation for simulation models is evaluating parameters and judging the reasonableness of model responses—both theoretically and numerically—given assumptions. Evaluation will help improve representation of average forest and agricultural land management behavior. Evidence affirming or indicating limitations of the effect of prices on investment on retaining or expanding
forest area across various U.S. regions may be found by a review of empirical studies of land use change.

Second, these models should be at a national scale and incorporate the multiple feedstocks (including crop and logging residues) from the agricultural and forest sectors that would compete to meet the increased demand for bioenergy. There would need to be proper tracking of logging residue decay in model projections. The models would provide a single carbon recovery fraction that would cover the combination of logging residue and roundwood used for energy as opposed to separate fractions for logging residue and roundwood.

Although the anticipated baseline approach would be based on a national scale, the models would include regional variations in logging residue decay rates, regrowth after roundwood harvest and the effect of current prices and price expectations on landowner investments. The BAF for public lands would need to be estimated separately since public land management is not responsive to markets. By undertaking a national scale analysis and including both agricultural and forest sectors, leakage across regions and sectors will be accounted for in estimating the change in carbon emissions due to bioenergy use. Global models that include trade across countries in agricultural and forest products can aid in determining the leakage effects on land use in other countries due to increased bioenergy use in the U.S (Sedjo and Sohngen 2012, Ince et al 2011).

Third, projections for the base case and alternate cases would potentially need to be projected for a time period up to the time considered relevant to determine the impact on the atmosphere and climate (see discussion in Section 1.1).

Fourth, the degree of total carbon recovery in a particular future year is initially associated with all the cumulative emissions up to that year. In order to allocate a portion of the end year recovery amount to each prior year (including the initial year of the projection) an assumption will be needed about the shape of a carbon recovery curve for each year’s emissions. The uncertainty in the shape of the curve will be a source of uncertainty in the offset that can be allocated to the current year.

There are several existing models that could be adapted to develop an anticipated baseline. These models differ in the extent to which they include price responsive and forward looking behavior for forest owners, in how they include interactions between the agricultural sector and forest sectors, and whether they include the impact of climate change on world timber markets. A list of references to some examples of such models is included in this report but the SAB has not conducted a detailed review of these models to suggest which model would be the most appropriate.

A model could be selected or modified for implementing this framework after validating its performance. Projections from one model could be compared to those from other models by reviewing the literature on land use change to determine the possible level of land use change in response to forest and agricultural rents and comparison to land area changes projected by models.
Since the initial estimates of carbon recovery will be based on model projections, validated to the extent possible, it will be critical to assess the uncertainty in the estimated carbon recovery out to particular years of interest. Monitoring can help decrease uncertainty as time passes. For deterministic models (FASOM) uncertainty can be assessed using sensitivity runs with altered parameters including those for forest growth and land use investment behavior. For stochastic forest projection models (Forest Service RPA Forest Dynamics model (Vokoun et al. 2009, Polyakov et al. 2010)) multiple stochastic projections can be used to test hypotheses that carbon recovery reaches a certain fraction by a given year with a given level of statistical confidence. Information on forest condition from FIA plots can be used over time (e.g. each 5 years) to compare the actual removals and actual changes in forest carbon to model projections. Model parameters can be adjusted over time to better reflect observed landowner behavior and changing markets and technology.

4.7. Are there additional limitations of the accounting framework itself that should be considered?

A number of important limitations of the Framework are discussed below:

Framework ambiguity: Key Framework features were left unresolved, such as the selection of regional boundaries (the methods for determining as well as implications), marginal versus average accounting, inclusion of working or non-working lands in the region when measuring changes in forest carbon stocks, inclusion/exclusion of leakage, and specific data sources for implementation. As a result, the Framework’s implementation remains ambiguous. The ambiguity and uncertainty in the text regarding what are stable elements versus actual proposals also clouded the evaluation. If EPA is entertaining alternatives and would like the SAB to entertain alternatives, then the alternatives should be clearly articulated and the proposed Framework and case studies should be presented with alternative formulations to illustrate the implementation and implications of alternatives.

Feedstock groups: The proposal designates three feedstock groupings. However, it is not clear what these mean for BAF calculations, if anything. The Framework does not incorporate the groupings into the details of the methodology or the case studies. As a result, it is currently impossible to evaluate their implications.

Potential for Unintended consequences: The proposed Framework is likely to create perverse incentives for investors and land-owners and result in unintended consequences. For investors, the regional baseline reference year approach will create regions that are one of two types — either able to support bioenergy from forest roundwood (up to the gain in carbon stock relative to the reference year), or not. As a result, a stationary source investor will only entertain keeping, improving, and building facilities using biomass from regions designated as able to support bioenergy. However, as noted previously, regions losing carbon relative to the reference year, could actually gain carbon stock in relative terms due to improved biomass use and management to meet market demands. In addition, the definitions of regions would need to change over time. The designation of regions as able or not to support bioenergy that comes from the reference year
approach will create economic rents and therefore financial stakes in the determination of regions and management of forests in those regions.

The proposed Framework could also potentially create perverse incentives for land-owners. For instance, land owners may be inclined to clear forest land a year or more in advance of growing and using energy crops. Similarly, land owners may be more inclined to use nitrogen fertilizers on feedstocks or other lands in conjunction with biomass production. Such fertilization practices have non-CO$_2$ greenhouse gas consequences (specifically N$_2$O emissions) that would not be captured by the Framework. Agricultural intensification of production via fertilization is a possible response to increased demand for biomass for energy.

Assessment of Monitoring and Estimation Approaches: The Framework is also missing a scientific assessment of different monitoring/estimation approaches and their uncertainty. This is a critical omission as it is essential to have a good understanding of the technical basis and uncertainty underlying the use of existing data, models, and lookup tables. A review of monitoring and verification for carbon emissions from different countries, both from fossil and biogenic sources, was recently released by the National Research Council that may provide some guidance (National Research Council 2010).
5. Case Studies

Charge Question 5: EPA presents a series of case studies in the Appendix of the report to demonstrate how the accounting framework addresses a diverse set of circumstances in which stationary sources emit biogenic CO₂ emissions. Three charge questions are proposed by EPA.

Overall Comments

In general, case studies are extremely valuable for informing the reader with examples of how the Framework would apply for specific cases. While they illustrate the manner in which a BAF is calculated, the data inputs are illustrative and may or may not be the appropriate values for an actual biomass to energy project. Moreover, they are simplistic relative to the manner in which biomass is converted to energy in the real world. For all case studies, there should be additional definition of the contexts, examples of how the ‘data’ are collected or measured, and a discussion of the impacts of data uncertainty. Overall, the case studies did not fully cover the relevant variation in feedstocks, facilities, regions, etc. of potential BAFs that is required to evaluate the methodology. From a clarity and ‘teaching’ point of view, it might be useful to start with a specific forestry or agricultural feedstock example as the ‘base case’, and then add in the impacts of the more detailed cases, e.g., additional loses, products, land use changes. This may be more useful than a series of completely separate examples, each including different pieces of the framework/equation.

5.1 Does the SAB consider these case studies to be appropriate and realistic?

The case studies did not incorporate “real-world” scenarios which would have served as models for other situations that may involve biogenic carbon emissions. More would have been learned about the proposed Framework by testing it in multiple, unique case studies with “real world” data development and inclusion. The current set of case studies did not fully cover the relevant variation in feedstocks, facilities, regions, etc. of potential BAFs that would be required to evaluate the methodology. Among other things, additional case studies for landfills and waste combustion, switchgrass, waste, and other regions are necessary, as well as illustrations of the implementation of feedstock groups, and framework alternatives.

For example, Case Study 4 considers a scenario where corn stover is used for generating electricity. While it is possible that this particular scenario could be implemented, for the present time and maybe into the future, this particular case study does not mirror a “real world” case in that very few if any electrical generation facilities would combust corn stover or agricultural crop residues only. A more likely scenario might be a co-firing facility with a fossil fuel at low percentages. Additionally, the assumptions made in this case about biomass yield and the rate of growth of yield are not realistic. The yield of corn stover is expected to vary considerably across the region expected to supply biomass to a facility and to grow over time and not be uniform as assumed in the Framework.
In another example, Case Study 5 calculates the net biogenic emissions from converting agricultural land in row crops to poplar for electricity production. This case study is also not representative of “real world” agricultural conditions as switching from one energy crop to another is not realistic. The formula provided for estimating the standing stock of carbon in the aboveground biomass in the poplar system is not intuitive. The methods for determining biomass yield as well as for measuring changes in soil carbon, which will depend on current use of the land (whether it is conventionally tilled or under a perennial grass), are not described.

5.2. Does the EPA provide sufficient information to support how EPA has applied the accounting framework in each case?

There remained considerable uncertainty in many of the inputs. In addition, some sensitivity/uncertainty analysis would be useful. The results of this analysis may guide EPA in further model development. For example, if the BAF is determined to be zero, or not statistically different from zero in most case studies, then this could pave the way for a simpler framework. As discussed in Section XS, a simpler framework based on categorization of feedstocks could be designed to identify cases where biomass to energy generally results in a BAF of 0, 1 or something in between.

5.3. Are there alternative approaches or case studies that EPA should consider to illustrate more effectively how the framework is applied to stationary sources?

The major recommendation is additional case studies be performed and that these case studies be designed to describe actual or proposed biomass to energy projects where the framework would be used based on “real-world” situations of biomass development, production, and utilization. For example, Case Study 1 describes the construction of one new plant. What would happen if ten new plants were to be proposed for a region? In each case study, we would like to see development of the required data and an assessment of whether data development can be standardized and/or simplified. And how would the introduction of multiple facilities at the same time impact the accounting for each facility? We support the suggestion in the report that look-up tables be developed. However, only by trying to develop these look-up tables can EPA assess whether this is workable.

All terms/values used to determine the BAF need to be referenced to actual conditions throughout the growth/production/generation processes that would occur in each case study including how these values would actually be implemented by one or more parties/entities involved.

Examples of needed case studies could be perennial herbaceous energy crop, annual energy/biomass sorghums, rotations with food and energy crops, cropping systems on different land and soil types, municipal solid waste and internal reuse of process materials and assessments across alternative regions that represent distinctly different types.
For example it would be very useful to consider the application of this framework to a cellulosic ethanol plant fueled with coal or gas, and consider the emission of CO\textsubscript{2} from fermentation (not combustion) and the production of ethanol which is rapidly combusted to CO\textsubscript{2} in a non-stationary engine. There are three major sources of CO\textsubscript{2} emissions (list them here), but only one is included in this framework, only two may be considered under the clean-air action, but all three are emissions to the atmosphere. This lack of internal consistency makes the evaluation difficult.

Among the case studies, we suggest that there be two on municipal solid waste. One case study should be on waste combustion with electrical energy recovery. EPA should also perform a case study on landfill disposal of municipal solid waste. Here it is important to recognize that landfills are repositories of biogenic organic carbon in the form of lignocellulosic substrates (e.g., paper made from mechanical pulp, yard waste, food waste). There is literature to document carbon storage and EPA has recognized carbon storage in previous greenhouse gas assessments of municipal solid waste management.

In Case Study 3 the data used in Table 3 to describe the ‘paper co-product’ will vary with the grade of paper. The ‘carbon content of product’ may vary between 30\% to 50\% depending on the grade and the amount of fillers and additives. Also, some significant carbon streams in a mill can go to landfills and waste water treatment. The submitted comments from NCASI include a useful example of the detail/clarity that could be used to enhance the value of the Case Studies.

After completion of the case studies, there should be a formal evaluation of (1) whether the results make sense and achieve appropriate results with respect to biogenic CO\textsubscript{2} emissions (2) the ease with which data were developed and the model implemented, and (3) whether the results are robust and useful in recognition of the uncertainty in the various input parameters, and (4) whether the model results lead to unintended consequences as discussed in response to charge question 4.7.

Case studies could be developed to assess and develop a list of feedstocks or applications that could be excluded from accounting requirements as anyway emissions. A sensitivity analysis using case studies could be used to develop reasonable offset adjustment factors if they are needed to adjust anyway feedstocks for impact on long term stocks like soil if needed.
6. Overall Evaluation

Charge Question 6: Overall, this report is the outcome of EPA’s analysis of the science and technical issues associated with accounting for biogenic CO₂ emissions from stationary sources.

6.1. Does the report—in total—contribute usefully to advancement of understanding of accounting for biogenic CO₂ emissions from stationary sources?

Yes, the Framework contributes to advancing understanding of accounting for biogenic emissions and addresses many issues that arise in such an accounting system. It is thoughtful and far reaching in the questions it tackles. Its main contribution is to force important questions and offer some ways to deal with these. The report covers many of the complicated issues associated with the accounting of biogenic CO₂ emissions from stationary sources and acknowledges that choices made in the Framework to address them will have implications for the estimates of CO₂ emissions obtained. These include those raised by SAB and discussed above, related to the choice of baseline, region selection and the averaging of emissions/stocks over space and time. However, the solutions offered in many cases, particularly those related to the use of harvested wood for bioenergy, lack a scientific justification.

6.2. Does it provide a mechanism for stationary sources to adjust their total onsite emissions on the basis of the carbon cycle?

Clearly the Framework offers a mechanism to adjust total on-site emissions. For short recovery feedstocks (i.e., agricultural residues, perennial herbaceous crops, mill wood wastes, other wastes), the Framework could, with some modifications, accurately represent the direct carbon changes offsite. Leakage, however, both positive and negative, remains a troublesome matter if left unresolved. Moreover, the Framework offers no scientifically sound way to define a region. The definition of the regional scale can make a large difference to the estimate of emissions from a facility using wood as a biomass. Moreover, if there is no connection between actions of the point source and what happens in the region there is no scientific foundation for using regional changes in carbon stocks to assign a BAF to the source.

The Framework also does not make a clear scientific case for use of waste or what is called “anyway” emissions. Scientifically speaking, all biogenic emissions are “anyway” emissions. Even most woody biomass harvested from old growth forests, would, if left undisturbed eventually die, decompose, returning carbon to the atmosphere. The appropriate distinction is not whether the product is waste or will eventually end up in the atmosphere anyway, but whether the stationary source is leading to an increase or a decrease in biogenic carbon stocks and associated change in GWP. To do this, the Framework must consider the time period for “anyway” emissions and that this may vary across different types of waste feedstocks.

An important limitation of the proposed Framework is that the accounting system replaces space for time and applies responsibility to things that happen on the land, to a point source, for which
the agent who owns that point source has no direct control. The proposed approach would estimate an individual point source’s BAF based on average data in a region in which it is located. Any biogenic carbon accounting system that attempts to create responsibility or give credit at a point source for carbon changes upstream or downstream from the point source must relate those responsibilities and credits to actions under control of the point source. However, the Framework does not clearly specify a cause and effect relationship between a facility and the biogenic CO2 emissions attributed to it. In particular, if the BAF is assigned to a plant when it is approved for construction, as the BAF is currently designed, those emissions related to land use change will have nothing to do with that actual effect of the point source on land use emissions because the data on which it is based would predate the operation of the plant.

The dynamics of carbon accumulation in vegetation and soils present a challenge for any accounting system because in principle it implies that BAF estimates such as those proposed by EPA should be based on anticipated future changes in vegetation. These future changes depend on natural processes such as fires and pests that are not easily foreseen, and because of climate change and broader environmental change, we face a system that is certainly not stable, and so projecting forward based on current or historical patterns is likely to generate significant errors and biases of unknown direction and magnitude. More important, however, is that land use decisions are under control of landowners, whose actions would need also to be projected. The Framework recognizes this issue and chooses to use a Reference Point Baseline. The limitations of this approach for adjusting the CO2 emissions from biogenic sources have been discussed above. As discussed in response to the next charge question, an alternative to using this approach would be to develop an accounting system based on observable and measured changes rather than projections as discussed in response to the charge question that follows.

EPA’s regulatory boundaries, and hence the Framework, are in conflict with a more comprehensive carbon accounting that considers the entire carbon cycle and the possibility of gains from trade between sources, among sources or between sources and sinks. For example, by restricting its attention to the regulation of point source emissions, EPA’s analysis does not allow for the possibility that a fossil CO2 emitter could contract with land owners to offset their emissions through forest protection and regrowth or carbon accumulation in soils. As far as the climate is concerned, it makes no difference if land use change is used to offset CO2 that was of fossil origin or of biogenic origin, however, by staying within boundaries drawn narrowly around the stationary source, the Framework eclipses a more comprehensive approach to greenhouse gas reductions that would address all sources and sinks and take advantage of gains from trade. Scientifically, a comprehensive carbon accounting would extend downstream—to emissions from by-products, co-products, or products such as ethanol combustion or ethanol by-products such as distillers dried grains (DDGs) that are sold as livestock feed and will soon become CO2 (or CH4).

6.3. Does the SAB have any advice regarding potential revisions that might enhance the final document?
Overall, the Framework would be enhanced by including a description of its regulatory context and specifying the boundaries for regulating upstream and downstream emissions while implementing the regulation. The motivation for the Framework should have been explained as it relates to Clean Air Act requirements. The Framework should also make explicit the constraints within which greenhouse gases can be regulated under the Clean Air Act. In doing this, EPA could be clear that these issues have not been settled but that some assumptions were necessary to make a decision about the Framework. EPA could also stipulate that further development of a regulatory structure might require changes to the accounting system. While the SAB understands the EPA’s interest in describing an accounting system as a first step and potentially independent of the regulatory structure, the reader needs this background in order to understand the boundaries and context for the accounting structure and to evaluate the scientific integrity of the approach.

Similarly, the Framework is mostly silent on how possible regulatory measures under the Clean Air Act may relate to other policies that affect land use changes or the combustion/oxidation of products from the point sources that will release carbon or other greenhouse gases. For example, if a regulatory or incentive system exists to provide credits for carbon offsets through land use management then under some conditions it would be appropriate to assign a BAF of 1 to biogenic emissions given that the carbon consequences were addressed through other policies.

The Framework does not describe how it will address emissions downstream from a point source such as in the case of a biofuels or paper production facility where the product (biofuels, paper) may lead to CO₂ emissions when the biofuels are combusted or the paper disposed of and possibly incinerated. For example, if paper products are incinerated the incinerator may well be a point source that comes under Clean Air Act regulation. However, biofuels used in vehicles would not be subject to regulation as a point source. EPA needs to make clear the implicit assumptions on how biogenic carbon will be treated upstream and downstream from the point source if this Framework is used to regulate CO₂ emissions under the constraints imposed by the Clean Air Act for regulating stationary sources.

Recommendations for Revising BAF

Many of the issues raised in previous responses regarding the treatment of specific factors included in the Framework are specific to particular feedstocks. The clarity of the Framework would be improved by differentiating among feedstocks based on how their management and use interacts with the carbon cycle. Feedstocks could be categorized into short rotation dedicated energy crops, crop residues, forest residues and long rotation trees. A BAF equation should be developed for each of these categories of feedstocks, preferably separating out “anyway” emissions feedstocks from those that have significant emissions.

If EPA decides to revise the Framework, the following recommendations for specific improvements are summarized below.
• Develop a separate BAF equation for each feedstock category. Feedstocks could be categorized into short rotation dedicated energy crops, crop residues, forest residues, perennial crops, municipal solid waste, long rotation trees and waste materials.
 i. Separate out feedstocks which could be classified as “anyway” emissions so that their BAF would automatically be either set to 0.
 ii. For long-recovery feedstocks like woody biomass, use an anticipated baseline approach To compare emissions from increased biomass harvesting against a baseline without increased biomass demand.
 iii. For residues, incorporate information about decay, replacing the assumption of instantaneous decomposition with decay functions which reflect the storage of ecosystem carbon.
 iv. For municipal solid waste, take into account the mix of biogenic and fossil carbon when waste is combusted as well as incorporate emissions of methane from landfills.
• Incorporate a time scale and consider the tradeoffs in choosing between different time scales.
• For all feedstocks, consider information about carbon leakage to determine its directionality as well as leakage into other media.
7. Alternative Approaches for the Agency’s Consideration

There are no easy answers to accounting for the greenhouse gas implications of bioenergy. Given the uncertainties, technical difficulties and implementation challenges associated with implementing the Framework, the SAB encourages EPA to “think outside the box” and look at alternatives to EPA’s current policy menu. The following alternatives to a facility-specific BAF approach are offered for the Agency’s consideration, while recognizing the difficulties associated with each one. The SAB cannot offer any opinion on the legality of these options.

1. Consider developing default BAFs for each feedstock category. As already discussed, the clarity of the Framework would be improved by differentiating among feedstocks based on how their management and use interacts with the carbon cycle. Many of the issues raised in previous responses regarding the treatment of specific factors included in the Framework are specific to particular feedstocks. To develop default BAFs, feedstock groups could be differentiated based on general information on how their particular harvest and combustion patterns interacts with the carbon cycle. Special attention should be given to whether and which feedstocks could be classified as “anyway” emissions. For longer recovery feedstocks, EPA would need to use forest growth models to plot carbon paths that track regrowth following harvest. Many more case studies would be needed to develop an accounting focused on feedstocks rather than the facility.

2. Consider certification systems. This approach would be based on a new type of certification, not traditional forest certification, but certification specific to the effect of using forest resources for bioenergy on greenhouse gas balances. Certifications systems would have the advantage of being tied to the feedstock’s fuelshed or actual sourcing area. This would likely involve the use of complex protocols similar to those used in offsets programs, which require quantifiable and verifiable accounting for net greenhouse gas changes of the system (using a specified baseline determination for consistency), as well as accounting for additionality, leakage, and permanence. However, a certification approach would make the stationary source responsible for demonstrating carbon neutrality and, in so doing, the source would be linked to its land base. This would remove the perverse situation of a responsible bioenergy facility, using feedstock produced in a highly sustainable manner, being penalized because it happens to be located in a region where other, less sustainable forest activities are causing carbon stocks to decline. It would also avoid the problem of a bioenergy facility that uses biomass harvested in an unsustainable manner benefiting from operating in a region where carbon stocks happen to be growing. This may, however, increase complexity and costs of accounting for the carbon emissions of a stationary source. Caution is also advised that such an approach could create global leakage effects that may overwhelm any carbon reduction achieved. The case could occur in which a facility using sustainably produced biomass has an apparent benefit on a regional scale but net negative effects on a global scale.
There is some precedent for certification for forest materials, however carbon in agricultural systems can be quite costly to quantify and may have significant uncertainty. For all types of feedstocks, there would also be costs for tracking chain of custody and verification along this chain. Despite these difficulties, carbon certification programs dealing with similar costs and complications are proving that, in some circumstances, it can work. Voluntary and regulatory carbon certification programs have been developing methodologies for tracking forest carbon for forest management for a number of years (Reserve 2012). The Climate Action Reserve (Reserve 2012), American Carbon Registry (Registry 2012) and Verified Carbon Standard (Verified Carbon Standard Association) all have forest management methodologies that address additionality, baseline, leakage, and permanence issues in various ways (Galek, Mobley and Richter 2009).

However, only CAR has seen a significant number of projects developing in the U.S. (more than 40) using this protocol. The California Air Resources Board has approved CAR’s forest protocols for the offsets program under their new regulations (California Air Resources Board 2012). Protocols on soil carbon in agricultural systems are in active use in Canada and in early stages of development for the US (Coren 2012).

To certify greenhouse gas neutrality means ensuring that the feedstock source (e.g., managed forest area, cropping system, or landfill) is not on a trajectory of carbon loss (carbon mining). It does not require determining the specific size of change in carbon or greenhouse gases, just a determination of whether the system’s net greenhouse balance is negative or not. Given uncertainties this may be less complex and costly than trying to determine the specific size of the change in greenhouse gases.

Alternatively, a certification system could be designed to determine the specific size of a change in greenhouse gases. If a feedstock source is sequestering carbon or reducing greenhouse gas emissions it would then have higher value to the buyer, and feed stocks that are net emitters while of lesser value could still be used and would have incentive to improve over time. As noted above this is likely complex and costly, but may be viable given sufficient financial incentive.

With either of these certification approaches the feedstock source greenhouse gas balance information would need to be incorporated into accounting at a facility level. A facility would calculate their biogenic emissions factor based on their feedstock sources. In the first case if all current feedstock sources are greenhouse gas neutral, then the facility can be exempted and allowed to use an emissions factor of 0, if they are not all neutral the facility could assume an emissions factor of 1 for the proportion of feedstock that is not neutral. For example:

\[0.25 \times 0 + 0.25 \times 1 + 0.5 \times 0 = 0.25\]

25% Feedstock 1 x 0 (neutral) + 25% Feedstock 2 x 1 (not neutral) + 50% Feedstock 3 x 0 (neutral) = 0.25 is the emissions factor used to calculate biogenic emissions.

Clearly facilities will have incentives to use neutral feed stocks under this approach.
If the feedstock sources want to actual quantify the change in greenhouse gas balance the accounting could be a bit more complex where the feedstock factors are negative if the feedstock is reducing net greenhouse gases, or slightly positive (between 0 and 1), rather than 1 if there is some loss. For example: 25% Feedstock 1 x 0 (neutral) + 25% Feedstock 2 x 0.80 (20% C loss) + 50% Feedstock 3 x -0.1 (C storing) = 0.15 is used as the emissions factor in the calculation of biogenic emissions.
Works Cited

Massachusetts v. EPA. 05-1120 (U.S. Supreme Court, April 2, 2007).

Appendix A: Fate of Residue after Harvest and Landscape Storage of Carbon

The decomposition of materials left after harvest can be estimated from the negative exponential decay equation (Olson 1963): \(C_t = C_0 \exp[-kt] \) where \(C_t \) is the amount at any time \(t \), \(C_0 \) is the initial amount, \(k \) is the rate-constant of loss, and \(t \) is time. Solving this function for a range of rate-loss constants results in the relationship shown in Figure 1 for a range of \(k \) that covers the most likely range for decomposition rates of leafy to woody material in North America. In no case does the store instantaneously drop to zero as assumed in the current framework.

![Figure 2: Fate of residue/slash left after harvest as function of k and time since harvest.](image-url)
The amount of carbon stored on average in a landscape or fuel-shed comprised of units or stands that generate equal amounts of residue or slash is given by: I/k, where I is the average landscape input of residue or slash. To create a relative function independent of the amount of residue or slash created, the input of each harvest unit or stand can be set to either 1 (to give the proportion of the input) or 100 (to give a percent of the input). The average landscape input (I) would therefore be equal to $1/R_H$ or $100/R_H$ where R_H is the harvest return interval. Using this relationship to solve the average landscape store relative to the input is presented in Figure 2 for the most likely range of decomposition rates for leafy to woody material in North America. This indicates that there are a wide range of possible cases in which the store of residue or slash can exceed the initial input (shown by the horizontal line indicating storage of 1). This means that combusting this material will cause the store to drop by the amount indicated, and this amounts to the net flux of carbon to the atmosphere. To a large degree there is a negative relationship between the harvest interval and k; materials with high values of k (i.e., leafy) are typically harvested with short intervals between harvests and material with low values of k (i.e., large wood) are typically harvested with long interval between harvests. This suggests that the effect of harvesting residues and slash is largely independent of the loss rate-constant.

Figure 3: Landscape average store of residue/slash as function of k and harvest interval.
Appendix B: Relevant Publications

Literature on Carbon Storage in Landfills:

Literature on Forest Science and Soil Carbon Effects

Literature on Lifecycle Analysis

Literature on ???

B-3