Microarray Gene Expression Analyses in Medaka (Oryzias latipes) Exposed to Hypoxia

Melissa Wells
Molecular Biosciences Research Group
Texas State University
San Marcos, TX
Overview of Experimental Plan

Hypoxia treatment
Tissue collection
Protein
RNA
Real-time PCR
Microarray
Probe preparation
Hybridization
Scan slides
Calculate transcription changes
Data mining
DIGE Analysis
Compare results
The Medaka Model

- Short generation times of 2-4 months.
- Genome size that is smaller than other models such as zebrafish and mammals.
- A large number of medaka ESTs generated through the Medaka Genome Initiative in Japan are publicly available (http://mbase.bioweb.ne.jp/~dclust/medaka_top.html).
- Collaborative efforts with the University of Southern Mississippi.
Medaka Oligonucleotide Microarray

- 60-mer oligonucleotide spotted on amine silane-coated slides.
 - Tm = 75±5°C.
 - Sequences within 1kb of 3' end of the coding region.
 - Maximum length of simple repeats: 6 bases.
 - BLAST searched to verify oligo specificity.
 - Yield: 8,046 ESTs meet criteria.

- (+) control is medaka cytoplasmic β-Actin.
- (-) control is a yeast tRNA.

- Oligos synthesized by Integrated DNA Technologies in 384-well plates.
 - Quality control ran on every oligo measuring full-length oligos provide targets.
Medaka Oligonucleotide Microarray

- 8,046 features (e.g. 60-mer oligo targets) plus controls spotted in duplicate to verify signal consistency across each slide.
- 337-338 features per sub-block (including controls).
- Spot quality is excellent:
 - Clean and even.
 - Minimum doughnut-shaped spots.
 - Allows feature data to be measured consistently.

[Image showing arrayed features]
Gene Detection Capability

Standard vs. Amplification Protocols

<table>
<thead>
<tr>
<th>Number of Genes Detected</th>
<th>Cy3</th>
<th>Cy5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>6602</td>
<td>5717</td>
</tr>
<tr>
<td>1</td>
<td>7136</td>
<td>7501</td>
</tr>
<tr>
<td>2</td>
<td>7580</td>
<td>7580</td>
</tr>
<tr>
<td>5</td>
<td>3297</td>
<td>2855</td>
</tr>
<tr>
<td>10</td>
<td>7571</td>
<td>7578</td>
</tr>
<tr>
<td>20</td>
<td>7471</td>
<td>93%</td>
</tr>
</tbody>
</table>

Total RNA (ug)

- Standard Amplification Protocol
- Amplification Protocol

<table>
<thead>
<tr>
<th>Number of Genes Detected</th>
<th>0.5</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Treatment Method

- Biospherix OxyCycler oxygen control system
Treatment Method

- Biospherix OxyCycler oxygen control system
 - Measures oxygen levels both in the water and headspace above the water.
 - Precision = ± 0.1 mg O₂/L
 - Adjusts gas infusions into the system via a feedback loop to achieve desired set point.
 - Real-time data monitoring & continual logging.
 - Allows manual or automatic control including recipes.
Oxygen Levels During Treatment

Dissolved Oxygen Over Experiment Duration

Control

Experimental

mg O2/L

0 24 48 72 96 120 144 168 192 216 240 264

Hours Elapsed

Oxygen Levels During Treatment
Visual Medaka Responses

- In aquaria:
 - Heavy respiration
 - Lethargic
 - Lack of appetite

- Upon dissection:
 - Very dark and enlarged gall bladders – a possible indication of liver stress.
aRNA Probe Synthesis

- 2 µg total RNA template amplification protocol

First strand synthesis
 - Random hexamer/primer (SuperScript III™
 - T7 (dT)24 primer

Second strand synthesis
 - DNA Ligase, DNA Polymerase I, RNase H, T4 DNA polymerase
 - Clean up with Qiagen Qiaquick PCR Purification kit

- In vitro transcription of amplified RNA (aRNA)
 - Cy-3 (fluoresces green) or Cy-5 (fluoresces red) labeled CTP
 - T7 RNA polymerase
 - Clean up with Sigmapro RNA Kit
Hybridization

- UV crosslinking to bind oligos to slide.
- Prehybridized slides with BSA to block background noise.

Hybridization:
- COT-1 DNA blocks highly repetitive, non-specific binding to targets.
- Poly d(A) blocks non-specific binding to any poly-T tails.
- Yeast tRNA binds to (-) control (has no fluorescent dye).
- Hybridization buffer, mostly formamide with SSC & SDS to aid in selecting for specific binding.
- Hybridized overnight, 16-20 hours.

Wash steps:
- 4 wash steps
- Stepping down concentrations of SSC and SDS
- Stepping down temperature
- Spin dry

Genomic Solutions Hybstation
Analysis

- Microarrays are scanned with an Axon GenePix 4000B scanner.
 - Red: Cy5 sample most abundant
 - Green: Cy3 sample most abundant
 - Yellow: Cy5 & Cy3 samples equally abundant
 - White: Feature is saturated with dye.

- GenePix software flags "bad" data:
 - Irregular shapes
 - < 70% of feature pixels are at least 2 std. deviations above background
 - Scratches, splotches, etc.

- GenePix software normalizes to the global mean.
 - Assumption that most genes' transcription levels are unchanged.
Analysis

- Repeats compared to one another as well as to their corresponding dye-flips.
 - Dye-flips counterbalance any potential biases in dye signal.
 - Recall: a minimum of 24 repeats (12 per dye-flip) are collected.

- Verify reproducibility via a Pearson correlation, r≥0.85.

- Intensity data subjected to a 1-sample t-test or SAM analysis to test for significance
 - p-value ≤ 0.05
 - q-value = 0

- Compute fold-increases

- Choose spots for verification via real-time PCR.
Analysis

- Differentially expressed features mined for re-annotation, gene ontology, and pathway:
 - Swiss-Prot
 - Database for Annotation, Visualization, and Integrated Discovery (DAVID)
 - Kyoto Encyclopedia of Genes and Genomes (KEGG)
Hypoxia Responsive Features by Tissue

A. Transcription up-regulated in medaka
q-value = 0

B. Transcription down-regulated in medaka
<table>
<thead>
<tr>
<th>GenBank Acc #</th>
<th>Match_id</th>
<th>Symbol</th>
<th>Description</th>
<th>e-value</th>
<th>BitScore</th>
<th>Functional Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>BJ005346</td>
<td></td>
<td>EST</td>
<td>Hypoxia induced genes in medaka</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BJ529972</td>
<td></td>
<td>EST</td>
<td>Hypoxia suppressed genes in medaka</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB009569</td>
<td>Q9WVL4</td>
<td>GRK1</td>
<td>RK_MOUSE (Rhodopsin kinase (RK))</td>
<td>0</td>
<td>744</td>
<td>Signal transducer</td>
</tr>
<tr>
<td>AB023489</td>
<td>P18910</td>
<td>NPR1</td>
<td>ANPRA_RAT (Atrial natriuretic peptide A-type receptor))</td>
<td>0</td>
<td>1263</td>
<td>Signal transducer</td>
</tr>
<tr>
<td>AB041330</td>
<td>Oryzias latipes c GnRH-II mRNA for prepro-gonadotropin-releasing hormones-II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AU169186</td>
<td>Q8K097</td>
<td>FAIM2</td>
<td>FAIM2_MOUSE (Fas apoptotic inhibitory molecule 2 (Lifeguard protein))</td>
<td>1.00E-04</td>
<td>45.1</td>
<td>Anti-apoptosis</td>
</tr>
<tr>
<td>AV669091</td>
<td>P70158</td>
<td>SMPDL3A</td>
<td>AS3A_MOUSE (Acid sphingomyelinase-like phosphodiesterase 3a precursor)</td>
<td>3.00E-33</td>
<td>139</td>
<td>Signal transducer</td>
</tr>
<tr>
<td>D89724</td>
<td>Q8UW64</td>
<td>N/A</td>
<td>PSB9_ORYLA (Proteasome subunit beta type 9 precursor)</td>
<td>4.00E-114</td>
<td>409</td>
<td>Hydrolase</td>
</tr>
<tr>
<td>Y11252</td>
<td>P55260</td>
<td>ANXA4</td>
<td>ANXA4_RAT (Annexin A4 (Annexin IV))</td>
<td>1.00E-119</td>
<td>428</td>
<td>Binding</td>
</tr>
</tbody>
</table>
Gene Ontology Conclusions

- Gene ontology data was available for 424 of the identified spots.
 - The majority fell into various metabolism ontology groups, such as protein and mRNA, and were down-regulated.
 - Also represented groups include cell maintenance, transport, and the ubiquitin-cycle, among others.
- Overall, these results imply an energy conservation response and slow-down of general metabolic activities.
- Recall (lethargic fish, lack of appetite)
Real-time PCR Validation

R² = 0.7498
Conclusions

- Our medaka microarray yields reproducible data which correlates well with results from conventional PCR analysis, allowing for the calculation of changes in gene expression with high confidence levels.
- Over one thousand transcripts are found to vary their abundance with hypoxia exposure.
- Data mining offers glimpses into pathways and disorders associated with changes in environmental stimuli.
- More work is necessary to determine which transcripts are consistent over a set of experiments analyzing both RNA and protein. These will be pursued as potential biomarkers.
Future Plans

- Hypoxia exposures
 - Kinetic response
 - Episodic oxygen levels
- Heavy metal exposures
- Combinations of hypoxia and heavy metal exposures.
Microarray Gene Expression Analyses in Japanese Medaka (Oryzias latipes) Exposed to Hypoxia

Melissa Wells, Dr. Zhenlin Ju, Sheila Heater, and Dr. Ronald Walter

Thanks to:
Leon Oehlers
The Xiphophorus Genetic Stock Center
NOAA National Ocean Service grants NA04NO54260202 and NA05NO54261162
Roy F. and Joanne Cole Mitte Foundation
Publications

Sources

- http://www.yd-g.co.jp/medaka.jpg
- http://mbase.bioweb.ne.jp/~dclust/medaka_top.html
Our Medaka Array Successfully Detects Xiphophorus Genes

<table>
<thead>
<tr>
<th>Species</th>
<th>Number of Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medaka</td>
<td>Undetected</td>
</tr>
<tr>
<td>Xiphophorus</td>
<td>Detected</td>
</tr>
</tbody>
</table>
Update – Current Processing & Techniques

• Employing an indirect labeling protocol of our aRNA probe:
 – Amino-allyl group acts as spacer, reducing crowding to facilitate dye-binding.

• Step-down hypoxia treatments:
 – Allows time for the fish to adjust to changing conditions.
 – Improves survival rates over time implying physiological adaptations.
<table>
<thead>
<tr>
<th>GenBank No.</th>
<th>Description</th>
<th>Fold Change (Log2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BJ743818</td>
<td>Proteasome 26S subunit ATPase 1 (RPT2)</td>
<td>-1.9 0.19</td>
</tr>
<tr>
<td>D89724</td>
<td>Proteasome subunit beta type 9 precursor (P9beta)</td>
<td>-2.0 0.49</td>
</tr>
<tr>
<td>BJ716044</td>
<td>26S proteasome regulatory subunit (RPN8)</td>
<td>-1.9 0.40</td>
</tr>
<tr>
<td>BJ028102</td>
<td>Proteasome activator 28-beta subunit (PA28beta)</td>
<td>-1.2 0.16</td>
</tr>
</tbody>
</table>

Down-regulated genes involved in the proteasome pathway in medaka brain.
Sample Genes with Regulation Changes and Associated Diseases