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Overview

• Difference Gel Electrophesis (DIGE)
– What is DIGE?
– Identifying candidate hypoxia biomarkers

• Brain
• Fin

• geLC-MALDI-PSD
– What is geLC?
– Identifying candidate hypoxia biomarkers 

• Cultured cells
• Liver

• Conclusions and future plans



Medaka hypoxia exposure conditions:

• Four 20-gallon aquaria used - two for control and two for 
hypoxia.

• Each tank contained 18 adult male medaka.

• Hypoxia exposure duration of one day at 2.85 dissolved 
oxygen (DO), one day at 2.38, two days at 1.90, followed 
by five days at .95 DO. 

• Extract RNA and protein from same tissues from both 
control and hypoxic for microarray, RT-PCR, and 
proteomic analyses.



Difference Gel Electrophoresis

Detection of hypoxia-related biomarker proteins in medaka
brain tissue via two-dimensional difference gel 
electrophoresis (2D-DIGE):

• Differentially label control and treated fish brain extracts 
with Cy3 and Cy5, respectively.

• Include pooled internal standard labeled with Cy2 to 
minimize gel-to-gel variation.

• Combine labeled extracts and separate by two-
dimensional gel electrophoresis (2D-PAGE).

• Normalize gel spot intensities and analyze for proteins 
showing statistically significant up- and down-regulation.



DIGE Overview



2D-DIGE gel data analysis

• Spot volumes across replicate gels and across “dye flips”
were normalized to the Cy2 internal standard images.

• Spot volume ratios between hypoxic and control images 
were calculated.

• Gel spots exhibiting p =< 0.05 and 80% Power were 
selected as proteins of interest (POIs).

www.kyoiku-shuppan.co.jp/.../
title.html
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Normoxic Hypoxic

3-D Representation of Brain Protein Abundance 
Difference Upon Hypoxia Exposure
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aldolase (1.51)

carbonic anhydrase II (1.78)

carbonic anhydrase II (2.43)

carbonic anhydrase II (2.06)

carbonic anhydrase II (2.36)

glutathione-S-transferase (1.50)

hemoglobin β (3.07)

succinate dehydrogenase (1.51)

calbindin 2 (1.53)

hemoglobin β (3.36)

DIGE Medaka Brain Hypoxia Proteins of Interest 
with Tentative Identifications



DIGE-MALDI-TOF-PSD of Medaka brain tissue:    
1.19-1.43 % DO; 192 hours

Protein Hyp/Cntl Implicated Function (based upon hypoxia literature)

hemoglobin 3.22 RBC production known to be induced  under hypoxia through HIF-1 
regulation of EPO and VEGF1.

carbonic anhydrase II (CA2) 2.09 CA2 upregulation under hypoxia resulting from increased RBC through 
HIF-mediated EPO and VEGF1 induction.

calbindin/calretinin 1.53 suspected to provide neuroprotective effects against hypoxia; function 
as an intracellular buffer to control Ca2+ toxicity under hypoxic 
conditions.

aldolase 1.51 A gene promoter contains HIF-1 binding site, likely induced 
by HIF-1. Aldolase induction shift from aerobic to anaerobic 
metabolism.

glutathione-S-transferase (GST) 1.50 GST known to be hypoxia/anoxia-regulated in a range of hypoxia-
tolerant vertebrates.  Likely protects cells from oxidative damage upon 
reperfusion.
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3-D Representation of Fin Protein Abundance 
Difference Upon Hypoxia Exposure



DIGE Conclusions

• Brain proteins differentially expressed upon hypoxia exposure
– 10 proteins of interest
– Tentative protein identification

• Succinate dehyrogenase, aldolase, carbonic anhydrase, calbindin, 
glutathione-S-transferase, hemoglobin

• Fin proteins differentially expressed upon hypoxia exposure
– 12 proteins of interest
– Protein identification through peptide sequencing by MALDI-TOF MS is in 

progress

• Future plans
– Continue DIGE analysis on other tissues including gill and liver
– Confirm biomarker identifications through western blot and/or real-time PCR



geLC MALDI-MS

• Pre-fractionate proteins.
• Differentially label peptides at C-termini 

with H2
16O (cntl) or H2

18O (hyp).
• Sulfonate peptides at N-termini with 4-

sulfophenyl isothiocyanate (SPITC).
• Fractionate peptides by reversed-phase 

μLC.



geLC-MALDI-PSD workflow
Extract protein from medaka cells or tissues

Prefractionate control/treated proteins by SDS-PAGE

Excise 6 gel bands spanning the PAGE molecular weight range.

Perform in-gel trypsin digestion of gel-entrained proteins

Extract tryptic peptides from gel plugs

Differentially label peptides with H2
16O (control) and H2

18O (hypoxic)

Combine peptides and derivatize with SPITC

Separate peptides by reversed-phase nanoflow μLC

Collect fractions directly onto MALDI targets

Collect parent ion spectra and identify peptide ion pairs-of-interest

Normalize data and sequence peptides-of-interest by MALDI-PSD



• 6 SDS-PAGE MW fractions used.

• Each PAGE fraction peptide population was separated 
on a C18 capillary column using a 180 min 0-70% ACN 
gradient (total of 840 minutes μLC fractionation time).

• Collected a total of 384 μLC fractions onto MALDI 
target using Probot fraction collector.

• Estimated ~4000 resolved peptides.

• 1210 unique and well-resolved 16O/18O peptide pairs 
were detected by inspection of relative isotopic 
abundances.

• Calculated normalized abundance ratios for each 
16O/18O pair.

• Collected PSD spectra for any peptide ion pair showing  
>= 2.00 hypoxic:normoxic ratio.

• Sequences were deduced only from high-quality PSD 
spectra.  

geLC-MALDI-MS of medaka cultured cells 
exposed to .95 dissolved oxygen for 120 hrs 
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PSD:  m/z 1408.78 +/- 15 Da
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Results:  geLC-MALDI-PSD

• 16O/18O labeling plus sulfonation provides a powerful method for quantitation and 
sequence analysis.

• PSD provides additional confirmation of a differentially labeled peptide pair; reduces 
chance inclusion of unrelated peptides differing by 4 Da in mass.

• Co-eluting peptides can still be quantified and sequenced by examining relative 
16O/18O ratios of respective fragment ion peaks in PSD spectra.

• Thus, PSD provides an additional 3rd dimension of separation.

• Unambiguous and unique peptide sequences provide high information content even 
in absence of accurate mass comparisons with translated genome database. 

park.itc.u-tokyo.ac.jp/K-medaka/AS-CV-J



m/z Hyp/Norm Sequence Best BLAST match

1421.81 11.6 GLVHNNMRGGR predicted similar to mKIAA0821 protein (E = 0.43; D. rerio)
1387.74 7.36 QVHPDTGLFR unknown
1671.81 5.77 TASPQQAQEV triosephosphate isomerase B (E = 0.013; D. rerio)
1330.97 4.90 GDENNGLTHR predicted similar cadherin EGE LAG seven-pass G-type receptor 3 (E = 1.0; D. rerio)
1130.61 4.01 SVCF(LE,YL)R unknown
1800.00 3.96 NTQLDFNFNALLR forkhead protein FKHR (E = 1.0; D. rerio)
1130.67 3.86 LLMEFLR sequestosome 1 (E = 7.6; D. rerio)
1396.60 3.25 FALSQLLTQR unknown
1446.73 2.92 GNHVAQVYALR novel protein similar to vertebrate ribosomal protein S16 (E = 0.18; D. rerio)

1434.81 2.52 VFVGTTLDLVR unknown
1475.84 2.45 GLFVLDGDGVLR hypothetical protein XP688882 (E = 0.32; D. rerio)
1208.53 2.32 VFLENVLR predicted similar to germinal histone H4 gene (E = 2.7; D. rerio)
1544.74 2.28 DNLAGGLTQPALR oligosaccharyl transferase (E = 1.9; D. rerio)
1205.53 2.22 EELQLAQR CLCN7 protein (E = 3.6; D. rerio)
1030.56 2.05 L(MV,TE)SLPR unknown
1353.66 2.00 DTpSTYTE unknown
1125.46                 -2.00 SVLC(FE,YL)R unknown

975.32 -2.00 FYAFGR eukaryotic translation elongation factor 2-like (E = 8.8; D. rerio)
1028.52 -2.06 YNQLLR enolase 1α (E = 8.8; D. rerio)
1011.42 -2.07 VFFDLR unknown
1337.77 -2.12 CVNQQEFVR hypothetical protein MGC73211 (E = 0.16; D. rerio)

992.45 -2.18 FQL(TL)R unknown
1562.76 -2.30 SQFEGLVADLLR heat shock protein 9B (E = 0.017; D. rerio)
1010.52 -2.31 LTGMAFR GAPDH (E = 1.8; D. rerio)
1327.60 -2.34 VFDALMNFR eukaryotic translation elongation factor 2-like (E = 0.93; D. rerio)

980.38 -2.58 GLCFLR unknown
1326.64 -2.71 DFEPTH(NP)R unknown
1636.84 -2.74 LLTVLNQHLNTR eukaryotic translation elongation factor 1 gamma (E =0.005; D. rerio)

1180.76 -2.83 FFTYHVR predicted similar to complement C1q-like protein 3 precursor (gliacolin) (E = 4.2; D. rerio)
1281.72 -3.86 WDDFLCLR crumbs-like protein 2b (E = 6.5; D. rerio)
1554.90 -4.74 (AS,GT)pTDLQNELSQLR 60S ribosomal protein L35 (E = 1.9; D. rerio)
1172.83 -5.21 LL(GE,W)PRR unknown
1690.64 -5.41 TpSAAGQPSLPGGVPR predicted similar rab11 binding protein (E = 1.4; D. rerio)
1280.69 -6.80 VFELLTSTR proteasome activator subunit 1 (E = 2.3; D. rerio)

Medaka cultured cells:  peptide sequences and 
BLAST results



Putative hypoxia biomarkers:  medaka cultured 
cells

Protein Hyp/Cntl Implicated function (based upon hypoxia literature)

similar to mKIAA0821 (Danio) 11.6 unknown.

triosephosphate isomerase 5.77 induction regulated by HIF-1 pathway.

forkhead FKHR protein 3.96 undergoes changes in expression and/or phosphorylation state during 
intermittent hypoxia.

sequestosome 1 3.89 polyubiquitin-binding protein involved in ubiquitin proteasome degradation.

heat shock protein 70 2.85 upregulated in hypoxic mammalian heart, reduces brain injury under 
hypoxia.

RING finger protein 2.48 involved in ubiquitinylation pathway under hypoxia.

lactate dehydrogenase 2.00 known to be transcriptionally regulated by HIF-1.

histone H4 -2.13 histone acetylation/methylation state known to be involved in HIF-1a expression 
versus HIF-1a degradation via proteasome degradation pathway.

eEF2/eEF1γ -2.36 suppressed and/or phosphorylated during hypoxia.

similar rab11 binding protein -5.41 modulated in response to hypoxia in carcinoma cells .



m/z Hyp/Norm Sequence Best BLAST match

1918.992 6.88 NDPLMQYVLNHSLR similar to catechol-O-methyltransferase domain 1 (E = 0.002; D. rerio)
unnamed protein product (E = 0.0002; T. nigriviridis)

2021.997 5.06 D(QM)DNPHLASASPHQR predicted similar to α-fetoprotein enhancer ; AT-binding transcription factor (E = 0.24; D. rerio)

872.432 4.81 VFLHR unknown

1428.647 4.36 TNYDNYYTR predicted similar protocadherin 17 (E = 3.0; D. rerio)
Src family associated protein 2 (E = 1.4; T. rubripes)

1586.909 4.05 HWFGPELR unknown

FMCYFHFLR

(NL,QV)PCYFHFLR

1236.623 3.87 MFLPLLQR similar silencer-associated factor (E = 2.7; D. rerio)
996.432 3.70 LVFELR unknown

1408.784 3.05 DSTLLMQLLR tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein (E = 0.041; D. rerio)

1647.016 2.82 LDAMHGVVGPYLR phosphoglucomutase 1 (E = 0.0003; D. rerio)

1491.009 2.82 GNFV(N,L)DDGVNR unknown
1867.992 2.58 ALDQLDDTPYQCGR similar spag8-predicted protein (E = 3.3; D. rerio)

LOC446267 protein (E = 0.46; X. laevis)

1451.837 2.47 VL(LP)FLSQYR reverse transcriptase (E = 0.27; T. rubripes)

1336.624 -2.50 YQSLLNDLR similar to SMC1β protein (E = 2.3; D. rerio)

1347.650 -2.63 GYSFTTTAER β actin (E = 0.007; D. rerio)

1160.541 -3.23 AVFPSLVGR β actin (E = 1.3; D. rerio)

1554.918 -3.24 EXX(E,V)EQDSHGR unknown

1598.966 -5.88 PVLDDWMDYWNDR sulfatase FP1c (E = 0.0002; D. rerio)

1220.717 -7.14 FQTLF(FP, LM)R unknown

Medaka liver:  peptide sequences and BLAST 
results



Putative hypoxia biomarkers:  medaka liver

Protein Hyp/Cntl Implicated function (based upon hypoxia literature)

similar catechol-O-methyltransferase 6.88 activity modulated under hypoxia in mammalian brain and heart muscle tissue.

similar α-fetoprotein (afp)  enhancer protein 5.06 afp modulated in human hepatic tissue under hypoxia through HIF-1 
pathway.

tyrosine/tryptophan monooxygenase 3.05 tyrosine/tryptophan hydroxylases are known hypoxia-regulated genes.

phosphoglucomutase 2.82 unknown, but possibly controlled through HIF regulation of glycolytic enzymes.

β actin -2.63 likely related to energy-conservation and/or cytoskeletal reorganization under hypoxic 
conditions.

sulfatase -5.88 SULF1 known to regulate cell growth signaling in hepatocellular carcinoma (HCC);

also known to modulate histone H4 acetylation in HCC:  HIF-1 target gene BNIP3 
known to be silenced by histone deacetylation and methylation; histone acetylation
state known to be involved in modulation of hypoxia-inducible factor activation). 



geLC Conclusions

• Identified 16 putative hypoxia-related proteins (11 up, 5 down) in medaka cultured 
cells and liver by 16O/O18-SPITC labeling and geLC-MALDI-PSD.  Inclusion of DIGE-
MALDI results brings total to 21 putative hypoxia biomarkers (16 up, 5 down).

• The proteins detected have also been shown to be hypoxia-regulated in other 
species.

• Work is currently underway to confirm the identities and fold-changes by 
immunochemical and molecular biology methods.

http://www7a.biglobe.ne.jp/~redcherry/kidstoppage.htm 



Conclusions and Future Plans

DIGE
• 10 Brain proteins differentially expressed upon hypoxia exposure

– Tentative protein identification
• Succinate dehyrogenase, aldolase, carbonic anhydrase, calbindin, 
glutathione-S-transferase, hemoglobin

• 12 Fin proteins differentially expressed upon hypoxia exposure

geLC
• 16 putative hypoxia-related proteins (11 up, 5 down) in medaka cultured 

cells and liver by 16O/O18-SPITC labeling and geLC-MALDI-PSD 

Future plans
– Do MALDI analyses on Fin proteins 
– Continue analyses on other tissues 
– Confirm biomarker identifications through western blot and/or real-time 

PCR
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Questions?
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