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Disclaimer 
 
This document is being disseminated for scientific review of its technical merit and policy 
implications. It has not been formally released by the U.S. Environmental Protection Agency 
(EPA) and should not be construed to represent Agency policy. EPA, through its Great Lakes 
Program Office, funded much of this work under Contract No. EP-R5-11-07, Task Orders 21 and 
25. Questions concerning this document or its application should be directed to Santina 
Wortman, EPA Region 5: wortman.santina@epa.gov or (312) 353-8319.
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1.0 INTRODUCTION 

The U.S. Environmental Protection Agency (U.S. EPA), Environment Canada (EC) and other 
partners are using multiple existing models, in an ensemble of models approach, to provide 
load-response relationships for Eutrophication Response Indicators (ERIs) of concern. This 
report describes the approach and results of technical analysis of models included in the 
ensemble approach as applied to Lake Erie (see Figure 1). The report includes the results from a 
range of phosphorus load-response curves for Lake Erie, generated by models that relate 
phosphorus loads to objectives outlined in Annex 4 of the 2012 Great Lakes Water Quality 
Agreement (GLWQA). The results of the technical evaluation and modeled load-response curves 
provide objective information and an ensemble modeling approach for recommendations to 
the Annex 4 Objectives Task Team.   
 
The Lake Erie ecosystem objectives of Annex 4 (Nutrients) in the Amendment to the GLWQA 
(September 7, 2012) are summarized as follows: 
 

1. minimize hypoxic zones related to excessive phosphorus loading; 

2. prevent nuisance levels of algal biomass; 

3. maintain healthy nearshore ecosystems as indicated by algal communities; 

4. prevent harmful algal blooms that produce toxins posing a human or ecosystem 

health threat; and 

5. ensure that the open waters of the Western and Central Basins of Lake Erie maintain 

mesotrophic conditions and oligotrophic conditions are maintained in the Eastern 

Basin of Lake Erie. 

 
Four Eutrophication Response Indicators (ERIs) reflecting the Annex 4 objectives for Lake Erie 
were evaluated and modeled by applying one or more models for potential inclusion in an 
ensemble modeling approach. The ERIs included: (1) basin-wide phytoplankton biomass as 
represented by chlorophyll-a (chl-a) (indicates lake trophic status); (2) Western Basin basin-
wide cyanobacteria biomass; (3) Central Basin hypoxia extent and duration; and (4) Eastern 
Basin extent of nuisance levels of the green algae Cladophora.  

1.1  Background 

In the late 1970s, a series of contemporary Great Lakes eutrophication models were applied to 
establish and confirm the target phosphorus loads for each of the Great Lakes and large 
embayments and basins to eliminate excess algae growth and improve areas of low dissolved 
oxygen, with the objective of limiting chlorophyll-a and algal indicators of eutrophication.  
Those target loads were codified in Annex 3 of the 1978 Amendment to the GLWQA.  The 
models used for that analysis ranged from quite simple empirical relationships to kinetically 
complex, process-oriented models, including in order of increasing complexity: Vollenweider’s 
empirical total phosphorus (TP) model (all lakes), Chapra’s semi-empirical model (all lakes), 
Thomann’s Lake 1 process model (Lake Ontario and Lake Huron), DiToro’s process model  
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Figure 1.  Map of Lake Erie Showing the Locations of the Various Basins, Rivers, and Municipalities 

 
Figure 2.  Map of Cumulative Durations of HABs for 1998-2014 for the Western Basin of Lake Erie, 

Generated from SeaWiFS Data and MODIS Data (source: Michigan Tech Research Institute) 
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(Lake Erie), and Bierman’s process model (Saginaw Bay).  The results of these model 
applications have been documented in the International Joint Commission (IJC) Task Group III 
report (Vallentyne and Thomas, 1978) and in Bierman (1980).  The post-audit of several of 
these models in the mid-1980s confirmed that they had established a good relationship 
between total phosphorus (TP) loading to a lake/basin/embayment and its system-wide 
averaged TP and chlorophyll-a concentration. 

 

In 2006 as part of the Parties’ (U.S. EPA, Environment Canada) review of the GLWQA, a sub-
committee of Great Lakes modelers (co-chaired by Joe DePinto at LimnoTech, and David Lam at 
Environment Canada) was charged to conduct an examination of the data and models used to 
support the phosphorus target loads specified in Annex 3 of the 1978 Agreement relative to the 
current status of the Lakes.  The charge to that sub-group was to address three questions: 

 

(1) Have we achieved the target phosphorus loads in all of the Great Lakes? 

(2) Have we achieved the water quality objectives in all of the Great Lakes? 

(3) Can we define the quantitative relationships between phosphorus loads and lake 
conditions with existing models? Are the models still valid on a whole lake basis or 
have ecosystem changes to the phosphorus (P) - chlorophyll relationship occurred 
such that new or updated models need to be run? 

 

The findings were that those models were aimed at whole lake eutrophication symptoms as 
they were manifested at the time, but were not sufficiently spatially resolved to capture the 
nearshore eutrophication being observed throughout the lakes. The models did not represent 
the process formulations required to capture the impacts of ecosystem structure and function 
changes (e.g.,  impacts from Dreissenid mussels and other aquatic invasive species) relative to 
phosphorus processing and eutrophication responses in the lakes (DePinto et al., 2006). The 
sub-committee of Great Lakes modelers recommended a new, concerted research, monitoring, 
and model enhancement effort to: 
 

 Quantify the relative contributions of various environmental factors (TP loads, 
changes in the bioavailability of phosphorus, hydrometeorological impacts on 
temperature conditions and hypolimnion (dense, colder water below the 
thermocline) structure and volume, Dreissenid-induced alterations of nutrient-
phytoplankton-light conditions and oxygen demand functions) to the nearshore re-
eutrophication of the Great Lakes; and  

 Develop a revised quantitative relationship between these stressors and the recently 
observed eutrophication indicators such as cyanobacteria blooms, enhanced hypoxia 
(defined as dissolved oxygen levels below 4 mg/L) and nuisance benthic algal (e.g., 
Cladophora, Lyngbya) growth. 

 

The 2012 Protocol for the GLWQA (United States and Canada, 2012) includes Annex 4 on 
Nutrients, in particular on phosphorus control to achieve ecosystem objectives related to 
eutrophication symptoms.  The Annex sets “interim” phosphorus concentration objectives and 
loading targets that are identical to those established in the 1978 Amendment.  However, it 
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requires that the “Parties, in cooperation and consultation with State and Provincial 
Governments, Tribal Governments, First Nations, Métis, Municipal Governments, watershed 
management agencies, other local public agencies, and the Public, shall:  

 

(1) For the open Waters of the Great Lakes:  
a. Review the interim Substance Objectives for phosphorus concentrations for each 

Great Lake to assess adequacy for the purpose of meeting Lake Ecosystem 
Objectives, and revise as necessary;  

b. Review and update the phosphorus loading targets for each Great Lake; and  
c. Determine appropriate phosphorus loading allocations, apportioned by country, 

necessary to achieve Substance Objectives for phosphorus concentrations for 
each Great Lake;  

 
(2) For the nearshore Waters of the Great Lakes: 

a. Develop Substance Objectives for phosphorus concentrations for nearshore 
waters, including embayments and tributary discharge for each Great Lake;  

b. Establish load reduction targets for priority watersheds that have a significant 
localized impact on the Waters of the Great Lakes.” 

 

The Annex calls for research and other programs aimed at setting and achieving the revised 
nutrient objectives.  It also calls for the Parties to take into account the bioavailability of various 
forms of phosphorus, related productivity, seasonality, fisheries productivity requirements, 
climate change,  invasive species, and other factors, such as downstream impacts, as necessary, 
when establishing the updated phosphorus concentration objectives and loading targets.  
Finally, it calls for the Lake Erie objectives and loading target revisions to be completed within 
three years of the 2012 GLWQA entry into force. 

 

To assist the Parties in accomplishing these mandates, an ensemble modeling team 
collaborating with the Annex 4 Objectives Group (referenced hereinafter as “Modeling Team”), 
developed an approach to evaluate the interim phosphorus objectives and load targets for Lake 
Erie and to provide information to update those targets using new research, monitoring and 
modeling in the lake.  The plan that is developed for Lake Erie can serve as a general template 
for the other Great Lakes in meeting the 2012 GLWQA Protocol Annex 4 mandates.  
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2.0 APPROACH AND SCOPE 

 
The Annex 4 Objectives Task Group requested that initial considerations of phosphorus load 
reduction targets be guided by the Modeling Team in the Fall of 2014.  The Modeling Team 
convened during two workshops: a model evaluation and planning workshop in April 2014 and 
an ensemble modeling workshop in September 2014.  These efforts were designed to identify 
eutrophication response indicators and models currently available to address them; to provide 
an internal peer review of the models; and to assemble model results into an ensemble capable 
of informing phosphorus load target-setting decisions. 
 
There is precedent for using this ensemble (i.e., multiple) modeling approach for this type of 
assessment.  A range of models with a range of complexities and approaches that use the same 
basic input data afford a comparison of results that can be very instructive. Reconciling 
differences among results in terms of the different assumptions used in various models 
provides insights about the most important sources and processes for a given system.  Bierman 
and Scavia (2013) identified a number of benefits of applying multiple models of different 
complexity: 
 

 Problems are viewed from different conceptual and operational perspectives; 

 The same datasets are utilized in different ways; 

 Multiple lines of evidence are provided; 

 The level of risk in environmental management decisions is reduced; and 

 Model diversity adds more value to the decision process than model multiplicity. 
 
As described above, this approach was used in the late 1970’s to establish the original target 
phosphorus loads for the Great Lakes (Bierman, 1980).  Examples of other ensemble 
approaches to support management decisions regarding large ecosystems include: 
 

 The Multiple Management Models (M3) approach being developed for Chesapeake 
Bay by the Chesapeake Bay Program’s Scientific and Technical Advisory Committee 
(STAC) (http://www.chesapeake.org/stac/workshop.php?activity_id=222); 

 The IJC project that compared three different mass balance models for PCBs in Lake 
Ontario to assess the state-of-the-art modeling of hydrophobic organic chemicals in 
large lakes (IJC, 1988);  

 The use of multiple models to assess load – response relationships for hypoxia in the 
Gulf of Mexico (Scavia et al., 2004; Bierman and Scavia, 2013); and  

 The use of multiple models to inform a nutrient TMDL for the Neuse River Estuary 
(Stow et al., 2003). 

 

All of these efforts have provided new management insights and added confidence in using 
models for supporting management decisions.   

http://www.chesapeake.org/stac/workshop.php?activity_id=222
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2.1  Process  

The Modeling Team and agency personnel were first assembled on April 9-10, 2014 to assess 
the capabilities of existing Lake Erie models to develop response curves for nutrient loads and 
the objectives identified by the Annex 4 group (See Appendix A-1 for a workshop agenda and 
participant list). The objective of the workshop was to develop “[a] plan (scope, schedule, and 
budget) for conducting an ensemble modeling effort to develop recommendations to the 
Annex 4 Objectives Task Team for revised Lake Erie target P loads and objectives by the end of 
September, 2014.” Models were initially evaluated in the April workshop on the basis of 
presentations by each modeler and by review of documentation reports/publications of 
development and application of each model. 
 
The output from the workshop was used by EPA as the basis of a contract (EP-R5-11-07, Task 
Order 21) with Battelle through its Great Lakes Program Office. The contract envisioned that 
the models identified in the April Workshop plan would be evaluated and applied to develop 
load-response curves based on phosphorus load adjustment scenarios. Through this contract, 
Battelle subcontracted university and private sector members of the Modeling Team who were 
responsible for the identified models to execute elements of the workshop plan in order to 
provide objective data on performance of the models, and to develop an ensemble modeling 
approach. Dr. Don Scavia, University of Michigan, was subcontracted to serve as the Lead 
Principal Investigator. Dr. Scavia invited and secured collaboration by other members of the 
Modeling Team with identified models who were employed by the U.S. government or EC and 
therefore not funded via the EPA contract. Modelers and models in this project include: 
 

 Richard Stumpf, National Oceanic and Atmospheric Administration (NOAA), Great 
Lakes Environmental Research Laboratory (GLERL): “NOAA/GLERL Western Lake Erie 
Harmful Algal Bloom (HAB) Model” 

 Daniel Obenour, University of Michigan (UM): “UM/GLERL Western Lake Erie HAB 
Model” 

 Steven Chapra, Tufts University: “TP Mass Balance Model” 

 Daniel Rucinski, LimnoTech: “1-D Central Basin Hypoxia Model” 

 Hongyan Zhang, University of Michigan: “Ecological model of Lake Erie” (EcoLE) 

 Luis Leon and Ram Yerubandi, Environment Canada: “9-Box Model”  

 Joseph DePinto, LimnoTech: “Western Lake Erie Ecosystem Model” (WLEEM) 

 Serghei Bocaniov, University of Michigan, Luis Leon, Environment Canada, and Ram 
Yerubandi, Environment Canada: “Estuary, Lake and Coastal Ocean Model - 
Computational Aquatic Ecosystem Dynamics Model” (ELCOM-CAEDYM) 

 Martin Auer, Michigan Technological University: “Great Lakes Cladophora Model”. 
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[These modelers, representing a subset of the Modeling Team, are hereafter referenced as the 
“Modelers”.] 
 

During Summer and early Fall 2014, the Modelers prepared documentation, primarily from 
previous publications: complete documentation of model equations, coefficients, driving 
variables, assumptions, and time step of predictions; comparisons between model output and 
observations used in the model calibration; final model evaluation performance values; 
validation, and assessments of model uncertainty/sensitivity. The Modelers also used a 
common set of phosphorus loads and meteorological variables as inputs to develop load-
response curves for selected ERIs using their respective models. 
 
The models all used data from 2008 as a baseline.  The common set of phosphorus loads 
included six loading scenarios: 0 %, 25%, 50%, 75%, 100%, and 125% Total Phosphorus (TP); the 
2008 baseline loading is defined as a 100% TP load.  Reductions were made at 0%, 25%, 50%, 
and 75%, and one scenario increased current TP loading by 25% (125% scenario).  Some of the 
models also evaluated the effects of reductions of selected external sources, including: 
 

- TP from all tributaries and the Detroit River,  
- TP from only the Maumee River,  
- TP and dissolved reactive phosphorus (DRP) loads (by reducing concentration) from only 

the Detroit River,  
- only DRP loads (by reducing concentration) from all tributaries and the Detroit River,  
- only DRP loads (by reducing concentration) from only the Maumee River, and producing 

a baseline with no sediment feedback, either by re-suspension or pore water diffusion. 
 
At the September 29-30, 2014 workshop, the modeling team presented, evaluated, and 
discussed the individual response curves. (See Appendix A-2 for a workshop agenda and 
participant list). Each modeler presented calibration/confirmation results or other model skill 
assessment, described how the load-response curves were developed, showed load-response 
curves and any supporting diagnostic analyses, and described the level of uncertainty or 
sensitivity associated with the model. The details of each model formulation, calibration, 
confirmation, and sensitivity/uncertainty, as well as the construction of the load-response 
curves are provided in Appendix B. 
 
On the second day of the workshop, discussions focused on the most appropriate ways to 
compare the models to produce ensemble guidance for developing load reduction targets. 
Once the individual models were applied to produce their respective load-response 
relationships, decisions had to be made on how best to synthesize these results into an 
ensemble.   Ideally, each model would have been calibrated to the same data sets and driven by 
the same inputs (nutrient loads, meteorological drivers, etc.) to afford the opportunity to 
“average” results in forming the ensemble.  However, given the limited time and resources 
available for this effort, the Modelers relied primarily on existing models that were built and 
tested with a range of conditions (See Appendix B). This deadline did not afford the modeling 
team time for a formal model comparison, vetting, and evaluation process by comparing all 
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models using the identical input and measured response data set. Given this limitation, below 
we show the load-response curves for each modeled ERI with all inputs being as similar as 
possible.   

2.2  Selecting Ecosystem Response Indicators  

Selecting appropriate ERIs of concern for Lake Erie, along with metrics used to model and track 
them, was a critical step. The group selected four ERIs and defined how each metric was to be 
measured and what spatial and temporal scale would be used for each measurement.   
 

(1) Overall phytoplankton biomass as represented by chlorophyll-a  

 Basin-specific, summer average chlorophyll-a concentration 
 
This is a traditional indicator of lake trophic status ranging from lakes with normoxic conditions 
and limited nutrient matter, to those with low dissolved oxygen and high nutrient 
concentration (i.e., oligotrophic, mesotrophic, eutrophic, respectively). 

 

(2) Cyanobacteria blooms in the Western Basin  

 Maximum 30-day average basin-wide cyanobacteria biomass  
 
This metric gives an indication of the worst condition relative to harmful algal blooms (HABs) in 
the Western Basin.  Blooms were quantified with an index that uses satellite imagery of 
biomass, based on chl-a as the surrogate for biomass. A Cyanobacteria Index (CI) was 
determined using composites of imagery to remove interference and biasing from clouds and 
to provide the best estimate of biomass. Estimates or averages were calculated in a variety of 
time intervals. 
 

(3) Hypoxia (defined as bottom-layer dissolved oxygen concentrations <4 mg/L; Zhou et 
al., 2013) in hypolimnion of the Central Basin  

 Number of hypoxic days  

 Average areal extent of hypoxic area during summer 

 Average hypolimnion dissolved oxygen (DO) concentration during a specified 
period (typically August and September)  

 
These metrics are quantitatively correlated based on Central Basin monitoring and analysis, but 
they are different manifestations of the hypoxia problem. Each metric has a bearing on the 
impact on the ecosystem (especially fish communities), and on the relative impact of physical 
conditions versus nutrient-algal growth conditions. 
 

(4) Cladophora in the nearshore areas of the Eastern Basin  

 Algal dry weight biomass 

 Stored phosphorus content 
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While beach fouling by sloughed Cladophora would likely be a desirable metric, there is neither 
an acceptable monitoring program to measure and report progress against such a metric, nor a 
scientifically credible model to relate it to nutrient loads and conditions.  There are, however, 
models that can relate Cladophora growth to ambient DRP concentration and models that can 
estimate nearshore DRP as a function of TP loads and biophysical dynamics.  Linking these 
models would allow Cladophora growth to be evaluated as a function of TP loads. Given the 
limited time available, the Cladophora growth as a function of TP loads was evaluated through a 
TP model developed for this effort (Chapra, Dolan, and Dove) and an empirical model relating 
DRP and TP based on EC measurements.   
 
Models capable of estimating the impact of TP loads on each of the ERIs were identified. The 
models are summarized in Table 1 below and briefly described in section 2.4.  
 
 

Table 1.  Models Included in the Ensemble Modeling Effort 

Model 

Response Indicators 
Overall basin-

wide 
phytoplankton 

biomass 

Western Basin 
cyanobacteria 

blooms 

Central 
Basin 

hypoxia 

Eastern Basin 
Cladophora 
(nearshore) 

NOAA Western Lake Erie HAB Model (Stumpf)   X     
U-M/GLERL Western Lake Erie HAB Model (Obenour)   X     

TP Mass Balance Model (Chapra, Dolan, and Dove) 

X (using 

empirical P-

chlorophyll a 

relationship) 

   

1-D Central Basin Hypoxia Model (Rucinski) X    X   
Ecological Model of Lake Erie (EcoLE) (Zhang) X   X   
9-Box Model (McCrimmon, Leon, and Yerubandi) X    X   

Western Lake Erie Ecosystem Model (LimnoTech) X (Western 

Basin only) X     

ELCOM-CAEDYM (Bocaniov, Leon, and Yerubandi) X   X   
Great Lakes Cladophora Model (Auer)    X 

2.3  Model Evaluation Criteria  

The following criteria were adopted to assess the ability of each modeling effort to address the 
goals. 

 
Ability to develop load-response curves and/or provide other output important for 
quantitative understanding of the questions/requirements posed in Annex 4: A key function of 
the models used in this effort is to establish relationships between phosphorus loads and the 
metric defined by the Annex 4 subgroup for each objective. As such, models were evaluated for 
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their ability to generate load-response curves as the highest evaluation criterion. Other models 
were also evaluated for their utility in providing additional information to help understand 
phosphorus-chlorophyll dynamics, justify production relationships, or otherwise inform the 
response curves or targets. 

 

Applicability to objectives/metrics provided by the Annex 4 subgroup: The models were 
evaluated for their ability to address the spatial, temporal, and kinetic characteristics of the 
objectives and metrics outlined by the Annex 4 subgroup. While models that address other 
objectives and metrics can be additionally informative, the highest priority models are those 
that can address them directly. 

 

Extent/quality of calibration and confirmation: Calibration - Given the broad range in model 
type and complexity, a wide range of skill assessments was used. Models were evaluated as to 
their ability to reproduce state-variables that matched the objective metrics, as well as internal 
process dynamics. Post-calibration testing - Models were also measured against their ability to 
replicate conditions not represented in the calibration data set. 

Extent of model documentation (peer review or otherwise): Models were evaluated based on 
the extent of their written documentation. Full descriptions of model kinetics calculations, 
inputs, calibration, confirmation, and applications were reviewed. Model documentation was 
available in peer-reviewed journal articles, government reports, or other documentation (e.g. 
white papers). 
 
Level of uncertainty analysis available: Models were evaluated as to the extent they were able 
to quantify aspects of model uncertainty, including uncertainties associated with observation 
measurement error, model structure, parameterization, and aggregation, as well as uncertainty 
associated with characterizing natural variability. 
 
The goal of the multi-modeling effort was to compare model results for the various load-
response relationships, and therefore the following performance evaluations were completed 
to help interpret why different models might vary in their load-response relationships and to 
enhance understanding and efficacy of the models used to determine new phosphorus loading 
targets for the Lake Erie basins. The scope of this work did not include new, ad-hoc calibration 
and validation efforts specific to this application nor did it attempt to choose the best model for 
a given ERI metric based on previous calibration skill assessments. The documentation of 
performance evaluations responds to comments from the Science Advisory Board (SAB) which 
met in late 2014 to review the ensemble modeling approach. 
 

None of the models described in this report were originally developed for this Annex 4 
application; the models were previously developed and applied for separate purposes. In some 
cases, the models had been developed to quantify the relationship between P load and the ERI 
considered in this effort (e.g., the NOAA and UM/GLERL HAB models), so that the original scope 
of the models coincides with this application, and the existing peer-review performance 
evaluation provides a comprehensive assessment of the models’ suitability for this application. 
In other cases, the models were originally developed to answer broader questions on the 
trophic state and water quality changes in Lake Erie, therefore previous peer-review efforts 
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may have not directly focused on assessing the predictive ability of the models with respect to 
the ERIs considered in this application.  
 
The following sections provide a quantitative assessment of each models’ ability to reproduce 
state-variables associated with the metrics defined for the selected ERIs. While direct 
comparisons of predictive performance across models are complicated by inherent differences 
in the original calibration and validation datasets, this information provides a quantitative 
assessment of the ability of each model to predict each ERI. In cases where no predictive 
performance statistic for a specific ERI was available, the level of agreement of that model’s 
load-response curve with those from multiple independent peer-reviewed models provides 
information on the degree of confidence in that model’s performance. 
 
In an effort to standardize quantification of model performance across all models and ERIs, the 
following statistical performance measures were chosen and computed, if both model output 
and observed data were available: root mean square error (RMSE; Equation 1), percent bias 
(PBIAS; Equation 2), and mean absolute relative error (MARE; Equation 3).  These measures 
were chosen because they are commonly used to assess performance of environmental 
models, and they provide information on the variability, relative bias, and relative error of 
model predictions. 
 

 RMSE = √
1

n
∑ (yobs − ysim)2n

i=1    (Eq. 1) 

 PBIAS =
∑ (yobs−ysim)n

i=1 ∗100

∑ (yobs)n
i=1

   (Eq. 2) 

 MARE =
1

n
 ∑  n

i=1
|yobs−ysim|

yobs
   (Eq. 3) 

 
While statistical performance targets for model acceptance have been established for 
watershed and riverine water quality models (Moriasi et al., 2007; Moriasi et al., 2015), the 
same is not true for models predicting responses of large, open-water systems such as Lake 
Erie. Furthermore, most of the state variables predicted by these ensemble models are 
biological (e.g. chlorophyll, cyanobacteria) or biological-related (e.g. dissolved oxygen), and the 
established statistical performance targets for riverine system are for hydrology, sediment, and 
nutrient variables, not biological. As part of this effort we have not derived or proposed new 
statistical thresholds from which to judge model output relative to observed data, and the 
suitability of the models used in this effort was not evaluated on the basis of “accept/reject” or 
“satisfactory/unsatisfactory”. Rather, a holistic evaluation was conducted based on all model 
evaluation criteria. 

2.4  Models 

Models used in the ensemble effort are described briefly here. See Appendix B for more in 
depth information about each model application.  
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NOAA Western Lake Erie HAB Model (Stumpf) - In Stumpf et al.(2012) the authors present an 
empirical regression between spring TP load and flow from the Maumee River and maximum 
30-day  cyanobacteria index (CI) for Western Lake Erie as calculated by the European space 
satellite, MERIS. This method applies an algorithm to convert raw satellite reflectance around 
the 681 nm band into an index that correlates with cyanobacteria density. Ten day composites 
were calculated by taking the maximum CI value at each pixel within a given 10-day period to 
remove clouds and capture areal biomass.  The authors conclude that spring flow or TP load can 
be used to predict bloom magnitude. Maumee River TP load from March to July was used as a 
predictor of CI utilizing data from 2002 to 2013. For more information see Appendix B-1.  
 
U-M/GLERL Western Lake Erie HAB Model (Obenour) - A probabilistic empirical model was 
developed to relate the size of the Western Basin cyanobacteria bloom to spring bioavailable 
phosphorus loading (Obenour et al., 2014). The model is calibrated to multiple sets of bloom 
observations, from previous remote sensing and in situ sampling studies. A Bayesian 
hierarchical framework is used to accommodate the multiple observation datasets, and to allow 
for rigorous uncertainty quantification. Furthermore, a cross validation exercise demonstrates 
the model is robust and would be useful for providing probabilistic bloom forecasts. The model 
suggests that there is a threshold loading value, below which the bloom remains at a baseline 
(i.e., background level).  However, this may be an artifact of the lack of sufficient cyanobacteria 
observations at low loads. Above this threshold, bloom size increases proportionally to 
phosphorus load from the Maumee River. The model includes a temporal trend component 
indicating that response for a given load has been increasing over the study period (2002-2013), 
such that the lake is now more susceptible to cyanobacteria blooms than it was a decade ago.  
For more information see Appendix B-2.  
 
Total Phosphorus Mass Balance Model (Chapra, Dolan, and Dove) - Chapra and Dolan (2012) 
have developed an update to the original TP mass balance model that was used (along with 
other models) to establish phosphorus loading targets for the 1978 Great Lakes Water Quality 
Agreement. Annual TP estimates were generated from year 1800 to 2010. The model is 
designed to predict the annual average concentrations in the offshore waters of the Great 
Lakes as a function of external loading and does not attempt to resolve finer-scale temporal or 
spatial variability. For Lake Erie this model computes the basin-wide annual average TP 
concentration as a function of all external TP loads.  Calibration data for this model were 
obtained from Environment Canada and the Great Lakes National Program Office.  The model 
can be expanded to include chlorophyll-a and potentially Central Basin hypoxia through 
available empirical relationships with TP. For more information see Appendix B-3. 
 
1-Dimensional Central Basin Hypoxia Model (Rucinski) - A one-dimensional model with 50 half-
meter layers, calibrated to observations in the Central Basin of Lake Erie, was used to develop 
load-response curves relating chlorophyll-a concentrations and hypoxia to phosphorus loads in 
the Western Basin and Central Basin.  The model is driven by a 1D hydrodynamic model that 
provides temperature and vertical mixing profiles (Rucinski et al., 2010). The biological portion 
of the coupled hydrodynamic-biological model incorporates phosphorus and carbon loading, 
internal phosphorus cycling, carbon cycling (in the form of algal biomass and detritus), algal 
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growth and decay, zooplankton grazing, oxygen consumption and production processes, and 
sediment interactions. The model has been applied to 19 years (1983 – 2003) of physical 
conditions to understand the relative contribution of stratification conditions versus 
phosphorus loading on the severity of hypoxia in the Central Basin. For more information see 
Appendix B-4. 

 
Ecological Model of Lake Erie - EcoLE (Zhang) - Zhang et al. (2008) developed and applied a 2D 
hydrodynamic and water quality model to Lake Erie termed the Ecological Model of Lake Erie 
(EcoLE), which is based on the CE-QUAL-W2 framework. The purpose of the model application 
was to estimate the impact that Dreissenids are having on phytoplankton populations. The 
model was calibrated against data collected in 1997 and verified against data collected in 1998 
and 1999.  Model results indicate that Dreissenid mussels have weak direct grazing impacts on 
algal biomass and succession, while their indirect effects through nutrient excretion have much 
greater and profound impacts on the system (Zhang et al., 2011). The model can produce load-
response curves for chlorophyll-a concentrations and dissolved oxygen. For more information 
see Appendix B-5. 
 
Nine-Box model (McCrimmon, Leon, and Yerubandi) - This model is a coarse grid (9-box) 
phosphorus mass balance model for quantitative understanding of Lake Erie eutrophication and 
related hypoxia (Lam et al., 1983). The model is extensively calibrated and validated against 
observations in the past. Re-calibrations were conducted for a post-zebra mussel period and 
found that 9-box model is able to express offshore Lake Erie concentrations reasonably well. 
The model can be expanded to include empirically derived chlorophyll-a relationships for given 
TP concentrations.  For more information see Appendix B-6. 
 
Western Lake Erie Ecosystem Model (WLEEM) (LimnoTech) - The Western Lake Erie Ecosystem 
Model (WLEEM) has been developed as a 3D fine-scale, process-based, linked hydrodynamic-
sediment transport-advanced eutrophication model, with the aim of providing a quantitative 
relationship between loadings of water, sediments, and nutrients to the Western Basin of Lake 
Erie from all sources and its response in terms of turbidity/sedimentation and algal biomass 
(three different phytoplankton functional groups, including cyanobacteria, are modeled 
separately).  The model operates on a daily time scale and can produce time series outputs and 
spatial distributions of either total chlorophyll and/or cyanobacteria biomass as a function of 
loading. Therefore, it can produce load-response plots for several potential endpoints of 
interest in the Western Basin (the Western Basin model domain is bounded by a line connecting 
Pointe Pelee with Marblehead). It can also produce mass balances for the Western Basin for 
any one of its ~30 state variables; therefore, it has computed the daily loading of Western Basin 
nutrients and oxygen-demanding materials to the Central Basin as a function of loads to the 
Western Basin. This provided valuable information on how load reductions to the Western 
Basin impact hypoxia development in the Central Basin.  For more information see Appendix B-
7. 
ELCOM-CAEDYM (Bocaniov, Leon, and Yerubandi) - ELCOM-CAEDYM is a three-dimensional 
hydrodynamic and bio-geochemical model that consists of two coupled models: a three-
dimensional hydrodynamic model - the Estuary, Lake and Coastal Ocean Model (Hodges et al., 
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2000), and a bio-geochemical model - the Computational Aquatic Ecosystem Dynamics Model 
(Hipsey and Hamilton, 2008). The ELCOM-CAEDYM model has shown a great potential for 
modeling of biochemical processes and has been successfully used for in-depth investigations 
into variable hydrodynamic and biochemical processes in many lakes throughout the world 
including the Laurentian Great Lakes. In Lake Erie it has been used to study nutrient and 
phytoplankton dynamics (Leon et al., 2011; Bocaniov et al., 2014), the effect of mussel grazing 
on phytoplankton biomass (Bocaniov et al., 2014), the sensitivity of thermal structure to 
variations in meteorological parameters (Liu et al., 2014), and even winter regime and the 
effect of ice on hydrodynamics and some water quality parameters (Oveisy et al., 2014). The 
application of the ELCOM-CAEDYM model to study oxygen dynamics and understand the 
Central Basin hypoxia is a subject of ongoing work. In this ensemble modeling process, ELCOM-
CAEDYM is being applied to develop load-response curves for total chlorophyll-a in all three 
basins and Central Basin hypoxia. For more information see Appendix B-8. 

 
Great Lakes Cladophora model (Auer) - The Great Lakes Cladophora Model (GLCM) is a revision 
of the original Cladophora model developed by Auer and Canale in the early 1980s in response 
to the need to understand the causes of large Cladophora blooms around the Great Lakes, 
especially in Lake Huron (Tomlinson et al., 2010). The new model reflects current 
understandings of Cladophora ecology and a new set of tools and software to allow others to 
quickly run the model and view output. The updated model was calibrated and verified against 
data from Lake Huron (1979) and new data collected by the authors in 2006 in Lake Michigan.  
The model allows users to simulate standing crop of Cladophora as influenced by 
environmental parameters such as depth, light, and phosphorus concentrations. For this 
ensemble modeling process, the model is being applied generically to conditions in the Eastern 
Basin of Lake Erie. For more information see Appendix B-9. 
 
2.5  Total phosphorus loadings to Lake Erie 
 
Because the goal of this ensemble modeling exercise is to generate load-response relationships 
for the above eutrophication metrics in Lake Erie, it is instructive to review the Lake Erie loading 
behavior and characteristics to understand the dependent variables used for these 
relationships.  Over the past 20 years external TP loadings to Lake Erie showed large year-to-
year variation but no clear long-term trend (Figure 3).  Interannual variability is largely driven by 
hydrometeorological conditions, which modulate the timing and magnitude of surface runoff 
and ultimately the amount of nutrients delivered to the lake by tributaries. For example, the 
large loads recorded in 1996-1998 have been associated with exceptionally high tributary loads 
due to increased precipitation (Dolan and Richards, 2008). Over the most recent ten years for 
which detailed data on Lake Erie TP loads are available (2002-2011), phosphorus from non-
point sources, transported to the lake by runoff and rivers, contributed on average 78% of the 
total annual load to the lake (Dolan and Chapra, 2012; Dolan, pers. comm. 2012).  
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Basin-wide phosphorus loads are 
remarkably different among basins, with 
the Western Basin receiving on average 
61% of the whole lake load, while loads 
to the Central and Eastern basins make 
up 28% and 11% of the average annual 
lake load, respectively (Figure 3). In the 
years 2002-2011 the annual loads to the 
three basins have ranged between 792-
1175 MT (metric tonnes) in the Eastern 
Basin (average: 952 MT), 1769-3723 MT 
in the Central Basin (average: 2556 MT), 
and 3870-7103 MT in the Western Basin 
(average: 5514 MT).  
 
The large TP loads delivered annually 
to the Western Basin derive primarily 
from the Maumee and Detroit rivers 
(Figure 4). The vast majority of the 
phosphorus delivered by the 
Maumee River into the Western 
Basin originates from agricultural 
activities, which dominate the 
watershed, and are the primary 
cause of the extremely high TP 
concentrations in the Maumee 
compared to the Detroit River. As 
a result, although the Maumee 
River only contributes about 5% of 
the total flow discharging annually 
into the Western Basin, it 
contributes approximately 45% of 
the TP load, a percentage similar 
to that of the Detroit River, which 
accounts for over 90% of the total 
flow to the basin (Figure 4).  
 
While the TP load from the Detroit 
River remained relatively 
constant over the years, the 
load from the Maumee River 
showed considerable 
interannual variability. Over 
the period 2002-2010, the annual Maumee TP load varied between 1426 - 4123 MT, with an 

Figure 3.  Total Phosphorus Loads to Lake Erie Divided by Basin for 
Water Years 1994-2011.  A water year runs from October-September 

(sources: Dolan and Chapra, 2012; Dolan, pers. comm., 2012). 

Figure 4.  Annual Average TP and DRP Loads Delivered to the Western Basin by 
Major Tributaries (Upper Panel), with Corresponding Flow (Lower Left Panel) and 
Flow Weighted Average TP Concentration (Lower Right Panel). Data are averaged 

over the years 2008, 2011, 2012 and 2013 (see Appendix B-7). 
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average of 2455 MT (sources: Heidelberg University’s National Center for Water Quality 
Research and United States Geological Survey). A more detailed analysis of the seasonal 
dynamics of the Maumee River TP loadings in the years 2002-2010 indicated that about 50% of 
the annual load is discharged on average during spring (March-June; average: 1155 MT), while 
this percentage decreased to 35% when considering only the loads delivered in April-July 
(average: 791 MT). 
 
It is also important to recognize that even though DRP load has increased significantly since the 
mid-1990s (Richards, pers. comm., Scavia et al., 2014), it is still a relatively small portion of the 
TP load to Lake Erie (Figure 5), and the models reflect this relative influence. DRP was 
approximately 30% of the TP load in 2008 and 2011, the two years where complete data were 
available.  DRP load to the Western Basin was 33% and 34% of TP in those years, 26% to the 
Central Basin, and 23% and 16% to the Eastern Basin.  However, the DRP is considerably more 
bioavailable than the PP+DNRP, making the relative contribution of the two fractions to ERI 
indicators approximately equal.  This is an important consideration when exploring means for 
load reduction. The models do consider this reality in establishing loading targets.  
 
 

 
Figure 5.  Average DRP load as a Percent of TP Load for 2008 and 2011 (see Appendix B-7). 
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3.0 RESULTS 

In reviewing model capabilities and the relevant eutrophication indicators, the Modelers 
concluded that the most reliable information can be provided for Western Basin total 
phytoplankton biomass, Western Basin cyanobacteria blooms, Central Basin hypoxia, and 
Eastern Basin Cladophora. Central Basin phytoplankton biomass was also investigated, but 
observations and model results indicate that concentrations are already low and further load 
reductions, based on that indicator, are not needed. 
 
3.1  Western Basin Phytoplankton Biomass 

Based on analysis of model performance (Appendix B), four models are suitable for exploring 
the relationship between total phytoplankton biomass (as chl-a) and external TP loading 
(Figures 6-9).  Direct comparisons are made difficult because the models used different 
averaging periods for reporting summer average chl-a. To help in the comparison, each model 
output was converted to a percent of the value determined for the highest loads.  While some 
models reported Western Basin chl-a as a function of whole lake annual TP loads, nutrient loads 
delivered to the Central and Eastern basins are assumed to have a negligible influence on 
phytoplankton growth in the Western Basin. The whole lake loads reported in each original 
load-response curve were converted to the corresponding Western Basin loads based on the 
Western Basin-to-Whole Lake load ratio recorded for the year used by each model as baseline 
scenario (Figure 10).   
 
Comparison of load reductions is summarized in Section 4.  Variability among results from 
different models is partly expected when modeling multiple interacting bio-physical factors 
such as those that influence phytoplankton growth, and partly derives from the varying degree 
of complexity and output characteristics of the adopted models. For example, Chapra et al. 
(Appendix B-3) compute chl-a concentrations based on a relatively simple empirical relationship 
between chl-a in August and TP concentrations in a given basin, and resulting chl-a 
concentrations are representative of August epilimnetic conditions (see Appendix B-3). On the 
other hand, ELCOM-CAEDYM, EcoLE, and WLEEM account for several ecological drivers in 
addition to phosphorus concentration when predicting chlorophyll-a levels in the Western 
Basin, and their results are averaged over summer months (June-August for ELCOM-CAEDYM 
and EcoLE, and July-September for WLEEM). As a result of these differences, the annual TP 
loads to the Western Basin needed to achieve, for example, a 50% decrease in the maximum 
chl-a concentration reported by each model range between 1130 MT and 3010 MT. 
 
Overall Trophic Status 
The two metrics defined for Overall Trophic Status were the basin-specific spring TP 
concentration and summer average chlorophyll-a concentration. Tables 2 and 3 provide a 
summary of statistical performance measures for the models used to establish relationships 
between phosphorus loads and these metrics. Although the metrics are defined explicitly for 
the spring and summer seasons, the computed performance measures were not limited to 
these seasons. The observed datasets used to compute the performance measures are unique  
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Table 2.  Statistical Performance Measures for Models Predicting TP Concentrations.  Blank cells indicate that 
statistics have not been computed for the particular model and statistical performance measure. 

 
1 Root mean square error (RMSE) computed using equation 1 
2 Percent Bias (PBIAS) computed using equation 2 
3 Mean absolute relative error (MARE) computed using equation 3 
4 Statistic shown is median MARE for total dissolved P 
5 Statistic shown is median MARE for epilimnion 

 
Table 3.  Statistical Performance Measures for Models Predicting Chlorophyll Concentrations. Blank cells indicate 

that statistics have not been computed for the particular model and statistical performance measure. 

 
Footnotes: 
1 Root mean square error (RMSE) computed using equation 1 
2 Percent Bias (PBIAS) computed using equation 2 
3 Mean absolute relative error (MARE) computed using equation 3 

 
 
to each model, though there is commonality between the sampling programs that produced 
the data. The Great Lakes TP Mass Balance Model utilized open-lake annual median TP 
concentration values derived from ship-based water quality sampling cruises conducted by 
Environment Canada and USEPA GLNPO programs when computing error statistics. WLEEM 
predictions were compared against monitoring data collected during 2008, and 2011 to 2014 by 
the University of Toledo’s Western Lake Erie Limnology Laboratory at six stations representing a 
gradient in conditions moving from the mouth of the Maumee River out to the open waters of 
Western Lake Erie. Performance statistics for all three metrics for TP and chlorophyll-a for the 

Scale Period RMSE 1 PBIAS 2 MARE 3

W. Basin 43 5.4 µg/L - 26%

C. Basin 47 3.7 µg/L - 26%

E. Basin 48 3.6 µg/L - 29%

WLEEM W. Basin Annual
2008, 

2011-2014
yes calculated 321 13.1 µg/L 17% 18%

1-D Hypoxia C. Basin Annual 1987-2005 yes calculated 157 4.1 µg/L 34% 45%

EcoLE Entire Lake Seasonal 1997-1999 yes literature - - - <20% 4

W. Basin - - - 19.3% 5

C. Basin - - - 12.6% 5

E. Basin - - - 14.0% 5

W. Basin - - - -

C. Basin - - - -

E. Basin - - - -

9-Box Daily yes literature1979-1982

-

literature

-yes

TP Mass Bal.

ELCOM-

CAEDYM

Annual 1968-2010

-

yes

Performance MeasureTemporal
Model

Spatial 

Scale

Used for 

Annex 4?

Metrics 

From

Number of 

Samples

Scale Period RMSE 1 PBIAS 2 MARE 3

W. Basin - - - -

C. Basin - - - -

E. Basin - - - -

WLEEM W. Basin Annual
2008, 

2011-2014
yes calculated 301 6.3 µg/L 19% 25%

1-D Hypoxia C. Basin Annual 1987-2005 yes calculated 158 1.5 µg/L 28% 25%

EcoLE Entire Lake - - yes - - - - -

Entire Lake 400 1.65 µg/L -0.6% 48%

W. Basin - - - -

C. Basin - - - -

E. Basin 142 1.18 µg/L -11% 48%

ELCOM-

CAEDYM
Daily yes literature2002

Performance Measure

TP Mass Bal. - - yes -

Number of 

Samples
Model

Spatial 

Scale

Temporal Used for 

Annex 4?

Metrics 

From



19 

1-D Central Basin hypoxia model utilized daily average water column concentrations, averaged 
over all sampling stations within the Central Basin. 
 
All six models used to inform TP loading targets to improve Lake Erie’s basin-specific trophic 
status have the ability to develop load-response curves, have the ability to address the specific 
objectives and metrics outlined by the Annex 4 subgroup, and have been documented multiple 
times in either peer-reviewed journals, government reports, and/or dissertations. 
 
Evaluation of the Great Lakes Total Phosphorus Mass Balance Model comprised both visual and 
statistical comparisons of model-predicted TP concentrations against observed data.  Time 
series plots showing annual average model predictions of TP concentrations and annual median 
values served as visual comparisons (Appendix B). Both the visual and statistical comparisons 
indicate a good fit between model-predicted TP concentrations and observed data at all Lake 
Erie model segments. Further discussion on the TP concentration data used in these analyses, 
the methods used for comparison and the evaluation of model performance is described in 
Chapra and Dolan (2012).  The documentation of the model does not contain visual or 
statistical comparisons to observed chlorophyll data. 
 
The visual and statistical evaluations presented in Appendix B and Verhamme et al. (2016, in 
review) provide evidence supplemental to the performance measures in Tables 2 and 3 that the 
WLEEM can be confidently used to establish a relationship between phosphorus loads and the 
Western Basin Trophic Status metrics. Though statistical thresholds for model acceptance were 
not specified as part of this work, the performance measures for WLEEM’s predictions of TP 
and chlorophyll concentrations indicate the calibration falls within acceptable ranges.  
 
The performance of the EcoLE model, with respect to phosphorus, was evaluated mainly based 
on visual comparisons presented in Zhang et al. (2008).  Time-series plots comparing dissolved 
phosphorus observations and data are presented, as well as descriptive performance reporting 
that median relative errors are were below 50% for all six water quality variables in 1997-1999. 
 
Time-series comparisons for total phosphorus, dissolved phosphorus and chlorophyll-a are 
presented in Rucinski et al. (2014) for the 1-D central basin hypoxia model.  The visual 
comparisons cover the entire simulated period of 1987-2005, on a daily basis.  Based on these 
comparisons, the model accurately captures observed trophic status variables.  Additionally, 
computed performance statistics are presented above for both TP and chlorophyll-a.  
 
As described in Lam et al., (1987), the NWRI 9-Box Water Quality Model for Lake Erie was 
applied in three periods; a calibration phase (1978), a verification phase (1967-1977) and a 
post-audit (1979-1982).  As the post-audit period represents the most current conditions, the 
model performance was included in this review.   Documentation of the model includes median 
relative error statistics for total phosphorus for each of the three basins of the lake as 
presented above.  Additionally, time-series visual model-data comparisons are available in Lam 
et al., 1987.  The model appears to predict total phosphorus at approximately the same 
accuracy in all basins. 
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ELCOM-CAEDYM model performance for chlorophyll-a for Lake Erie is described in Bocaniov et 
al. (2014).  Coefficient of determination (R2), Nash-Sutcliffe coefficient, relative error, and RMSE 
values are reported in the manuscripts at various locations in the system; all indicate 
acceptable performance. The majority of ELCOM-CAEDYM model-to-data statistical and time 
series comparisons for TP and chlorophyll-a concentrations are for the surface mixed layer 
(Leon et al., 2011; Bocaniov et al., 2014). While this suggests the model is better constrained for 
these variables in the epilimnion, vertical profile comparisons at multiple stations showed good 
agreement throughout the water column between ELCOM-CAEDYM chlorophyll-a predictions 
and observed data, though the comparisons were limited to just a few points in time (Bocaniov 
et al., 2014). 
 
 
  

Figure 6.  June – August Average Chlorophyll-a 
Concentration in the Western Basin as a Function of 
Whole Lake Annual TP Load, According to ELCOM-

CAEDYM (Appendix B-8). The top x-axis shows TP load as 
a percent of the 2008 baseline load. 

Figure 7.  July – September Average Chlorophyll-a 
Concentration in the Western Basin as a Function of 
Western Basin Annual TP Load, According to WLEEM 

(Appendix B-7). The top x-axis shows TP load as a 
percent of the 2008 baseline load.  

 
3.2  Western Basin Cyanobacteria Blooms 

The load-response curves for peak cyanobacteria biomass in the Western Basin for the three 
models which simulate this metric are shown in Figures 11-13.  All models identified spring TP 
loading from the Maumee River as the main driver of HABs, although the Obenour model is 
actually driven by an estimate of bioavailable phosphorus (estimated in that simple model as 
approximately 50% of particulate phosphorus plus 100% of DRP; Appendix B-2 ). WLEEM is 
driven by actual measured particulate and dissolved phosphorus forms, so it explicitly accounts 
for bioavailable phosphorus and the kinetic conversions of one phosphorus form to another 
within the model domain (e.g., mineralization of organic phosphorus to orthophosphate,  
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Figure 8.  June – August Average Chlorophyll-a 
Concentration in the Western Basin as a Function of 

Whole Lake Annual TP Load, According to EcoLE 
(Appendix B-5). The top x-axis shows TP load as a 

percent of the 2008 baseline load.  

Figure 9.  August Average Chlorophyll-a Concentration in the 
Western Basin as a Function of Whole Lake Annual TP Load, 

According to the Chapra et al. Model (Appendix B-3). The top x-
axis shows TP load as a percent of the 2008 baseline load. The 
125% scenario was not calculated by the Chapra et al. model.  

 
gradient-driven desorption of orthophosphate from inorganic particulate phosphorus). This 
Maumee focus is especially evident when comparing the WLEEM load-response results based 
on varying TP loads from all Western Basin sources with that obtained by reducing Maumee 
River TP load alone (Figure 13). The two curves are very similar, indicating that a reduction in TP 
loadings from sources other than the Maumee River results in a relatively minor decrease in 
HAB severity. WLEEM exploration of response to Detroit River TP reductions also confirms the 
negligible role it plays in HAB formation, although loads from the Detroit River do influence 
ecosystem indicators such as TP, DRP, and total chlorophyll-a levels in the whole Western Basin 
(see Appendix B-7).  
 
Direct comparison of response curves from the three models is made difficult because they 
used different averaging periods for loads, and WLEEM used a different method than the two 
satellite-driven empirical models for determining the peak cyanobacteria biomass.  The 
Obenour and Stumpf models are fit to the same set of satellite-derived bloom observations 
(plus additional in situ observations in the case of Obenour). The satellite estimates are 
maximum 30-day values, as determined from three consecutive 10-day composites, which in 
turn are derived by taking the highest biomass value observed at each image pixel over each 
10-day period (Stumpf et al., 2012). WLEEM, on the other hand, simulates daily average basin-
wide cyanobacteria biomass, from which a 30-day moving average is calculated over summer 
months and then the maximum consecutive 30-day value is reported for each year (see 
Appendix B-7). As a result, WLEEM biomass estimates are significantly lower than those used by 
Stumpf and Obenour, which makes the “severe” bloom threshold of 9600 MT of cyanobacteria 
offered by Stumpf in Appendix B-1 incompatible with WLEEM estimates.  
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Figure 10.  Average Summer Chlorophyll–a Concentration in the Western Basin Predicted by Different Models as 

a Function of Annual Western Basin TP Loads. Each response curve has been scaled to 100% at its maximum 
chlorophyll value to facilitate comparisons. Maximum chlorophyll value corresponds to the 125% TP load 

scenario for all models except for Chapra et al., which only considered TP load scenarios up to 100% of the 2008 
baseline. Red horizontal line represents a 50% reduction in maximum chlorophyll concentration. 

 
 
To account for this and provide a bloom threshold consistent with WLEEM’s biomass estimates 
and equivalent to 9600 MT, the ratio of the Stumpf modeled 2008 biomass (the baseline year 
and also a severe bloom year) to the 9600 MT value was calculated, and then that ratio was 
applied to the 2008 biomass predicted by WLEEM to obtain an “equivalent” threshold of 7990 
MT cyanobacteria biomass for WLEEM (green line in Figure 13). 
 
The Obenour model includes a temporal component that suggests increased susceptibility of 
Western Lake Erie to bloom formation (see Appendix B-2). Accordingly, the same TP load is 
predicted to trigger a larger bloom under present-day conditions compared to earlier years, as 
evidenced by the two different response curves obtained when running the model under 2013 
versus 2008 conditions (Figure 11). While an important finding statistically, a mechanism for 
this trend is not yet clear and it is not known if the trend will continue. As a result, the Obenour 
model predicts that under 2008 lake conditions a total maximum spring (March-June) Maumee 
TP load of 1230 MT is needed to achieve a peak summer cyanobacteria biomass of 9600 MT, 
while the same cyanobacteria biomass level requires a much lower maximum load (500 MT) 
under 2013 lake conditions (Figure 11 and Table 10). Considering that over the period 2002-
2011 the March-June Maumee load was on average 50% of the total annual river load, these 
spring loads correspond to annual maximum Maumee loads of 2460 MT (2008 conditions) and 
1000 MT (2013 conditions). The Stumpf model, which does not include a temporal trend, 
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indicates that a maximum annual Maumee load of 2038 MT is necessary to reach the 9600 MT 
threshold, and WLEEM suggests a maximum annual Maumee load of 1926 MT to achieve a 
comparable peak biomass based on its estimation method. 
 
The Obenour model and WLEEM were also used to explore the impact of DRP load reductions.  
Both models predict that even 100% removal of the Maumee DRP load alone (without changing 
the PP+DNRP load) would not be enough to produce peak cyanobacteria bloom formation 
below the “severe” threshold (see Appendices B-2 and B-7). 
 

 
 

 
 
 

 
 
  

Figure 12.  Cyanobacteria Bloom Size (Peak 30-
Day Average Biomass) Predicted by the Stumpf 
Model in the Western Basin as a Function of 
Spring Maumee River TP Load. The solid line 
represents mean predictions, while dashed lines 
are 95% confidence intervals. The green dotted 
line indicates the threshold for “severe” blooms 
as devised by Stumpf in Appendix B-1. 

Figure 11.  Cyanobacteria Bloom Size (Peak 30-
Day Average Biomass) Predicted by the 
Obenour et al. Model in the Western Basin as a 
Function of Spring Maumee River TP Load. Solid 
lines are mean predictions under 2008 and 
2013 lake conditions (see Appendix B-2 for 
details), while dashed lines are 95% predictive 
intervals. The green dotted line indicates the 
threshold for “severe” blooms as devised by 
Stumpf in Appendix B-1. 
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Table 4 provides a summary of statistical performance metrics for the three models applied to 
simulate the phosphorus load effect on cyanobacteria blooms. The metric defined for this ERI 
was the maximum 30-day Western Basin cyanobacteria biomass (metric tons). Each model, 
however, predicts a different state variable: WLEEM compares model predictions of 
cyanobacteria biovolume (mL/m2/yr) against spatially-explicit field measurements recorded by 
the UT program described above in the Overall Trophic Status section, the NOAA model 
response variable is expressed as units of a remote-sensing derived Cyanobacteria Index (CI) 
proportional to basin-wide cyanobacteria biomass (Stumpf et al., 2012), and the UM/NOAA-
GLERL model compares predictions against metric tons (MT) of cyanobacteria biomass 
estimated from satellite imagery and in-situ sampling (Obenour et al., 2014). In addition, the 
NOAA HAB model uses a log-transformed response variable, i.e. log10(CI) (Stumpf et al., 2012). 
To facilitate comparison of performance across statistical models, performance metrics for the 
NOAA HAB model were calculated on the original, un-transformed scale obtained by back-
transforming bloom predictions ẑ from log10(CI) to CI through exponentiation (10ẑ) and 
correction for re-transformation bias (Sprugel, 1983; Stow et al., 2006). CI units were then 
converted to metric tons (MT) of cyanobacteria biomass assuming that 1 CI corresponds to 
approximately 4800 MT cyanobacteria biomass (Obenour et al., 2014). 
 
 

Table 4.  Statistical Performance Measures for Models Predicting Cyanobacteria Blooms 

 
Footnotes: 
1 Root mean square error (RMSE) computed using equation 1 
2 Percent Bias (PBIAS) computed using equation 2 
3 Mean absolute relative error (MARE) computed using equation 3 

Scale Period RMSE 1 PBIAS 2 MARE 3

WLEEM W. Basin Annual
2008, 

2011-2014
yes calculated 195 6576 mL/m2/yr -14% 38%

NOAA W. Basin Annual 2002-2013 yes calculated 12 9388 MT -6% 52%

UM/GLERL W. Basin Annual 1998-2013 yes calculated 35 3041 MT 0.3% 49%

Number of 

Samples

Performance Measure
Model

Spatial 

Scale

Temporal Used for 

Annex 4?

Metrics 

From

Figure 133.  Cyanobacteria Bloom Size (Peak 
30-Day Rolling Average Biomass) Predicted by 
WLEEM in the Western Basin in Relation to 
Changes in Annual TP Loads from all External 
Sources (Red Lines) and from the Maumee 
River only (Blue Lines). Solid lines are mean 
predictions, while dashed lines are 95% 
confidence intervals around the regression 
fitted through results of model simulations 
using 2008, 2011-13 (see Appendix B-7). The 
black dotted line marks the 2008 TP load and 
corresponding bloom prediction. The green 
dotted line indicates the biomass level 
corresponding to a decrease in the 2008 
bloom prediction equivalent to the 
percentage reduction of Stumpf`s 2008 
predicted value down to 9600 MT. 
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In addition to having sufficient predictive capabilities to address the questions/requirements 
posed in Annex 4 (i.e., all three models have the ability to develop TP load-cyanobacteria 
response curves), being deemed applicable to the objectives/metrics provided by the Annex 4 
subgroup (i.e., all three models have the ability to address the specific objectives and metrics 
outlined by the Annex 4 subgroup), and having sufficient model documentation (i.e., all three 
models have been documented multiple times in either peer-reviewed journals, government 
reports, and/or dissertations), a holistic evaluation of the extent and quality of model 
calibrations suggests these three models are suitable for exploring the relationship between 
cyanobacteria blooms and TP loading. 
 
All visual and statistical evaluations comparing observed data against WLEEM predictions of 
water temperature, nutrients, and biological parameters suggest the model can be confidently 
used to establish a relationship between phosphorus loads and the maximum 30-day Western 
Basin cyanobacteria biomass. In addition to the statistical performance measures presented 
above for TP, chlorophyll and cyanobacteria biovolume, the visual and statistical performance 
measures shown in Appendix B and Verhamme et al. (2016, in review) for other state variables 
corroborate the model’s ability to capture inter-annual variability across a wide range of 
conditions. 
 
Similarly, both statistical models (NOAA and UM/GLERL) were capable of resolving a substantial 
portion of the variability in annual bloom size by using Maumee River TP load as bloom 
predictor (R2 = 91.6 for the UM/GLERL model and R2=75.5 on the original, un-transformed scale 
for the NOAA model), confirming the relatively high predictive performance of both models. 

3.3  Central Basin Hypoxia 

Previous studies have shown that the hypolimnetic oxygen depletion rates in the Central Basin 
of Lake Erie are driven by both the sediment oxygen demand (SOD) and water column oxygen 
demand (WOD) and summer stratification. Since the full effect of nutrient load changes cannot 
be seen with short simulations of the models, SOD rates are adjusted to capture the nutrient 
load reductions (Appendices B4-B8). 
 
The response curves for hypolimnetic dissolved oxygen from the various models (Figure 14) 
show similar decreasing trends with increasing loads, though there are some discrepancies at 
the lowest loads. The 9-Box model is the only one that was run for three consecutive years to 
approximate a steady-state response to the load reductions, and this could partially explain 
some of the differences.  Additional differences among model output include the fact that 
Rucinski models and the 9-Box model report hypolimnetic averaged DO, while the other two 
report concentrations from the models’ bottom layer (0.5-1.0 m for ELCOM-CAEDYM; 1.0 and 
1-3 m for EcoLE).  Rucinski_WB (constant P retention of Western Basin load in the Western 
Basin) and Rucinski_WLEEM use two representations of flux from the Western Basin to the 
Central Basin; the Rucinski WB uses a net apparent attenuation loss rate due to settling as the 
loads are transported from the Western basin to the Central Basin, the Rucinski WLEEM uses 
outputs from the WLEEM model for loading that enters the Central Basin from the Western 
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Basin.  Figures in Appendix B-4 show 
that the two methods yield similar 
results.  In addition, all response 
curves were plotted as a function of 
Western + Central basin TP loads. 
Whenever necessary, whole lake loads 
originally reported by each modeler 
were converted to Western + Central 
basin loads based on the Western + 
Central load-to-whole lake load ratio 
recorded in the baseline year used by 
each modeler. 
 
While the typical definition of hypoxia 
is for dissolved oxygen concentrations 
below 2 mg/L, Zhou et al. (2013) 
showed that statistically significant 
hypoxic areas begin for average 
bottom water DO concentrations 
below approximately 4.0 mg/L. Using 
that as an indicator, for example, 
suggests a need to keep Western + 
Central basin loads below  2600 to 5100 
MT (Table 10).   
 
Several models estimate hypoxic area. ELCOM-
CAEDYM does this directly through a detailed 
3-dimensional model; 9-Box does this by using 
hypolimnetic DO concentration and the area 
intersecting the bottom of the thermocline; 
EcoLE and Rucinski use the Zhou et al. (2013) 
relationship between hypoxic area and 
bottom-layer DO concentration. All models 
show that the extent of the hypoxic zone will 
increase with increasing TP loads (Figure 15).  
The primary cluster of models suggest that a 
decrease in annual Western + Central basin TP 
load to 3415 – 5955 MT/year (9-Box suggests 
1150 MT/year) is necessary to reduce the 
average extent of the Central Basin hypoxic 
zone to 2000 km2 (Figure 15 and Table 2), a 
value typical of the mid-1990s, which coincides 
with recovery of several recreational and 
commercial fisheries in Lake Erie’s Western and 

Figure 144.  August-September Average Hypolimnetic Dissolved 
Oxygen Concentration Predicted by Different Models in the Central 

Basin as a Function of Annual TP Loads. The green line represents the 
average concentration corresponding to initiation of statistically 

significant hypoxic area (Zhou et al., 2013) 

Figure 155.  August-September Average Extent of the 
Hypoxic Area Predicted by Different Models in the 

Central Basin as a Function Of Annual TP Loads to the 
Western and Central Basin. The green horizontal dotted 

line indicates a suggested threshold of 2000 km2.  
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Central basins (Ludsin et al., 2001, Scavia et al., 2014). This corresponds to a 39-52% TP 
decrease from the 2002-2011 average of 8070 MT/year.   
 
If a maximum TP load of 3415 to 5955 MT/year 
were achieved, the models indicate a decrease in 
the total number of hypoxic days (days where 
average bottom water dissolved oxygen is 
<2 mg/L) to values between 14 - 42 days (Figure 
16). The relative scatter among models at the 
low end of the range is likely due to the coarse 
resolution among load scenarios. This is different 
from the use of a 4 mg/l bottom layer (not 
hypolimnion average) concentration to define 
the onset of statistically significant hypoxic area 
(see Zhou et al., 2013). 
 
Three metrics were used to quantify Central 
Basin hypoxia: number of hypoxic days, average 
areal extent during the summer, and average 
hypolimnion DO concentration during the August-
September period. The common state-variable used 
to evaluate performance of models used for this ERI 
was dissolved oxygen concentration.  Table 5 provides a statistical summary of model 
performance for the four models applied to simulate the effects of phosphorus loads on Central 
Basin hypoxia.  
 
 

Table 5.  Statistical Performance Measures for Models Predicting DO Concentrations.  Blank cells indicate that 
statistics have not been computed for the particular model and statistical performance measure. 

 
Footnotes: 
1 Root mean square error (RMSE) computed using equation 1 
2 Percent Bias (PBIAS) computed using equation 2 
3 Mean absolute relative error (MARE) computed using equation 3 
4 Statistic shown is median MARE for hypolimnion 

 
 
All four models used to inform TP loading targets to reduce Lake Erie’s Central Basin hypoxia 
have the ability to develop load-response curves, have the ability to address the specific 
objectives and metrics outlined by the Annex 4 subgroup, and have been documented multiple 
times in either peer-reviewed journals, government reports, and/or dissertations. 

Scale Period RMSE 1 PBIAS 2 MARE 3

1-D Hypoxia C. Basin Daily 1987-2005 yes calculated 312 1.6 mg/L 7% 17%

EcoLE C. Basin Seasonal 1997-1999 yes literature - - - ≤ 34%

9-Box C. Basin Daily 1979-1982 yes literature - - - 7% 4

ELCOM-

CAEDYM
C. Basin - - yes literature - - - -

Number of 

Samples

Performance Measure
Model

Spatial 

Scale

Temporal Used for 

Annex 4?

Metrics 

From

Figure 166.  Number of Hypoxic Days Predicted by 
Different Models in the Central Basin as a Function of 
Annual TP Loads. The shaded area indicates the range 

of loads required to achieve the hypoxic area threshold 
of 2000 km2 (Figure 15), excluding predictions from the 

9-Box model. 
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Rucinski et al., (2014) describes the dissolved oxygen calibration for the 1-d Central Basin 
hypoxia model, for the 1987-2005 simulated period.  Visual time-series comparisons for the 
entire period are presented for the epilimnion, metalimnion, and hypolimnion zones for the 19 
year simulation.  Visual evaluation of the model-data comparison suggests accurate temporal 
and spatial predictions in all three mixed layers.  Additionally, the statistical performance 
metrics are calculated and presented in Table 5.  
 
The hydrodynamic component of the EcoLE model described in Conroy et al. (2011) displays a 
number of dissolved oxygen time-series profiles and comparisons to data.  These visual 
depictions all demonstrate accurate simulation of the temporal and spatial development of the 
thermocline and oxygen profiles.  The authors report that all locations have a calculated mean 
relative error less than 34%. 
 
The NWRI 9-Box Water Quality Model for calibration is presented in Lam et al. (1987). Dissolved 
oxygen performance statistics are reported for each of the three basins of the lake.  
Additionally, visual comparison is presented via time-series comparisons of model and data.  
Model performance in the central basin hypolimnion appears accurate when compared to data, 
however the spatial resolution of the model may limit its ability to assess changes in long-term 
hypoxia, under management scenarios. 
 
As described in Bocaniov (2014), ELCOM-CAEDYM performance was presented for temperature 
and chlorophyll for Lake Erie, however model-data comparisons for dissolved oxygen 
concentrations were not available.  Additional calibration statistics have not been computed 
and therefore could not be reported at this time. 
 
3.4  Eastern Basin Cladophora (nearshore)  

Although the Great Lakes Cladophora Model was applied generically to conditions in the 
Eastern Basin of Lake Erie as part of the ensemble modeling process and used to develop a 
load-response curve, the Objectives and Targets Task team did not use the model to set a 
loading target for TP based on Cladophora growth in the Eastern Basin. Further, the Great Lakes 
Cladophora Model was calibrated and verified against data from Lake Huron and Lake 
Michigan, but not Lake Erie. Therefore statistical performance metrics, sensitive parameters, 
and uncertain inputs/parameters are not listed for this model. 
 
As described in Appendix B-9, several steps and models were required to establish a 
quantitative relationship between TP loads and the Cladophora indicator.  These models 
include one that relates standing stock Cladophora biomass to Eastern Basin DRP 
concentrations, one that relates DRP to TP concentrations, and one that relates Eastern Basin 
TP concentrations to TP loads.  Given those relationships, and assuming, for example, a 
threshold value for the Cladophora ERI of 30 gDW/m2 (a threshold expected to eliminate 
nuisance growth of the alga in the Eastern Basin), the models indicate this corresponds to a DRP 
concentration of 0.9 µgP/L.  A regression model indicates that a 0.9 µgP/L DRP concentration 
corresponds to a TP concentration of 6.3 µgP/L, and the Chapra TP model indicates that a 6.3 
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µgP/L TP concentration in the Eastern Basin corresponds to a total TP load for Lake Erie of 7000 
MT/Year, requiring a 22% reduction from the 2002-2011 average. 
 
This load results in an offshore DRP 
concentration that should not stimulate 
nuisance growth of Cladophora. As offshore 
DRP concentrations are reduced, control of 
Cladophora growth will shift to direct inputs 
to the nearshore (e.g. wastewater 
treatment plant effluents and tributary 
runoff).  For the Eastern Basin of Lake Erie, 
this means that loads from direct inputs to 
the nearshore such as the Grand River will 
determine whether nuisance growth of 
Cladophora occurs. 

3.5  Model Parameter Sensitivity 

Sensitivity analysis can be used to 
understand the relative importance of 
model input parameters on model 
behavior and predictions. In addition to 
providing valuable insight during model calibration on the parameter(s) and/or forcing 
function(s) that most affect model predictions, sensitivity analysis can also be used after the 
calibration phase is complete to assess the uncertainty of model predictions with respect to 
uncertainties in key inputs.  
 
The following sections provide an assessment of each model’s most sensitive parameters 
associated with predictions of the metrics defined for the selected ERIs. The lists of most 
sensitive parameters were developed from a mix of previously reported sensitivity analyses, 
sensitivity analyses conducted during this work, and/or professional judgement. Because all of 
the models use TP loading as either a forcing function or independent variable to predict the 
ERI metrics, it is not included in the tables below despite being one of the most sensitive inputs. 
The sensitivity of model predictions to TP loads can be determined from the various load-
response curves developed as part of this work. Other forcing functions like air temperature 
and tributary flow rates have also been excluded. The lists focus on the input parameters, 
coefficients, and initial conditions used by the models.  
 
Overall Trophic Status 
Tables 6 and 7 provide a summary of the most sensitive parameters for the models used to 
establish relationships between phosphorus loads and TP and chlorophyll concentrations.  
 
  

Figure 177.  Cladophora Biomass Predicted by the Great Lakes 
Cladophora Model (GLCM) in the Eastern Basin as a Function of 
Annual TP Loads. The green dotted line represents the author’s 

suggested TP loading target (7000 MT), while the red dotted line 
shows the average annual TP load to Lake Erie over the period 

2002-2011 (9022 MT). 
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Table 6.  Most Sensitive Parameters, Ordered from Highest to Lowest, for Models Predicting TP Concentrations  

 

 
Table 7.  Most Sensitive Parameters, Ordered from Highest to Lowest, for Models Predicting 

Chlorophyll Concentrations 

 

 
 
As described in Appendix B-3, a formal sensitivity assessment was not conducted on the 
modified TP Mass Balance Model.  A regionalized sensitivity analysis using 2,000 Monte Carlo 
simulations performed on an earlier version of the model by Lesht et al. (1991) found apparent 
settling velocity was the most sensitive parameter, followed by advective outflow, and initial 
condition (Lake Huron only). The bulk horizontal eddy diffusion coefficient was relatively 
unimportant. The apparent settling velocity was the only parameter changed (increased) when 

Apparent settling velocity for TP Maximum algal growth rate

Initial TP concentration Phosphorus half-saturation coefficient

Phosphorus settling rate

Initial surface sediment P concentrations Algal settling rate

Particulate organic matter settling rate Zooplankton grazing

Resuspension scale factor for total inorganic P Physical light extinction coefficient

Phosphorus half-saturation growth coefficient (KmP) Algal self-shading light extinction coefficient

Base algal settling rate (VsBas) Phosphorus settling rate

Optimal growth temperature (TOPT) Maximum algal growth rate

Saturated growth rate at TOPT (Kc) Phosphorus half-saturation coefficient

Saturating algal light intensity (IS) Algal settling rate

Dreissenid density and size distribution Zooplankton grazing rate

Zooplankton grazing efficiency

Mussel density Physical light extinction coefficient

Mussel grazing rate Algal self-shading light extinction coefficient

Absorption and settling rate Phosphorus settling rate

Phosphorus release from sediment Wind speed/resuspension

Maximum algal growth rate Maximum algal growth rate

Zooplankton grazing Algal respiration rate

ELCOM-CAEDYM

1-D Hypoxia

TP Mass Bal.

WLEEM

9-Box

ModelModel Most Sensitive Parameters

EcoLE

Most Sensitive Parameters

Apparent settling velocity for TP Maximum algal growth rate

Initial TP concentration Phosphorus half-saturation coefficient

Algal settling rate

Saturated growth rate at TOPT (Kc) Physical light extinction coefficient

Phosphorus half-saturation growth coefficient (KmP) Algal self-shading light extinction coefficient

Base algal settling rate (VsBas) Algal respiration rate

Optimal growth temperature (TOPT) Zooplankton grazing rate

Carbon to chlorophyll ratio Zooplankton grazing efficiency

Saturating algal light intensity (IS) Phosphorus mineralization rate

Dreissenid density and size distribution

Initial surface sediment P concentrations Mussel density

Nitrogen half-saturation growth coefficient (KmN) Maximum algal growth rate

Maximum algal growth rate Phosphorus half-saturation coefficient

Phosphorus half-saturation coefficient Zooplankton grazing

Mussel density Mussel grazing rate

Algal respiration rate Algal settling rate

Minimum internal phosphorus concentration Light attenuation coefficient

Zooplankton grazing rate

WLEEM

ELCOM-CAEDYM

Most Sensitive Parameters

TP Mass Bal.

EcoLE

1-D Hypoxia

Model Model Most Sensitive Parameters
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the model was updated/extended to simulate lake water quality for the 1990s and 2000s 
(Chapra and Dolan 2012), further indicating its importance as the most sensitive model input 
parameter. Because chlorophyll-a concentrations estimated by the TP Mass Balance Model are 
derived from empirical relationships with TP concentrations, the same order of parameter 
sensitivity applies (Table 7). 
 
A simple sensitivity analysis conducted as part of this work provides a detailed breakdown of 
how each lake segment’s TP loads impacts every other lake segment TP concentrations for the 
2001-2010 water year average flows and TP loads.  The matrix in Appendix B-3 can be used to 
understand how uncertainties in TP loading estimates serving as model inputs impact eventual 
simulated TP concentrations.  For example, because the model is linear, the matrix can be used 
to show that a 25% drop in the Western Erie tributaries TP load would result in a 23% decrease 
(25%*14.75/16.00) in Western Erie TP concentration, while a 25% drop in the Huron to Erie TP 
load would only result in a 1.6% decrease (25%*1.04/16.00) in Western Erie TP concentration.   
 
Although a formal, rigorous sensitivity analysis has not been conducted on the WLEEM using 
global methods like elementary effects (EE) or generalized sensitivity analysis (GSA), numerous 
parameter sensitivity testing exercises were conducted during calibration of WLEEM and other 
modeling frameworks that deploy the Advance Aquatic Ecosystem Model (A2EM) sub-model, 
such as the Upper Mississippi River-Lake Pepin (UMR-LP) model and the Saginaw Bay Ecosystem 
Model (SAGEM2). Using a local sensitivity analysis method, which involves changing a one 
parameter at a time (OAT), insight was gained to inform model calibration by observing the 
change in model output relative to the change in the input parameter. Model predictions of 
water column TP concentrations were sensitive to a mix of algal and non-algal related 
parameters/inputs (Table 6). The initial surface sediment P concentrations, resuspension scale 
factor for total inorganic P, and particulate organic matter settling rate all affect water column 
TP concentration by decreasing (i.e., via deposition) or increasing (i.e., via resuspension or 
diffusion) P mass in exchange with the Western Basin sediment bed. The remaining parameters 
listed in Table 6 are found to be the most influential on simulated phytoplankton growth, which 
can either increase or decrease water column TP concentration.  The most sensitive WLEEM 
input parameters for predicting chlorophyll concentrations are those that affect the 
temperature-limited growth rate and nutrient-limited growth rate of phytoplankton.  These 
include the saturated growth rate, optimal growth temperature (TOPT), and the phosphorus 
half-saturation constant (KmP) (the resource availability at which growth is half of the 
maximum). In addition, the basal phytoplankton settling rate (VsBas) was found to be one of the 
most sensitive parameters affecting chlorophyll concentrations. Note that although inputs for 
these parameters are specified for each of three phytoplankton functional groups (diatoms, 
greens, and cyanobacteria) simulated by WLEEM, Table 7 does not distinguish the sensitivity of 
predicted chlorophyll concentrations to input parameters for the individual functional groups. 
WLEEM predictions of both TP and chlorophyll concentrations are also sensitive to the initial 
Dreissenid density and size distribution, but to a lesser extent than the other parameters listed 
in Tables 6 and 7.   
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Similar to WLEEM, a rigorous sensitivity analysis has not been conducted on the 1-dimensional 
hypoxia model, although parameter sensitivity was informally assessed as part of the 
calibration process by changing individual parameters and comparing the simulated response to 
previous iterations.  The full parameter set is described in Rucinski et al. (2014), listing the 
calibration values for all 32 internal model parameters.  The model also contains a number of 
external forcing functions, including meteorological inputs and basin loadings, although the 
relative sensitivity of these inputs is not addressed in this review.  With respect to total 
phosphorus, the model is most sensitive to the settling rate and the rate of algal uptake which 
is affected by both the maximum growth rate and the phosphorus half-saturation coefficient.  
Other important but less sensitive parameters include algal settling, zooplankton 
grazing/recycling rates and algal light extinction coefficients.  Table 6 includes the most 
sensitive parameters in order of decreasing sensitivity.  With respect to chlorophyll-a, the 1-
dimensional hypoxia model is very sensitive to the rate of phosphorus uptake by algae 
(maximum growth rate and the phosphorus half-saturation coefficient) and algal settling.  Light 
conditions are also important for algal growth, where the physical and self-shading extinction 
coefficients are the most sensitive. Other important but less sensitive parameters include the 
algal respiration rate, the zooplankton grazing rate and the organic-inorganic mineralization 
rate.  These parameters are listed in order of sensitivity in Table 7. 
 
The EcoLE model contains more than 120 coefficients, although the vast majority are generally 
not adjusted and were based on default literature values.  Holistic sensitivity analysis was not 
performed on the EcoLE model, however a few modeling studies were performed to investigate 
the sensitivity to mussel densities, external tributary loading, zooplankton grazing and vertical 
mixing.  Additionally, professional judgment was used to add additional parameters known to 
be sensitive in similar eutrophication models.  With respect to total phosphorus, the model 
appears to be highly sensitive to mussel density and grazing rates, as increased filtering of algae 
leads to increased excretion of P into the water column.  Other important and sensitive 
parameters include adsorption and settling, phosphorus release from the sediments and the 
maximum growth parameters for each algal group. These are listed in Table 6.  Many of the 
same parameters can have significant impacts on algal biomass and the chlorophyll-a response 
metrics.  Again, mussel kinetics appear to have significant influence on the amount of available 
P for algal uptake, although the effect of grazing was not as pronounced.  Algal growth kinetic 
rates greatly influence the timing and magnitude of blooms and therefore the model is highly 
sensitive to maximum growth rates.  Additionally, zooplankton grazing and algal settling are 
important and sensitive parameters for analyzing chlorophyll concentrations, as listed in 
Table 7. 
 
A sensitivity analysis was previously performed using the NWRI 9-Box water quality model (Lam 
et al., 2007) for different simulation years.  For that effort, nine key parameters and inputs 
were independently adjusted by ±20%, and the change in each output variable was then 
assessed. That analysis was recreated for 2008 for this study.  Total phosphorus is most 
sensitive to external loading, settling rate, wind speed (resuspension) and algal uptake.  These 
parameters are listed in order of decreasing sensitivity in Table 6. 
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No formal sensitivity analysis was conducted for the ELCOM-CAEDYM model applied in Lake 
Erie, however there have been a few studies on the model framework itself in other unrelated 
but potentially transferrable systems, or variations of the ELCOM-CAEDYM Lake Erie model.  
The results from those analyses as well as professional judgement were used to assess the 
parameter sensitivity for this review.  A Master of Science thesis from Jones (2011) simplified 
the existing model by using a simpler hydrodynamic submodel (DYRESM) and applied it to only 
the western basin of Lake Erie.  That analysis found that, for total phosphorus, parameters 
effecting growth rate and settling were most sensitive.   With respect to algal biomass (i.e., 
chlorophyll) the most significant parameters were the maximum potential growth rate, the 
minimum internal phosphorus concentration, and the coefficient of respiration.  Additionally, 
grazing rate of zooplankton was also found to be important.  A separate sensitivity analysis was 
conducted for the CAEDYM model framework for Lake Kinneret in Israel (Makler-Pick et al. 
2011).  That analysis focused on a much different system, but demonstrated that settling and 
respiration parameters were influential.  Sensitivity of the parameters based on these studies 
and professional judgement are listed in Tables 6 and 7. 
 
Cyanobacteria blooms in Western Basins 
Table 8 provides a summary of the most sensitive parameters for the models used to establish 
relationships between phosphorus loads and cyanobacteria biomass.  
 
 

Table 8.  Most Sensitive Parameters, Ordered from Highest to Lowest, for Models Predicting 
Cyanobacteria Blooms 

 
 
 
The most sensitive WLEEM input parameters for predicting cyanobacteria biomass are those 
that affect the temperature-limited growth rate and nutrient-limited growth rate of 
cyanobacteria. These include the saturated growth rate at the optimal growth temperature, the 
phosphorus half-saturation constant, the optimal growth temperature, and temperature 
correction effects on growth rate. In addition, the basal phytoplankton settling rate (VsBas), 
which was adjusted to reflect the buoyancy of cyanobacteria, was found to be one of the most 
sensitive parameters affecting cyanobacteria growth during WLEEM calibration. WLEEM 
predictions of cyanobacteria biomass are also sensitive to the saturating algal light intensity, 
the initial Dreissenid density and size distribution, and the initial surface sediment P 
concentrations, but to a lesser extent than the other parameters listed in Table 8. 
 

Saturated growth rate at TOPT (Kc) Intercept, a0

Phosphorus half-saturation growth coefficient (KmP) Slope, a1

Optimal growth temperature (TOPT)

Base algal settling rate (VsBas) Temporal trend

Temperature correction effect on growth rate below TOPT (Kβ1) Pred. error std. dev.

Saturating algal light intensity (IS) Bloom production

Dreissenid density and size distribution Intercept term

Initial surface sediment P concentrations

Model Most Sensitive Parameters

NOAA

Model Most Sensitive Parameters

WLEEM

UM/GLERL
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Model parameter sensitivity for the two statistical models was assessed by removing 
observations from each year from the calibration dataset one at a time, re-fitting the model 
each time to the “reduced” calibration dataset, and quantifying changes in parameter mean 
estimates due to removal of each year from the calibration dataset. Results from these 
sensitivity analyses are reported in Appendix B1 and B2. 
 
As reported in Appendix B1, the NOAA model`s parameter estimates were particularly sensitive 
to removal of the year 2012 from the calibration dataset, while removal of each of the 
remaining years resulted in relatively small changes in mean parameter estimates (85-104% of 
the intercept`s full-model mean estimate and 96-102% of the slope`s full-model mean 
estimate). As mentioned in Appendix B1, using the load-response curve obtained by removing 
the year 2012 from the calibration dataset would have resulted in a larger bloom size reduction 
for the same TP load. A more conservative load-response curve, based on the complete 
calibration dataset, was preferred to inform the final load recommendations. 
 
The effect of changes in model parameter estimates on predicted bloom size is assessed in 
Figure B1-3 of Appendix B1 for the slope parameter. In this figure, the uncertainty bounds 
associated with predicted bloom size for each load reduction scenario measure how predicted 
bloom size changes when varying the slope by ± 1 standard error of its mean estimate. 
 
For the UM/GLERL HAB model, the most sensitive parameters to individual year removal were 
βt (temporal trend) and σγ (model prediction error;  see Appendix B2 and Obenour et al. (2014) 
for more details on parameter interpretation). The temporal trend parameter was especially 
sensitive to removal of the year 2013, which resulted in a substantial decrease in the 
parameter`s estimate (31% of the full model estimate). While this may suggest that this 
parameter is especially sensitive to removal of high-bloom years from the calibration dataset, 
removal of similar or larger bloom years such as 2008 or 2011 resulted in substantially smaller 
decreases in the temporal trend parameter (95% and 83% of the full model estimate when 
removing the years 2008 and 2011, respectively). In general, removal of each of the years apart 
from 2013 resulted in a percentage change in the mean parameter estimate of 74-121% of the 
full model estimate). The next two most sensitive parameters were the unit increase in bloom 
size per unit increase in P load (βw) and the intercept term (β0). The remaining five model 
parameters were not as sensitive, with an overall range of mean parameter estimates of 77-
127% of the full-model estimate. A recent revision and expansion of the calibration dataset 
with 2014 bloom observations supported the positive temporal trend reported in this work, 
while recognizing that a longer calibration dataset is needed to provide definitive evidence of a 
long-term trend in bloom susceptibility (Bertani et al., in press). The inclusion of the temporal 
trend in the model results in an upward shift in the load-response curve over the years 
(Obenour et al., 2014). In recognition of the limitations associated with the length of the 
calibration dataset used to estimate the temporal trend, it was decided to use the load-
response curve generated under 2008 lake conditions, rather than that generated under 
approximately current (2013) conditions, to inform the final load recommendations. 
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The Bayesian approach adopted in this model allows to rigorously account for the variability in 
model predictions due to the estimated variability in model parameter estimates (Obenour et 
al., 2014). The 95% predictive intervals associated with model predictions (see Figs B2-3 
through B2-5 and Tables B2-1 through B2-3 in Appendix B2) provide the likely range of 
predicted bloom sizes associated with variability in parameter estimates and model prediction 
error, thereby incorporating the influence of variation in parameter estimates on predicted 
bloom size.  
 
Hypoxia in hypolimnion of Central Basin  
Table 9 provides a summary of the most sensitive parameters for the models used to establish 
relationships between phosphorus loads and the hypoxia response metrics.  
 
 
Table 9.  Most Sensitive Parameters, Ordered from Highest to Lowest, for Models Predicting DO Concentrations 

 

 
 
As described above, a rigorous sensitivity analysis has not been conducted on the 1-
dimensional hypoxia model, although parameter sensitivity can be described using experience 
during the calibration process.  Rucinski et al. (2010; 2014) both describe the relative 
contribution of sediment oxygen (SOD) demand to overall hypolimnetic oxygen demand.  The 
SOD represents the majority, estimated at 64% of the total hypolimnetic demand and is 
therefore by far the most sensitive parameter with respect to hypoxia metrics.  The vertical 
mixing coefficients in the model are also very important, as they describe the timing and depth 
of stratification, and therefore the volume of oxygen that is available in the hypolimnion.  Other 
important parameters include the detrital carbon oxidation rate, and the algal growth rate.  
These are listing in order of decreasing sensitivity in Table 9. 
 
A sensitivity analysis was previously performed using the NWRI 9-Box water quality model (Lam 
et al. 2007) for different simulation years in which nine key parameters and inputs were 
independently adjusted by ±20% and the change in each output variable was then assessed.  
That analysis was recreated for 2008 for this study.  Central Basin hypolimnetic dissolved 
oxygen is most sensitive to water temperature and vertical diffusivity.  The analysis was 
performed on other parameters, such as growth and respiration and wind speed, however, 

Sediment oxygen demand Water temperature

Vertical mixing coefficient Vertical diffusivity

Carbon oxidation rate Maximum algal growth rate

Maximum algal growth rate

Phosphorus half-saturation coefficient Sediment oxygen demand

Detritus settling rate Vertical mixing coefficient

Sediment oxygen demand Maximum algal growth rate

Vertical mixing coefficient Phosphorus half-saturation coefficient

Maximum algal growth rate Algal dark respiration rate

Phosphorus half-saturation coefficient BOD decay rate

Algal dark respiration rate

BOD decay rate

Model Most Sensitive Parameters

1-D Hypoxia

EcoLE

Model Most Sensitive Parameters

9-Box

ELCOM-CAEDYM
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minimal sensitivity was found for those parameters.  The sensitive parameters are listed in 
order of decreasing sensitivity in Table 9. 
 
No formal sensitivity analysis was performed with EcoLE and ELCOM-CAEDYN, with respect to 
dissolved oxygen metrics.  The sensitivity of model parameters for this ERI is therefore based on 
professional judgement and experience with similar eutrophication models. 
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4.0 CONCLUSIONS 

The load-response curves presented above represent our current best estimates of how the 
lake eutrophication response metrics will respond to phosphorus loads. The loadings necessary 
to achieve example thresholds were calculated and are summarized in Table 10 below.   
Results of the ensemble modeling approach to date suggest: 
 

 Achieving cyanobacteria biomass reduction requires a focus on reducing TP loading 
from the Maumee River, with an emphasis on high-flow event loads in the period 
from March – July.  Results suggest that focusing on Maumee DRP load alone will 
not be sufficient and that phosphorus load from the Detroit River is not a driver of 
cyanobacteria blooms. 

 Reducing hypoxia in the Central Basin requires a Central + Western Basin annual 
load reduction greater than is needed to achieve Western Basin cyanobacteria 
biomass reduction. Load reductions focused on dissolved oxygen concentration and 
hypoxic areal extent also drive shorter hypoxia duration. 

 The whole lake load for achieving a Cladophora threshold is higher (i.e., lower 
percent reduction) than computed for the hypoxia threshold.  These results offer 
several different strategies for recommending load reductions for the GLWQA. As 
illustrated by the example thresholds in Table 10, the models enable decision-
makers to evaluate the levels of loads and load reductions necessary to achieve 
target values they may choose.  
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Table 10.  TP loads (MT) Associated with Example ERI Thresholds. For cyanobacteria, the threshold differs 
among models (see text). March - June Maumee River loads were assumed to be 50% of the annual river load, 
while March– July Maumee River loads were 53% of the annual load, which was in turn assumed to be 45% of 

the whole Western Basin annual load. For phytoplankton, Western Basin annual loads correspond to a 50% 
reduction in maximum chlorophyll-a concentration reported by each model. The threshold for Central Basin 

hypoxic area extent was set to 2000 km2, while a threshold for Central Basin dissolved oxygen was set to 4 mg/L. 
For Cladophora, a threshold for total dry weight biomass was set at less than 30 g/m2. 

 
 

Model 
Maumee 

spring load to 
achieve 

threshold 

Maumee 
annual load to 

achieve 
threshold 

WB annual 
load to achieve 

threshold 

WB + CB 
annual load to 

achieve 
threshold 

Whole lake 
annual load to 

achieve 
threshold 

Cyanobacteria 
Obenour_2008 1230 2460 5467     
Obenour_2013 500 1000 2222     

Stumpf 1080 2038 4528     
WLEEM 1021 1926 4281     

Western Basin Phytoplankton 
Chapra     2600     
EcoLE     3010     

ELCOM-CAEDYM     1130     
WLEEM   2030   

Hypoxic Area 
EcoLE_1-3m       5955   
EcoLE_1m    3415  

ELCOM-CAEDYM    4920  

9-Box    1150  
Rucinski       4830   

Rucinski_WLEEM       3880   
Dissolved Oxygen 

EcoLE_1-3m    4400  

EcoLE_1m    2600  

ELCOM-CAEDYM    3100  

Rucinski    5100  

Rucinski_WLEEM    4000  
Cladophora 

Auer         7000 
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APPENDIX A-1.  AGENDA AND PARTICIPANT LIST: APRIL 9-
10, 2014 ENSEMBLE MODELING PLANNING WORKSHOP 

 

GLWQA PHOSPHORUS LOAD RESPONSE MODELING WORKSHOP  

April 9-10, 2014, University of Michigan 

 

Registered Participants 
 

First Name Last Name Affiliation 

Eric Anderson NOAA-GLERL 

Martin Auer Michigan Technological University 

Sarah Becker Ohio EPA 

Dmitry Beletsky University of Michigan, CILER 

Steven Chapra Tufts University (remote participant) 

Joe DePinto LimnoTech 

Mary Anne Evans USGS Great Lakes Science Center 

Joe Fillingham UW-Milwaukee, School of Freshwater Sciences 

Russ Kreis U.S. EPA 

Anika Kuczynski Michigan Technological University 

Luis Leon Environment Canada 

Daniel Obenour University of Michigan, Water Center 

Pete Richards Heidelberg University 

Daniel Rucinski LimnoTech 

Donald Scavia University of Michigan, Graham Institute 

Dave Schwab University of Michigan, Water Center 

Craig Stow NOAA-GLERL 

Richard Stumpf NOAA Center for Coastal Monitoring and 
Assessment Ed Verhamme LimnoTech 

Dale White Ohio EPA 

Ram Yerubandi Environment Canada 

Hongyan Zhang University of Michigan, CILER 



A1-2 

GLWQA PHOSPHORUS LOAD RESPONSE MODELING WORKSHOP  

April 9-10, 2014, University of Michigan 
214 S. State Street, Ann Arbor, MI 

Meeting Objective 
The group will assess the capabilities of existing models in their abilities to develop response curves 
between nutrient loads and the objectives being identified by the Annex 4 group. It is 
desirable to include to the extent possible a range of model complexities in the model 
ensemble used for this analysis. 

 
Desired Outcome 
A plan (scope, schedule, and budget) for conducting an ensemble modeling effort to 
develop recommendations to the Annex 4 Objectives Task Team for revised Lake Erie 
target P loads and objectives by the end of September, 2014. 

 

 
APRIL 9, 
2014 
 
 

AGENDA 

10:00 AM Convene, welcome, introductions, workshop goals Don Scavia, University of Michigan 

10:20 AM P-loading trends and analysis over past 10-15 years Pete Richards, Heidelberg University 

Review and discuss 

 Model evaluation criteria 

 Decisions needed to implement 
ensemble modeling effort 

10:40 
AM 

  

 

 
 

Don Scavia 
 
 

12:00 PM Lunch (provided) 

 

1:00 PM Model presentations: HABs and Cladophora Don Scavia 
Probabilistic cyanobacteria bloom forecasting 

model for western Lake Erie 
Dan Obenour, University of Michigan

 

Relating cyanobacterial blooms to phosphorus loads 
Richard Stumpf, NOAA Center for 

Coastal 
Monitoring and Assessment 

Western Lake Erie Ecosystem Model Joe DePinto, LimnoTech 

Modeling Cladophora in the Great 
Lakes: A Management Perspective 

2:40 PM Break 

Martin Auer, Michigan Technological 
University 
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3:00 PM Model Presentations: Hypoxia/P/Chl Joe DePinto 
Modeling Lake Erie's hypoxia response to nutrient 

loads and physical variability 
Dan Rucinski, LimnoTech

 

Great Lakes phosphorus modeling Steven Chapra, Tufts University (remote) 

A 2D Ecological model of Lake Erie - An application of 

CE-QUAL-W2 to simulate Lake Erie water qualities 
Hongyan Zhang, University of Michigan

 
 

Environment Canada lake modeling 
Luis Leon and Ram Yerubandi, 

Environment Canada 

4:20 PM Discussion, plans for day two Joe DePinto 

5:00 PM Adjourn 
 

 

APRIL 10, 2014 

8:30 AM Morning refreshments 

Group discussion: 

• What can current models do now? What do they 
need to do? 

9:00 AM • What minor modifications to some models will 
make them more useful/appropriate? 

• What common 
baseline/questions/assumptions/ 

output formats should be established among  
models 

Don Scavia, Joe DePinto 

12:00 PM Lunch 

Next steps 
1:00 PM Develop plan (scope, schedule, and budget) for 

ensemble modeling effort
Don Scavia, Joe DePinto 
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APPENDIX A-2. AGENDA AND PARTICIPANT LIST: 
SEPTEMBER 29-30, 2014 ENSEMBLE MODELING 

IMPLEMENTATION WORKSHOP  

 
GREAT LAKES WATER QUALITY AGREEMENT PHOSPHORUS LOAD RESPONSE 

ENSEMBLE MODELING WORKSHOP 
 

September 29-30, 2014, University of Michigan 
 
Registered Participants 
 
Modelers 
Auer Martin Michigan Tech 
Bertani Isabella University of Michigan 
Bocaniov Serghei University of Michigan 
Chapra Steve Tufts University 
Depinto Joe LimnoTech 
Leon Luis Environment Canada 
McCrimmon Craig Environment Canada 
Obenour Daniel University of Michigan 
Rucinski Daniel LimnoTech 

Scavia Don University of Michigan 
Stumpf Richard NOAA 
Verhamme Ed LimnoTech 
Yerubandi Ram Environment Canada 
Zhang Hongyan University of Michigan 

 
Observers/Advisors 

Chruscicki Jean US EPA 

George Sandra Environment Canada 

Perkins Sarah Battelle 

Redder Todd LimnoTech 

Schlea Derek LimnoTech 

Stow Craig NOAA-GLERL 

Warren Glenn US EPA 

Wortman Santina US EPA 
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September 29-30, 2014, University of Michigan 
214 South State Street, Ann Arbor, MI 

 

September 29, 2014 

10:00 AM 
Convene, welcome, opening discussion (process, 
planned outcomes, and evaluation criteria) 

Don Scavia 

11:00 AM *Modeling group presentations and discussion  
11:00 Western Basin bloom severity index Rick Stumpf 
11:15 Western Basin probabilistic cyanobacteria model Dan Obenour 
11:30 Great Lakes Cladophora model Marty Auer 

12:00 PM Lunch (provided) 
1:00 PM *Modeling group presentations and discussion, continued  

1:00 TP Mass Balance Model Steve Chapra 

1:30 1D Central Basin hypoxia model Dan Rucinski 
2:00 EcoLE Hongyan Zhang 
2:30 Lam’s 9-Box Model Craig McCrimmon  

3:00 PM  Break 
3:15 PM *Modeling group presentations and discussion, continued  

3:15 WLEEM Joe DePinto 

4:00 ELCOM-CAEDYM 
Ram Yerubandi, Luis Leon, Serghei 
Bocaniov 

4:45  Day 1 Recap, Day 2 Preview Don Scavia 
5:00  Adjourn 
5:30 PM Group dinner at Sava’s Restaurant 

 

September 30, 2014 
8:30 AM Continental breakfast (provided) 
9:00 AM Comparison and discussion of response curves Don Scavia 
 Phytoplankton biomass Steve Chapra 
 Western Basin Cyanobacterial blooms  Joe DePinto 
 Central Basin Hypoxia  Serghei Bocaniov 
 Eastern Basin Cladophora  Marty Auer 
10:30 
AM 

Break 

10:45 
AM 

Assembling the ensemble model Joe DePinto 

12:30 
PM 

Lunch (provided) 

1:15 PM Group Discussion  

Don Scavia 
 Individual Model Deliverables  
 Uncertainty in models and ensemble 
 Updates needed 
 Next steps, deadlines, writing assignments 
3:00 PM  Adjourn 
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APPENDIX B-1: NOAA Western Lake Erie HAB Model   
R.P. Stumpf, NOAA National Centers for Coastal Ocean Science 

 

Summary   

Reducing spring, March to July, total phosphorus to less than 1150 m.tons should result in only mild 

blooms.  Reducing the load by 40% will eliminate most blooms, however, 2011 and 2013 would still have 

substantial, although greatly reduced, blooms. A reduction of 40% or greater in 2008 would result in a 

mild bloom (CI < 2).  

 

1.  Model Description 

Overview 

Stumpf et al. (2012) examined the role of phosphorus loading on the severity of the summer 

cyanobacterial bloom in western Lake Erie.  Bloom severity was quantified from satellite with a 

“cyanobacteria index” (CI).   The CI is a measure of total biomass of cyanobacteria, with chlorophyll as 

the surrogate for biomass.  Phosphorus data came from Heidelberg University, converted to monthly 

mean loads.  Stumpf et al. (2012) found that TP from the Maumee River provides a better metric of 

variation in biomass than does dissolved reactive phosphorus, probably due to the importance of 

discharge, which influences TP more than soluble reactive phosphorus (SRP).  The Maumee River, as the 

major Lake Erie tributary produces most of the load into southwestern Lake Erie, 10-fold greater TP than 

the next largest tributary (Raisin River; Dolan and Richards, 2008).  The original model used loads from 

March to June to explain variations from 2002-2011.  Starting in 2012, NOAA has produced an annual 

prediction of bloom severity based on the model.  The model prediction for 2013, which had a large July 

load, was underestimated.  Previously July was not considered because 2003 and 2008 had large July 

loads, yet did not have blooms that were substantively different from the other major bloom years of 

2009 and 2010.  An evaluation of temperature (Stumpf, unpublished) found that while all years have 

similar temperatures in July and August, 2003 and 2008 had the coldest average June (Figure B1-1).  

 

Structure/state variables/relationship 

The model for estimating load-response is a non-

linear (exponential or semi-log) relationship 

between  TP and CI.  The TP input is total m.tons 

for March to July for all years, except 2003 and 

2008, when only March to June is used.  The 

condition for switching is June average 

temperature < 18 C.  July temperatures are 

similar between years.   

 

Figure B1-1.  Average Temperature for Western Lake Erie Basin for May and June 

 

The response curve was derived from linear regression of log(CI) vs TP.  Thresholds classifying “mild” or 

“significant” blooms were derived by identifying a threshold separating years into those having blooms 
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of concern and those years having mild blooms.  Blooms with CI<2 were considered mild or ignorable.  

Those with CI>2, such as 2003, have been reported as “significant”.  All mild blooms occurred for TP load 

of <1100 m.tons, and all significant blooms occurred with TP load >1200 m.tons, suggesting a TP 

threshold of about 1150 m.tons determines bloom severity.   

 

2.  Data used for model input and evaluation 

CI is based on MERIS from Stumpf et al. 2012, with 2012-2013 added from MODIS (Wynne et al., 2013). 

The CI is determined in 10-day composites to remove interference and biasing from clouds and to 

provide the best estimate of biomass for each 10-day period. The annual CI used to define the bloom 

severity is the average of the three 10-day periods around the maximum severity of the bloom, so it is 

effectively a 30-day average. MERIS produces a more sensitive measure with less noise than MODIS. The 

nominal uncertainty in the CI for MERIS is about 10%, and about 25% for MODIS. A CI of 1 is equivalent 

to about 1020 cells.  Conversion to biomass can vary.  Obenour used a conversion of 4800 m.tons per CI, 

which we will use here.     

 

3.  Calibration and confirmation approach and results.  

The response curve is based on the regression: 

log(CI) = a0 + a1*TP 

Where (slope), a1 = 6.744×10-4, and (intercept) a0 = -0.42899.  

 

The R-square is 0.62, standard error of the slope is 1.673×10-4 (24% of the slope).  Residual standard 

error of the estimates is 0.29 in log space which corresponds to an uncertainty factor of 1.95.  

Essentially, the modeled CI is correct within a factor of 2.   

 

CI_adj is CI calculated from a reduction in TP along the response curve: 

CI_adj= 10^(-M*TP*a1) 

 

Where M is the proportional reduction in TP (e.g., 10% is M=0.1).   

 

4. Application Results 

Load-Response curves and diagnosis 

Load response curves are shown in Figure B1-2 for 10-40% reductions.  The results indicate that a 40% 

reduction will eliminate four of the six severe bloom years, and cause a substantial reduction in the 2011 

bloom.   
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Figure B1-2.  Load and Response of CI-Based Biomass Against TP Load.  Triangles increase in 

size for the amount of % reductions (10%, 20%, 30%, 40%).  Potential error in the actual 
(original) CI is shown as vertical line. Response curve is shown as black line.  Blooms with CI> 2 

were perceived as significant, <2 were not. Vertical TP line shows the TP threshold between 
the two, significant and mild. 

 

Uncertainty/Sensitivity assessment 

 “Leave-one-out” regression was conducted to determine how sensitive the model slope is to any 

individual year.  Excluding any one year, except 2012 resulting in a range of values of a1 (the slope) of 

6.449×10-4 to 6.969×10-4 (vs the response value of 6.744×10-4), a variation in the response slope of  < 

±5%.  2012 skewed the relationship, excluding 2012 resulted in an increase in slope to 7.849×10-4.   If the 

response curve without 2012 were used, a greater reduction in CI would be expected for the same TP.  

We prefer the conservative solution here.  

 

The largest uncertainty is the variation between the significant bloom years.  This probably results from 

variations in other influencing factors.  Hydrodynamic factors that reinforce the TP model will influence 

the apparent uncertainty in the large bloom years (Stumpf et al., 2012).   The balance of dissolved 

phosphorus to total phosphorus may also influence the relationship.  

 

The statistical uncertainty (standard error) in the slope is shown in the analysis for selected years in 

Figure B1-3.  
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Figure B1-3.  Figure B1-2 Repeated With Estimated Response Curve Uncertainty Included on 
Each of the 4 Reduction Scenarios. Not shown for all years in order to help readability of the 

graph. Each year is marked with a different color. 

 

Model parameter sensitivity for the NOAA model was further assessed by removing observations from 
each year from the calibration dataset one at a time, re-fitting the model each time to the “reduced” 
calibration dataset, and quantifying changes in parameter mean estimates due to removal of each year 
from the calibration dataset. The table below summarizes changes in parameter mean estimates when 
removing individual years from the calibration dataset. 

 
NOAA HAB model sensitivity analysis based on leave-one-year-out model fitting 

Model 
Parameter 

Description 
Unit of 

measure 

Full-model 
mean 

estimate 

Range of 
leave-one-out 

mean 
estimates 

Range of leave-one-out 
mean estimates (% of 

full-model mean 
estimate) 

Intercept 
Average value of 
log10(CI) when TP 
load = 0 

log10(CI) -0.43 -0.37 - -0.59 85-138% 

Slope 
Unit change in 
log10(CI) per unit 
change in TP load 

log10(CI)/MT 6.74*10-4 
6.45*10-4 – 
7.85*10-4 

96-116% 
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5. Conclusions/Recommendations 

A 40% load reduction will reduce the bloom biomass by more than ½.  For most bloom years, this would 

result in a mild bloom.  When river discharge is extremely high, such as 2011, a significant bloom would 

remain, although smaller than what occurred in 2011.   
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APPENDIX B-2: UM/GLERL Western Lake Erie HAB 

Forecasting Model 
Daniel Obenour, North Carolina State University 
 

1. Model Description 

Overview 

The UM/GLERL Western Lake Erie HAB forecasting model is a probabilistic model developed by Obenour 

et al. (2014) to predict peak summer HAB size in Western Lake Erie as a function of spring total 

phosphorus (TP) loading from the Maumee River. The model also includes a temporal term that 

captures changes in the lake`s susceptibility to HAB formation over time. Within the Annex 4 modeling 

effort, the original model version has been updated to utilize the (estimated) bioavailable fraction of the 

Maumee TP load as the HAB predictor. An additional set of remote sensing bloom observations was also 

added to the calibration dataset.  

 

Structure/forcing functions/state variables/key relationship/conceptual model 

The deterministic form of the bloom forecasting model is as follows: 

 

 𝑧̂𝑖 =  {
𝛽𝑏 + 𝛽0 + 𝛽𝑤𝑊𝑖 + 𝛽𝑡𝑇𝑖

𝛽𝑏

for𝛽0 + 𝛽𝑤𝑊𝑖 + 𝛽𝑡𝑇𝑖 > 0  
  for𝛽0 + 𝛽𝑤𝑊𝑖 + 𝛽𝑡𝑇𝑖 < 0 

 (1) 

 

where 𝛽𝑏, 𝛽0, 𝛽𝑤, and 𝛽𝑡 are model parameters that predict bloom size, 𝑧̂𝑖, in year i, in terms of the 

bioavailable fraction of the spring TP load, 𝑊𝑖, and model year, 𝑇𝑖 . The parameter 𝛽𝑏 is a background 

bloom level representing the bloom size in years of minimal phosphorus loading. The parameter 𝛽0 is an 

intercept term, and 𝛽𝑡 represents how that intercept changes over time.  Parameters 𝛽𝑏 and 𝛽0 have 

units of 1000 MT bloom (dry weight) and 𝛽𝑡 has units of (1000 MT bloom)/year.  The parameter 𝛽𝑤 

represents the unit increase in bloom size per unit increase in P load (1000 MT/mo).  The ‘time step’ of 

the model is yearly. 

 

Predicted values are related to bloom observations, 𝑧𝑖,𝑗, through the following two probabilistic 

expressions: 

 

 𝑧𝑖,𝑗 ~ 𝐺𝑎𝑚𝑚𝑎[(𝑧̂𝑖 + 𝛾𝑖)2/𝜎𝜖
2, (𝑧̂𝑖 + 𝛾𝑖)/𝜎𝜖

2] (2) 

 𝛾𝑖  ~ 𝐺𝑎𝑚𝑚𝑎(𝑧̂𝑖
2/𝜎𝛾

2, 𝑧̂𝑖/𝜎𝛾
2) − 𝑧̂𝑖 (3) 

 

The gamma distributions have shape (gα) and rate (gβ) parameters (i.e., Gamma(gα, gβ)) such that the 

mean and variance are gα/gβ and gα/gβ
2, respectively. Model prediction errors (𝛾𝑖) are drawn from a 

gamma distribution with variance 𝜎𝛾
2, and observation measurement errors are drawn from a gamma 

distribution with variance 𝜎𝜖
2.  Here, subscript j differentiates between multiple observations of the 

same bloom, i.e., observations from remote sensing (Stumpf et al., 2012 and SeaWiFS satellite imagery, 

see below) and from in-lake sampling (Bridgeman et al., 2013).  For brevity, we refer to these different 
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sets of observations as the “Stumpf observations”, the “SeaWiFS observations”, and the “Bridgeman 

observations”. 

 

For each year, spring P load is determined as a weighted average of January to June (m = 1 to 6) monthly 

loads, based on the following equations: 

 

 𝑊𝑖 =
1

∑ 𝜓𝑚
∑ 𝑤𝑖,𝑚𝜓𝑚

6
𝑚=1  (4) 

 𝜓𝑚 =  {
0

𝑚 + 1 − 𝛽𝜓

1 

         for 𝑚 ≤  (𝛽𝜓 − 1)  

         for(𝛽𝜓 − 1) < 𝑚 < 𝛽𝜓

for 𝑚 ≥ 𝛽𝜓

 (5) 

where 𝛽𝜓 is a weighting parameter.  

 

The bioavailable fraction of the TP load was estimated as the sum of the bioavailable fractions of 

Dissolved Reactive Phosphorus (DRP) and Particulate Phosphorus (PP) loads: 

 

Bioavailable P = η*DRP + θ*PP 

 

The PP load was approximated as the difference between the TP and DRP loads (Baker et al., 2014). 

Based on a review of the literature on the bioavailability of different P forms in the Maumee River, DRP 

is expected to be 100% readily available to algae (η =1; Lambert, 2012), while only a fraction θ of the PP 

load is expected to be available to algae (DePinto et al., 1981; Lambert, 2012). The parameter θ was 

estimated probabilistically, together with other model parameters, through Bayesian inference (see 

“Calibration and confirmation approach and results”).  

 

2. Data used for model input and evaluation (calibration, confirmation) 

Phosphorus loads (TP and DRP) are generated from Maumee River nutrient concentration data collected 

by Heidelberg University’s National Center for Water Quality Research (NCWQR, 

http://www.heidelberg.edu/academiclife/distinctive/ncwqr/data), and stream flow data collected by 

the United States Geological Survey (USGS, http://www.usgs.gov/water) at Waterville, Ohio (USGS 

Station 04193500).  Currently, we use nutrient and flow data from 1998-present, and the time interval is 

daily (or less). 

 

Three sets of bloom observations are used in this study.  The first set is developed from MERIS satellite 

remote sensing imagery, per a procedure developed by NOAA (Wynne et al., 2010; Stumpf et al., 

2012).  The second set of observations is developed from a University of Toledo field monitoring 

program (Bridgeman et al., 2013).  The third set is developed from SeaWiFS satellite remote sensing 

imagery by MTRI under contract to the Water Center, using procedures similar to Shuchman et al. 

(2006).  Together, these sources cover the period of 1998-present. 

 

 

 

http://www.heidelberg.edu/academiclife/distinctive/ncwqr/data
http://www.usgs.gov/water
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3. Calibration and confirmation approach and results 

The model was jointly calibrated to the three sets of bloom observations by means of a Bayesian 

hierarchical approach, using R and WinBUGs software. Detailed information on the Markov Chain Monte 

Carlo algorithm settings used can be found in Obenour et al. (2014). Non-informative uniform 

distributions were used for most parameters. Vague normal prior distributions were used for the 

parameters 𝛽0 and θ. In order to develop a loosely informative prior for the parameter θ, we considered 

the bioavailable PP fractions reported in P speciation analyses and algal bioavailability assays conducted 

in the Maumee River (DePinto et al., 1981; Young et al., 1985; Lambert, 2012; Baker et al., 2014). In 

setting the prior, we also took into account the evidence that mussels significantly enhance the rate at 

which PP is recycled into the water column as DRP in Western Lake Erie, thereby decreasing P turnover 

times and further increasing PP bioavailability to algae (Mellina et al., 1995; Arnott & Vanni, 1996; 

Conroy et al., 2005; Johengen et al., 2014). As a result, we used a vague normal prior N(0.3,0.7) that is 

constrained to be between 0.2 and 1, as at least 20% of the PP discharged from tributaries is expected 

to be readily bioavailable (Baker et al., 2014), and more PP may become bioavailable throughout the 

summer. 

 

The posterior probability distributions of model parameters resulting from the calibration process are 

shown in Figure B2-1, together with the corresponding priors. The replacement of TP with the 

bioavailable fraction of TP as the bloom predictor, and the expansion of the calibration dataset through 

the inclusion of the SeaWIFS bloom observations did not substantially change the posterior distributions 

reported for the original model version (Obenour et al., 2014). The updated model estimate for θ 

suggests that over 40% of the Maumee PP loading is (or becomes) bioavailable, though the uncertainty 

surrounding this estimate is large (Figure B2-1).  

 

Observed and predicted bloom sizes are compared in Figure B2-2 (left panel). The model explains over 

91% of the variability in bloom observations. To assess the model`s predictive performance when 

predicting data not included in the calibration process, a leave-one-year-out cross-validation was carried 

out. Briefly, observations from each year were removed from the dataset, in turn, with the model being 

re-calibrated to the remaining data and then used to forecast the excluded observations.  Results of 

cross-validation are illustrated in Figure B2-2 (right panel). 
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Figure B2-1.  Prior (Dashed) and Marginal Posterior (Solid) Model Parameter Distributions.  The two distributions 

for 𝝈𝝐 represent the measurement error for (1) Stumpf and Bridgeman observations and (2) SeaWiFS 
observations. 

 
 
 
 

 

 
 

Figure B2-2.  Observed Versus Predicted Bloom with 95% Predictive Intervals. Left panel: full model 
performance; right panel: cross-validation model performance (the less-certain SeaWiFS observations are not 

included in R2 determination). 
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4. Application Results 

Load-Response Curves 

The updated UM/GLERL HAB forecasting model was used to generate loading response curves showing 

the expected range of bloom sizes corresponding to different P load reduction scenarios.  

 

The following scenarios were implemented: 

1. We varied TP load (PP and DRP) between 20 and 612 MT/mo, roughly corresponding to 5% - 

150% of the TP load value (396 MT/mo) measured in 2008 (Figure B2-3 and Table B2-1). 

2. We varied the PP load between 16 and 494 MT/mo, roughly corresponding to 5% - 150% of the 

PP value (313 MT/mo) estimated in 2008, while holding the DRP load constant at 2008 levels 

(Figure B2-4 and Table B2-2). 

3. We varied the DRP load between 4 and 118 MT/mo, roughly corresponding to 5% - 150% of the 

DRP value (83 MT/mo) measured in 2008, while holding PP constant at 2008 levels (Figure B2-5 

and Table B2-3). 

 

Because the model includes a temporal trend component, reflecting the system’s apparent increasing 

susceptibility to large algal blooms, we develop response curves for both 2008 (year used as baseline 

scenario in other models) and 2013 (approximately current) lake conditions.   

 

 
Figure B2-3.  Relationship Between Bloom Size And Weighted TP Load, with Median Prediction 

(thick lines), Mean Prediction (thin lines), and 95% Predictive Intervals (dashed).  Grey lines: 
2008 lake conditions, black lines: 2013 lake conditions. The corresponding bioavailable P loads 
estimated by the model and used to generate the response curves are reported in Table B2-1. 

Bloom observations are shaded on a linear gradient from white (1998) to black (2013). 
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Figure B2-4.  Relationship Between Bloom Size and Weighted PP Load, with Median Prediction 
(thick lines), Mean Prediction (Thin Lines), and 95% Predictive Intervals (dashed).  Grey lines: 

2008 lake conditions, black lines: 2013 lake conditions. The corresponding bioavailable P loads 
are reported in Table B2-2. Weighted DRP load is held to the 2008 value (83 MT/mo). 

 
 

 
Figure B2-5.  Relationship Between Bloom Size and Weighted DRP Load, with Median 

Prediction (Thick Lines), Mean Prediction (Thin Lines), and 95% Predictive Intervals (Dashed). 
Grey lines: 2008 lake conditions, black lines: 2013 lake conditions. The corresponding 

bioavailable P loads are reported in Table B2-3. Weighted PP load is held to the 2008 value 
(313 MT/mo). 
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Table B2-1.  TP Loads and Corresponding Bioavailable P Loads, Along with Mean and Median Predicted Bloom 
Size, and 95% Predictive Intervals Under 2008 and 2013 Lake Conditions 

TP load 
(MT/mo) 

Bioavail. 
P load 

(MT/mo) 

2013 
Median 

predictions 
(1000 MT) 

2013 
Mean 

predictions 
(1000 MT) 

2013 
95% Pred. 

Interval 
(1000 MT) 

2008 
Median 

predictions 
(1000 MT) 

2008 
Mean 

predictions 
(1000 MT) 

2008 
95% Pred. 

Interval 
(1000 MT) 

20 13 6.1 6.4 2.2 – 12.3 6.0 6.3 2.2 – 12.4 
41 27 6.3 6.6 2.4 – 13.1 6.1 6.3 2.3 – 12.0 
61 40 6.5 6.9 2.4 – 13.7 6.0 6.4 2.1 – 12.3 
82 54 7.0 7.5 2.7 – 14.8 6.1 6.3 2.2 – 12.4 

102 67 7.7 8.3 2.8 – 15.9 6.1 6.4 2.3 – 12.6 
122 81 8.8 9.3 3.2 – 17.6 6.0 6.3 2.2 – 12.1 
143 94 10.4 10.5 3.2 – 18.9 6.0 6.3 2.2 – 11.9 
163 108 12.1 11.9 3.9 – 20.4 6.0 6.3 2.4 – 11.9 
184 121 13.8 13.3 4.4 – 21.9 6.0 6.3 2.2 – 12.2 
204 135 15.7 15.1 5.0 – 23.7 6.0 6.3 2.3 – 12.4 
255 168 20.1 19.3 8.1 – 28.0 6.5 6.8 2.7 – 13.0 
306 202 24.6 23.9 13.3 – 32.6 9.1 9.4 3.8 – 16.7 
357 236 29.0 28.5 18.8 – 37.0 13.4 13.6 7.1 – 20.5 
408 269 33.4 33.1 23.4 – 41.9 17.9 18.2 11.5 – 25.7 
459 303 37.9 37.6 28.3 – 46.9 22.5 22.7 15.7 – 30.2 
510 337 42.4 42.1 32.2 – 51.7 27.0 27.3 20.0 – 35.2 
561 370 46.9 46.7 36.2 – 57.0 31.6 31.8 23.7 – 40.8 
612 404 51.3 51.2 39.5 – 62.1 36.1 36.4 27.6 – 46.5 

 
Table B2-2.  PP Loads and Corresponding Bioavailable P Loads (Holding DRP at 2008 Value), Along with Mean 

and Median Predicted Bloom Size, and 95% Predictive Intervals Under 2008 and 2013 Lake Conditions 

PP load 
(MT/mo) 

Bioavail. 
P load 

(MT/mo) 

2013 
Median 

predictions 
(1000 MT) 

2013 
Mean 

predictions 
(1000 MT) 

2013 
95% Pred. 

Interval 
(1000 MT) 

2008 
Median 

predictions 
(1000 MT) 

2008 
Mean 

predictions 
(1000 MT) 

2008 
95% Pred. 

Interval 
(1000 MT) 

16 95 10.6 11.2 3.2 – 22.5 6.1 6.4 2.3 – 12.0 
33 105 11.8 12.1 3.5 – 23.0 6.1 6.4 2.3 – 12.1 
49 114 13.0 13.1 3.8 – 24.0 6.1 6.3 2.3 – 11.7 
66 124 14.4 14.1 4.1 – 25.2 6.1 6.4 2.3 – 12.5 
82 133 15.5 15.2 4.6 – 26.4 6.1 6.4 2.3 – 12.1 
99 143 16.8 16.4 5.0 – 27.5 6.2 6.5 2.4 – 12.5 

115 153 18.1 17.6 5.7 – 28.2 6.3 6.6 2.4 – 12.9 
132 162 19.4 18.8 6.3 –  28.8 6.4 6.8 2.5 – 13.6 
148 172 20.6 20.1 7.6 – 30.2 6.6 7.1 2.7 – 13.8 
165 181 21.9 21.3 8.9 – 31.8 7.1 7.6 2.7 – 14.9 
206 205 25.1 24.3 12.7 – 34.3 9.4 9.6 3.9 – 16.8 
247 229 28.3 27.6 16.0 – 37.3 12.6 12.8 6.4 – 19.8 
288 253 31.5 30.7 19.2 – 40.4 15.8 15.9 9.8 – 22.6 
329 276 34.4 33.9 22.5 – 44.0 19.0 19.1 12.8 – 25.5 
370 300 37.4 37.0 25.4 – 46.8 22.2 22.2 15.6 – 28.9 
411 324 40.6 40.1 28.5 – 50.5 25.3 25.4 18.0 – 32.7 
453 348 43.7 43.3 30.6 – 54.3 28.6 28.6 20.6 – 36.3 
494 372 47.0 46.6 33.6 – 58.1 31.6 31.7 23.6 – 40.2 
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Table B2-3.  DRP Loads and Corresponding Bioavailable P Loads (Holding PP at 2008 Values), Along with Mean 
and Median Predicted Bloom Size, and 95% Predictive Intervals Under 2008 and 2013 Lake Conditions 

DRP load 
(MT/mo) 

Bioavail. 
P load 

(MT/mo) 

2013 
Median 

predictions 
(1000 MT) 

2013 
Mean 

predictions 
(1000 MT) 

2013 
95% Pred. 

Interval 
(1000 MT) 

2008 
Median 

predictions 
(1000 MT) 

2008 
Mean 

predictions 
(1000 MT) 

2008 
95% Pred. 

Interval 
(1000 MT) 

4 190 22.6 21.7 6.2 – 34.0 7.7 8.1 2.8 – 15.6 
8 194 23.1 22.2 6.5 – 34.4 8.0 8.4 3.2 – 15.7 

12 198 23.9 22.8 7.5 – 34.9 8.3 8.7 3.2 – 15.9 
16 202 24.2 23.4 8.1 – 35.4 8.8 9.1 3.5 – 16.8 
20 206 24.8 23.9 8.4 – 35.8 9.2 9.5 3.5 – 16.8 
24 209 25.5 24.4 9.3 – 36.2 9.7 9.9 3.7 – 17.1 
28 213 26.0 24.9 9.9 – 36.8 10.2 10.3 3.8 – 18.0 
31 217 26.5 25.5 10.9 – 36.9 10.8 10.8 4.3 – 18.5 
35 221 27.0 26.1 11.7 – 37.4 11.2 11.3 4.7 – 18.9 
39 225 27.6 26.7 12.6 – 38.4 11.9 12.0 5.3 – 19.5 
49 235 28.8 28.1 13.9 – 39.4 13.2 13.2 6.3 – 20.0 
59 245 30.3 29.4 16.0 – 40.4 14.5 14.7 8.3 – 21.5 
69 255 31.8 30.8 17.5 – 41.7 16.0 16.0 9.7 – 23.1 
79 265 33.1 32.3 18.8 – 43.2 17.3 17.3 10.9 – 24.0 
89 274 34.3 33.6 20.6 – 44.5 18.7 18.7 12.2 – 25.3 
98 284 35.7 35.0 21.7 – 6.1 20.1 20.1 13.2 – 27.3 

108 294 37.1 36.4 22.9 – 47.6 21.5 21.6 14.6 – 28.7 
118 304 38.6 37.8 24.0 – 49.2 22.8 22.9 15.1 – 30.5 

 

 

Diagnosis/Interpretation 

Under approximately current (2013) conditions, the model predicts a bloom size of 15700 MT (95% 

predictive interval: 5000-23700) associated with a spring weighted TP load of 204 MT/mo, which 

approximately corresponds to 50% of the weighted TP load observed in 2008 (Figure B2-3 and Table B2-

1). If only the PP fraction of the TP load is reduced, while holding DRP constant, the model estimates 

that a 60% decrease in the 2008 weighted spring PP load would be necessary to achieve a comparable 

bloom size (Figure B2-4 and Table B2-2). Finally, under the hypothetical scenario of a decrease in DRP 

load only, the model predicts that even if highly unrealistic low levels of 4 MT/mo were reached, bloom 

size would still be as high as 21700 MT (95% predictive interval: 6200-34000, Figure B2-5 and Table B2-

3). 

 

Uncertainty/Sensitivity Assessment 

The adopted hierarchical approach allowed us to characterize both model prediction error and 

observation measurement error, in addition to parameter uncertainty (Obenour et al., 2014).  However, 

only model prediction error is of interest when using the model to develop loading response curves that 

can inform load reduction management plans. Hence, the 95% predictive intervals associated with the 

curves reported in Figures B2-3 through B2-5 quantify model parameter and predictive uncertainty. The 

width of the predictive intervals indicates that the uncertainty associated with model predictions needs 

to be taken into careful consideration when setting loading targets based on these loading response 
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curves.  It should be emphasized that the uncertainty in predicting a long-term mean (not shown) would 

be less than the uncertainty for predictive individual years. 

 

Model parameter sensitivity for the UM/GLERL HAB model was further assessed by removing 
observations from each year from the calibration dataset one at a time, re-fitting the model each time 
to the “reduced” calibration dataset, and quantifying changes in parameter mean estimates due to 
removal of each year from the calibration dataset. The table below summarizes changes in parameter 
mean estimates when removing individual years from the calibration dataset. 
 
UM/GLERL HAB model sensitivity analysis based on leave-one-year-out model fitting 

Model 
Parameter 

Description 
Unit of 

measure 

Full-
model 
mean 

estimate 

Range of leave-
one-out mean 

estimates 

Range of leave-one-out 
mean estimates (% of 

full-model mean 
estimate) 

βt 
Temporal 
trend 

1000 MT/year 2.94 0.92 – 3.57 31-121% 

σγ 
Pred. error 
std. dev. 

1000 MT 2.14 1.02 – 2.35 48-110% 

βw 
Bloom 
production 

1000 
MT/(1000 

MT/month) 
144.06 120.53 – 183.84 84-128% 

β0 
Bloom 
intercept 

1000 MT -33.25 -35.89 - -24.31 73-108% 

βψ  - 2.37 2.24 – 3.02 95-127% 

σε (Stumpf and 

Bridgeman) 
Meas. error 
std. dev. 

1000 MT 2.90 2.23 – 3.16 77-109% 

σε (SeaWiFS) 
Meas. error 
std. dev. 

1000 MT 2.99 2.33 – 3.26 78-109% 

βb 
Bloom 
baseline 

1000 MT 6.34 5.48 – 6.77 86-107% 

θ 
Bioavail. 
fraction of TP 

- 0.58 0.53 – 0.63 91-109% 

 

 

5. Conclusions/Recommendations 

Our model confirms the crucial role played by spring phosphorus loading from the Maumee River in 

triggering HABs in Western Lake Erie. As such, policies aimed at minimizing HAB size should primarily 

focus on reducing phosphorus loads in the Maumee watershed. Also, our analysis of the impact of 

different bioavailable fractions of the TP load suggests that particulate P may represent a substantial 

component of the phosphorus pool that becomes available to algae over the course of the summer. 

Reductions in DRP loads alone are predicted to be insufficient to reduce HAB size to desired levels.  As 

pointed out in more detail in the next section, further research and modeling efforts are needed to 

assess potential interactions between anthropogenic nutrient loading and other environmental 

stressors, primarily climate change and invasive species, in promoting HAB development in Western 

Lake Erie.  
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APPENDIX B-3: Total Phosphorus Mass-Balance Model 
Steve Chapra, Civil and Environmental Engineering Department, Tufts University, Medford, MA 02155 
Dave Dolan Natural and Applied Sciences, University of Wisconsin-Green Bay, Green Bay, WI 54311  
Alice Dove, Water Quality Monitoring and Surveillance, Environment Canada, Burlington, ON L7R 4A6 
 

1. Model description 

Thirty-five years ago, a parsimonious total phosphorus (TP) budget model was developed to assess the 

impact of population and land-use trends on Great Lakes eutrophication (Chapra 1977, Chapra and 

Robertson, 1977, Chapra and Sonzogni, 1979). The framework was then used, along with several other 

models, to establish phosphorus loading targets for the 1978 Great Lakes Water Quality Agreement 

(International Joint Commission 1978; Bierman, 1980). The IJC TP loading and concentration targets are 

listed in Table B3-1. 

 

Table B3-1.  Total Phosphorus Target Loads and Concentrations.  Note that the target loads 
include phosphorus inputs from upstream lakes. 

 
Basin 

Target TP Load 
(MTA) 

Target TP 
Concentration 

(gP L ) 

Lake Erie 11,000  

Western Erie  15 

Central Erie  10 

Eastern Erie  10 

Lake Ontario 7,000 10 

 

A positive initial confirmation of the model’s predictive ability was made for Lake Ontario in the early 

1980s when reductions in detergent and wastewater phosphorus had induced a significant downward 

trend in that lake’s TP concentration (Chapra, 1980). Additional confirmation of model performance was 

established for the entire system through 1987 (Lesht et al., 1991). We recently expanded the time 

frame of the previous modeling considerably by extending the analysis to 2010 (Chapra and Dolan, 

2012). In so doing, a more complete and comprehensive assessment was provided of whether the 

model adequately simulated the water-quality improvements observed from the mid-1970’s to the 

present. 

 

A number of refinements were adopted to improve model performance. First, a more detailed 

segmentation scheme was employed with finer resolution for the embayments. A chloride budget 

model was developed to better parameterize transport with particular emphasis on quantifying the 

magnitude of mixing across open boundaries. Then, the TP budget model was used to compute 

concentration trends and compare them with modern TP data for the period from 1965 to the present. 

Up until about 1990, simulation results for all the lakes generally conformed to observations and 

indicated that these lakes have exhibited significant improvement on a whole-lake basis consistent with 

load reductions due primarily to the implementation of the Great Lakes Water Quality Agreement 

(GLWQA). After 1990, although the simulation results for Lake Superior continued to follow the data, the 
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observations for the offshore waters of the other lakes indicated somewhat lower TP concentrations 

than predicted by the model. The largest divergence took place in Lake Ontario with less dramatic 

divergences occurring in the offshore waters of lakes Michigan, Huron and Erie. In order to simulate 

these outcomes, the model’s apparent settling velocity, which parameterizes the rate that total 

phosphorus is permanently lost to the lake’s deep sediments, was increased after 1990. This result 

supported the hypothesis that Dreissenid mussels have enhanced the Great Lakes phosphorus 

assimilation capacity. 

 

Overview 

In the present report we use the same model developed by Chapra and Dolan (2012) to evaluate the 

impact of total phosphorus loadings on the eutrophication of the Lower Great Lakes. Although Lake Erie 

is our primary focus, we have included Lake Ontario in order to provide a more comprehensive 

assessment of the impacts of load reductions. In particular, we believe it is important to recognize that 

Lake Erie controls will have a measurable effect on Lake Ontario.   

 

Structure/forcing functions/state variables/key relationship/conceptual model 

The current section provides a mathematical description of the mass-balance model used for the current 
analysis. Before proceeding, it is important to stress that our model is primarily designed to predict the 
annual average concentrations of the offshore waters of the Lower Great Lakes as a function of external 
loadings. Whereas this approach is certainly consistent with the time and space scales employed for the 
establishment of target loads in the GLWQA, it is important to stress that our model does not attempt to 
resolve finer-scale temporal (e.g., diel or seasonal) or spatial (e.g., nearshore-offshore) variability.  
 
As with the original model (Chapra, 1977), Lake Ontario is represented as a single well-mixed system, 
whereas Lake Erie is divided into its 3 major subsegments to better resolve horizontal gradients. TP mass 
balances for each basin can be written as (Chapra, 1975, 1977, 1997): 
 

Western Lake Erie (w): 

 
  wwwswcwcwwhhw

w
w pAvppEpQpQW

dt

dp
V ,' 

 (1) 

Central Lake Erie (c): 

 
    cccscececwwcccwwc

c
c pAvppEppEpQpQW

dt

dp
V ,'' 

  (2) 

Eastern Lake Erie (e): 

 
  eeesecceeecce

e
e pAvppEpQpQW

dt

dp
V ,' 

  (3) 

Ontario (o): 

 
ooosooeeo

o
o pAvpQpQW

dt

dp
V ,

  (4) 
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where Vi = volume of segment i (km3), pi = concentration of segment i (gP L–1), Wi = the mass loading 

rate to segment i (metric tonnes per annum or MTA), Qi = outflow from segment i (km3 yr–1), Qi = 

advective outflow from segment i (km3 yr–1), Ei,j = bulk horizontal eddy diffusion coefficient at interface 

between segments i and j (km3 yr–1), vs,i = apparent settling velocity for TP for segment i (km yr–1), As = 

the segment’s bottom sediment surface area across which TP is permanently lost from the system (km2). 

Note that by setting vs to zero, Eqs. (1) through (4) apply to conservative substances such as chloride in 

which case loadings and concentrations are expressed in kMTA and mg L–1, respectively. 

 

 
Figure B3-2.  Segmentation Scheme for Chloride and Total Phosphorus Models for the Lower Great Lakes. 

 
 

The bulk mixing coefficient is a phenomenological parameter that represents the large-scale diffusive 

exchange across open boundaries. As described by Chapra (1979) this parameter accounts for all 

transport mechanisms over and about advective outflow. These include but not limited to exchange due 

to large-scale eddy diffusion, and dispersion due to shear flow and spatial non-uniformities. It is related 

to more fundamental quantities by (Chapra, 1979) 

 

 ' cEA
E   (5) 

 
where E =  horizontal eddy diffusive mixing coefficient (km2 yr–1), Ac = interface cross-sectional area 

(km2), and  = mixing length (km). The mixing length parameterizes the length of the zone defining the 

gradient between adjacent volumes (Chapra, 1997).  

 

The complete system of differential equations provides a quantitative framework to analyze trends of 

chloride and TP. Given parameters, loading time series, and initial conditions, the equations can be 

integrated to obtain concentrations as a function of time. To do this, we use a constant-step, 4th-order 

Runge-Kutta method (Chapra, 2011). Employing a 4th-order scheme tends to minimize the temporal 

component of numerical diffusion. 
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Model Parameters and Forcing Functions 
This section provides a description of the model parameters and forcing functions. 
 

Morphometry. Morphological parameters (volumes, areas and lengths) for the model segments and 

interfaces are listed in Tables B3-2 and B3-3. These are based on previously published estimates (e.g., 

Chapra and Sonzogni, 1979, Quinn, 1992).   

 
Table B3-2.  Segment Parameters for the Lower Great Lakes. The volumes and sediment areas 

represent measured values whereas the TP settling velocity is based on calibration. The 
settling velocities in parentheses are used starting in 1990. 

 
 

Segment 

  
  

Symbol 

  
Volume 

km3 

Sediment 
Area 
km2 

Settling 
Velocity 
m yr–1 

West Erie WE 28 3680 30 (50) 

Central Erie CE 274 15390 22 (30) 

East Erie EE 166 6150 27 (32) 

Ontario ONT 1631 18960 19 (29) 

 
Table B3-3. Interface Parameters for the lower Great Lakes. The areas and lengths represent 

measured values whereas the diffusion coefficients are based on calibration. 

Interface 

Cross-Sectional 
Area 
km2 

Mixing 
Length 

km 
Diffusion 

106 cm2 s–1 

Bulk 
Diffusion 
km3 yr–1 

WE-CE 0.464 66.14 1 22.1 
CE-EE 1.144 91.35 5 197.5 

 
Intersegment flows. From 1860 through 2010, the annual outflows for connecting channels are based on 

measurements reported by the Army Corps of Engineers (Keith Kompoltowicz, personal communication) 

and NOAA’s Great Lakes Environmental Research Laboratory (Croley and Hunter, 1994, GLERL 2010). 

Within-lake intersegment flows are derived from annual water balances consisting of measured 

tributary flows, changes in lake level, and estimates of net over-lake precipitation (precipitation minus 

evaporation). The flows prior to 1860 are set to constant values equal to the average flows for the pre-

diversion period (1860-1899). 

 

Loadings. Time series of annual chloride and TP loadings were determined for each model segment for 

the period from 1800 to early 2010 based on historical estimates (Chapra, 1977), reports to the 

International Joint Commission (IJC) by the Great Lakes Water Quality Board (as summarized for the 

State of the Lakes Ecosystem Conference, SOLEC, by Nielso et al., 1995), and recent direct 

measurements for the period from 1994 to 2008 (Dolan and Chapra, 2012). 

 

Concentrations. The concentration data can be divided into two categories: historical (prior to the mid-

1960s) and modern (after the mid-1960s). Historical chloride concentration data were taken from a 

number of sources as previously summarized by Chapra et al. (2009, 2012). Historical TP concentration 

data were taken from a number of published sources [Great Lakes Water Quality Board (1974, 1975, 
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1976, 1977a, 1977b, 1978a, 1978b, 1979, 1987)]. For the historical data, values either represented single 

samples (especially for the earliest chloride data) or annual averages. 

 

Beginning in the late 1960s, much more systematic data collection efforts were instituted under the 

auspices of Environment Canada (EC). Because they involved more rigorous quality control, this 

“modern” data set exhibits considerably less uncertainty than the historical data. Hence, it provides a 

better basis for separating long-term, emerging trends from interannual natural variability. 

EC conducts ship-based cruises to collect water-quality samples on the Lower Great Lakes. Briefly, EC 

conducts monitoring in each of the Lower Great Lakes. Each lake is generally monitored every second 

year, with multiple cruises conducted during that year. All regions (nearshore, offshore and major 

embayments) are monitored for the EC program. Methods for EC's Great Lakes Surveillance Program are 

described in Dove et al. (2009). The data collection and analysis methods used for chloride are also 

described in additional detail in Chapra et al. (2009, 2012).  

 

For TP, the current investigators were provided with access to the individual measurements for the EC 

data. This was initially done as part of a sub-group charged with examination of the status of the goals of 

Annex 3 of the GLWQA (DePinto et al., 2007) but has continued so that we currently have access to the 

individual measurements from both datasets. 

 

For the current analysis, we have employed these datasets to compute open-lake annual median values 

for both chloride and TP concentrations. We have used latitude and longitude data to compute annual 

medians for our model segments. Medians, rather than average values, are chosen because the former 

is less sensitive to outliers. Finally, we systematically excluded near-shore samples. This was done under 

the assumption that open-lake (offshore) waters best indicate long-term trends because they are less 

influenced by local pollutant discharges than shallower nearshore waters. It should also be mentioned 

that using offshore values is consistent with the current GLWQA. For example, the Agreement’s TP 

concentration targets are for open-lake concentrations (Table B3-1). 

 

2. Calibration and confirmation approach and results 

Model Calibration 
This section outlines how the model was calibrated including the final values of the key calibration 
parameters used for the subsequent simulations. These are the bulk mixing coefficient (chloride) and 
the apparent settling velocity (TP). 
 
The model calibration consists of adjusting the free parameters - the bulk mixing coefficients and the 
apparent settling velocities - so that the final simulation results fit measured chloride and TP 
concentrations, respectively. Because the chloride simulations only depend on the former, the 
calibration is conducted in two steps. The diffusion coefficients can be estimated by first adjusting them 
to fit the chloride data. These values along with the other parameters and the measured TP loadings can 
then be employed to estimate the apparent settling velocities by adjusting them to fit the TP data. This 
sequential calibration strategy of calibrating the transport first and then the transformations second, is 
commonplace in water-quality modeling (Chapra, 2003) and for the present case has the advantage of 
parsimony in that each calibration step involves adjusting a single free parameter. Thus, because there is 
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only one degree of freedom, the model is actually being used to address the inverse problem. That is, 
the mass-balance provides a framework to directly estimate each of the unknown parameters by 
difference.  
 

Diffusion calibration. Initial estimates of the intersegment eddy diffusion were based on previously 

published estimates (Ahrnsbrak and Ragotzgie, 1970; Richardson, 1974, 1976; Saylor and Sloss, 1976; 

Quinn, 1977; Chapra and Sonzogni, 1979). In addition, we also computed a first estimate for each 

boundary based on the Okubo (1971) diffusion diagram as computed with the following equation: 

 

 4/3
, ,6260j k j kE   (6) 

 
where j and k designate the two segments straddling the open interface,  Ej,k =  the horizontal eddy 

diffusion coefficient (cm2 s–1), and   a characteristic length representing the approximate size of the 

eddies contributing to the turbulent mixing across the interface (km). For the present system, we 

assumed that the mixing length provide a reasonable estimate of the characteristic length for each 

interface.  

 

Using these values as a starting point, the diffusion coefficient was then adjusted to minimize the sum of 

the squares of the residuals between the measured and simulated chloride concentrations for the 

period from 1994 through 2008. The final values are listed in Table B3-3. 

 

Of course, more refined hydrodynamic models as well as much higher resolution spatial and temporal 

data would be required to definitively describe the complex mixing regimes for such systems. 

Nevertheless, because they are primarily dependent on the observed annual chloride concentrations, 

the values in Table B3-3 provide reasonable estimates of annual mixing for the present lumped, mean 

annual model.  

 

Apparent settling velocity calibration. As stated previously, once the chloride balance has been used to 

estimate of mixing across the model’s open boundaries, the remaining free parameter (i.e., not directly 

measured) needed to simulate total phosphorus is the apparent settling velocity. As was the case for 

diffusion, initial estimates for some segments can be based on previous studies (Chapra and Sonzogni, 

1979, Lesht et al., 1991). These values, along with those for segments that had not been modeled 

previously, were then adjusted so that simulated TP concentrations were consistent with measured 

values. 

 

In so doing, we again adopted a two-step approach. The model was first run for the period from 1800 to 

2010 and the settling velocities set at constant values in order that the model yielded TP concentrations 

consistent with observations collected just before loading reductions were implemented in the early 

1970s. This was done to be consistent with the approach employed during establishment of target loads 

for the GLWQA. In addition, it was considered valid because then the subsequent model test (i.e., 

whether the model would follow measurements after load reductions were implemented) would start 

with minimal error. As described previously, this approach resulted in a good fit (as measured by the 
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residual sum of the squares between the measurements and the simulated TP concentrations) for Lake 

Superior. However, for the main bodies of the other lakes, the modeled and measured concentrations 

began to diverge after about 1990 with the most glaring discrepancy in Lake Ontario. We, therefore, 

recalibrated the model by increasing the post-1990 apparent settling velocity in order to yield model 

output better matching current measured TP concentrations. It should be noted that we limited these 

increases to the main-lake, open-water segments (i.e., excluding the embayments) in an effort to be 

parsimonious, but also because of the higher likelihood that deep water sedimentation would not be 

heavily influenced by resuspension as might be the case in the shallower embayments.  

 

The resulting calibrated values are listed in Table B3-2 with the post-1990 values in parentheses. 

Although these values are quite variable, their range is not atypical of literature estimates. Data analyses 

by a number of individuals (e.g., Chapra, 1975, Dillon and Rigler, 1975, Thomann and Mueller, 1987) 

have determined that the settling velocity can range over about an order of magnitude from about 3 to 

30 m yr–1. However, values have been reported from less than 1 to over 200 m yr–1. 

 

Results 
The following summary of results focuses on total phosphorus concentrations for the main bodies of each of the 
Lower Great Lakes. Detailed results for the chloride simulations as well as for the major embayments are 
presented elsewhere (Schmitt Marquez, 2010; Dolan et al., 2011; Maccoux et al., 2012). 
 

Total phosphorus concentration trends. Although the model simulations are generated for the entire 
post-settlement period (1800-2010), the results presented here are limited to 1950 to 2010. This was 
done in order to better visualize the behavior of the model output and data. 

 

Fit statistics. In addition to the plots, we have also computed two fit statistics in order to quantify the 

residual error between the data points and the model simulations. These are an average percent relative 

error and a root mean error.  

The average percent relative error is computed for each segment as 

 

 1

( ) ( )

( )
Average Error 100%



 
 
 

 


n

i i i

i ii

c t c t

c t

n
  (7) 

 
where ti = the time corresponding to the ith TP concentration measurement; ( )i ic t  the ith TP 

concentration measurement (gP L–1); ( )ic t  the model calculated TP concentration at time ti (gP L–1), 

and n = the number of measurements. 

 

The standard error is computed for each segment as 

 RME = 

 
2

1

( ) ( )

1

n

i i i

i

c t c t

n








 (8) 
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Note that this formulation assumes that one degree of freedom is lost due to the fact that each 

segment’s fit is primarily dictated by a single estimated parameter, the apparent settling velocity. Of 

course, because the system is coupled, each segment’s concentration is also dictated by other segment 

settling velocities as well as the model’s other estimated parameter, the open-interface turbulent 

mixing coefficients. Nevertheless, we believe that Eq. (7) provides a reasonable estimate of the 

magnitude of the scatter around the best-fit line represented by the calibrated model.  

As listed in Table B3-4, the results for most parts of the system indicate a good fit with root mean and 

percent relative errors on the order of 1 gP L–1 and 20%, respectively. The highest errors occur for 

Green Bay, Saginaw Bay and Lake Erie. This is a reflection of the fact that these segments are most 

impacted by basin tributary loadings due to the size of the tributaries relative to their volumes. 

 

Table B3-4.  Fit Statistics for the Calibrated Model as Calculated with the Final Calibrated Model 
(i.e., with higher post-1990 settling velocities). The average TP concentrations for 1970 and 2010 
computed with the calibrated model are also included to provide a basis for assessing the RME. 

   Average TP Average 
 Segment n RME 1970 2010 error 

 West Erie 43 5.4 39.6 15.5 26% 
 Central Erie 47 3.7 20.8 7.9 26% 
 East Erie 48 3.6 19.6 7.2 29% 
 Ontario 53 1.5 21.5 6.2 13% 

 

The trends and variability of the model simulations can also be directly assessed by examining the time 

series of the model output and data shown in Figures B3-2 and B3-3. In order to relate the TP levels in 

the plots to trophic state, the present analysis uses values of 10 and 20 gP L–1 as bounds for 

mesotrophy, as originally suggested by Dillon (1975) and confirmed for the Great Lakes by Chapra and 

Dobson (1981). In addition, we have classified segments with TP < 5 gP L–1 as being ultraoligotrophic 

(Homa and Chapra, 2011). 

 

Lake Erie. After having experienced severe cultural eutrophication during the 1950s and 1960s, both the 

data and model simulations indicate that TP levels for all three basins of Lake Erie have dropped 

significantly over the following decades (Figure B3-2). Nevertheless, the target concentration levels are 

still exceeded for some years. This is partly due to the fact that although Lake Erie’s TP loadings have 

been reduced, they still sometimes exceed the established annual target loads (Dolan and Chapra, 

2012). Further, the exceedances are exacerbated by the fact that Lake Erie’s response exhibits higher 

interannual variability than for the main bodies of Lake Ontario. As described elsewhere for chloride 

(Chapra et al., 2009), this variability is in large part due to Lake Erie’s short residence time relative to the 

other Great Lakes. 
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Figure B3-2.  Simulation Results for TP Concentration (gP L–1) Versus Year for the Three Basins of Lake Erie. 

Model Simulations are Designated by Lines and Measured Data by Markers. Two model simulations are shown 
for each basin. The upper dashed line on each plot employs a constant apparent settling velocity whereas the 

lower solid line uses a higher apparent settling velocity after 1990. The IJC target concentrations are indicated at 
the right of each plot. 

 

As noted previously, we have employed constant and increased post-1990 settling velocities for each of 

the basins. As depicted in Figure B3-2, the range of the two scenarios is comparable to the range of the 

observations with the heightened case doing a somewhat better job of representing the current 2010 

levels.     

 

Lake Ontario. Whereas the foregoing results suggest that Lake Erie may have experienced stronger post-

1990 TP assimilation, the simulations for Lake Ontario are much more conclusive. As depicted in Figure 

B3-3, the observations indicate a much greater improvement for Lake Ontario than predicted by the 

model with a constant apparent settling velocity. Whereas the model predicts that the load reductions 

should bring the lake to oligo-mesotrophic levels, the data indicate that it is solidly oligotrophic with a 

minimum mean annual TP concentration of approximately 5.4 gP L–1 in 2002. In order to simulate this 

outcome, a higher post-1990 apparent settling velocity must be employed. As listed in Table B3-2, a 

value of 29 m yr–1 after 1990 yields a model simulation that minimizes the sum of the squares of the 

residuals between the model output and measured values. 
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Figure B3-3: Simulation Results Along with Data for TP Concentration (gP L–1) Versus Year for Lake Ontario. 
Model Simulations are Designated by Lines and Measured Data by Markers. Two versions of the model are 
indicated. The upper dashed line employs a constant apparent settling velocity of 19 m yr–1 for the entire 

simulation. The lower solid line uses the same value until 1990 when the settling velocity is increased to 29 m yr–

1. The IJC target concentration is indicated at the right of the plot. 
 

As a final note regarding in-lake trends for the lower Great Lakes, after reaching minimum levels in 

about 2000, there is a suggestion that TP levels may now be increasing, albeit at a slow rate. Although 

the interannual variability obscures any such trend in western Lake Erie, the recent data for central and 

eastern Lake Erie as well as for Lake Ontario hint at a possible increase. Because at best we are dealing 

with less than 10 data points, a statistically-significant trend cannot yet be substantiated. Nevertheless, 

the fact that such increases have been documented for conservative ions such as chloride and sodium 

(Chapra et al., 2009, Chapra et al., 2012) implies that such TP trends bear watching. 

 

3. Application Results 

Load-Response curves 

The calibrated model was run at steady state using average flows and total phosphorus (TP) loadings 

(Dolan and Chapra, 2012) from water years 2001-2010. The following average values resulted: 

 

Lake Index TP (μgP/L) Chl a  (μg/L) SD (m) 

Western Erie 1 16.00 2.63 1.55 

Central Erie 2 8.15 1.49 2.27 

Eastern Erie 3 7.03 1.31 2.46 

Ontario 4 6.37 1.21 2.60 

 
The model can then be used to compute the response of three water-quality indicators to levels of the 

total Lake Erie TP loading (Figure B3-4).  
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Figure B3-4.  Loading Response Plots for TP Concentration, Summer Chlorophyll a Concentration, and Summer 
Secchi Depth for the Three Basins of Lake Erie Plotted Versus the Total Lake Erie TP Loadings 
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Uncertainty/Sensitivity assessment 
At this time, a full uncertainty/sensitivity assessment has yet to be conducted. It is hoped that this 

would be implemented in the future (see Sec. 6). 

A simple sensitivity analysis is provided by computing the steady-state system response matrix for TP. As 

depicted in Figure B3-5, each element ai,j
(–1) gives the response of lake i to a unit load to lake j (gP/L per 

1,000 mta). Thus, because the model is linear, each element provides the sensitivity of each basin’s 

concentration response to a 1,000 mta load change for each other basin. For example, the plot indicates 

that if the loading to the Western Basin were lowered by 1,000 mta, then the TP concentrations of 

Western Erie, Central Erie, Eastern Erie and Ontario would be lowered 2.62, 0.722, 0.474, and 0.117 

gP/L, respectively. 

 

Figure B3-5.  The TP System Response Matrix for the Lower Great Lakes 
 

Aside from such sensitivity calculations, the matrix can be employed to provide a detailed breakdown of 

how each lake’s TP loads impact every other lake as displayed in the following table: 

  From Western Central Eastern Total From Ontario Total 

  Huron Erie Erie Erie Erie Erie Direct Ontario 

Loads (mta)  397.8 5633.3 2426.5 990.4 9448.0 1358.2 3641.3 4999.4 

Western Erie 1.04 14.75 0.19 0.03 16.00 0.70   

Central Erie 0.29 4.07 3.33 0.46 8.15 0.54   

Eastern Erie 0.19 2.67 2.19 1.99 7.03 0.49   

Ontario 0.05 0.66 0.54 0.49 1.73 1.73 4.64 6.37 

 

4. Conclusions/recommendations 

Although our model is parsimonious, it provides a long-term perspective that nicely complements the 

other models employed in this study. In addition, it provides a direct link to earlier attempts to set 

phosphorus loading for the Great Lakes system. 
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Loading (mta) to
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West Erie

Cent Erie
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Ontario

Response
(P/L)

of

2.6176          0.078302        0.026319               0
0.72249          1.3737            0.46173                 0
0.47378          0.90083           2.0049                  0
0.11666          0.22182          0.49369           1.2744
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APPENDIX B-4: 1-Dimensional Central Basin Hypoxia Model 
 
1. Model Description 

Overview and Conceptual Model 

The 1-Dimensional hypoxia model represents the offshore waters of the central basin (approximately 24 

m depth) of Lake Erie, linking an external thermal model with a fairly simple eutrophication model.  The 

thermal model provides temperature and vertical mixing profiles on an hourly basis (Rucinski et al., 

2010) for 48 vertical layers (each 0.5m thick).  The eutrophication portion of the linked model 

incorporates phosphorus and carbon loading from both the western and central basins of Lake Erie, 

internal phosphorus cycling, carbon cycling (in the form of algal biomass and detritus), algal growth and 

decay, zooplankton grazing, oxygen consumption and production processes, and sediment interactions 

(Figure B4-1). 

 
Figure B4-1.  Conceptual Diagram of Eutrophication Portion of the 1D Central Basin Hypoxia Model 

 

The model has been corroborated with in-lake data for dissolved oxygen (DO), total phosphorus (TP) and 

chlorophyll a (chl-a) (Rucinski et al., 2014).  The model can produce a range of water quality responses 

for a given load to Lake Erie as a function of a range of observed or hypothesized physical forcing 

conditions that might affect the duration, magnitude and depth of stratification.  As such, the model is 

applied to thermal profiles representing hydrometeorological conditions from 1987-2005.  Response 

curves for several DO metrics (hypolimnion oxygen demand, hypoxia days, hypoxic area, bottom DO) vs 

annual TP and dissolved reactive phosphorus (DRP) loads were developed previously using the 1997 

loading time-series (Rucinski et al., 2014).  While no new calibration efforts are taken for the Annex 4 

ensemble modeling effort (i.e., the model uses the existing published model parameterization), the 

application of the model updates and expands on the previous efforts, using the baseline common 
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loading year of 2008.  Additionally, load-response curves for central basin chl-a are generated in this 

application. 

 

Structure, Inputs, State Variables, Annex 4 Indicators modeled 
Both the thermal and eutrophication models operate on the same spatial scale wit 48 half-meter thick 

layers, with an hourly temporal scale.  The 1-D thermal model is based on the Princeton Ocean Model 

(Blumberg and Mellor, 1987) and was applied previously for Lake Michigan (Chen et al., 2002) and Lake 

Erie (Rucinski et al., 2010).  It uses the Mellor-Yamada turbulence closure scheme to parameterize 

vertical mixing (Mellor and Yamada, 1982).  The thermal model is driven by hourly meteorological 

observations from the Cleveland, Ohio airport with overland-overlake correction described in Beletsky 

and Schwab (2001).  

Calibration and confirmation of the thermal model is fully described in Rucinski et al. (2010).  Briefly, 

calibration was accomplished using temperature data from 1994, representative of central basin open 

water conditions, and confirmed with data collected in 2005.  Maximum model error (represented as 

RMSE) varied with depth, and found to be 1.9 oC and 3.4 oC for 1994 and 2005, respectively.  Both years 

exhibited maximum errors near thermocline depth.  While some model errors can be attributed to 

either inaccuracies in forcing functions or model physics (e.g. vertical mixing parameterization), others 

can be attributed to 3D effects that are not represented in a 1D model, such as internal wave 

propagation, horizontal and vertical advection and diffusion. In particular, mid-lake thermocline 

conditions can be impacted by vertical velocities (upwelling or downwelling) generated by wind stress 

curl (Beletsky et. al., 2012). The thermal and eutrophication models are linked by first simulating the 

thermal structure of the model domain, and then passing the hourly outputs from the hydrodynamic 

model (i.e., temperature and vertical mixing coefficients) to the eutrophication model.   

The eutrophication model incorporates external phosphorus and carbon loading; internal phosphorus 

and carbon cycling; algal growth, death, and sinking; zooplankton grazing, oxygen consumption and 

production; and sediment interactions (Figure B4-1).  Stoichiometry among the state variables follows 

Redfield (1934).  Algal growth rate is based on uptake of available (dissolved reactive) phosphorus 

following the Michaelis-Menten relationship, light limitation as a function of a constant extinction 

coefficient with self-shading from algal biomass, and water temperature.  Algal photosynthesis and 

respiration are temperature-dependent 1st order rates, as are settling terms and mineralization of 

unavailable (organic) to available phosphorus.  Sediment oxygen demand is a 0th order areal flux.  The 

differential equations describing these processes (Table B4-1) are solved using an Euler integration 

scheme.  There are dozens of input parameters required to be specified in these equations; a full list or 

which as well as literature ranges, are presented in the calibration/corroboration section (Table B4-2). 

Model output is used to develop load-response curves for both hypoxia and chlorophyll-a metrics, as 

part of the Annex 4 ensemble modeling effort.  Dissolved oxygen (mg∙L-1) and chl-a concentrations (mg∙L-

1) are output as daily averages for each model layer.  The daily averages are then aggregated in to 

various seasonal metrics (e.g., hypolimnion DO, summer average chl-a, etc) and related to the loading 

magnitude to develop the load-response curves. 
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Table B4-1. Eutrophication Model. 
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2. Model Input and Evaluation Data 

 

Model Input Data 
Model input data consist of initialization (i.e., initial conditions) data, western and central basin daily 
loading, and meteorological data.   
 
Initialization data are required for each state variable at the beginning of each year’s simulation (1987-
2005); generally in early April when ice cover has diminished.  These data, in the form of TP, DRP, total 
organic carbon (TOC), DO, chl-a, and zooplankton biomass, were obtained from several sources: EPA's 
online database (GLENDA), EPA's Great Lakes National Program Office (GLNPO), Environment Canada's 
Water Science & Technology Branch (ECWSTB), and the International Field Years on Lake Erie Program 
(IFYLE, 2006).   
 
Long-term TP loads are from Dolan (1993) and Dolan and McGunagle (2005), and DRP loads (available P 
in the model) are from Richards (2006) and Richards and Baker (2002).   It was required to manipulate 
some of the TP loading data, to convert it into daily basin total loads.  The description of the required 
manipulation of the loading data is fully described in Rucinski et al. (2014).  In summary, all loads to the 
western basin were routed to the central basin after accounting for a constant net apparent settling loss 
of 10 m∙yr-1 based on an estimate of basin specific net apparent settling rates for phosphorus via a post-
audit of The Great Lakes Total Phosphorus Model (Lesht et al., 1991).  Dolan (1993) and Dolan and 
McGunagle (2005) provide western and central basin annual total loading values, while Richards (2006) 
and Richards and Baker (2002) provide daily loads of both TP and DRP for the 6 major tributaries in 
these two basins (Maumee, Raisin, Sandusky, Vermillion, Cuyahoga, and Grand).  The annual loads from 
(1993) and Dolan and McGunagle (2005) were then decomposed to daily loads, using the ratio of annual 
loads from the 6 major tributaries to the annual loads from the basins.  Note that the eastern basin 
loading is ignored in this analysis. 
 
Atmospheric data needed to drive the thermal sub-model and components of the algal growth 
equations, were obtained from the NOAA National Climatic Data Center.  These data include solar 
radiation, cloud cover, air temperature, wind speed and direction, air pressure and relative humidity. 
 
Model Calibration/Confirmation Data 
Model corroboration data were obtained from the same group of sources as the initialization data: EPA's 
online database (GLENDA), EPA's Great Lakes National Program Office (GLNPO), Environment Canada's 
Water Science & Technology Branch (ECWSTB), and the International Field Years on Lake Erie Program 
(IFYLE, 2006). In-lake data were averaged for central basin stations with an average depth of at least 
20 m. 
 
The base light extinction coefficient (0.3 m-1) was estimated from extensive data on photosynthetic 

active radiation at varying depths in the central basin (GLNPO).  Measured sediment oxygen 
demand (SOD) has not varied significantly over the analysis period, so for model testing an 
average value of 0.75 gO2∙ m-2∙d-1 (Matisoff and Neeson, 2005; Schloesser et al., 2005; 
Snodgrass, 1987; Snodgrass and Fay, 1987) was used, corrected for temperature deviations 
from 20oC.   
 

 

  



 

B4-5 

3. Calibration/Confirmation  

Approach 
Model performance was assessed by comparing output to state variable observations while ultimately 
applying the same parameter values to the entire 19 year data set (1987-2005).  Model coefficients 
were determined via an iterative calibration/corroboration process, focusing on DO and chl-a 
observations, and to a lesser extent on DRP and zooplankton biomass because data for those 
constituents were less available.  While particular emphasis was placed on calibrating to the 1994 and 
2005 observations because those years had the most observations, additional modest adjustments were 
used in the corroboration with other years in the 1987-2005 dataset. While data were collected much 
less frequently in some years, the length of the record serves as an adequate corroboration dataset.    
 
For comparisons, both model output and observations were aggregated into mixed layer averages, 
representing the epilimnion, metalimnion, and hypolimnion based on the temperature profiles from the 
thermal model.  The metalimnion was estimated as the zone where the temperature gradient was at 
least 2°C per meter.  Because stratification in the thermal model varies, the depth of the bottom of the 
metalimnion (i.e., top of the hypolimnion) changes both seasonally and annually as a consequence of 
meteorological inputs.  Table B4-2 lists the coefficient values, as well as calculated rates based on data 
(SOD, light extinction).  Parameters in bold italics are ones that were adjusted.  
 
Results 
Results for DO (Figure B4-2), DRP (Figure B4-3), and chl-a (Figure B4-4) show best correspondence in 
years where the calibration was most focused (1994, 2005).  The model-data comparison for DO agrees 
quite well in the full corroboration data set. The model captures the expected temporal trends in DO 
and chl-a (where data are available), however, chl-a data are only available during  spring and fall cruises 
for the vast majority of years, and therefore the data fail to capture phytoplankton dynamics during the 
summer.  The temporal trends in DRP are difficult to delineate because those data were only available 
for the late summer in most years.  However, as expected the values reach very low concentrations 
coinciding with increased phytoplankton and zooplankton abundance.  Comparison with vertically 
averaged zooplankton (Figure B4-5) was only possible for 2005, and the model estimates captured the 
temporal trend reasonably well during the stratified period.  The vertical trends in DO are also captured 
well.  The modeled yielded less than 17% relative error in summer dissolved oxygen concentration, and 
less than 25% relative error in chlorophyll-a concentration. 
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Table B4-2.  1D Model Parameter Set 
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Figure B4-2.  Comparison of Model (Line) and Data (Points) for Mixed-Layer Averages of 
Dissolved Oxygen 1987-2005 
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Figure B4-3.  Comparison of Model (Line) and Data (Points) for epilimnion mixed-layer 
average of Dissolved Reactive Phosphorus 1987-2005 

 

 

Figure B4-4.  Comparison of Model (Line) and Data (Points) for Epilimnion Mixed-Layer 
Average Of Chlorophyll-a 1987-2005 
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Figure B4-5.  Comparison of Model (Line) and Data (Points) for Epilimnion Mixed-Layer 

Average Of Zooplankton 2005 
 

As a another corroboration test, model output was used from the layers located within the daily 

evolving hypolimnion, and a relationship between bottom water dissolved DO and hypoxic area (A= 

9.3exp(-DO2/7.09) developed by Zhou et al. (2013) was used to compare modeled areal extent to those 

estimated from a geostatistical analysis of the observations (Zhou et al., 2013).  It is important to note 

that hypoxic area derived from geostatistical analysis of observations from individual cruises (Zhou et al., 

2013) varies considerably within a year, even when cruises were only a few weeks apart (Figure B4-6).  A 

comparison between modeled and observed summer hypoxic area, averaged over the timeframe of the 

observations in each year, shows the model also captures the inter-annual dynamics of this key 

management-focused metric.  The Zhou et al. (2013) equation is carried forward to convert the 1-

dimensional model output into an areal extent of hypoxia, for comparison with other models in the 

Annex 4 ensemble.  
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Figure B4-6.  Light Symbols with Dotted Error Bars are 95% Confidence Intervals for Individual Cruises (Zhou et 

al., 2013). The shaded region represents modeled 7-day minimum and maximum for Aug-Sept. Red symbols and 
error bars are monthly means and standard deviation of the individual cruise estimates.  Dark black line and 

bars represent model Aug-Sept means and standard deviation. 
 

While the model is relatively simple, containing only six state variables, there are over thirty parameters 

that can be adjusted during calibration.  The vast majority of these parameter values are within ranges 

used in similar models of large lakes, from the literature, and from EPA model guidelines (Table B4-2).  

However, in such under-determined models (Anderson, 2005; Friedrichs et al., 2006), it is possible to 

match state variable observations with more than one set of rate coefficients, such that over-estimation 

of one rate process is compensated by under-estimation of another.  For this reason and to further 

confirm model performance, the calibrated model results were also compared to sedimentation, 

primary production, and oxygen depletion rates.  The June-September mean primary production rates 

calculated by the model (18.7 - 92.7 mgC∙m-3∙d-1) are within the range of values measured during the 

growing season (Table B4-3). There are fewer published measurements of sedimentation rates in Lake 

Erie, particularly in recent decades.  However, the model average of 1.59 g(dw)∙m-2∙d-1 is consistent 

within the 0.2-71.2 g(dw)∙ m-2∙d-1 range measured in Lake Erie by Charlton and Lean (1987) and the 1.47- 

2.2 g(dw)∙ m-2∙d-1 range measured in offshore Lake Ontario by Rosa (1985).   

 
Table B4-3.  Published Primary Production Rates in Lake Erie 
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4. Model Application 

In an earlier analysis that aggregated all oxygen consumption into water column and sediment demands, 

Rucinski et al. (2010) found that SOD represented on average 63% of the total hypolimnetic oxygen 

demand.  In the present model, SOD also represents a substantial fraction of the overall demand.  For 

example, in a simple model test, after removing all external phosphorus load, a 67% reduction of SOD is 

still required to eliminate hypoxia.   

 

Because SOD is dependent upon settled organic matter, primarily from phytoplankton production driven 

by nutrient loads, it is logical to assume that reduced loads would eventually lead to reduced SOD.  So, it 

was necessary to develop estimates of SOD changes in response to projected changes in phosphorus 

loads. To account for this, a relationship developed by Borsuk et al. (2001) between SOD and carbon 

deposition was used: 
b

c

c

hkL

L
aSOD 














1
 

where cL  is deposited organic carbon, h  is the thickness of hypolimnion, and a, b, and k are model 

coefficients.  Although their study focused mostly on large estuaries, it was possible to  calculate values 

for a, b, and k via a least-squares regression such that the equation reproduced the average observed 

SOD for rates of organic carbon deposition simulated by the eutrophication model across the range of 

loads from the 19-year data set (Figure B4-7).  This provides a reasonable representation of the 

relationship between carbon sedimentation and SOD; however to adjust SOD in the load-reduction 

scenarios, it is required to know how SOD would vary with nutrient load. To address this, current model 

was run with a wide range of loads to generate a relationship between load and carbon deposition and 

then, by way of the modified Borsuk equation, created a TP-SOD relationship (Figure B4-8):  













lo a dS OD

lo a d

TPK

TPSOD
SOD max  

where maxSOD is Maximum sediment oxygen demand , loadTP  is the annual total phosphorus load, and 

S O DK  represents a half-saturation constant.  This approximation assumes that SOD reaches a new 

steady state with nutrient loading.  The values for SODmax and KSOD, obtained by regression, are 0.98 g∙ 

m-2∙d-1 and 3847 tonnes∙year-1, respectively.  With this ability to adjust SOD based on loads, the model 

was used to investigate the response of several water quality metrics as a function of load and inter-

annual variability in physical drivers.  
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Figure B4-7.  Comparison of Model Calculated SOD and Sampled Estuaries in Borsuk et al. 2001. Average of 

published Lake Erie SOD values is shown as solid red line.  Solid blue line shows the obtained function relating 
SOD to deposited carbon. Black circles show the values published in Borsuk et al. 2001 for other systems. 

 

 

Figure B4-8.  Relationship Between Annual Total Phosphorus Load and Model Calculated SOD.  Model estimated 
values shown as blue diamonds.  Regression curve shown as red line. 
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Load-response Curves 
Process Description. Using the corroborated 1D hypoxia model, along with the described relationship 
between steady-state TP load and sediment oxygen demand, it is then possible to explore the system’s 
response to altered loads and inter-annual variability in physical drivers.  This was accomplished by 
scaling the 2008 load time-series by six different factors (0%, 25%, 50%, 75%, 100%, 125%) and running 
the model with temperature and mixing patterns from each of the 19 years (1987-2005).  The 2008 
loading time series was used as the base case as the total annual TP load for the year was approximately 
equal to the current GLWQA target of 11,000 MT.  Daily tributary inputs for total phosphorus and 
dissolved reactive phosphorus were provided by Dave Dolan for twenty six major tributaries across the 
Lake Erie basin.  Tributary loads where aggregated for those falling within the western and central basins 
of the lake.  The only difference between the simulations was the input loads; all other model input 
parameters and forcing functions remained constant.  It should be noted that the change in loads for 
each model run resulted in a change in the steady-state SOD, as described previously. 
 
Simulating the different hydrometeorological regimes produces response envelopes represented by the 
mean and standard deviation of the 19 cases.  This approach allows development of response curves for 
the central tendency in system response, but also emphasize that the meteorological conditions in a 
given year can produce significant deviation from the mean.  That is, while one can estimate the 
projected impact of a load reduction on average, the actual hypoxia metric might deviate substantially in 
any given year based on the timing and magnitude of stratification.  
 
Response curves were generated for hypoxic extent (1000 km2), bottom water dissolved oxygen (mg∙L-1), 
number of hypoxic days, and chlorophyll-a (μg∙L) as a function of annual TP load.  Hypoxic extent and 
bottom water dissolved oxygen are both averaged over the August-September period of each thermal 
simulation year (1987-2005).  The number of hypoxic days is calculated over the entire stratified period, 
which typically lasts from mid-May to early October. Summer chl-a is calculated from June-Aug for each 
simulation year.  It should be noted that the loads used in these curves represent total western and 
central basin loads.  Eastern basin loads are assumed to not influence the central basin significantly. 
Results and Interpretation. Using the relationship of Zhou et al. (2013), the areal extent of hypoxia is 
calculated from bottom water DO, and averaged over the August-September period, corresponding to 
the typical period of prolonged hypoxia. These model-calculated values are related to the six TP loading 
scenarios to produce the response curve shown in Figure B4-9.  The mean values (blue diamonds) 
approximate an inverse parabolic function, however the trend is fairly linear in this range of TP loading 
rates.  Rucinski et al. (2014) developed equivalent plots using the 1997 loading time-series (although 
with scaling factors ranging to 200%) showing a similar trend at the lower loading scales and 
approaching an asymptote at loads near 20,000 MT.  The vertical error bars show +/- 1 st.dev from the 
mean, which is representative of the variation from the 19 different thermal regimes (i.e., the mean 
corresponds to the central tendency for a given load, while hydrometeorology determines the deviation 
from the mean). 
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Figure B4-9.  Aug-Sept Average Hypoxic Area Load-Response Curve.  Mean of 1987-2005 model estimates values 
shown as blue diamonds.  Standard deviation of 1987-2005 values shown as vertical error bars. 

 

Figure B4-10 shows a companion load-response curve for summer average (August-September) bottom 

water dissolved oxygen.  As expected, the hypolimnetic DO shows a negative exponential trend, 

compared to annual total phosphorus load.  Again, the means of the 1987-2005 thermal regimes are 

shown as points, while the vertical error bars show +/- 1 st.dev of the values. 
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Figure B4-10.  Aug-Sept Average Bottom Water Dissolved Oxygen Load-Response Curve.  Mean of 1987-2005 
model estimates values shown as blue diamonds.  Standard deviation of 1987-2005 values shown as vertical 

error bars. 

 

Similar to the load-response curve for hypoxic area (Figure B4-9), the number of hypoxic days (days 

where hypoxic area exceeds the area of the bottom model layer, approximate 750 km2) shows an 

inverse parabolic relationship to annual TP load (Figure B4-11).  Note that the number of hypoxic days is 

calculated for the entire duration of stratification, which varies in each of the 19 thermal regimes, but 

typically lasts from mid-May to early-October. 
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Figure B4-11.  Number of Hypoxic Days Load-Response Curve.  Mean of 1987-2005 model estimates values 
shown as blue diamonds. Standard deviation of 1987-2005 values shown as vertical error bars. 
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Conversely, the load-response curve for chl-a shows an exponential relationship with total annual TP 
load (Figure B4-12).  Note that at the lower end of the loading scale, the initialization conditions of the 
model appear to be driving the magnitude, resulting in a minimum of around 1.4 μg∙L-1.  The mean 
summer average chl-a (June-August) are shown as points, while the vertical error bars show +/- 1 st.dev 
of the values across the 1987-2005 thermal regimes. 
 

 

 

Figure B4-12.  Chlorophyll-a Load-Response Curve.  Mean of 1987-2005 model estimates values shown as blue 
diamonds.  Standard deviation of 1987-2005 values shown as vertical error bars. 
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Figure B4-13 shows the time-evolution of the hypoxic area estimated by the model.  The blue line 

represents the mean of all 19 thermal regimes, while the vertical error bars again represent +/-1 st.dev.  

The time-series demonstrates that hypoxia can begin as early as mid-July, although significant 

magnitude usually occurs in early August.  Hypoxia persists in the model until fall turnover, when oxygen 

in the bottom waters is replenished via mixing.  Figure B4-14 shows a companion time-series, comparing 

the different loading scenarios.  The reduction in hypoxia per load reduction is relatively small near the 

baseline loading conditions (blue line); but it increases towards the smaller loads (i.e., consistent with 

the inverse parabolic shape of the response curve in Figure B4-9). 

 

 

Figure B4-13: Temporal Evolution of Hypoxic Extent.  Mean of 1987-2005 model estimates values shown as blue 
line.  Standard deviation of 1987-2005 values shown as vertical error bars. 
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Figure B4-14: Temporal Evolution of Hypoxic Extent Bot Different Loading Scenarios.  Mean of 
1987-2005 model estimates values shown as solid lines. 

 

Uncertainty and Sensitivity Analysis 
The original configuration of the model described above (and presented in Rucinski et al., 2014), is 

driven by basin-specific nutrient loads, as provided by Dave Dolan.  The model accounts for attenuation 

of the loads from the Western Basin during transport to the Central Basin using a net apparent settling 

loss rate of 10 m∙yr-1 (Lesht et al., 1991).  One approach to address potential uncertainty and sensitivity 

to this method is to use loads entering the Central Basin from the Western Basin as calculated by 

LimnoTech’s Western Lake Erie Ecosystem Model (WLEEM).  WLEEM provides daily aggregates of the 

mass flux crossing the Western-Central basin boundary.  The model was therefore modified to use these 

estimated fluxes from the Western Basin, in place of using the net apparent attenuation loss. 

Load-response curves for hypoxic area, hypolimnetic DO, number of hypoxic days, and chl-a were 

developed using the WLEEM-linked version of the model, in the same manner as the curves developed 

with the original model framework.  Both versions of the curves are plotted for comparison in Figures 

B4-15 through B4-18. 
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Figure B4-15.  Comparison the Hypoxic Area Load-Response Curves Obtained from Original Model Configuration 
(Blue), and Using Loads from WLEEM (Red) 
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Figure B4-16.  Comparison the Hypolimnetic DO Load-Response Curves Obtained from Original Model 
Configuration (Blue), and Using Loads From WLEEM (Red). 

 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000

A
u

g
-S

e
p

t 
H

yp
o

li
m

n
iu

m
 D

O
 (m

g
/L

)

Annual Western and Central Basin TP Load (MT)

Hypolimnion DO Load-Response Curves

WB Attentuated Loads WLEEM - Linked



 

B4-22 

 

Figure B4-17: Comparison The Hypoxic Day Load-Response Curves Obtained from Original Model Configuration 
(Blue), and Using Loads from WLEEM (Red) 
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Figure B4-18.  Comparison the Chlorophyll-a Load-Response Curves Obtained from Original Model Configuration 
(Blue), and Using Loads from WLEEM (Red) 

 

The comparison of the load-response curves in Figures B4-15 through B4-18 show a similar trend for 

each water quality metric:  the response is very similar for both versions of the model at lower loading 

rates, while they diverge more significantly at higher loading rates.  The WLEEM-linked model tends to 

produce higher levels of hypoxia and lower bottom water DO.  Both chl-a curves are very similar, again 

likely do to constraints of the initialization conditions in the model.  However, the curves follow the 

same general trend and produce fairly similar values of the water quality metrics for current loads and 

reductions. 

 

It is important to note that both versions of the model used the same calibrated/corroborated 
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changes in flow affects the net export components of the differential equations shown in Table B4-1.  

The differences in flow entering the Central Basin from the Western Basin are shown in Figure B4-19. 

 

 

Figure B4-19.  Comparison of the Flow from the Western Basin to the Central Basin Using Dolan Estimates (Blue), 
and WLEEM Hydrodynamics (Red) 

 

While the version of the model that uses WLEEM estimated loads produces somewhat different values 

than the calibrated version, it can provide opportunities to investigate targeted load reductions in 

specific tributaries.  For example, WLEEM can simulate the fate and transport of nutrients in the 

Western Basin given load reductions in only one tributary, such as Maumee or Detroit Rivers.  This can 

potentially be valuable to determine where to focus management practices, but it is not possible using 

the original calibrated version as the model treats all Western Basin loads equivalently. 

 

5. Conclusions and Recommendations 

The 1D Central Basin Hypoxia model has been calibrated and corroborated to in-lake data over a 19 year 

(1987-2005) period, during which hydrometeorological conditions vary greatly.  Applying the calibrated 

model to the 2008 loading time-series and simulating the response under the 19 different thermal 

regimes produces an envelope of expected lake response, for a given total phosphorus load.  Scaling the 

2008 loading time-series generates response curves (Figures B4-10 through B4-13) that can help guide 

management decisions on target load reductions. For example, if managers wished to reduce the 

hypoxic area in the Central Basin to approximately 2,000 km2, a total maximum western and central 

basin load of approximately 4800 MT would be required, representing approximately 48% reduction 
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from the baseline 2008 loads.  While this would be an average expected value give the load reduction, 

as illustrated by the error bars in Figure 10, climate and meteorology will also determine the level of 

hypoxia.  Very warm years with early or prolonged stratification or a very deep thermocline would 

produce greater than average hypoxia for a given load.  Conversely, a shallow thermocline or enhanced 

mixing from wind events could produce lower than average hypoxia. 
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1. Model description 

Overview 

EcoLE (Ecological Model of Lake Erie) was based on the two-dimensional hydrodynamic and water 

quality model CE-QUAL-W2 (version 2.0), which is constructed to simulate relatively long and narrow 

waterbodies exhibiting longitudinal and vertical water quality gradients (Cole and Buchak, 1995, Zhang 

et al., 2008). Hundreds of studies have applied CE-QUAL-W2 to water bodies of various kinds (rivers, 

reservoirs, lakes and estuaries) all over the world. Boegmen (1999) applied this model to simulate 

hydrodynamics of Lake Erie (Boegman et al., 2001), and used this model to assess the impacts of 

dreissenids and nutrient loads on the algal biomass in the western basin (Boegman et al., 2008a, 

Boegman et al., 2008b). Zhang et al. (2008) divided the phytoplankton into three algal groups: non-

diatom edible algae, non-diatom inedible algae, and diatoms; they also added in zooplankton 

(cladocerans and copepod) submodels. This model was use to evaluate the dreissenid impacts on 

different algal groups and the phosphorus dynamics (Zhang et al., 2008, Zhang et al., 2011), and to 

assess the importance of weather and sampling intensity on monitoring hypoxia (Conroy et al., 2011).          

 

Structure/forcing functions/state variables/key relationship/conceptual model 

The physical model. EcoLE divided Lake Erie into as many as 65 vertical layers at 1 m intervals and 222 

longitudinal segments from west to east (Figure B5-1).  The depths of segments were assigned relative 

to the Great Lakes Datum (GLD) of 1985.  A unique width was specified for each cell. The model has six 

variables for hydrodynamic simulations: free water surface elevation, pressure, horizontal velocity, 

vertical velocity, constituent concentration, and density. The relations among these variables are 

expressed by six equations: the horizontal momentum equation, the constituent transport equation, the 

free water surface elevation equation, the hydrostatic-pressure equation, the continuity equation, and 

the equation of state (Table B5-1).  

 

The chemical-biological model. This model includes 28 water quality variables, with flexibility to 

including more variables (Figure B5-2): a conservative tracer, suspended solid, coliform, dissolved solids, 

labile dissolved organic matter (DOM), refractory DOM, non-diatom edible algae, non-diatom inedible 

algae, diatoms, labile particulate organic matter (POM), soluble reactive phosphorus (SRP), ammonium, 

nitrate+nitite, dissolved oxygen, sediment, inorganic carbon, alkalinity, pH, carbon dioxide, bicarbonate, 

carbonate, iron, chemical/biological oxygen demand (CBOD), and cladocerans and four copepod 

variables (copepod eggs, nauplii, copepodites and copepods). Two dreissenid mussel processes are 

included in the EcoLE model, i.e., grazing on phytoplankton and excretion of N and P nutrients.  Mussel 

population was forced depth-dependent densities. Table B5-1 includes the equations for state variables 

we are most interested. See CE-QUAL-W2 user manual (Cole and Buchak, 1995) and Zhang’s dissertation 

(Zhang, 2006) for all equations that govern the dynamics of these state variables.   
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Conceptual model. Flow charts (Figures B5-2 and B5-3) summarize the over structure of the EcoLE.  

Specifically, Figure B5-3 (left panel) shows the simulation steps of initialization, hydrodynamic 

sources/sinks, hydrodynamic calculation, temporal balance terms and temperature, constituent 

transport and balance, layer-segment addition and subtraction, and updating variables for next time 

step and output results at the end of simulation. Figure B5-3 (right panel) shows the detail of constituent 

transport and balance terms, including updating kinetics, call subroutines, external sources/sinks, and 

temporal balance. Figure B5-2 shows the connections among chemical and biological state variables, 

which were presented as the subroutines in the EcoLE.      

   

External Forcings .The model is driven by the weather conditions (air temperature, wind, cloud cover, 

precipitation), and tributary input (flow, temperature, constituent loads).    

 

2. Data used for model input and evaluation (calibration, confirmation) 

Model input included meteorological data and tributary inputs.  The meteorological data were retrieved 

from http://rda.ucar.edu/datasets/ds093.1/#!access NCEP Climate Forecast System Reanalysis (CFSR) 

Selected Hourly Time-Series Products. Calculated surface temperature, dew-point temperature, cloud 

cover, wind magnitude and direction for the same locations as meteorological stations previously used 

in the model.  Tributaries considered in this modeling activity include Maumee River, Raisin River, 

Detroit River, Portage River, Sandusky River, Huron River (OH), Black River, Cuyahoga River, Grand River 

(ON), and Cattaraugus River that have annual TP loads greater than 160 MT. Tributary flows and 

constituent loads of TP, SRP, NO2+NO3 were from the EcoFore project database of years 2007 and 2008.  

Model initial data were from the EcoFore project database, including DO, Chla, SRP. Calibration data 

were also from the EcoFore project database of 2008 including water temperature, DO and Chl a. 

Monthly averaged bottom DO from EPA hypoxia monitory program 

(http://www.epa.gov/grtlakes/monitoring/d_o/index.html) were also used to compare model DO 

predictions.        

     

3. Calibration and confirmation approach and results 

Due to the difference in meteorological data sources between 2008 and 1997-1999 (calibration and 

confirmation years), we found that a couple of parameters needed to be adjusted for a good simulation 

on water temperature.  One is a coefficient in the cloud cover function. We increase this value from 

0.0017 to 0.007 for central basin and 0.012 for western basin.  The other one is to increase the mixing 

parameter in the central basin. The model prediction agreed well with the vertical distribution of the 

water temperature in the central basin (Figure B5-4).   

 

Comparisons of chlorophyll a between model simulation and observations showed that model 

predictions agreed very well with observations in segments 31,32,37 and 41, but predicted higher Chl a 

in the segments 14 and 21. We increased the maximum sediment DO demand (SODmax) for a better DO 

simulation in the central basin. We increase the SOD max from 0.27 to 0.84 and decrease the half-

saturation coefficient from 1.4 to 0.9.  The model predictions match well with the vertical DO profile for 

most segments in the central basin (Figure B5-5).  The modeled monthly bottom DO also matched well 

http://rda.ucar.edu/datasets/ds093.1/#!access
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with the EPA monthly bottom DO (Figure B5-6).  This also indicates that the 10 EPA sampling stations 

sufficiently represented spatial distribution of bottom DO conditions in the central basin.         

 

4. Application Results 

Consistent with other model simulation scenarios, we also varied the TP loads as 0, 25, 50, 75, 100 and 

125% of the 2008 TP load, and varied the SRP loads as 0, 25, 50, 75, 100 and 125% of the 2008 SRP load.  

We keep all model parameters and forcings the same, except for TP or SRP loads, and the SODmax 

(Table B5-2, Rucinski et al., 2014) that are varied in different P loading scenarios.        

 

Load-Response curves 

Chlorophyll a. For each load scenario, we output the biomass of non-diatom edible algae (NDEA) and 

diatom in the western basin at noon for each day.  The response curve was between P loads and basin-

wide averaged total biomass of NDEA and diatoms from June 1 to August 31, 2008 (Figures B5-8 and B5-

9). The minimum and maximum of daily western basin-wide Chl a between June 1 and August 31 were 

also reported.     

 

Bottom DO. For each load scenario, we output DO distribution in the central basin at noon for each day. 

We calculated two parameters for the bottom DO response curve, one is average bottom DO between 

August 1 to September 30, 2008 over the segments that corresponding to the 10 EPA monitoring 

stations (Figures B5-10 and B5-11), the other parameter is similar but averaged bottom layers of 1-3 

meters above the sediment (Figure B5-12 and B5-13, hereafter refer to hypolimnetic DO). The minimum 

and maximum of daily bottom DO between August 1 and September 30 were also reported.   

 

Hypoxic area. Using bottom DO values generated above and the relationship developed by Zhou et al. 

(Zhou et al., 2013), we converted the bottom DO into hypoxic area in the central basin for different P 

loading scenarios (Figures B5-14 through B5-17). The minimum and maximum of daily hypoxic area 

between August 1 and September 30 were also reported. 

 

Diagnosis/interpretation 

The Chl a response curve in the western basin showed that Chl a decreased with reduction in TP or SRP 

loads, while a 2-order polynomial relationship fit the best between Chl a and TP loads of SRP scenarios. 

Chl a is very sensitive to the reduction in SRP.   

 

The response curves of bottom DO or hypolimnetic DO were very similar, except that hypolimnetic DO 

values were higher, especially with high P loads.  Bottom DO and hypolimnetic DO were less sensitive to 

reduction in SRP loads than in TP loads.   

 

Hypoxic areas were estimated based on DO values and Zhou et al’s (2013) relationship. Model predicted 

hypoxic areas ranged from 0-6608 km2 for different load scenarios. Depending on the approach to 

estimate DO values, TP loads needed to decrease more than 50% in order to keep the hypoxic area 

under 2000 km2. Reduction in SRP load only cannot reach a goal of hypoxic area < 2000 km2.    
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Uncertainty/sensitivity assessment   

Our simulation showed large range with values in Chl a with high P loads, which indicated high 

uncertainty in predicting algal biomass with increased P loads.  The difference between hypoxic area 

calculated from bottom DO and from hypolimnetic DO indicated that clear definitions of the metrics are 

needed.     

   

5. Conclusions/recommendations 

The model has been used in many studies on Lake Erie water qualities. It catches well the characteristics 

of chemical and biological processes. The model showed good simulations for 2008 data.  The response 

curves showed that reduction in either SRP or TP would be effective to decrease algal biomass in the 

western basin.  However, hypoxia only responded to changes in TP loads.        

 

 

Figure B5-1:  Ecole’s Longitudinal-Vertical Resolution Plane (Longitudinal Cross-Section), Showing Width 
Contours of 20 km Intervals (from Boegman, 1999) 

 



 

B5-32 

 

Figure B5-2.  Model Structure of the Chemical and Biological Components of EcoLE  
(from Zhang et al., 2008, Fig 2.) 
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Figure B5-3.  Flowchart of the Model EcoLE (Left Panel), and Detailed Flowchart of the Constituents (Right 
Panel), Modified from Boegman (1999) 
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Figure B5-4:  Comparison of Water Temperature Between Modeled and Observations.  Black lines are 
observations. Green lines are modeled water temperature that averaged between ± 10 days of the sampling 

dates.  The red circles indicate the minimum water temperature predicted within the 20-day window.  The blue 
stars indicate the maximum water temperature predicted within the 20-day window.  The title numbers indicate 

the model segments. 
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Figure B5-5:  Comparison of DO between modeled and observations.  Black lines are observations. Green lines 
are modeled DO that averaged between ± 10 days of the sampling dates.  The red circles indicate the minimum 
DO predicted within the 20-day window.  The blue stars indicate the maximum DO predicted within the 20-day 

window.  The title numbers indicate the model segments. 
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Figure B5-6.  Comparison of Bottom DO Between EPA Monitoring Data (Blue Line) and the Model Predictions.  
Green line indicates the bottom DO averaged among the 10 EPA sampling stations, while the red line indicates 

the bottom DO averaged over the central basin. 
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Figure B5-7.  Comparisons of Chlorophyll a in The Western Basin Between Model Simulations and Observations.  
Black lines indicate the observation in August. Green lines are modeled Chl a that averaged between ± 10 days 

of the sampling dates.  The red circles indicate the minimum Chl a predicted within the 20-day window.  The 
blue stars indicate the maximum Chl a predicted within the 20-day window.  The title numbers indicate the 

model segments. 
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Figure B5-8.  Changes in Western Basin-Wide Chlorophyll a (Averaged Between June 1 to August 31 in the 
Western Basin) Among Different TP Loading Scenarios.  Blue indicates the minimum daily Chl a, red indicates the 

maximum and green indicates the average over the period. 
 

 

 

Figure B5-9.  Changes in Western Basin-Wide Chlorophyll a (Averaged Between June 1 to August 31 in the 
Western Basin) Among Different SRP Loading Scenarios. Blue indicates the minimum daily Chl a, red indicates 

the maximum and green indicates the average over the period.   
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Figure B5-10.  Changes in Bottom DO (Averaged Between August 1 and September 30 in the Central Basin) 
Among Different TP Loading Scenarios. Blue indicates the minimum daily bottom DO, red indicates the 

maximum and green indicates the average over the period. 

 

 

Figure B5-11.  Changes in Bottom DO (Averaged Between August 1 and September 30 in the Central Basin) 
Among Different SRP Loading Scenarios. Blue indicates the minimum daily bottom DO, red indicates the 

maximum and green indicates the average over the period. 
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Figure B5-12.  Changes in Hypolimnetic DO (Averaged Between August 1 and September 30 and Over Bottom 
Layers of 1-3 m Above Sediment in the Central Basin) Among Different TP Loading Scenarios.  Blue indicates the 
minimum daily hypolimnetic DO, red indicates the maximum and green indicates the average over the period. 

 
 

 

Figure B5-13.  Changes in Hypolimnetic DO (Averaged Between August 1 and September 30 and Over Bottom 
Layers of 1-3 m Above Sediment in the Central Basin) Among Different SRP Loading Scenarios. Blue indicates the 
minimum daily hypolimnetic DO, red indicates the maximum and green indicates the average over the period. 

  

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0 5000 10000 15000

H
yp

o
lim

n
e

ti
c 

D
O

 (
m

g/
L)

Whole lake TP load (MTA)

Load-Response Curve: TP load scenarios

Min

Max

Average

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0 2000 4000 6000 8000 10000 12000 14000

H
yp

o
lim

n
e

ti
c 

D
O

 (
m

g/
L)

Whole lake TP load (MTA)

Load-Response Curve: SRP load scenarios

Min

Max

Average



 

B5-41 

 

Figure B5-14.  Changes in Hypoxic Area in the Central Basin Among Different TP Loading Scenarios.  Hypoxic 
areas were calculated based on the bottom DO values (see Figure B5-10). Blue indicates the minimum daily 

hypoxic area, red indicates the maximum and green indicates the average over the period. 

 

 

Figure B5-15.  Changes in Hypoxic Area in the Central Basin Among Different SRP Loading Scenarios.  Hypoxic 
areas were calculated based on the bottom DO values (see Figure B5-11). Blue indicates the minimum daily 

hypoxic area, red indicates the maximum and green indicates the average over the period. 
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Figure B5-16.  Changes in Hypoxic Area in the Central Basin Among Different TP Loading Scenarios.  Hypoxic 
areas were calculated based on the averaged DO values of bottom 1-3 m water above sediment (see Figure B5-
12). Blue indicates the minimum daily hypoxic area, red indicates the maximum and green indicate the average 

over the period. 
 

 

 

Figure B5-17: Changes in Hypoxic Area in the Central Basin Among Different SRP Loading Scenarios.  Hypoxic 
areas were calculated based on the averaged DO values of bottom 1-3 m water above sediment (see Figure B5-
13). Blue indicates the minimum daily hypoxic area, red indicates the maximum and green indicate the average 

over the period. 
  

  

0

2000

4000

6000

8000

0 5000 10000 15000

H
yp

o
xi

c 
A

re
a 

(k
m

2
)

Whole lake TP load (MTA)

Load-Response Curve: TP load scenarios

Min

Max

Average

0

2000

4000

6000

8000

0 5000 10000 15000

H
yp

o
xi

c 
A

re
a 

(k
m

2
)

Whole lake TP load (MTA)

Load-Response Curve: SRP load scenarios

Min

Max

Average



 

B5-43 

Table B5-1.  A list of Equations Used in the EcoLE Model Developed in this study. a, Equations from Cole and 
Buchak (1995); b, modified from Cole and Buchak (1995); c, modified from Scavia et al. (1988); d, from Fennel 

and Neumann (2003); e, this study; f, from Conroy et al. (2005b). From Zhang’s (2006) Table 2.1. 
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Table B5-1, Continued 
________________________________________________________________________ 

where,  
U :    longitudinal, laterally averaged velocity, m sec-1 

B :    waterbody width, m 
t   :    time, sec 
x  :    longitudinal Cartesian coordinate: x is along the lake centerline at the  

water surface,  positive to the right.  
z   :   vertical Cartesian coordinate: z is positive downward 
W :   vertical, laterally averaged velocity, m sec-1 

  :    density, kg m-3 

P  :    pressure, N m-2 

Ax :    longitudinal momentum dispersion coefficient 

x  :    shear stress per unit mass resulting from the vertical gradient of the horizontal velocity. 

wx  :  surface shear due to wind along the x-axis of the model 

 Az :    the vertical eddy viscosity.  
  :    laterally averaged constituent concentration 

xD  :  longitudinal temperature and constituent dispersion coefficient 

zD  :  vertical temperature and constituent dispersion coefficient 

q  :   lateral inflow or outflow mass flow rate of constituent per unit volume 

S  :   kinetics source/sink term for constituent concentrations 

B  :   time and spatially varying surface width, m 

    :   free water surface location 

 h   :   total depth 
 q   :   lateral boundary inflow or outflow, m3 sec-1 

 g   :   acceleration due to gravity, m sec-2 

),( , ssTDSTf   : density function dependent upon temperature, total dissolved solids or 

salinity, and suspended solids 
Hn :   net rate of heat exchange across the water surface 
Hs :   incident short wave solar radiation 
Ha :   incident long wave radiation 
He :   evaporative heat loss 
Hc :   heat conduction 
Hsr:   reflected short wave radiation 
Har:   reflected long wave radiation 
Hbr:   back radiation from the water surface 
Ts  :  water surface temperature 

     Ta  :  air temperature 
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Table B5-1, Continued 

_______________________________________________________________________ 
Equations of non-living constituentsb 
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Table B5-1, Continued 

______________________________________________________________________ 

Nitrate-Nitrogen ( 3NO ) 
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where, i = concentration of variable i, g m-3  

z model cell thickness,  m 
Pm  = proportional of dead algae contributed to particulate organic matter. 

 iK  = kinetic rates, sec-1 

 i  = temperature rate multipliers 

 i  = stoichiometric coefficients 

 sA = sediment area, m2  

 i = sinking rates, m sec-1 

 V = model cell volume, m3  

 iS = sediment release rates, g m-2 sec-1  

 Cif =impact of crustacean activities on variable i,  g m-3 sec-1 

 mif = impact of mussels activities on variable i,  g m-3 sec-1   

 PNH4 = ammonium preference factor 

 
)20(

max






 T

hDO

DO

odod
O

SS    

 maxodS : maximum sediment oxygen demand at 20°C, g O2 m-2 d-1, 

 Oh   : oxygen concentration half-saturation constant, g O2 m-3. 
 
Equations of phytoplanktonb 

Diatoms ( D ): 

CDmDD
D

DDmDDeDDrDDg
D ff

z
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t







 
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Table B5-1, Continued 

______________________________________________________________________ 

Non-diatom edible algae ( NDEA ): 

CNDEAmNDEANDEA

NDEA

NDEANDEAmNDEANDEAeNDEANDEArNDEANDEAg

NDEA

ff
z

KKKK
t












 

Non-diatom inedible algae ( NDIA ): 

NDIA
NDIA

NDIAmNDIAmNDIANDIAeNDIANDIArNDIANDIAg
NDIA

z
KKKK

t







 
Auxiliary 

functions: 
Growth rates: 

maxmin igiifirig KK    

Dark respiration rates: 

maxiririr KK   

Photorespiration rates:  

max1 ieiifirie KK   

Mortality rates: 

maximifirim KK    

Limiting factor (light): 
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I
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I
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Limiting factor (phosphorus or nitrogen): 

 
jij

j

ij
P 


  

Ammonium preference factor: 
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where    i = diatoms, non-diatom edible algae or non-diatom inedible algae 

       r    =  temperature rate multiplier for rising limb of curve 

 f     = temperature rate multiplier for falling limb of curve 

 min    = multiplier for limiting growth factor (minimum of light, phosphorus and nitrogen) 

       Is = saturating light intensity at maximum photosynthetic rate, W m-2 
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Table B5-1, Continued 

______________________________________________________________________ 

maxgK  = maximum algal growth rate, s-1 

Krmax =maximum dark respiration rate, sec-1  

maxeK = maximum excretion rate constant, sec-1 

Kmmax = maximum mortality rate, sec-1 
 I = available light, W m-2 

j = phosphorus or nitrate+ammonium concentration or silicon, g m-3 

jP  = half-saturation coefficients for phosphorus or nitrate+ammonium, or  

         silicon, g m-3 
KNH4 = ammonia preference half-saturation coefficient, g m-3, 0.01 

 
Equations of Cladoceransc  

 PZsrAg
dt

dZ
 )(  

 where, A is assimilation rate  
  g is ingestion rate 

   
FK

F
gg


 max

  

 
  gmax is the maximal weight-specific ingestion rate. 

K is the half-saturation constant.  
F is the weighted combination of algae and detritus.  

  r is respiration loss, which consists of a basic value and a portion that proportional to 

the food function. i.e. )20(

21 )( 


 T

FK

F
rrr   

  s is the loss of starvation, )1,1min(0

sg

g
ss  , 

  P is the predation loss. Z
ZZ

Z
pP

h

)(0


  

 
Equations of Copepodsd 

Populations: 

eeeenaae
e ZZTZT

dt

dZ
  
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n ZTZlgZT

dt

dZ
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Table B5-1, Continued 

________________________________________________________________________ 

ccaccccnnc
c ZTZlgZT

dt

dZ
 )(   

aaeaaaacca
a ZTZlgZT

dt

dZ
 )(   

 
Auxiliary functions: 
 
Ingestion rate: 

),()1(
)()(

0

22

ii

FIT

i Xmfeeg i
   

 
Reproduction:  

aae gT 3.0)
2

1
(  

Hatching rate: 

))(exp()( 00 TTaTThTen    

Transfer rates to the next stage: 

),(1, iiiii mmfgT   

Food function: 

dtDGF  *2.0*5.0  

Fermi function:  
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20
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1
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yx
y

yxf



  

where, iZ = total biomass of stage i. 

          i  = mortality rate per day 

     li = egestion rates per day, a portion of ingestion,  
     mi = individual weight of stage i 
     Xi = critical individual weight 
   <mi> = molting weight 
 
Activity functions of mussels and crustacean zooplankterse 
Detritus: 

i

copepod

i
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iicladoceran

lpomDNDEA
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Table B5-1, Continued 

________________________________________________________________________ 
Excretion of crustaceans:  

  
copepod

i

icopPcladocerancladPCP rmrmf   


copepod

i

iNcladoceranNCNH rmrZf 4  

Excretion of dreissenid musselsf (ZMP, QMP, MNH4): 

172.1)]([log505.0)(log 1010  zmWZMP  

195.1)]([log297.0)(log 1010  qmWQMP  

021.0)]([log379.0)(log 10410  mWMNH  

ZMPNWf zmzmzmP   

QMPNWf qmqmqmP   

44 MNHNWf mmmNH   

 
Oxygen consumption: 


copepod

i

iomcladoceranomCO rmrZf   

musselmusselOmO NWf   

 
where,  

     i  = stoichiometric equivalent between nutrient and dry weight biomass.  

     O  = oxygen consumption rate of mussels, g g-1s-1 

     Wmussel= individual dry weight of mussels, g. 
     Nmussel= density of mussels, # m-3, areal density divided by depth of the water 
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Table B5-2.  SODmax Values Used in EcoLE for Different Load Scenarios, Which was Scaled Up and Down Using 
Rucinski et al’s (2014) Relationship Between SOD and TP Loads 

 

P scenario Rucinski’s (g/m2/d) EcoLE used (g/m2/d) 

Baseline 0.723 0.84 

TP00 0 0 

TP25 0.405 0.470 

TP50 0.573 0.666 

TP75 0.665 0.773 

TP125 0.763 0.886 

SRP00 0.643 0.747 

SRP25 0.667 0.775 

SRP50 0.689 0.800 

SRP75 0.707 0.821 

SRP125 0.738 0.857 
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1. Model Description  
Overview 
The NWRI 9-box model (Lam et al., 1983, Lam et al., 1987) divides Lake Erie into nine boxes consisting of 

the west, central and eastern basins in the horizontal and three thermal stratification layers in the 

vertical dimension.  For simplicity, it is assumed that the west basin is fully mixed. Figure B6-1 shows a 

schematic of the major physical processes parameterized in the model and Figure B6-2 shows the 

biochemical sub-model. The physical processes (Figure B6-1) used in the model include the hydraulic 

flows, i.e. the Detroit River inflow, the Niagara outflow, the inter-basin transport, vertical entrainment 

processes due to thermal stratification, water level changes, turbulent diffusion and water temperature.  

The variables (Figure B6-2) used in the model are: soluble reactive phosphorus (SRP), organic 

phosphorus (OP), and dissolved oxygen (DO). The total phosphorus (TP) can be calculated as TP = SRP + 

OP, and the particulate phosphorus can be obtained from the empirical formula (Lam et al., 1987). 

During the scenario runs of this study, the model did not produce reasonable results for the -100% TP 

load scenario.  The original model was never tested for such a scenario with such small phosphorous 

concentrations. The cause of the problem was related to the calculation of PP as a function of OP which 

was originally “hard coded” in the model as PP = OP – 0.005 (mg/L). This relationship requires a 

minimum OP of 0.005 mg/L so is not applicable for the small OP concentrations we get during low load 

scenarios. Data was extracted from the Environment Canada StarDatabase and it was found the 

relationship for low OP concentrations can be approximated as PP=0.7 * OP (R2=0.68), which does not 

require a minimum OP concentration. The biological and chemical processes include the uptake and 

respiration of nutrient/planktons, the settling of particulate phosphorus, the aeration of surface waters, 

the anoxic regeneration of phosphorus from sediment, and the physical resuspension of phosphorus 

due to wind-wave actions. The model includes the factors of water temperature, nutrients and light 

attenuation in photosynthesis, but it does not separate the phytoplankton into different subspecies. For 

a detailed discussion of these processes, the reader is referred to Lam et al. (1987). Model inputs and 

outputs are daily and extend from day 1 to 365 for the selected year. 
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Figure B6-1.  Schematic of the Major Physical Processes Parameterized in the NWRI Nine-Box Model of Lake Erie 

(Lam et. al., 1987) 
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Figure B6-2.  Schematic of the NWRI Nine-Box Plankton–Nutrient–Dissolved Oxygen Sub-Model (Lam et. al., 
1987) Showing Processes in a Vertical Water-Sediment Column: Soluble Reactive Phosphorus (SRP), Organic 

Phosphorus (OP), Dissolved Oxygen (DO), Total Phosphorus (TP) and Sediment Oxygen Demand (SOD) 

 

The model has been verified and validated over 16 years of data (1967-82) (Lam et al., 1987).  Possible 

short comings of the model are that most of previous work was for years before zebra mussels which 

could affect processes such as settling, resuspension, and production ratios. Also, the model is based on 

basin averages so it is not possible to analyze differences between near-shore and off-shore. 

 

2. Data – Input and Evaluation 
The sources of input data included the following: 

 Daily OP and SRP external loads: Detroit River used the CAEDYM input file; west, central and 

east basins used Node values. 

 Daily box temperatures, vertical diffusion between layers, thermocline depths were computed 

using the observed temperature profile loggers (Yerubandi) 
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 Daily box light factors were calculated using thermocline depths (see above), average vertical 

extinction and daily solar radiation (Lake Erie met. buoy, Yerubandi) 

 Daily wind speed: met. buoy (Yerubandi) 

 Daily lake average water level: observed monthly average (NOAA) 

 Daily Detroit and Niagara river flow rates:  CAEDYM input files 

 Initial box concentrations (January 1):  

o First run: TP and SRP basin averages from the earliest cruise (Feb. 14, 2008 from EC 

StarDatabase), DO assumed at saturation using water temperatures. 

o The full effects of loading changes could not be seen with a one year simulation since 

the time of residence for Lake Erie is almost 3 years. To better capture the effects of 

loading changes for each loading scenario, the 9-box model was essentially run for three 

years for 2008: the end of first year concentrations were used as the initial 

concentrations for the second year run etc.  It was found that after the third year the 

concentrations initial / final concentrations reach equilibrium. 

 

3. Calibration / Evaluation 
Evaluation data for the base case 2008 included DO, TP, and SRP box averages and maximum/minimum 

(for each layer and basin) computed for each GLENDA and Environment Canada StarDatabase cruise. 

For the Annex4 2008 simulations, the initial thought was to maintain the nine-box model parameter 

coefficients mostly unchanged from previous Lake Erie modeling (Lam et al., 1983, 1987, 2007) including 

the SOD rate for the whole hypolimnion box (0.15 g/m2/d). The only calibration made for this study was 

increasing the bottom layer settling rate from 0.4 to 0.5 m/d to better match the east basin bottom 

layer. This change is in line with recommendations to account for Dreissena (Lam et al., 2007). 

 

4. Application Results 

Load Response Curves 
Load Response curves were developed using the following steps: 

 Adjusting the SRP and TP daily loads for the Detroit River, and W, C, and E basins. The scenarios 

include the base case, +25%, -25%, -50%, -75%, and -100% load. 

 Adjusting SOD. The base case maintains the original SOD of 0.15 g/m2/d. The -100% TP loading 

scenario (zero load) set SOD = 0. g/m2/d. The SOD rates for the other load scenarios were 

adjusted using linear interpolation/extrapolation between the base case (loading 10,750 MTA 

with SOD 0.15 g/m2/d) and the -100% TP loading case (loading of 0 MTA and SOD 0.0 g/m2/d). 

The resulting values are shown in Table B6-1. 

 Extract model results: August average and August-September averages concentrations were 

both extracted for DO for the central basin bottom layer, and for TP and SRP for the west basin, 
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and central and east basin top and bottom layers. Results were copied to an excel spreadsheet 

and response curves were plotted. 

 

The following plots were produced using the 9-box model for the different loading scenarios. The 9-box 

model allows for input loads for SRP and TP, where TP is the sum of OP and SRP, and include loads for 

the Detroit River, and west (W), central (C) and east (E) basins. The base case loadings were determined 

using node values from the Annex 4 CTools files: 

 052913_EcoForeNodes_CY2008_TP_DMD_Final.xlsx 

 052813_EcoForeNodes_CY2008_DRP_DMD_Final.xlsx 

 

The “TP Load Scenarios” include percent changes to SRP and TP. 

The “SRP Load Scenarios” include only percent changes to SRP load, and do not include changes to OP. 

TP load is adjusted to account for the change in SRP. The range of TP load for these scenarios will be 

narrower than the “TP Load Scenarios” since only SRP is changed. 

The scenarios include the base case, +25%, -25%, -50%, -75%, and -100%. 

The 9-box model input coefficients were mostly unchanged from previous work, i.e. Lam et al. 1987, 

including the SOD rate of 0.15 (DO g/m2/d) for the base case. The only calibration modification was to 

change the settling rate for the bottom layer from 0.4 to 0.5 m/d to better simulate bottom layer TP. 

The SOD rates for each load scenario were adjusted using linear interpolation/extrapolation between 

the base case (loading 10,750 MTA with SOD 0.15 g/m2/d) and the -100% TP loading case (loading of 0 

MTA and SOD 0.0 g/m2/d). The resulting values are shown Table B6-1.  

 
Table B6-1.  9-Box Scenario SOD Rates 

TP Scenario SOD (g/m2/d) SRP Only Scenario SOD (g/m2/d) 

TP+25% (increase SRP and OP) 0.188 SRP+25% 0.162 

base case 0.150 base case 0.150 

TP-25% (decrease SRP and OP) 0.113 SRP-25% 0.138 

TP-50% (decrease SRP and OP) 0.075 SRP-50% 0.126 

TP-75% (decrease SRP and OP) 0.038 SRP-75% 0.114 

TP-100% (decrease SRP and OP) 0.0 SRP-100% 0.102 

 

The full effects of loading changes could not be seen with a one year simulation, as expected, since the 

time of residence for Lake Erie is almost 3 years. To better capture the effects of loading changes for 

each loading scenario, the 9-box model was run for 2008 repeatedly until equilibrium was reached: the 

end of first year concentrations were used as the initial concentrations for the second year run, and the 

end of the second run was used as the initial conditions of the third run.  After the second year some 

parameters last day concentrations were still more than 5% different than the previous years, i.e. had 

not reached steady state: typically the DO is steady state as well as P in W basin, but the P was up to 4% 

different in C basin and 8% in E basin and for the -100% load scenario the P in C basin was 16% and E 
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basin was 23% different. The third year run resulted in steady state conditions for all scenarios and used 

for scenario developments.  

The following plots are the 2008 base case showing 9-box simulation, overlapping all 3 year runs, and 

observed values. Note for most plots the 2nd and 3rd year runs (black and red lines, respectively) are 

mostly the same. The observations average, maximum and minimum are included for comparison with 

the first year run (blue lines).Typically the equilibrium TP and SRP are much lower than the first year run, 

in the early months but similar later in the summer and fall. 

 
Figure B6-3.  TP Concentration Time Series 9-Box Model (1st year = blue, 2nd year = black, 3rd year = red) (average 
and max/min range bars, green) for West (left), Central (middle) and East (right) Basins, Top and Bottom Layers 
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Figure B6-4.  SRP Concentration Time Series 9-Box Model (1st year = blue, 2nd year = black, 3rd year = red) 

(average and max/min range bars, green) for West (left), Central (middle) and East (right) Basins, Top and 
Bottom Layers 

 
Figure B6-5.  2008 DO Concentration Time Series 9-Box Model (1st year = blue, 2nd year = black, 3rd year = red) 

(average and max/min range bars, green) for West (left), Central (middle) and East (right) Basins, Top and 
Bottom Layers 

 

The following plots are provided below for each load scenario: 

 Hypoxic area in the central basin 

 Number of days with DO < 2 ppm in the central basin bottom layer 

 DO concentration in the central basin bottom layer 

 TP and SRP concentrations in: 
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o west basin 
o central basin top and bottom layers 
o east basin top and bottom layers 
o Note thermocline layer is not shown as it is typically a thin layer of only a couple meters 

and data is not always available. 
 

 

 

 

Figure B6-6.  Average Hypoxic Area for Central Basin Bottom Layer for SRP (left) and TP (right) Load Scenarios. 
Zhou Formula values calculated using Zhou et al. (2013) method: HypoxicExtent=9.3 exp(-DOave^2/7.09) where 

DOave was taken as the average DO bottom concentration for August-September. 

Figure B6-7.  Number of Hypoxic Days in the Central Basin Hypolimnion for SRP (left) and TP (right) Load 
Scenarios 
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Figure B6-8.   Central Basin Bottom Layer Average DO concentration with Max/Min Range Bars  for SRP (left) 
and TP (right) Load Scenarios (upper: Aug.-Sep. average; lower: Aug. average) 
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Figure B6-9.  West Basin Average TP concentration with Max/Min Range Bars for SRP (left) and TP (right) load 
Scenarios (upper: Aug.-Sep. average; lower: Aug. average) 
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Figure B6-10.   Central Basin Top Layer Average TP concentration With Max/Min Range Bars for SRP (left) and TP 
(right) Load Scenarios (upper: Aug.-Sep. average; lower: Aug. average) 
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Figure B6-11.   Central Basin Bottom Layer Average TP Concentration With Max/Min Range Bars for SRP (left) 
and TP (right) Load Scenarios (upper: Aug.-Sep. average; lower: Aug. average) 
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Figure B6-12.  East Basin Top Layer Average TP Concentration With Max/Min Range Bars for SRP (left) and TP 
(right) Load Scenarios (upper: Aug.-Sep. average; lower: Aug. average) 
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Figure B6-13.  East Basin Bottom Layer Average TP Concentration With Max/Min Range Bars for SRP (left) and TP 
(right) Load Scenarios (upper: Aug.-Sep. average; lower: Aug. average) 
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Figure B6-14.  West Basin Average SRP Concentration With Max/Min Range Bars for SRP (left) and TP (right) 
Load Scenarios (upper: Aug.-Sep. average; lower: Aug. average) 
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Figure B6-15.  Central Basin Top Layer Average SRP Concentration With Max/Min Range Bars for SRP (left) and 
TP (right) Load Scenarios (upper: Aug.-Sep. average; lower: Aug. average) 
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Figure B6-16.  Central Basin Bottom Layer Average SRP Concentration With Max/Min Range Bars For SRP (left) 
and TP (right) Load Scenarios (upper: Aug.-Sep. average; lower: Aug. average) 
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Figure B6-17.  East Basin Top Layer Average SRP Concentration With Max/Min Range Bars for SRP (left) and TP 
(right) Load Scenarios (upper: Aug.-Sep. average; lower: Aug. average) 
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Sensitivity 
Model sensitivity has been addressed previously, for other years, in Lam et al. (2007). The same 

sensitivity cases were run for 2008 and yielded similar results. The following plots show the sensitivity of 

simulated DO, TP and SRP, to nine different model inputs, for the west basin (Figure B6-19) central basin 

bottom layer (Figure B6-20), and east basin top layer (Figure B6-21). The normalized gradient average 

deviation is taken over the whole year for the 2008 base case and shows the average percent difference  

for runs with +20% and -20% of the input parameters. DO is most sensitive to water temperature in the 

top layer and vertical diffusion in the bottom layer. In the west basin, TP and SRP are both sensitive to 

loading. TP is also sensitive to settling rate and wind speed (re-suspension) in all basins. SRP is also 

sensitive to the uptake rate in all basins. 

Figure B6-18.  East Basin Bottom Layer Average SRP Concentration With Max/Min Range Bars for SRP (left) and 
TP (right) Load Scenarios (upper: Aug.-Sep. average; lower: Aug. average) 
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Figure B6-19.  West Basin Top Layer Normalized Gradients (Average Deviation) Sensitivity for DO, TP and SRP 
With Inputs +/- 20% 

 
 

 

Figure B6-20. Central Basin Bottom Layer Normalized Gradients (Average Deviation) Sensitivity for DO, TP and 
SRP with Inputs +/- 20% 
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Figure B6-21.  East Basin Top Layer Normalized Gradients (Average Deviation) Sensitivity for DO, TP and SRP 
with Inputs +/- 20% 

 

Time series of each parameter and hypothetical concentrations when adjusting more sensitive 

parameters +20% and – 20% are shown in Figure B6-22 to Figure B6-24. The results are similar to 

previous sensitivity results (Lam et al., 2007). Figure B6-22 shows that increasing vertical diffusion would 

increase the end of summer low DO in the central basin bottom layer. Figure B6-23 shows generally TP 

will increase over the whole year with lower settling rates and increase with higher settling rates. Figure 

B6-24 shows that SRP increases with lower uptake and increases with higher uptake and the magnitude 

of these differences is more noticeable during the winter months. 

 

 

Figure B6-22.  DO Time Series Concentrations (Base Run Black Line, Vertical Diffusion +20% (Blue Line) and -20% 
(Red Line)) for East, Central and West Basins, Top and Bottom Layers 
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Figure B6-23.  TP Time Series Concentrations (Base Run Black Line, Settling +20% (Blue Line) and -20% (Red Line)) 
for East, Central and West Basins, Top and Bottom Layers 

 

 
Figure B6-24.  SRP Time Series Concentrations (Base Run Black Line, Uptake +20% (Blue Line) and -20% (Red 

Line)) for East, Central and West Basins, Top and Bottom Layers 

 
During the scenario runs of this study, the model did not produce reasonable results for the -100% TP 

load scenario.  The original model was never tested for such a scenario with such small phosphorous 

concentrations. The cause of the problem was related to the calculation of PP as a function of OP which 

was originally “hard coded” in the model as PP = OP – 0.005 (mg/L). This relationship requires a 

minimum OP of 0.005 mg/L so is not applicable for the small OP concentrations we get during low load 

scenarios. Data was extracted from the Environment Canada StarDatabase and it was found the 

relationship for low OP concentrations can be approximated as PP=0.7 * OP (R2=0.68), which does not 

require a minimum OP concentration. 
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APPENDIX B-7: Western Lake Erie Ecosystem Model 

(WLEEM) 
Joseph V. DePinto, Edward Verhamme, Derek Schlea, and Todd Redder, LimnoTech, Ann Arbor, MI 

1. Model Description 

Overview and Conceptual Model 
The Western Lake Erie Ecosystem Model (WLEEM) has been developed as a 3D fine-scale, process-

based, linked hydrodynamic-sediment transport-advanced eutrophication model to provide a 

quantitative relationship between loadings of water, sediments, and nutrients to the Western Basin of 

Lake Erie from all sources and its response in terms of turbidity/sedimentation and total and functional 

group phytoplankton biomass.  It was developed over the last four years by LimnoTech (funding: USACE-

Buffalo District and NSF) specifically to address the types of questions posed by this project. WLEEM is a 

time-dependent, 3-D model that computes temporal and spatial profiles of water, sediment, nutrients, 

and plankton and benthos dynamics as a function of loadings from all major and minor watersheds, the 

Detroit River, and hydro- meteorological forcing functions. The model consists of two linked public 

domain models, Environmental Fluid Dynamics Code (EFDC) (TetraTech, 2007) and a modified version of 

RCA (HydroQual, 2004). LimnoTech has also coupled EFDC with a wind-wave model (SWAN) (Delft 

University of Technology, 2006) to facilitate simulation of wind-driven sediment resuspension as a 

source of internal sediment and P loading in the western basin. The LimnoTech-customized RCA includes 

the capability to model up to five phytoplankton functional groups; the effects of Dreissenids on 

nutrient cycling, particle fate and transport, algal production, and water clarity; and a benthic algal 

functional group based on the Auer GL Cladophora Model (GLCM) (Auer et al., 2010; Bierman et al., 

2005; DePinto et al., 2009; LimnoTech, 2010; LimnoTech, 2013). This improved RCA framework is called 

the Advanced Aquatic Ecosystem Model (A2EM). 

 

WLEEM operates on a daily time scale and can produce time series outputs and spatial distributions of 

either total chlorophyll and/or cyanobacteria biomass as a function of loading. Therefore, it can produce 

load-response plots for several potential endpoints of interest in the Western Basin. It will also produce 

mass balances for the Western Basin for any one of its ~30 states variables; therefore, it can compute 

the daily loading of Western Basin nutrients and oxygen-demanding materials to the Central Basin as a 

function of loads to the Western Basin. This will provide valuable information on how load reductions to 

the Western Basin will impact hypoxia development in the Central Basin. 

 

Figure B7-1 is a presentation of the model domain and the surface model grid superimposed on the 

Western Basin model bathymetry.  The model domain is bounded by a line connecting Pointe Peele with 

Marblehead.  
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Figure B7-1.  Depiction of WLEEM Inputs and Outputs Superimposed on the Model Grid and Bathymetry 

 
The WLEEM utilizes the following model components: 

 Simulating Waves Nearshore (SWAN) for the wind-wave sub-model; 

 Environmental Fluid Dynamics Code (EFDC) for the hydrodynamic sub-model; 

 Sandia National Laboratory (SNL) algorithms for the sediment transport sub-model; and 

 Advanced Aquatic Ecosystem Model (A2EM). 
 
Figure B7-2 illustrates how the wind/wave model, hydrodynamic model, sediment transport, and water 
quality model all interact together. 
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Figure B7-2.  Illustration of Linkage and Data Flow Between Model Components of WLEEM 
 

WLEEM was initially calibrated to 2005 data and recalibrated/corroborated by application to the 2008 

and 2011-2013 field data, with an emphasis on cyanobacteria biomass data from Bridgeman at the 

University of Toledo. 

 

Model Structure 
EFDC is a state-of-the-art finite difference model that can be used to simulate hydrodynamic and 

sediment transport behavior in one, two, or three dimensions in riverine, lacustrine, and estuarine 

environments (TetraTech 2007a, 2007b). EFDC was developed by John Hamrick at the Virginia Institute 

of Marine Science in the 1980s and 1990s, and the model is currently maintained under support from 

the United States Environmental Protection Agency (EPA). The model has been applied to hundreds of 

water bodies, including Chesapeake Bay and the Housatonic River. Recently, LimnoTech has successfully 

applied EFDC to a number of sites in the Great Lakes, including Saginaw Bay, Saginaw River, and the 

Tittabawassee River. The EFDC model is both public domain and open source, meaning that the model 

can be used free of charge, and the original source code can be modified to tailor the model to the 

specific needs of a particular application. As a result, EFDC provides a powerful and highly flexible 

framework for simulating hydrodynamic behavior and sediment transport dynamics for the WLEB. 

The SWAN model is a numerical wave model for predicting wave conditions in coastal areas, lakes, and 

estuaries based on site-specific wind, depth, friction, and water velocity conditions (Young, 1999; Booij 

et al., 1999). The SWAN model is based on the wave action balance equation and is capable of 

simulating various wave propagation (movement) processes, as well as wave generation processes (e.g., 

by wind) and dissipation processes, such as dissipation by bottom friction. SWAN provides the flexibility 



 

B7-4 

to simulate either steady-state or dynamic wave conditions.  As part of the model development effort 

on this project, the SWAN model was linked to the EFDC hydrodynamic and sediment transport sub-

models. The SWAN-EFDC linkage involved two steps:  1) water level/depth and current velocity results 

generated by the hydrodynamic sub-model were processed and input as forcing functions to the SWAN 

wind-wave simulations; and 2) SWAN results for wave characteristics (e.g., height, frequency) were fed 

as input forcing functions to the EFDC sediment transport sub-model to inform calculations of bottom 

shear stress. 

 

The Sediment Transport Model (SEDTRAN) is a modified version of the original code developed and 

maintained by Sandia National Laboratory (James et al., 2005; Thanh et al., 2008). This version of the 

model incorporates a custom sediment transport sub-model based on the SEDZLJ model algorithms 

developed by Craig Jones and Wilbert Lick at the University of California – Santa Barbara (Jones and Lick, 

2001). The SNL/SEDZLJ models are typically used along with site-specific data obtained using SedFlume, 

a custom-designed flume device that can be used to measure erosion rates and sediment properties for 

an intact sediment core. The integration of the SNL code into LimnoTech’s in-house version of the Row-

Column AESOP (RCA) model code and associated testing work was accomplished previously under a 

separate LimnoTech modeling project (LimnoTech, 2010). 

 

SEDTRAN Model Configuration. The SNL-SEDTRAN sediment transport sub-model can be used to 

simulate sediment transport in one, two, or three dimensions. It provides a flexible set of options for 

simulating erosion, deposition, and bed armoring and handling for cohesive and non-cohesive sediment 

types (James et al., 2005; Thanh et al., 2008). Multiple cohesive and non-cohesive sediment size classes 

may be represented in a single model simulation. This section provides a summary of the transport 

processes, selection of sediment particle size classes, and bottom shear stress calculations for the 

WLEEM sediment transport model. 

The transport processes represented in SEDTRAN for cohesive and non-cohesive sediments are 

illustrated in Figure 3 and include the following: 

 

The transport processes represented in SEDTRAN for cohesive and non-cohesive sediments are 
illustrated in Figure B7-3 and include the following: 

 Loading of sediments from upstream and watershed sources; 

 Horizontal transport between adjacent model cells (based on velocity and flow magnitude and 
direction predicted by the hydrodynamic sub-model); 

 Settling and deposition to the sediment bed from the water column; 

 Erosion and resuspension of sediments from the bed to the water column; 

 Transport of non-cohesive sediments as bedload or suspended load based on applied bottom 
shear stress and particle characteristics; 

 Representation of the sediment bed as discrete layers (to permit tracking of changes in particle 
size distribution by depth); and 

 Armoring of the sediment bed in nearshore areas and areas of hard substrate, including the use 
of an “active layer.” 
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Figure B7-3.  Sediment Transport Processes Included in SEDTRAN 
 

The A2EM is a state-of-the-science aquatic ecosystem simulation model.  The model framework was 

customized by LimnoTech from a publicly available version of the RCA model developed and 

documented by HydroQual, Inc. (HydroQual, 2004). The RCA model framework developed by HydroQual 

is capable of simulating water quality dynamics on a fine-scale, multi-dimensional computational grid 

based on linkage to an external hydrodynamic model application. The basic RCA framework includes a 

suite of state variables to represent carbon, nitrogen, phosphorus, oxygen, and phytoplankton 

dynamics.  The framework includes a coupled sediment diagenesis sub-model that simulates the cycling 

of detrital material and nutrients in the surface sediments and subsequent impacts on near-bed 

sediment oxygen demand and release of dissolved nutrients, including dissolved inorganic phosphorus. 

The LimnoTech enhancements to this model include a custom linkage from the hydrodynamic model 

(EFDC) and the sediment transport model (SEDTRAN).  This allows output from one model to be included 

as inputs to the next model in the simulation chain.  LimnoTech has also added the capability to 

dynamically simulate zooplankton, benthic algae, dreissenid mussels, and further process refinement of 

inorganic and organic particulate phosphorus.  A conceptualization of the phosphorus cycling included in 

A2EM is depicted in Figure 4. 

 

The linked modeling framework comprised of EFDC, SWAN, SEDTRAN, and A2EM, collectively referred to 

as the WLEEM, provides a powerful and flexible tool for evaluating hydrodynamic, wind-wave, sediment 

transport, and nutrient and phytoplankton processes at a variety of temporal and spatial scales.   
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Figure B7-4.  Phosphorus cycling included in WLEEM 

 

2. Model Input and Evaluation Data 
Model Input Data 
EFDC Boundary Conditions. Model boundary conditions provide a basis, or starting point, for calculations 
internal to the model. Four types of hydrodynamic forcings were applied as boundary conditions to the 
hydrodynamic model, including:  

 A water level boundary condition in Lake Erie; 

 Inflow boundary conditions for the Maumee River, the Detroit River, and other minor tributaries 
including flow rate and water temperature; 

 Atmospheric forcings (e.g., wind and air temperature); and 

 A water level boundary was applied at the interface of the central and western basins of Lake 
Erie.  Data from NOAA station number 9063079 (Marblehead, Ohio) was used to describe hourly 
variations in water level at this location. This “boundary forcing” controls the depth of water and 
circulation patterns in the WLEB and also influences the strength of flow reversals in the lower 
Maumee River as changes in water levels drive the seiche activity experienced in the drowned 
river mouth and dredged channel of Toledo Harbor.  

 
Tributary inflows to the system were represented in the model using available data (Section 3.3.2). Flow 

gauging datasets available from the United States Geological Survey (USGS) were used to develop daily 

flow time series for each tributary. In many cases, the USGS gauge dataset did not represent the entire 

drainage area of a given tributary; therefore, drainage area ratios were used to scale the daily measured 

flow time series to represent the entire watershed.   
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The model utilizes a spatially variable “wind forcing” that is consistent with the established whole lake 

model.  Wind forcings were extracted from the Great Lakes Observing System (GLOS) point query 

website (GLOS 2013).  This website allows a user to extract model inputs or model outputs at a specified 

location from the NOAA supported Great Lakes Coastal Forecasting System (GLCFS).  Wind time series 

were extracted for 10 locations within the WLEEB model domain.  A Thiessen polygon analysis was then 

performed on the model grid and the wind forcing locations so that each grid cell in the WLEEB model 

grid was attributed with weighting factors for the nearest of these 10 wind forcings.  Additional 

information on the wind forcings and the GLCFS model can be found at the NOAA’s website (NOAA 

2013b). 

 

SEDTRAN Boundary Conditions. Sediment transport boundary conditions describe the quantity and 

particle size distribution of suspended sediments entering the model domain from various sources. This 

section describes the sediment boundary conditions developed for the Maumee River and other 

tributary sources and point sources to Maumee Bay/WLEB that are represented in the WLEEM model. 

An extensive suspended solids dataset is available for the Maumee River at Waterville, Ohio, based on 

long-term research conducted by Heidelberg University’s National Center for Water Quality Research 

(NCWQR). 

 

Several other tributary inflows are represented in the WLEEM model in addition to the Maumee River, 

including the Detroit River, Swan Creek, Ottawa River, River Raisin, Huron River, Stony Creek, and 

Portage River/Cedar River.  In addition, inflows are represented for the Toledo Bay View Wastewater 

Treatment Plant (WWTP) and Maumee River direct drainage contributions between Waterville, Ohio, 

and the mouth (see Table B7-1).  Suspended sediment boundary conditions were developed for each of 

these flow sources. The boundary condition for the Detroit River was set at a constant value of 10 

milligrams per liter (mg/L) based on a review of available data for this Great Lakes connecting channel. 

The Bay View WWTP was also assigned a constant concentration of 10 mg/L based on available data 

from the plant’s discharge monitoring reports (DMRs). 

 

Table B7-1. Suspended Sediment Boundary Conditions for Maumee Bay/WLEB Flow Sources 

Flow Source Description Flow-Based Regressiona 

Detroit River CTSS = 10 

Swan Creek CTSS = 0.085*Q + 30.52 

Ottawa River CTSS = 0.13*Q + 24.81 

River Raisin CTSS = 0.0415*Q + 10.60 

Portage River + Cedar River CTSS = 0.0406*Q + 20.42 

Toledo Bay View WWTP CTSS = 10 

Note: 
a.CTSS are in units of milligrams per liter and Q are in units of cubic feet per second. 
 
Key: 
CTSS  = Suspended solids concentrations 
Q = flows 
WWTP = wastewater treatment plant 
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Sufficient suspended sediment data were also available to develop a tributary-specific relationship 

between sediment concentration and flow rate for Swan Creek, Ottawa River, River Raisin, and Portage 

River. These regressions were applied to estimate suspended solids concentrations for the entire 

duration of model simulations. 

 

The open boundary condition at the interface between the WLEB and the central Lake Erie basin is 

characterized with a constant concentration of 10 mg/L based on available monitoring data from the 

International Field Year in Lake Erie (IFYLE) datasets (Hawley et al., 2006). 

 

A2EM Boundary Conditions. The A2EM model uses the same boundary locations as the hydrodynamic 

model, which includes the open boundary with the central basin of Lake Erie and tributary inflows from 

the Detroit, Maumee, and other minor tributaries.  Daily estimated concentrations of nutrients, 

dissolved oxygen, and phytoplankton, are applied at every boundary location.  The boundary conditions 

are described in more detail below. 

 

Maumee River.  Nutrient concentrations for the Maumee River were derived from 

measurements made by Heidelberg University at their monitoring station located in Waterville, 

Ohio.  This station is approximately 20 miles upstream of the mouth of the Maumee River.  

Concentrations at this station are assumed to be representative of what enters Lake Erie on a 

daily basis. The frequency of sediment and nutrient sampling at this station is one or more 

samples per day.  As a result, monitoring data was used directly to drive the model. 

 

Detroit River.  A regular monitoring program does exist for the lower Detroit River; however 

data from the Michigan Department of Environmental Quality have a five-year lag until they are 

released.  The latest published report of observations released in February 2013 summarizes 

monitoring data through 2008 (MDEQ 2013).  These observations were used to parameterize 

the concentrations of TP, TSS, and DRP that enter Lake Erie.  

 

Lake Erie.  Monitoring data from EPA- GLNPO’s open-lake limnology program were utilized to 

set the open boundary concentration of nutrients.  Monitoring data were downloaded from the 

Great Lakes Environmental Database (GLENDA; USEPA, 2013).  

 

Other Tributaries.  Concentrations of nutrients in other minor tributaries were based on of a 

limited review of existing data and engineering judgment based on of the nature of the 

watershed land uses.   

 

A plot of the annual distribution of TP load between the major external tributary sources is 

shown in Figure B7-5 for 2008, 2011, 2012, and 2013.  For comparison purposes the average 

annual flow rate and flow weighted mean TP concentration is shown in Figure B7-6.  The TP load 

from the Detroit River is fairly constant, while the load from the Maumee River varies 

considerably from year to year.  Although the Detroit and Maumee account for the majority of 

TP delivered to the Western Basin, the average flow from the Detroit River is significantly larger 
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than that of the Maumee.  This large flow imbalance highlights why the flow-weighted mean 

concentration of the Maumee River is over 400 μg-P/L.   

 

 

 

 

Figure B7-5.  Annual Average External TP Load (Metric Tons) to the Western Basin from 2008, 2011, 2012, and 
2013. 
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Figure B7-6.  Average Flow (Left) and Flow Weighted Mean TP Concentration (right) to the Western Basin from 
2008, 2011, 2012, and 2013 

 

Model Calibration/Confirmation Data 
The primary dataset used for model calibration was from the University of Toledo.  A brief description of 

that dataset is described below 

 

University of Toledo. Data was collected by the University of Toledo from 2008, and 2011 to 2013 from 
Tom Bridgeman (Bridgeman 2014).  Depth integrated samples were collected at the WLEB locations 
shown in Figure B7-7. The samples were analyzed for TSS, VSS, NH3, chloride, sulfate, NO2, NO3, SiO2, TP, 
SRP, total DP, fluoride, blue-green algal biovolume, and photosynthetic active radiation (PAR).  Profile 
data using a water quality sonde were also collected, including temperature, dissolved oxygen, specific 
conductivity, pH, turbidity, and chlorophyll profiles.  Biovolume was converted to biomass using the 
methods found in Bridgeman (2013). 
 

3. Calibration/Confirmation  

Approach 
Calibration and confirmation of the model progressed from investigating model-data comparisons of 
physical parameters, to chemical parameters, and finally biological parameters.  The physical model-
data comparisons included surface water temperature model predictions to measured surface water 
temperatures.  Chemical model-data comparisons were investigated for total phosphorus and soluble 
reactive phosphorus. Biological parameters that were calibrated include total chlorophyll a and 
cyanobacteria biomass. 
 
Physical parameters. Water temperature calibration was achieved by ensuring that input atmospheric 
conditions were reasonable and accurate.  Given the large surface area of the western basin, 
atmospheric conditions (air temperature and solar radiation) are two key model input time series that 
directly affect the simulated water temperature.  Careful attention was made to extract appropriate 
time series forcings for these inputs from existing NOAA-GLERL interpolated data. Measurements of 
water temperature from the University of Toledo monitoring program were used to compare with the 
model for calibration and confirmation. 
 
Chemical/Nutrient Parameters. Total phosphorus calibration focused heavily on ensuring appropriate 
time series concentrations were developed for tributaries with a low number of observations.  These 
included the Detroit, Raisin, and Ottawa rivers.  Western Lake Erie has a relatively low retention time (30 
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to 60 days), especially during high flow events and tributary boundary conditions highly influence the 
concentration of nutrients within the model domain.  Additional attention was paid to understanding 
how particulate phosphorus settles within Western Lake Erie and how resuspension can increase TP 
concentrations in the water column.  One additional point of calibration was ensuring sediment TP 
concentrations were set appropriately so that the relative contributions of resuspended sediments and 
pore water diffusive flux from the sediments on water column TP concentrations were reasonable.    
Grab samples of total phosphorus obtained from various sources were used as the basis for calibrating 
the model.    
 
Soluble reactive phosphorus (SRP) calibration also focused on ensuring tributary concentrations were 
set appropriately for under-monitored tributaries and that sediment P concentrations are consistent 
with available observations.   Additionally, SRP calibration was conducted coincident with phytoplankton 
calibration as the uptake of SRP by phytoplankton is the primary loss mechanism for SRP within the 
model domain.   
 
Biological Parameters. Calibration of chlorophyll a and phytoplankton biomass focused on ensuring that 
each major algal group (blue-greens, diatoms, and greens) produced the appropriate measured biomass 
during its optimal time of the year. The chlorophyll a measurement provided a bulk estimate of the total 
algal biomass regardless of algal class in the water column, while blue-green biomass observations were 
specifically used to ensure that the model was capturing the size and magnitude of the harmful algal 
bloom (HAB).   A table of the calibration values for each key model coefficient is presented below for 
each algal group.  Calibration focused on altering the first four constants related to shaping the optimal 
temperature curve as well as the phosphorus half constant that governs nutrient limited growth.  In 
addition, the base algal settling rate was adjusted to reflect current scientific understanding of the 
buoyancy of blue-green algae.   
  

Table B7-2.  Key Phytoplankton Functional Group Calibration Coefficients Used for WLEEM Application 

 

The state variables mentioned above were compared with Western Basin observations using the same 

model coefficients for four different years (2008, 2011-13) that represent a wide range of hydrological, 

phosphorus loading, and other environmental forcing functions.  The extent to which the model output 

is able to compare favorably with observations in the Western Basin for these state variables over time 

and space is viewed as a calibration/confirmation (sometimes referred to as “corroboration”) of 

WLEEM.  Presented below are the results of that corroboration process. 

Constant ID Coefficient Description Units Blue-greens Diatoms Greens

TOPT* Optimal growth temperature deg C 25 15 22

K*C Saturated phytoplankton growth rate at TOPT* /day 2.2 1.6 1.8

K*BETA1 Temperature correction effect on growth rate below TOPT* (deg C)-2 0.005 0.005 0.008

K*BETA2 Temperature correction effect on growth rate above TOPT* (deg C)-2 0.002 0.008 0.012

IS* Saturating algal light intensity ly/day 300 150 150

KMN* Half saturation constant for nitrogen mg-N/L 0.010 0.020 0.020

KMP* Half saturation constant for phosphorus mg-P/L 0.002 0.001 0.001

KMS* Half saturation constant for silica mg-Si/L 0.002 0.002 0.002

CCHL* Carbon to chlorophyll ratio mg-C/mg-Chla 33 50 33

CRBP*1 Carbon to phosphorus ratio (Non P-limited) mg-C/mg-P 40 40 40

CRBP*2 Carbon to phosphorus ratio ( P-limited) mg-C/mg-P 90 90 90

VSBAS* Base algal settling rate m/day -0.5 0.25 0.1
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Results 
Calibration Period (2011-2013). Calibration comparisons for the model focused on comparisons of model 

prediction and monitoring data collected in 2011-2013 at the University of Toledo’s stations MB18, 8M, 

and GR1 (Figure B7-7) for water temperature, TP, SRP, total chlorophyll a, and blue green algae biomass.  

These three station comparisons are focused on here because they represent a distance gradient from 

the mouth of the Maumee River.  Figures 8 through 11 provide model-to-data comparisons of time 

series for the key state variables at each of these stations.  

 

 

Figure B7-7.  University of Toledo and Other Program Monitoring Stations in the Western Lake Erie Basin 
 

Figure B7-8 shows that the model (solid blue line shown with a label of “RCA (Baseline)”) reproduces 

measured water temperature (points) very closely. Maximum water temperatures in 2011, 2012, and 

2013 reach ~27°C, with the summer of 2013 being slightly cooler than the other two years.  The model 

accurately captures decreases in water temperature in the late summer and early fall.  In 2013, 

continuous water temperature data available from NOAA-GLERL station (RA-2) near GR1 show how the 

model captures the observed decline in temperature in mid-August. 
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Figure B7-8.  Water Temperature (°C) Model-Data Comparison at University of Toledo Stations MB18 (top), 8M 
(Middle), and GR1 (Bottom) for 2011 to 2013 (Mar.-Oct.). 

 
The water quality state variables evaluation focused on comparing model predictions and monitoring 

data for TP, SRP, and chlorophyll-a.  Time series plots from 2011, 2012, and 2013 for these parameters 

are shown below for stations MB18, 8M, and GR1 (see Figures B7-9 through B7-11).  Figure B7-9 shows 

the TP response to high flow spring loading events, with the response being attenuated (diluted) with 

distance from the Maumee River mouth. Note that 2013 experienced higher than usual July and August 

loading, which had as shown below an impact on the magnitude and duration of the Microcystis bloom.  

In Figure B7-10, it is evident that the SRP concentration behaves as expected, with high load driven 

spring concentrations followed by low summer concentrations as a result of biological uptake at that 

time.  This behavior is also captured well by the model.  Finally, Figure B7-11 shows the pattern of total 

chlorophyll a concentration for the system.  There seems to be a small spring peak that the model 

indicates as diatom-dominated; but that occurs before sampling has begun.  The higher late summer – 

fall chlorophyll a levels are dominated by cyanobacteria, which is simulated by the model and measured 

in the data. 
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Figure B7-9.  Total Phosphorus (mg/L) Model-Data Comparison at University of Toledo Stations MB18 (Top), 8M 
(Middle), and GR1 (Bottom) for 2011 to 2013 (Mar.-Oct.). 
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Figure B7-10.  Soluble Reactive Phosphorus (mg/L) Model-Data Comparison at University of Toledo Stations 
MB18 (Top), 8M (Middle), and GR1 (Bottom) for 2011 to 2013 (Mar.-Oct.). 
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Figure B7-11.  Chlorophyll (ug/L) Model-Data Comparison at University of Toledo Stations MB18 (Top), 8M 
(Middle), and GR1 (Bottom) for 2011 to 2013 (Mar.-Oct.) 

 

 



 

B7-17 

 

Figure B7-12.  Cyanobacteria Biomass (mg/m2) Model-Data Comparison at University of Toledo Stations MB18 
(Top), 8M (Middle), and GR1 (Bottom) for 2011 to 2013 (Mar.-Oct.). 

 

Finally, comparisons of model predicted HAB depth-averaged mass density at the same stations are 

shown in Figure B7-12.  These comparisons show that WLEEM does a good job of capturing the relative 

differences in profiles among years; however, it over-predicts peak densities during the low spring load 

year (2012).  This seems to occur because in that year our model underestimates the deposition of 

particulate phosphorus in the Maumee River between Waterville and the river mouth (a distance of 

about 20 miles), thus computing a spring particulate phosphorus load to Maumee Bay that is too large. 

 

Confirmation Period (2008) 

After calibration of the WLEEM was completed for the 2011-2013 time period, model confirmation was 

performed by executing the WLEEM for a separate time period without changing input coefficients and 

parameters. The model confirmation was completed using 2008 hydrologic conditions and 

environmental forcing functions. Monitoring data collected in 2008 at the same University of Toledo 

stations for water temperature, TP, SRP, total chlorophyll a, and blue-green algae biomass were used to 

evaluate model performance during this confirmation period. Figures B7-13 through B7-17 were used to 

compare WLEEM output and observed data. 
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Figure B7-13.  Water Temperature (°C) Model-Data Comparison at University of Toledo Stations MB18 (Top), 8M 
(Middle), and GR1 (Bottom) for 2008 (Mar.-Oct.) 
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Figure B7-14.  Total Phosphorus (mg/L) Model-Data Comparison at University of Toledo Stations MB18 (Top), 
8M (Middle), and GR1 (Bottom) for 2008 (Mar.-Oct.). 
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Figure B7-15.  Soluble Reactive Phosphorus (mg/L) Model-Data Comparison at University of Toledo Stations 
MB18 (Top), 8M (Middle), and GR1 (Bottom) for 2008 (Mar.-Oct.) 
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Figure B7-16.  Total Chlorophyll a (μg/L) Model-Data Comparison at University of Toledo Stations MB18 (Top), 
8M (Middle), and GR1 (Bottom) for 2008 (Mar.-Oct.) 
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Figure B7-17.  Cyanobacteria Biomass (mg/m2) Model-Data Comparison at University of Toledo Stations MB18 
(Top), 8M (Middle), and GR1 (Bottom) for 2008 (Mar.-Oct.) 

 

The WLEEM comparison to 2008 data confirms that the model can simulate the key metrics of concern 

for a wide range of Western Basin forcing functions without adjusting any of its model coefficients.  The 

2008 comparison also shows that perhaps the change in particulate phosphorus load between 

Waterville and the mouth of the river is underestimated. 

 

Annual Microcystis Biovolume. As an additional model confirmation test, an annual Microcystis 

biovolume was computed from WLEEM output to compare against estimates generated from University 

of Toledo monitoring data. The method used to estimate the annual biovolume followed the approach 

described in Bridgeman et al. (2013), which entailed calculating the area beneath the daily time series 

plots for a given station using the trapezoidal rule. The result of those computations were then averaged 

among the University of Toledo’s 4P, 7M, 8M, and GR1 stations (Figure B7-7) to get the final annual 

estimate of HAB size. Figure B7-18 shows the 5-day rolling average Microcystis biovolume computed 

from WLEEM output compared with the bloom size time series data provided by Bridgeman. Bridgeman 

used this approach to produce a bar graph of measured bloom size for all years from 2002 -2013.  Figure 

B7-19 compares the annual Microcystis biovolume computed by WLEEM against estimates computed 
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from data provided by Bridgeman. Comparisons were not available for 2009 and 2010, as the WLEEM 

has not been simulated for those periods. 

 

These model-data comparisons corroborate the model’s ability to capture inter-annual variability of 

HABs biomass across a wide range of conditions.  This overall model skill assessment provides 

confidence in using the model to develop the desired load – response curves for the Western Basin of 

Lake Erie. 

 

 

Figure B7-18.  Average Microcystis biovolume (mL/m2) Model-Data Comparison at University of Toledo Stations 
(4P, 7M, 8M, GR1) for 2008 – 2013 
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Figure B7-19.  Average Annual Microcystis biovolume (mL/m2/yr) Model-Data Comparison at University of 
Toledo Stations (4P, 7M, 8M, GR1) for 2008 – 2013 

 

Statistical Evaluation and Uncertainty Analysis 
A statistical evaluation of the model-data comparisons were developed for the purpose of: 1) 

quantifying the capability of the model to reproduce water quality and algal observations, and 2) 

providing the basis for evaluating the uncertainty of load-response curves developed based on model 

simulation results.  

 

Although water quality models have been commonly applied in practice and presented in the literature, 

the WLEEM is unique in that it attempts to simulate both nutrients and algal functional groups within a 

very large coastal system. Although formal calibration targets have not been defined for the WLEEM, a 

useful point of reference is the calibration targets documented by Donigian et al. (2000, 2002) based on 

the application of the Hydrologic Simulation Program – FORTRAN (a watershed and riverine model). The 

general water quality targets defined by Donigian et al. are summarized in Table B7-3, with acceptable 

ranges of “percent difference” corresponding to categories of “Very Good”, “Good”, and “Fair”. A 

comparison of the ranges in this table suggests that model accuracy is expected to be less for water 

quality (e.g., nutrient) parameters relative to physical parameters (e.g., water temperature). Although 

not indicated in Table B7-3, it follows that a model’s capability to accurately reproduce chlorophyll a 

concentrations and Microcystis biomass will be less than it is for water quality/nutrient concentrations.  
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Table B7-3.   General Water Quality Calibration Targets or Tolerances (Donigian 2000, 2002) 

Parameter 
% Difference Between Simulated and Recorded Values 

Very Good Good Fair 

Water Temperature < 7 8 - 12 13 - 18 

Water Quality / Nutrients < 15 15 - 25 25 - 35 

CAVEATS: Relevant to monthly and annual values; storm peaks may differ more; Quality and detail of 

input and calibration data; Purpose of model application; Availability of alternative assessment 

procedures; Resource availability (i.e. time, money, personnel). 

 

The development and calculation of representative metric(s) to support the evaluation of model-

simulated water temperature, nutrients, and biological parameters is challenging for a fine-scale model 

like WLEEM being applied to a large aquatic ecosystem. The specification of a calibration metric is 

especially difficult for applications of models such as the WLEEM to large water bodies where 

monitoring data are only sporadically available at a limited number of locations. For example, even a 

small misrepresentation of the wind magnitude or direction in the WLEEM could affect the trajectory of 

the Maumee River plume and make a significant difference in the chlorophyll a concentration and/or 

Microcystis biomass being simulated at a particular location in the Western Basin on a given day. 

Monitoring data collected by the University of Toledo represent relatively infrequent snapshots of 

concentrations and Microcystis biovolume/biomass at single points in space, and therefore cannot be 

expected to capture all of the complex spatial and temporal variability within the Western Basin. 

Likewise, the hydrodynamic, sediment and nutrient transport, and algal processes represented in the 

model are only a simplification of reality, and it is not possible for the model to reproduce water quality 

conditions precisely at a given location at a specific time.  Therefore, realistically both data 

representativeness and model insufficiencies (e.g., in terms of representing system processes) limit the 

capability of a model to reproduce observed concentrations and biovolume/biomass. 

 

In recognition of the challenges described above, a unique metric was developed to quantify the 

WLEEM’s performance in terms of reproducing available monitoring data. The metric established for 

represents the “median of the absolute station-specific average percent difference” for an individual 

water quality or biological state variable (referred to as the “median annual percent difference” below 

for brevity). All University of Toledo monitoring stations were included in the calculation of the metric. 

The steps outlined below were followed to compute the metric for water temperature, TP, SRP, and 

chlorophyll a concentration: 

 

1. The relative percent difference (RPD) was calculated for each station for each day when 

sampling occurred at that station:  

[RPD] = [(Xmodel,i – Xdata,i) / (½*(Xmodel,i + Xdata,i))]    (1) 

 where Xdata,i is the observed value and Xmodel,i is the simulated value on day i. 
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2. The average of the daily RPD values was calculated for each station (MB20, MB18, 4P, 7M, 8M, 

and GR1) for each calendar year (i.e., 2008, 2011-13), and the absolute value was taken. 

3. The median of the station-specific values calculated via step #2 was taken for each calendar year 

to serve as the final metric. 

 

An alternative approach was used to develop a metric to quantify the WLEEM’s performance in terms of 
predicting blue-green (Microcystis) biomass. This approach was based on the annual Microcystis 
biovolume estimated by Bridgeman and simulated by WLEEM, as shown in Figure B7-19. The steps 
followed in calculating this metric are as follows: 

1. The annual average “observed” Microcystis biovolume (mL/m2/yr) was calculated across the 
University of Toledo’s 4P, 7M, 8M, and GR1 monitoring stations consistent with the approach 
followed by Bridgeman. 

2. A comparable estimate of the “simulated” Microcystis biovolume (mL/m2/yr) was estimated 
from daily WLEEM results for blue-green algae biomass. 

3. The absolute values of the relative percent differences of the annual biovolume estimates were 
tabulated for each year. 

 
A summary of model performance based on the metrics described above is provided in Figure B7- 20 
and Table B7-4. The following observations can be made based on these results: 

 In general, the model closely reproduces water temperature. When evaluated against the 
targets suggested by Donigian et al. (2000, 2002), the model rates as “very good” to “good” for 
each year.  

 For TP, the “median annual percent difference” ranges from 9% to 31%, with a median value of 
20% for the four years represented. Evaluating these results against the TP targets in Table 3 
suggests that the model performance for TP is “Good” to “Fair”. 

 For SRP, the “median annual percent difference” ranges from 6% to 57%, with a median value of 
26% for the four years represented. Evaluating these results against the SRP targets in Table 3 
suggests that the model performance for SRP is generally “Fair” to “Good”. 

 For chlorophyll a concentration and blue-green (Microcystis) algae biovolume, “median annual 
percent difference” results generally fall within the range of 20-44%. As noted above, specific 
benchmarks for chlorophyll a and Microcystis biovolume/biomass have not been identified at 
this time. However, generally comparing these results to the water quality / nutrient metrics 
and taking into account the additional challenges and environmental variability involved with 
biological parameters suggests that the model performs satisfactorily for most years. 

 The one exception to the above evaluation is blue-green algae biovolume in year 2012. As 
discussed above in the calibration discussion and shown in Figure B7-18, the model currently 
overpredicts blue-green during this year. It should be noted again that 2012 was a year with 
exceptionally low flow and TP and SRP loadings during the spring months. Given these 
conditions it is possible that the TP and SRP loads for 2012 are currently overstated, as there is 
limited information to estimate phosphorus deposition, uptake, and retention that would occur 
between the Waterville monitoring location (~20 miles upstream) and the mouth of the 
Maumee River. 
 

The outcome of the statistical evaluation described above suggests that the overall performance of the 

model is acceptable with respect to simulation of water temperature, TP, SRP, chlorophyll a, and 

Microcystis biomass. Furthermore, the “median annual percent difference” results provided in Figure 
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B7-20 and Table B7-4 can be used as an indicator of model uncertainty with respect to simulating these 

water quality and biological variables for the load-response curves.  

 

 

Figure B7-20.  “Median Annual Percent Difference” Metric Results by Year and Variable Across all University of 
Toledo Monitoring Stations 

 
Table B7-4. “Median Annual Percent Difference” Metric Results by Year and Variable Across all University of 

Toledo Monitoring Stations 

Year Temperature TP SRP CHL 
BG 

Algae 

2008 8% 16% 16% 37% 34% 

2011 5% 9% 57% 35% 14% 

2012 10% 24% 36% 29% 88% 

2013 6% 31% 6% 22% 44% 

Median of 
Annual Results 

7% 20% 26% 32% 39% 

 

 

4. Model Application 

Load-Response Curves 
Process Description. Following completion of the calibration and confirmation efforts, the WLEEM was 
used to evaluate the response of several endpoints as a function of phosphorus loading to the WLEB. 
The process to develop the load-response curves presented in this section involved executing multiple 
simulations where the only difference from the baseline simulation was a scaling of the daily external 
phosphorus loads (by adjusting source concentration, but not flow) relative to a given baseline scenario. 
All other model input parameters, forcing functions (hydrology, temperature, wind, solar radiation, etc.), 
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and external loads (sediment, nitrogen, etc.) were exactly the same as the baseline simulation. Four 
baseline simulations were considered to introduce variability in environmental conditions and forcing 
functions; the 2008, 2011, 2012, and 2013 seasons which were used for the model calibration and 
evaluation process presented above. The independent variable on the load-response curves were 
presented as either the annual total phosphorus load to the WLEB from all sources for the conventional 
response indicators (TP, SRP, and total chlorophyll a; or both total annual load and the Spring (March-
July and April-July) total phosphorus load from the Maumee River tributary only for the cyanobacteria 
response indicators. In summary, the following dependent variables (metrics) were evaluated for the 
entire WLEB as either a volume-weighted average concentration or total mass: 
 

 July-September average TP concentration (mg/L)  

 July-September average SRP concentration (mg/L)  

 July-September average chlorophyll concentration (ug/L)  

 July-September average cyanobacteria biomass (metric tons) 

 Maximum 30-day rolling average cyanobacteria biomass (metric tons) 
 

Results and Interpretation. Figures B7-21 and B7-22 examine the response of TP and SRP concentrations 
in the WLEB to a range of TP loading scenarios and environmental conditions. Annual TP loads were 
decreased by 50% and 75% for all tributaries to WLEB relative to the baseline for 2011, 2012, and 2013. 
The 2008 simulations also included reductions of 25% and 100%, and an increase of 25%. For both TP 
and SRP there is a strong linear relationship between the annual TP load to the WLEB and the July-
September volume-weighted average concentrations. Varying hydrology for these four years can 
significantly affect the loading, but other environmental factors such as wind-driven circulation and 
temperature do not seem to cause great deviation from the linear relationships shown in these plots. 
 

The results shown in Figure B7-21 suggest that an annual Western Basin TP load of 2500 metric tonnes 

would be required to achieve a July – September Western Basin concentration of 15 µg/L, the 1978 

Annex 3 target TP concentration for the Western Basin. It should also be noted that the y-intercepts of 

the curves for both TP and SRP concentrations under the 100% TP load reduction scenario simulated for 

2008 are greater than zero because flux of phosphorus from bed sediments by diffusion and 

resuspension contributes to the water column phosphorus concentrations. 
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Figure B7-21.  TP Concentration Response Under Various Annual WLEB TP Loading (from all external sources) 
Scenarios and Varying Annual Environmental Conditions. Symbols for the baseline scenario for each year are 

larger and bolded. 

 

 

Figure B7-22.  SRP Concentration Response Under Various Annual WLEB TP Loading (from all external sources) 
Scenarios and Varying Annual Environmental Conditions. Symbols for the baseline scenario for each year are 

larger and bolded. 
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Figures B7-23 through B7-25 examine the response of total chlorophyll a concentrations and 

cyanobacteria biomass (July – September average basinwide biomass and peak 30-day average 

basinwide biomass) in the WLEB to the same annual WLEB TP loading scenarios. The responses are non-

linear for both total chlorophyll a and cyanobacteria biomass, with chlorophyll a demonstrating a 

Michaelis-Menten inverse hyperbolic saturation response as typically observed for a chlorophyll a vs. 

phosphorus growth relationship.  However, the cyanobacteria biomass plots are more exponential; 

suggesting that a larger response to a given TP load reduction is seen at higher baseline loads than at 

lower baseline loads.  Again, this is expected since cyanobacteria have a higher available phosphorus 

concentration requirement for bloom formation than other phytoplankton groups.   

All three of these relationships show more deviation from the regression line for a given set of 

environmental conditions than observed for the TP and SRP concentration curves. The scatter 

demonstrates both a greater uncertainty in predicting chlorophyll concentrations and cyanobacteria 

biomass, and a larger influence of variability in other forcing functions, such as water temperature, 

currents, and timing of nutrient loads, on biological growth from year-to-year. 

 

 

 

Figure B7-23.  July – September Average Total Chlorophyll a Concentration Response to a Range of Annual WLEB 
TP Loading (from all external sources) Scenarios and Varying Annual Environmental Conditions. Symbols for the 

baseline scenario for each year are larger and bolded. 
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Figure B7-24.  July – September average Cyanobacteria Biomass Response to a Range of Annual WLEB TP 
Loading (from all external sources) Scenarios and Varying Annual Environmental Conditions. Symbols for the 

baseline scenario for each year are larger and bolded. 
 

 

Figure B7-25.  Peak 30-Day Average Cyanobacteria Biomass Response to a Range of Annual WLEB TP Loading 
(from all External Sources) Scenarios and Varying Annual Environmental Conditions. Symbols for the baseline 

scenario for each year are larger and bolded. 
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Also, the Stumpf and Obenour empirical models are based on spring Maumee River loads. In order to 

compare better with this approach, we can plot the above cyanobacteria load-response curves using a 

comparable x-axis.  Figures B7-26 and B7-27 examine the response of July-September average and peak 

30-day average cyanobacteria basinwide biomass (metric tonnes) to spring-early summer (April-July) 

Maumee River TP loads, using the same annual WLEB load change scenarios as above. Compared to the 

previous cyanobacteria biomass response plots (Figures B7-24 and B7-25), there is a much stronger 

correlation between these independent and dependent variables. These relationships suggest annual 

variability in other forcing functions and non-spring phosphorus loads may not have as great an 

influence on cyanobacteria growth when only the spring Maumee River TP loads are used as the 

independent variable. Based on these results it would seem that the late summer cyanobacteria blooms 

are driven by April-July loads, which leads to a suggestion that the load-response relationships in Figures 

B7-26 and B7-27 should be used to derive a desired loading target for control of cyanobacteria blooms. 

 

 

 

Figure B7-26.  July – September Average Cyanobacteria Biomass Response to a Range of Spring (April-July) 
Maumee River TP Loads and Varying Annual Environmental Conditions. Symbols for the baseline scenario for 

each year are larger and bolded. 
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Figure B7-27.  Peak 30-day average Cyanobacteria Biomass Response to a Range of Spring (April-July) Maumee 
River TP Loads and Varying Annual Environmental Conditions. Symbols for the baseline scenario for each year 

are larger and bolded. 
 
 
 

An additional suite of simulations was conducted to examine the response of cyanobacteria biomass in 

the WLEB to scenarios where only Maumee River TP loads were reduced or increased. This load-

response relationship has been used because, as discussed below, cyanobacteria blooms are very 

sensitive to Maumee River load and not as sensitive to the Detroit River load.  Similar to the all 

tributaries scenarios, Maumee River TP loads were decreased by 50% and 75% relative to the baseline 

for 2011-2013, and the  2008 simulations included reductions of 25%, 50%, 75%, and 100%, and an 

increase of 25%. The results of these simulations are shown in Figures B7-28 and B7-29. 
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Figure B7-28.  July – September Average Cyanobacteria Biomass Response to Adjustment of Only Annual 

Maumee River TP Load But Plotted Against Only Spring (April-July) Maumee River TP Loads and Varying Annual 
Environmental Conditions. Symbols for the baseline scenario for each year are larger and bolded. 

 

Figure B7-29.  Peak 30-day Average Cyanobacteria Biomass Response to Adjustment of Only Annual Maumee 
River TP Load but Plotted Against Only Spring (April-July) Maumee River TP Loads and Varying Annual 
Environmental Conditions. Symbols for the baseline scenario for each year are larger and bolded. 
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The importance of the Maumee River spring load versus other external loads to the WLEB is 

demonstrated by the similarity of Figures B7-28 and B7-29 (where only the annual Maumee River TP 

load was adjusted) with Figures B7-26 and B7-27 (where annual TP loads of all sources were adjusted). 

Although our modeling suggests that the April-July loads are most important in driving the late summer 

HABs, in order to better compare the WLEEM load-response relationships with the Stumpf and Obenour 

empirical models, we produce plots using the March – July load (Figures B7-30 and B7-31).  These plots 

demonstrate that the high March, 2008 load moves the 2008 scenario loads to the right without 

significantly increasing the modeled biomass.  Nevertheless, we suggest using the Figure B7-31 load-

response curve to compare with the empirical models for determining a March-July load to achieve a 

given biomass threshold. 

 

 

Figure B7-30.  July – September Average Cyanobacteria Biomass Response to Adjustment of Only Annual 
Maumee River TP Load but Plotted against Only Spring (March-July) Maumee River TP Loads and Varying Annual 

Environmental Conditions. Symbols for the baseline scenario for each year are larger and bolded. 
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Figure B7-31.  Peak 30-day Average Cyanobacteria Biomass Response to Adjustment of Only Annual Maumee 
River TP Load but Plotted against Only Spring (March-July) Maumee River TP Loads and Varying Annual 

Environmental Conditions. Symbols for the baseline scenario for each year are larger and bolded. 

Load and Forcing Function Diagnostics 
Load Source Analysis 
The WLEEM was used to further investigate the response of the TP, SRP, total chlorophyll a, and 

cyanobacteria endpoints to scenarios with reductions and increases in key load sources.  This is because 

Annex 4 calls for the investigation of the importance of load reduction in SRP as well as TP and in specific 

tributaries versus all.  2008 was selected as the single baseline year from which to create these load 

diagnostic scenarios. In addition to the changes in TP loads from all tributaries and the Maumee River, 

which were also included in the analyses presented in the previous section, the Detroit River TP loads 

and the Maumee River SRP loads were independently reduced by 25%, 50%, 75%, and 100%, and 

increased by 25% under these load source diagnostic simulations. 

 

Figures B7-32 through B7-34 examine the response of TP, SRP, and total chlorophyll a concentrations to 

the various phosphorus loading scenarios. In all plots, the Maumee River SRP load reduction curve does 

not show much variation from the all tributaries TP load reduction curve, and the range of its effect on 

the WLEB Annual TP loads on the x-axis is limited. This demonstrates how the Maumee River SRP load is 

a relatively small fraction of the overall WLEB TP load and has a small effect on the summer average 

concentration of these state variables in the WLEB as a whole. For each of the three metrics examined in 

Figures B7-32 through B7-34, the Detroit River TP load reduction scenario results in a greater reduction 

and the Maumee River TP load reduction scenario results in a lesser reduction in the dependent variable 

for a given WLEB annual TP load. 
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The WLEEM response to the different source load reductions can be explained by the nature of the 

different sources. The 2008 Detroit River flow volume delivered to the WLEB was approximately 25 

times higher than the flow volume from the Maumee River, yet the TP load delivered by the Maumee 

River was greater than that of the Detroit River. As shown in Figure B7-6, this means average TP 

concentrations in the Maumee River were more than an order of magnitude higher than those of the 

Detroit River. Because the magnitude of the Detroit River flow was relatively so much higher, when its 

TP load was fractionally reduced during these simulations, it impacted TP and SRP concentrations in the 

WLEB more than a similar Maumee River TP load reduction scenario. Less phosphorus in the WLEB for a 

given load reduction then resulted in less total phytoplankton growth overall in the WLEB and lower 

total chlorophyll a concentrations under the Detroit River load reduction scenarios. This suggests that if 

the ultimate objective is to decrease July-September TP, SRP, or total chlorophyll a concentrations in the 

WLEB, then actions should be prioritized to reduce TP load from the Detroit River. 

 

 

 

 

Figure B7-32.  July – September Average TP Concentration Response to Alterations Different Phosphorus Load 
Sources Under 2008 Environmental Conditions 
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Figure B7-33.  July – September Average SRP Concentration Response to Alterations of Different Phosphorus 
Load Sources Under 2008 Environmental Conditions 

 

 

Figure B7-34.  July – September Average Total Chlorophyll a Concentration Response to Alterations of Different 
Phosphorus Load Sources Under 2008 Annual Environmental Conditions 
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Figures B7-35 and B7-36 examine the response of July-September average and peak 30-day average 

cyanobacteria biomass to the various phosphorus loading scenarios. Reductions in the Maumee River TP 

and SRP loads resulted in a steeper declines in WLEB cyanobacteria biomass relative to reductions in the 

other phosphorus load sources. Because the Maumee River delivers phosphorus at average 

concentrations more than ten times higher than those in the Detroit River, the WLEEM predicts the 

greatest cyanobacteria growth in areas of the WLEB under the influence of the Maumee River’s flow and 

phosphorus load, including Maumee Bay and nearshore areas extending to the Catawba Island 

peninsula. The higher phosphorus concentrations give cyanobacteria a slight advantage over diatoms 

and greens, which have lower phosphorus half saturation constants as parameterized in the WLEEM. In 

addition to having higher phosphorus concentrations, these areas influenced by the Maumee River 

plume are also slightly warmer, shallower, and well-mixed, facilitating cyanobacteria growth throughout 

the water column. Therefore, while reducing the Detroit River TP load resulted in a lower WLEB average 

TP concentration (Figure B7-32), reducing the Maumee River TP load resulted in a greater cyanobacteria 

biomass reduction. Also, reducing the Maumee River SRP load resulted in an even steeper drop in 

cyanobacteria biomass as annual WLEB TP decreased (Figures B7-35 and B7-36); however, even with 

100% removal of the Maumee River SRP load, levels of cyanobacteria biomass may remain at 

unacceptable levels. 

 

 

Figure B7-35.  July – September Average Cyanobacteria Biomass Response to Alterations of Different 
Phosphorus Load Sources Under 2008 Annual Environmental Conditions 
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Figure B7-36.  Peak 30-Day Average Cyanobacteria Biomass Response to Alterations of Different Phosphorus 
Load Sources Under 2008 Annual Environmental Conditions 

 

Climate Change Analysis 
An investigation of the cyanobacteria biomass response to a two degree Celsius rise in ambient 

temperature was conducted using the WLEEM to demonstrate the effects of potential climate change.  

Figure B7-37 shows the cyanobacteria biomass result of this climate change simulation at the University 

of Toledo’s 8M station. Production of cyanobacteria increased substantially relative to the baseline 

simulation with the two degree Celsius temperature rise, especially in the late June through early August 

period. 

 

Figure B7-37.  Cyanobacteria Biomass Sensitivity to a Two Degree Celsius Increase in Ambient Temperature at 
the University of Toledo’s 8M Station for 2008 (Mar.-Oct.) 
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Sensitivity Analysis 
Figure B7-38 below shows the change in model predicted biomass that would occur if the shape of the 

temperature limiting growth curve for blue-greens was shifted towards a lower growth rate at 

temperatures in the 22°C to 24°C range.  This is the temperature range that dominates the system in 

July.  This indicates that cyanobacteria can be very sensitive to changes in the parameterization of these 

constants, because there is a significant effect on temperature-limited growth rate. 

 

 

 

Figure B7-38.  Sensitivity of Predicted Cyanobacteria Depth-Averaged Biomass to Changes in Temperature Curve 
 

 

A similar analysis was conducted to show the sensitivity of the model parameterization of the 

phosphorus half saturation constant that governs the nutrient limited growth rate for blue-greens.  As 

shown in Figure B7-39, small changes in this value can affect the model predicted biomass, this time 

through an effect on nutrient-limited growth rate.    

 

 

 

Figure B7-39.  Sensitivity of Predicted Cyanobacteria Depth-Averaged Biomass to Changes in Phosphorus Half-
Saturation Constant Growth Coefficient 

 

Kbeta =  0.05

Kbeta = 1

Half Sat = 2 ug/L

Half Sat = 4 ug/L
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5. Conclusions and Recommendations 

The WLEEM has provided confident load – response relationships to be developed for TP, SRP, total 

chlorophyll a, and cyanobacteria biomass in the Western Basin.  The model accuracy is sufficient to 

support load management decisions for these response indicators. With respect to the cyanobacteria 

response metrics, using the load- response curves in Figures B7-26 and B7-27, a 50% reduction in either 

the July – September or the peak 30-day cyanobacteria biomass from the 2008 baseline values (3043 for 

the July – September biomass and 6206 for the peak 30-day biomass) will require a 50% reduction in the 

2008 April –July TP load from the Maumee River. 

 

But the process-based formulation of WLEEM allows a quantitative understanding of the various factors 

governing the load-response relationships. It demonstrates the relative importance of the Detroit River 

TP load for TP, SRP, and total chlorophyll a in the WLEB.  However, it illustrates the overwhelming 

importance of the Maumee River TP load for control of HABs. It also demonstrates that elimination of 

only the SRP load from the Maumee River alone is insufficient to reduce cyanobacteria biomass to half 

its 2008 baseline value.  The model also points out the sensitivity of cyanobacteria biomass to 

temperature and bioavailable phosphorus conditions in the Western Basin. 

 

Finally, it is recommended that the load – response curves in Figures B7-26 and B7-27 for cyanobacteria 

biomass be used to establish a target spring Maumee River TP load reduction to achieve an established 

biomass target in the Western Basin. Reductions to other Western Basin tributary sources, including the 

Detroit River will not contribute greatly to the HABs control, but the Detroit River TP load is very 

important to the achievement of TP, SRP, and total chlorophyll a targets in the Western Basin and in 

Lake Erie as a whole. 
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APPENDIX B-8: ELCOM-CAEDYM Model 
Serghei Bocaniov (bocaniov@umich.edu),  Graham Sustainability Institute, University of Michigan 
Luis Leon and Ram Yerubandi,  S&T/WHERD/Integrated Modelling, Environment Canada. 
 
 
 
 
 

1. Model Description 

Overview 

ELCOM-CAEDYM is a coupled hydrodynamic and bio-geochemical model that consists of two models: a 

three-dimensional hydrodynamic model - the Estuary and Lake Computer Model (ELCOM; Hodges et al., 

2000), and a bio-geochemical model - the Computational Aquatic Ecosystem Dynamics Model (CAEDYM; 

Hipsey and Hamilton, 2008).  

 

The ELCOM is used for predicting the velocity, transport, mixing, temperature and salinity distribution in 

lakes and estuaries subjected to external environmental forcing such as tides, inflows and outflows, wind 

stress, surface heating or cooling. The three-dimensional hydrodynamic transport and mixing is simulated 

through solving the Navier-Stokes equations and scalar transport equations. Through coupling with 

CAEDYM, ELCOM can be used to simulate three-dimensional transport and interactions between physical, 

chemical and biological processes. 

 

The CAEDYM can be used to simulate inorganic particles, dissolved oxygen, organic and inorganic 

nutrients (e.g. nitrogen, phosphorus, silica) and their fractions, phytoplankton, macroalgae and 

macrophytes, zooplankton, fish, mussels and clams, bacteria, metals (Al, Fe, Mn, etc.). 

 

Structure/forcing functions/state variables/key relationship 

Documentation and description of model equations, variables, forcing functions and parameter values 

were described in several publications:  

 

• Description and application of ELCOM model (e.g. Hodges et al., 2000)  

• ELCOM User guide (Hodges and Dallimore, 2014) 

• ELCOM Science manual (Hodges and Dallimore, 2011) 

• CAEDYM User guide (Hipsey et al., 2014) 

• CAEDYM Science manual (Hipsey, 2014) additional CAEDYM equations (Leon et al., 2011; 

Bocaniov et al., 2014a) 

 

Although CAEDYM model has 112 state variables in total, usually there is a minimum configuration of 

twelve state variable that are required for a simple water quality simulation (DO, PAR, EXTC, POP, PON, 

DOP, DON, POC, DOC, PO4, NH4 and NO3; see Table B8-1) though other of the remaining one hundred 

variables maybe be enabled. For example, these variables can include TP, TN, TKN, PIP, PIN, DIC, SS, Chl-

a, SiO2, pH, BOD, COD, etc; see Table B8-1. 

Some of the material in this section (Appendix B-8) is being developed for publication and is not 

intended for distribution beyond the immediate objectives of the Annex 4 Workgroup at this time. 
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Table B8-1.  List of State Variables for a Simple Water Quality Simulation 

Variables for a minimum configuration:  Variables that can be enabled (100 variables in 
total):  

Variable Description  Variable Description  

DO Dissolved oxygen TP Total phosphorous 

PAR Photosynthetically active radiation TN Total nitrogen 

EXTC Extinction coefficient  TKN Total Kjeldahl nitrogen 

POP Particulate organic phosphorous  PIP Particulate inorganic phosphorous 

PON Particulate organic nitrogen  PIN Particulate inorganic nitrogen 

DOP Dissolved organic phosphorous DIC Dissolved inorganic carbon 

DON Dissolved organic nitrogen SS Suspended solids 

POC Particulate organic carbon Chl-a Chlorophyll-a 

DOC Dissolved organic carbon SiO2 Silica 

PO4 Filterable reactive phosphorous pH pH 

NH4 Ammonium BOD Biochemical oxygen demand 

NO3 Nitrate COD Chemical oxygen demand 

 

The current ELCOM-CAEDYM setup for Lake Erie has been used in several recent publications (Leon et al., 

2011; Bocaniov et al., 2014a; Liu et al., 2014). The model setup includes eleven major tributaries to Lake 

Erie (Detroit, Raisin, Maumee, Sandusky, Vermilion, Rocky, Cuyahoga, Grand [Ohio], Cattaraugus, Buffalo 

and Grand [Ontario] Rivers) and one outflow, the Niagara River. The computational grid in the model 

setup used a uniform horizontal grid of 2 km × 2 km and a non-uniformly spaced vertical grid with 45 

layers of variable thickness. These vertical layers ranged from 0.5 m at the lake surface and near the 

bottom of the central basin to 5 m for the deepest layer in the east basin. To address the spatial variability 

of meteorological conditions across the lake, the computational domain was divided into six different 

domains: one for each of the west and east basins and four domains for the central basin. The model was 

run for 191 days from April 21 to October 28, 2008.  

 

2. Data used for model input and evaluation (calibration, validation) 

Data used for model input 

Lake bathymetric data were obtained from the NOAA website (Schwab and Sellers, 1996). The data for 

the initial in-lake conditions were based on the observed data collected by the U.S. E.P.A. during the spring 

survey cruise in April 2008. Data for the inflows and outflow came from the variable datasets that include 

the STORET (U.S. E.P.A.) database, the U.S. Geological Survey (USGS) data, NOAA (Great Lakes Research 

Laboratory) database; Heidelberg College Water Quality Laboratory data; Water Survey of Canada 

(Environment Canada) database, and Grand River Conservation Authorities (GRCA) data. The nutrient 

loads to Lake Erie were calculated based on the loads from eleven major tributaries from April 21 to 

October 28 with TP and SRP loads scaled to match exact loads calculated by Dolan and Chapra (2012; e.g. 

EcoForeNodes for 2008 from Annex4 CTools). Atmospheric loads of phosphorus were not taken into 

account. Meteorological data were obtained from Environment Canada (National Water Research 

Institute - NWRI) and NOAA National Data Buoy Center. 
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Data used for model evaluation 

Model calibration for 2002 was performed on several datasets such as the University of Waterloo dataset 

(mainly for the east basin), U.S. E.P.A. Lake Erie Trophic Status project (Matisoff and Ciborowski, 2005), 

Environment Canada “Star Database”, and the U.S. E.P.A. spring and summer survey cruises. 

 

Model validation for 2008 was performed on the following datasets: the U.S. E.P.A. spring and summer 

survey cruises, Environment Canada “Star Database” and the University of Waterloo (Waterloo, Ontario, 

Canada) dataset for 2008. The latter includes data from three weekly cruises on Lake Erie (one lake-wide 

and two [central] basin-wide cruises) in mid/late summer of 2008, and high frequency measurements of 

water temperature and dissolved oxygen from the moored data loggers at several sites in the east basin 

(e.g. see Liu et al., 2014).  

 

3. Calibration and confirmation approach and results  

Model calibration 

The Lake Erie ELCD model was calibrated with 2002 data (Leon et al., 2011; Bocaniov et al., 2014a). The 

model was calibrated by varying the model parameters within the range of published values for Lake Erie 

to provide the reasonable/acceptable predictions of the seasonal succession of five major phytoplankton 

groups in each of the basins as well as the temporal and spatial dynamics of water temperature, dissolved 

oxygen, total phytoplankton biomass, nutrients (nitrogen, phosphorous and silica) and their major 

fractions, suspended solids, light attenuation coefficient. The calibration results have already been 

presented in several publications (e.g. Leon et al., 2011; Bocaniov et al., 2014a) and this report includes 

some of the results presented in those publications. For example, the comparison of the observed and 

simulated epilimnetic concentrations of Chl-a, TP, Total Dissolved Phosphorus (TDP), Soluble Reactive 

Phosphorus (SRP), Soluble Reactive Silica (SRSi) and light attenuation coefficient (Kd) for station 938 in the 

east basin is presented in Figure B8-1, while Figures B8-2 and B8-3 show the lake wide horizontal 

distribution of simulated Chl-a and TP together with field observations. 
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Figure B8-1.  Calibration Results for 2002 (Leon et al., 2011): Time Series Output of Predicted Concentrations of 

Chl-a, TP, TDP, SRP, SRSi and Kd for the Top 5 m of the Surface Mixed Layer  Together with Observations for 
Station 938 (East Basin) in 2002 
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Figure B8-2.  Calibration Results for 2002 (Leon et al., 2011): Lake Wide Horizontal Distribution of Predicted 

Epilimnetic Chlorophyll-a Concentrations (mg m-3) with Observed Values for Aug 5–8, 2002 

 
Figure B8-3.  Calibration Results for 2002 (Leon et al., 2011): Lake Wide Horizontal Distribution of Predicted 

Epilimnetic TP Concentrations (Expressed here as mg m-3) with Observed Values for August 5–8, 2002. 
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Model validation 

The Lake Erie ELCD model with the same set of parameters as in 2002 was ran and validated for other 

years: 2004/2005 (Oveisy et al., 2014), 2005 (Leon et al., 2013) and 2008 (Liu et al., 2014). While Oveisy 

et al. (2014) showed the ability of ELCD model to predict ice cover, general pattern of lake wide circulation, 

water temperatures, phytoplankton biomass and nutrients (TP),  Leon and others (2013) presented the 

ability of ELCOM model to predict water temperatures in Lake Erie in 2005, while a more recent study (Liu 

et al., 2014) aimed at the validation of ELCOM predictions for 2008 for water temperatures at different 

depths and different locations (Figures B8-4 and B8-5). The ELCOM model with the same configuration 

was applied to a morphometrically different system without calibration and it provided a good match 

between the observed and simulated data for water currents and temperatures (Bocaniov et al., 2014b). 

Though a more detailed validation of model predicted water quality parameters is an ongoing work and 

will be a subject of upcoming several publications, this report presents some of the results showing the 

comparison against lake average surface water temperature (Figure B8-6a), basin-wide total phosphorous 

concentrations (Figure B8-6b-c) and dissolved oxygen at different locations and depths in the central basin 

(e.g. Sta. 341; Figure B8-7a-d).  

 

 

 
Figure B8-4.  Validation of Model Predictions for 2008 (Liu et al., 2014): Comparison of Water Temperatures at 

Different Locations: (A) averaged lake surface temperature, (B) Sta. 341 [west basin] at 15 m depth, (C) Sta. 1231 
[central basin] at 16 m depth, (D) Sta. 84 [central basin] at 5 m depth, (E) Sta. 452 [east basin] at 9 m depth, (F) 

Sta. 452 at 20 m depth, (G) Sta. 452 at 30 m depth, and (H) Sta. 452 at 40 m depth. 
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Figure B8-5.  Validation of Model Predictions for 2008 (Liu et al., 2014): the Vertical Profiles of the Root Mean 
Square Error (RMSE) Between the Modeled and Observed Temperatures at Sta.: (A) 357 [west basin], (B) 1227 
[central basin], (C) 1228 [central basin], (D) 341 [central basin], (E) 1231 [central basin], (F) 84 [central basin], 

and (G) 452 [east basin]. 
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Figure B8-6.  Validation of Model Predictions for 2008: Simulated Values Together with Observations for 
Average Lake Surface Temperature (a), and Basin-Wide Concentrations of Total Phosphorus in West Basin (b), 

Central Basin (c) and East Basin (d). 

 
Figure B8-7: Validation of Model Predictions for 2008: Simulated Values Together with the Observations for the 

Dissolved Oxygen at Sta 341 (central basin) at 0.5 m Above Bottom (a), 1 m Above Bottom (b), 2 m Above 
Bottom (c), and 3 m Above Bottom (d). 
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4. Application Results 

In this study we applied the three-dimensional (3D) ELCOM-CAEDYM model to Lake Erie to produce the 

load-response curves for Annex 4 modeling work.  

 

Method 

The load response curves presented in this report were developed separately for Total Phosphorous (TP) 
and Soluble Reactive Phosphorous (SRP) loading scenarios modifying the TP and/or SRP daily loads for the 
eleven modeled tributaries: Detroit, Raisin, Maumee, Sandusky, Vermilion, Rocky, Cuyahoga, Grand 
[Ohio], Cattaraugus, Buffalo and Grand [Ontario] rivers. TP is modeled as the sum of SRP, particulate 
organic phosphorous (POP), dissolved organic phosphorous (DOP) and particulate inorganic phosphorous 
(PIP). The load scenarios for both TP and SRP include the base case, +25%, -25%, -50%, -75% and -100% 
load adjustments. The base case TP and SRP loads are similar to the node values from the Annex 4 CTools 
files: 
 

 052913_EcoForeNodes_CY2008_TP_DMD_Final.xlsx 

 052813_EcoForeNodes_CY2008_DRP_DMD_Final.xlsx 
 

SOD rates and hypoxia in the central basin. The full effect of load changes cannot be seen with such a 

short simulation period of 191 days since the water residence time of Lake Erie is almost three years 

(Bolsenga and Herdendorf, 1993). Previous studies have shown that the hypolimnetic oxygen depletion 

rates in the central basin of Lake Erie are driven by both the sediment oxygen demand (SOD) and water 

column oxygen demand (WOD) (e.g.    Davis et al., 1987; Lam et al., 1987). The SOD rates are driven by 

the settling flux of organic matter, mostly phytoplankton, that is a function of lake productivity while the 

latter is a function of nutrient loads. Previous studies have also shown that there is a time lag of about 

10 years or so between the change in nutrient loads and the observed change in the hypolimnetic 

oxygen that is driven by SOD and WOD (e.g. Charlton, 1987). Following the guidance obtained during the 

Ensemble modelling workshops, however, it was decided that SOD rates will be adjusted to capture the 

effects of changes in nutrient loads. We had to adjust the SOD rates assuming that they reach a new 

equilibrium with nutrients loads for a given nutrient load scenario. 

 

The SOD rates are variable during the season as they are modified by temperature and the amount of 

dissolved oxygen present in the layer above sediments. In the present work, we used a static oxygen 

model that simulates the ambient sediment oxygen demand at any given temperature (SODT) as a function 

of the temperature and dissolved oxygen in the layer overlying the sediments (Eq. 1):  

 

SODT = SOD20 ∙ f(T) ∙ f(DO) = SOD20 ∙ θT-20 ∙ [
DO

DO+ KSOD
]             (1) 

where, T is the temperature, °C; DO is the dissolved oxygen concentration in the layer above sediments, 

mg L-1; SOD20 is the SOD rate at 20°C; θ is the temperature coefficient; and KSOD is the constant that 

determines how the SOD is mediated under hypoxic conditions.  

 

Our work on three-dimensional modeling of the hypoxia in Lake Erie in 2008 showed that the SOD20 of 1.2 

gO2 m-2 d-1 is an appropriate value not only to reproduce the ambient SOD rates (SODT) that are similar to 
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Rucinski et al. (2014) values (Table B8-2) but also to match the seasonal dynamics of the observed 

dissolved oxygen concentrations in both epilimnion and hypolimnion (e.g. Figure B8-7).  

 

To determine the SODT for each of the nutrient loading scenario the following approach was used: 

 As the water residence time in the central basin is about two years (Bolsenga and Herdendorf, 
1993), we calculated the average Lake Erie load for 2008 and the preceding year and used the 
relationship between load and SOD rate (Rucinski et al., 2014) to determine the corresponding 
SOD20 for this load. This SOD20 value is based on the assumptions and limitations of one-
dimensional model.  
 

 Then, we used the same relationship (Rucinski at al., 2014) to determine the corresponding SOD20 
for each of the loading scenarios and calculated the percent change compared to the one for the 
baseline scenario. We used the same percent change to apportion our SOD20 for the baseline 
scenario. The calculated SOD20 values for each of the loading scenarios are shown in Table B8-3. 
 

Table B8-2. Comparison of the Ambient SOD Fluxes (SODT) Calculated by CAYDEM Model for the Basic Scenario 
(SOD20 = 1.2 gO2 m-2 day-1) with the Values Used in Other Studies at Certain Water Temperatures (T) and 

Dissolved Oxygen Concentrations (DO) that Are Typical for the Hypolimnion in Lake Erie 

T = 5°C 

DO = 7 mg L-1 

T = 6°C 

DO = 6 mg L-1 

T = 7°C 

DO = 5 mg L-1 

T = 8°C 

DO = 4 mg L-1 

 

T = 9°C 

DO = 3 mg L-1 

 

Our 

study 

Literature 

value* 

Our 

study 

Literature 

value* 

Our 

study 

Literature 

value* 

Our 

study 

Literature 

value* 

Our 

study 

Literature 

value* 

0.539 0.518 0.559 0.531 0.579 0.544 0.594 0.557 0.601 0.570 

*Rucinski et al. (2014), please note that the SOD value in Rucinski et al. (2014) is independent of DO 

concentrations and depends only on temperature. 

 

Table B8-3.  Loading Scenarios and Maximum Theoretical SOD Rates (SOD20) 

TP load scenario 

 

Max theoretical 

SOD* flux 

(SOD20) 

(g m-2 d-1) 

SRP load scenario Max theoretical 

SOD* flux 

(SOD20) 

(g m-2 d-1) 

Base case 1.200   Base case 1.200 

TP+25% (increase SRP same 

percentage also) 
1.264 

SRP+25% (increase SRP load 

only) 
1.264 

TP-25% (decrease SRP same 

percentage also) 
1.106 

SRP-25% (decrease SRP load 

only) 
1.106 
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Table B8-3. (Continued) 

TP-50% (decrease SRP same 

percentage also) 
0.957 

SRP-50% (decrease SRP load 

only) 
0.957 

TP load scenario 

 

Max theoretical 

SOD* flux 

(SOD20) 

(g m-2 d-1) 

SRP load scenario 

Max theoretical 

SOD* flux 

(SOD20) 

(g m-2 d-1) 

TP-75% (decrease SRP same 

percentage also) 
0.681 

SRP-75% (decrease SRP load 

only) 
0.681 

TP-100% (decrease SRP same 

percentage also) 
0.559 

SRP-100% (decrease SRP 

load only) 
0.559 

*Max SOD flux (SOD20) is used by CAEDYM model to calculate the actual fluxes (SODT) depending on 

temperatures and DO concentrations of the overlaying water. See Table B8-2 for comparison of the 

actual SOD values with the literature values for the basic scenario. 

 

The following approaches and assumptions were used to calculate the hypoxic area, averaged 
hypolimnetic DO concentration, the total number of the hypoxic days: 
 

• Hypoxic area was defined as any area with the bottom DO concentration < 2 mg/L.  

• The bottom layer hypolimnetic dissolved oxygen was defined using the following approach. First 
we identified any bottom cell at each output frequency (2 hours) that can be defined as the 
hypolimnion so that it satisfies our two major assumptions for the hypolimnetic layer: (i) has a 
temperature difference between the surface and bottom cells of the same vertical grid of more 
than 2 degrees (Tsurf - Tbot >2°C) and has a temperature less than 14°C (Tbot < 14°C). Then, DO 
concentrations of the selected cells were averaged  for each time step (2 hours) and day, and only 
those from August 1 to September 30 were used to derived the average hypolimnetic DO values 
for Aug-Sept. 

• The number of hypoxic days (DO < 2 mg/L) is calculated over the entire period of simulations from 
April 21 to October 28 for any hypoxic area in the central basin exceeding the area of 746 km2 to 
make the results comparable to those of 1-dimensional model. 
 

Basin-wide total phytoplankton biomass. The phytoplankton biomass was calculated as the whole-basin 

biomass averaged over the entire depth of the water column for the period from June 1 to August 31, 

2008. The phytoplankton biomass is expressed in mg m-3 (= µg L-1) as Chlorophyll-a. The 100% load 

indicates the baseline scenario with no reduction in loads. The loads for the baseline scenario were 

determined as the whole lake loads for the period from January 1 to December 31 inclusive using the 

Dolan's data for TP and SRP (node values from the files in Annex 4 CTools). Atmospheric loads were not 

taken into account. 

 

Basin-wide biomass of Cyanobacteria. The cyanobacteria biomass was determined as the average daily 

biomass for the top surface layer of the water column of the entire west basin to make it comparable 

with the satellite derived data and then extrapolated to the mean depth of the basin (7.4 m; Bolsenga 

and Herdendorf, 1993). The response curves for cyanobacteria were developed for both peak 30-day 
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basin-wide biomass during the bloom and for basin wide average daily biomass averaged over July to 

September. The former was calculated according to the method described in Stumpf et al. (2012). The 

biomass is expressed in metric tons (MT) as the dry weight per basin per day. The biomass of the 

cyanobacteria was plotted against the Spring Maumee River loads that were defined as the loads from 

the Maumee River for the period from April 21 to July 30 inclusive.   

 

Load-Response curves 

The following load-response curves are provided below for each load scenario: 

 Average (August to September) extent of the hypoxic area in the central basin (Figure B8-8). 

 Number of hypoxic days with DO < 2 mg L-1 in the central basin (Figure B8-9). 

 Average hypolimnetic DO concentration in the central basin (Figure B8-10). 

 Basin average (basin-wide) total chlorophyll-a concentration (June to August) for: 
o West basin (Figure B8-11); 
o Central basin (Figure B8-12); 
o East basin (Figure B8-13). 

 Basin average (basin-wide) daily Cyanobacteria biomass (Jul 1 to Aug 31) expressed as the dry 
weight (DW) for the west basin: 

o mean concentration (July to September) (Figure B8-14); 
o 30-day averaged concentration during the bloom conditions (Figure B8-15). 

 Seasonal dynamics of the hypoxic zone (DO < 2 mg L-1) for some selected TP loading scenarios (TP, 
TP-25%, TP-50%, TP+25%) (Figure B8-16). 
 

 

  

Figure B8-8.  Average Extent (August-September, 2008) of the Hypoxic Area for the Central Basin for SRP (left) 
and TP (right) Load Scenarios. The vertical dashed line indicates the load for the baseline scenario (no reduction 

in either SRP or TP loads). 
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Figure B8-9.  Number of total hypoxic days for central basin bottom layer for SRP (left) and TP (right) load 
scenarios. The vertical dashed line indicates the load for the baseline scenario (no reduction in either SRP or TP 

loads). 

 

 

  

Figure B8-10.  Central basin average hypolimnetic DO concentration (June-August, 2008) in the Central basin for 
SRP (left) and TP (right) load scenarios. The vertical dashed line indicates the load for the baseline scenario (no 

reduction in either SRP or TP loads). 
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Figure B8-11.  Average Chl-a concentration in West basin (June-August, 2008) for SRP (left) and TP (right) load 
scenarios. The vertical dashed line indicates the load for the baseline scenario (no reduction in either SRP or TP 

loads). 

 

  

Figure B8-12.  Average Chl-a concentration in Central basin (June-August, 2008) for SRP (left) and TP (right) load 
scenarios. The vertical dashed line indicates the load for the baseline scenario (no reduction in either SRP or TP 

loads). 
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Figure B8-13.  Average Chl-a concentration in East basin (June-August, 2008) for SRP (left) and TP (right) load 
scenarios. The vertical dashed line indicates the load for the baseline scenario (no reduction in either SRP or TP 

loads). 

 

 

  

Figure B8-14.  Mean basin averaged daily biomass of Cyanobacteria in the West basin as a function of the Spring 
(April 21 to July 31) Maumee River loads for SRP (left) and TP (right) load scenarios. The vertical dashed line 

indicates the load for the baseline scenario (no reduction in either SRP or TP loads). 
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Figure B8-15.  Peak 30-day basin averaged biomass of Cyanobacteria in the West basin for SRP (left) and TP 
(right) load scenarios. The vertical dashed line indicates the load for the baseline scenario (no reduction in either 

SRP or TP loads). 

 

 
Figure B8-16.  Seasonal dynamics of the hypoxic zone (DO < 2 mg L-1) for some selected TP 

loading scenarios (TP, TP-25%, TP-50%, TP+25%). 
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 The model provided results that are in good agreement with the dissolved oxygen observations 

(e.g. Figure B8-7) and with the expected average extent of the hypoxic zone stressing the 

importance of the sediment oxygen demand (SOD) for the hypolimnetic oxygen depletion rates 

in the central basin of Lake Erie. 

 The west basin is the most sensitive to variations in nutrient loads (e.g. Figure B8-11) as it has the 

shortest water residence time (51 days; Bolsenga and Herdendorf, 1993) that is shorter than the 

total simulation time (191 days). The central and east basins are less sensitive (Figures B8-12 and 

B8-13) as the water residence times of these basins are much longer than the simulation time, 

635 and 322 days, respectively (Bolsenga and Herdendorf, 1993). In order to obtain reasonable 

estimates of concentrations in these basins, a 3D model has to be run for longer period. 

Uncertainty/Sensitivity assessment 

No uncertainty and sensitivity assessment have been conducted in this exercise. However, several 

applications in other lakes provide uncertainty and sensitivity of model results (Bruce et al., 2006; Gal et 

al., 2009; Makler-Pick et al., 2011). 

 

5. Conclusions/recommendations 

 One of the important findings of this study is that to reduce the average extent of the hypoxic 

zone in Lake Erie by 50%, approximately 17% reduction in SOD rates is needed that would 

correspond to about 40% reduction in phosphorus load based on the relationship of Rucinski et 

al. (2014).  

 As the model results showed almost similar response for either SRP or TP load scenarios, 

management authorities should be aware of the importance of soluble phosphate (SRP) removal 

as other forms of phosphorus (e.g. particulate phosphorous) are less important in fueling in-lake 

biological processes. 

 Concentration of cyanobacteria in the west basin are sensitive to the nutrient loads meaning that 

the nutrient abatement is a necessary step to reduce the severity of blooms.  

 The averaging of the results at basin scale of a complex and dynamic 3D model defeats the power 

to explore the spatial variability of response in the lake. The 3D models are more suitable in 

studies on local management of nutrients from point and nonpoint sources that is not explored 

in this study. 

 Because of the long residence time of the lake and due to shorter run times of this model for 

scenarios, the output would not be appropriate to provide input to the CGM model. 
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APPENDIX B-9: Great Lakes Cladophora Model   
Martin T. Auer, Anika Kuczynski, Rasika K. Gawde, Michigan Technological University 
Steven C. Chapra, Tufts University 
Scott N. Higgins, International Institute for Sustainable Development 
 

 
 
1. Motivation and Approach 

Maintenance of levels of algal biomass below those constituting a nuisance condition is one of the Lake 

Ecosystem Objectives of Annex 4 (Nutrients) of the Great Lakes Water Quality Protocol of 2012.  This 

Lake Ecosystem Objective is to be met by developing Substance Objectives for phosphorus 

concentrations in each of the Great Lakes to serve in establishing phosphorus loading targets.  The U.S. 

and Canada, Parties to the 2012 Protocol, have been charged with setting target loads for Lake Erie by 

2015.   

 

An Annex 4 Workgroup has been empaneled and directed to utilize an ensemble modeling approach to 

develop the target loads. Nuisance growth of Cladophora in the nearshore waters of Lake Erie’s eastern 

basin has been identified as one of the guiding Environmental Response Indicators (ERIs) for this effort.  

The appropriate metric for the Cladophora ERI is beach fouling, as it is detachment (sloughing) and 

accumulation that impact lakeshore aesthetics, contact recreation, wildlife and industrial use of cooling 

water.  However, there is no regulatory standard characterizing acceptable levels of beach fouling by 

Cladophora and no Cladophora-related Substance Objective for phosphorus for use in establishing 

target loads.  Here, we apply the Great Lakes Cladophora Model in establishing a phosphorus Substance 

Objective applicable to the Cladophora dynamic and characterize conditions in the eastern basin relative 

to that Substance Objective.   

 

2. Model description 

Overview 

The Great Lakes Cladophora Model (GLCM; Tomlinson et al., 2010) is applied here to evaluate the 

impact of new Lake Erie target phosphorus loads on Cladophora growth in the eastern basin.  The model 

is run for a range of soluble reactive phosphorus (SRP) concentrations and the maximum standing crop 

(gDW/m2) and stored phosphorus content (P as %DW) of Cladophora calculated.  SRP concentrations, 

measured for the eastern basin of Lake Erie (Dove and Chapra, 2015), are then utilized to characterize 

the state of the phosphorus-Cladophora dynamic for the 10-year interval 2002-2012.  The SRP-

Cladophora response curves developed are subsequently linked to a multi-basin Lake Erie TP model 

(Chapra and Dolan, 2012) to determine the maximum standing crop and stored phosphorus content of 

Cladophora for a range of total phosphorus loads to Lake Erie. 

 

Model Structure 

The Great Lakes Cladophora Model evolves from the framework developed by Canale and Auer (1982; 

and related papers), revised, calibrated and confirmed by Tomlinson et al. (2010) and applied by Auer et 

This material is being developed for publication and is not intended for distribution beyond the immediate objectives of 
the Annex 4 Workgroup at this time. 
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al. (2010) in comparing historical and contemporary conditions of Cladophora growth.  Further 

adjustment of biokinetic coefficients, with comparison to Cladophora metrics in Lakes Erie and Ontario, 

was made for the Annex 4 Workgroup application.  The GLCM utilizes a mechanistic, mass balance 

approach based upon equations of state for two state variables: algal biomass and stored phosphorus, 

 

 
𝑑𝑋

𝑑𝑡
= [𝜇 − 𝑅 − 𝐿] ∙ 𝑋 [1] 

 

where: X is the Cladophora biomass density (gDW/m2), μ is the gross specific growth rate coefficient 

(1/day), R is the specific respiration rate coefficient (1/day) and L is the specific sloughing rate coefficient 

(1/day); 

 

 
𝑑𝑆

𝑑𝑡
= [𝜌 ∙ 𝑋 − 𝑅 ∙ 𝑆] ∙ 𝑋 [2] 

 

where:  is the phosphorus uptake coefficient (%P/day); The stored phosphorus content of the alga (Q, 

P as %DW) is then calculated as, 

 

 𝑄 =
𝑆

𝑋
∙ 100 [3] 

 

Values for model coefficients are derived from field measurements and laboratory experiments and 

through model calibration (Canale and Auer, 1982; Tomlinson et al., 2010).  The GLCM predicts 

Cladophora standing crop and production, the generation of sloughed biomass and stored phosphorus 

content as functions of light and temperature conditions and the availability of SRP.  

 

3. Model calibration and confirmation 

The GLCM was calibrated and confirmed at sites in the nearshore waters of Lake Huron (Harbor Beach, 

MI) and Lake Michigan (Milwaukee, WI) prior to application in support of phosphorus management in 

the Great Lakes (Tomlinson et al., 2010).  These data sets are particularly useful for calibration-

confirmation as they differ markedly in depth (z < 2m in Lake Huron, z = 9m in Lake Michigan) and 

nutrient status (Q = 0.2-0.5 %P in Lake Huron, Q < 0.1 %P in Lake Michigan).  Model inputs include 

temperature, incident light (PAR) and the vertical light extinction coefficient; all of which were 

developed on a site-specific basis (Tomlinson et al., 2010).  Cladophora biomass and stored phosphorus 

data for model calibration and confirmation were derived from field and laboratory studies described in 

Auer et al. (1982) and Tomlinson et al. (2010), respectively.  The GLCM was calibrated (Lake Huron) and 

confirmed (Lake Michigan) by comparing model fit to field data.  Model output successfully tracked both 

the magnitude of and temporal variation in algal standing crop and stored nutrient content; the 

performance of the GLCM is thus considered to be confirmed (Tomlinson et. al., 2010). 

 

4. Model application 

The calibrated and confirmed GLCM is now applied in simulating the response of Cladophora in the 

eastern basin of Lake Erie to changes in phosphorus loading to the lake as a whole.  The approach for 
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accomplishing this is to develop relationships between SRP concentration and the Cladophora maximum 

standing crop and stored nutrient content.  Output from a total phosphorus model developed by the 

Annex 4 Workgroup (Chapra and Dolan, 2012) and an empirical relationship between TP and SRP using 

data from Dove and Chapra (2015) are then utilized to identify the correspondence of various TP loads 

to those relationships. 

 

Model Inputs 

Model inputs required for application of the GLCM fall into one of four categories: site characteristics 

(depth and time interval of simulation), environmental forcing conditions (incident light, light extinction 

and temperature), initial conditions (Cladophora biomass and stored phosphorus content) and 

coefficients (see Tomlinson et al., 2010).  Model inputs are detailed in Table B9-1, including their values 

and comments on their source and derivation.  

 

Model Uncertainty/Sensitivity 

Sensitivity analyses were performed to characterize model uncertainty in its application to the eastern 

basin of Lake Erie.  The analysis was performed for seven model coefficients (Km, Ks,max, Q0, Rmax, Xmax, 

µmax, and max; Tomlinson et al., 2010), varying them one at a time  by ±10%.  The resulting response, % 

change in Cladophora standing crop and stored phosphorus content (Figure B9-1), was then used as a 

metric of model uncertainty.  The analysis indicated that stored phosphorus content is insensitive to 

model coefficient values (Q <5%), a result of the large difference in the time scales of increase due to 

P-uptake and decrease due to partitioning through growth.  Predicted algal standing crop was 

particularly sensitive to the value of the minimum cell quota (XQ0 = 61%) and to the maximum gross 

growth and respiration rates (Xµmax = 61% and XRmax = 54%).  Model sensitivity to variation in Q0 is 

carried forward in developing load-response curves as means of illustrating uncertainty.     

 

 

Figure B9-1.  GLCM Sensitivity Analysis Showing Percent Change in Predicted Cladophora Maximum Standing 
Crop Corresponding to a ±10% Change in Selected Model Coefficients 
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Table B9-1.  Model inputs used to develop loading scenarios. 

Model Inputs Value Units Comments 

Site Characteristics  

   Depth 2 m Optimal depth for growth in the Lake Erie eastern basin; Higgins et al., 2005 

   Time of simulation 30 May – 30 Aug Growth season in Lake Ontario; Malkin et al., 2008 

Forcing Conditions  

   Incident light Seasonal time series 
NOAA/GLERL Real Time Meteorological Network; polynomial fit to hourly PAR data 
for 2002-2012, Muskegon, MI 

   Extinction coefficient 0.2 1/m Clear water minimum, Higgins et al., 2005, Figure 2 

   Temperature Seasonal time series GLSEA2; polynomial fit to daily surface water values for Erie, PA, 2003-2013 

Initial Conditions  

   Biomass 1 gDW/m2 Specified 

   Stored phosphorus - P as %DW Initially Q0, then re-run with equilibrium Q value for specified SRP 

Coefficients  

   µmax 1.25 1/d Determined by calibration to Lake Ontario; Higgins et al., 2012, Figure 2 

   Rmax 0.45 1/d Determined by calibration to Lake Ontario; Higgins et al., 2012, Figure 2 

   Q0 0.04 P as %DW Higgins et al. 2005, Table 1 

   Km 177 mgP/m3 Mean plus one S.D. of values measured by Auer and Canale 1982, Figure 11 

   Xmax 315 gDW/m2 Median maximum biomass for depths of 0-2 m, 2005; Higgins et al., 2005, Table 1 
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Load-Response Curves 

The objective load-response curves is to link the management variable (here, phosphorus loads) to the 

ERI response (here, Cladophora biomass and nutrient content).  This is a two-step process: first, defining 

the relationship between phosphorus loads and water column phosphorus concentrations and second 

developing a relationship between those concentrations and metrics of the Cladophora ERI. 

Phosphorus Loads – for the first step, we utilize a mechanistic, mass balance model for total phosphorus 

in the Great Lakes developed by Chapra and Dolan (2012).  Total phosphorus concentrations are 

calculated for the eastern basin of Lake Erie for a range of total TP loads to the lake.  The model is run to 

steady state for the condition of the maximum total load for Lake Erie (16,334 MTA; Dolan and Chapra, 

2012) and then a line is extended from that point to the origin (zero load), taking advantage of the 

linearity of the calculation (Figure B9-2). 

 

In open lake applications, modeling and management efforts have utilized empirical models relating TP 

concentration to ERIs such as chlorophyll concentration, Secchi disk transparency and the rate of 

hypolimnetic oxygen depletion.  The varying bioavailability of the TP analyte and the dynamic nature of 

meteorological and nutrient forcing conditions in the nearshore have led those modeling Cladophora 

(e.g. Canale and Auer, 1982; Higgins et al., 2005b; Malkin et al., 2008; Tomlinson et al., 2010) to pursue a 

mechanistic approach, focusing on the role of soluble reactive phosphorus, the form fully and freely 

available to algae.  The adoption of an SRP-basis for the Cladophora ERI requires either: (a) utilization of 

an empirical relationship between TP and SRP or (b) development and application of a mechanistic, 

mass balance model for SRP in the nearshore.   

 

 

Figure B9-2.  Relationship Between the Total Lake Erie TP Load and the Eastern Basin TP Concentration 

Here, we have chosen the first approach, drawing upon an empirical relationship between SRP and TP 

based on measurements made in the eastern basin of Lake Erie by Environment Canada from 1994-2012 

(Figure B9-3; data of Dove and Chapra, 2015).  This relationship may be applied in translating output 

from the TP model developed by Chapra and Dolan (2012) into the SRP concentrations required for 

application of the Great Lakes Cladophora Model (GLRC) to the Cladophora ERI.  A non-linear fit to the 

data has been selected here to accommodate variation in the contribution of a refractory fraction to the 
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TP analyte and to recognize that the ability of phytoplankton to deplete SRP in phosphorus-poor 

systems. 

 

Figure B9-3.   Empirical Relationship between TP and SRP for 2002-2012 in the Eastern Basin of Lake Erie (data of 
Dove and Chapra, 2015). 

Cladophora Response – the second step in developing a load–response curve for the Cladophora ERI 

involves application of the GLCM to relate the algal response (maximum standing crop and stored 

phosphorus content) to changes in the nutrient forcing condition (SRP concentration).  Here, the GLCM 

is run for the June – August interval with forcing conditions, initial conditions and model coefficients as 

presented in Table B9-1.  The response is simulated for algal colonization at 2m, a depth in the eastern 

basin characterized by abundant Cladophora growth (Higgins et al., 2005).  Model runs yield two SRP-

Cladophora ERI response curves: one for algal maximum standing crop and one for algal stored 

phosphorus content (Figure B-4).  Four characteristic regions may be identified in the Cladophora 

response curve:   

 no growth – Cladophora does not grow below a SRP concentration of ~0.5 µgP/L .  Here, 

gross production is nutrient-limited to the point that metabolic demands cannot be 

satisfied, i.e. respiration > photosynthesis.  This is the condition in the waters of Lake 

Superior which remains uncolonized by Cladophora;   

 P limitation – above a SRP concentration of ~0._ µgP/L, model-predicted algal standing crop 

increases with increasing phosphorus levels in an essentially linear fashion.  Here, 

incremental reductions in SRP can be expected to yield a concomitant reduction in 

Cladophora biomass, i.e. the system is sensitive to management; and  

 the ‘hip’ – at a SRP concentration of ~2.0 µgP/L, the Cladophora response begins to depart 

from that linearity, tending toward a region of P-saturation.  Movement of a system through 

the hip is an important signal of transition into or out of a condition that is sensitive to 

phosphorus management; and    
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 P saturation – moving above a concentration of 2.0 µgP/L, the Cladophora response 

asymptotically approaches the maximum standing crop dictated by its carrying capacity 

(self-shading, light limitation).  Here, further increases in phosphorus availability have little 

impact on the Cladophora ERI.  From a management perspective, a position in this region 

may be challenging because significant reductions in load fail to manifest themselves in a 

significant change in nuisance growth.  This is misleading, however, because those 

reductions in phosphorus availability do serve to move the system toward the hip and into 

the region of P-limitation and a response by the Cladophora ERI.   

The load-response curve for phosphorus and the Cladophora ERI is then developed by converting TP 

loads (with serial reduction, e.g. 10%, 25,%, 50%) to TP concentrations (Figure B9-2), TP concentrations 

to SRP concentrations (Figure B9-3) and SRP concentrations to the two Cladophora ERI metrics: 

maximum standing crop and stored nutrient content.  Finally, a plot of the TP load (or load reduction) 

versus the two Cladophora ERI metrics represents the load-response relationship (Figure B9-5).   

 

 

Figure B-4.  Response Curves for Cladophora Growing at 2m Depth in the Eastern Basin of Lake Erie: (a) 
Maximum Standing Crop and (b) Stored Phosphorus Content.  Dashed lines illustrate the response to a ±10% in 

Q0, the coefficient to which the model is most sensitive. 
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Figure B-5.   Load-Response Curves for the Cladophora ERI in the Eastern Basin of Lake Erie: (a) Maximum 
Standing Crop and (b) Stored Phosphorus Content 
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Diagnosis and Interpretation 

Standards and Substance Objectives - there is no regulatory guidance, within the U.S. or Canada, relating 

to acceptable levels of Cladophora biomass and thus no Substance Objective for phosphorus relative to 

the Cladophora ERI has been established.  In order to meet the Annex 4 Workgroup goal to provide a 

load-response curve for the Cladophora ERI, we propose a Substance Objective for phosphorus based on 

the SRP – Cladophora biomass response curve presented previously (Figure B9-4).  We adopt an 

acceptable level of Cladophora biomass as 30±10 gDW/m2, the average standing crop for five sites on 

Lake Ontario unimpacted by urban influences (Higgins et al., 2012).  This biomass guidance value is 

comparable in magnitude to that proposed by Canale and Auer (1982) for avoidance of nuisance 

conditions of Cladophora growth in Lake Huron (50 gDW/m2).  Applying the GLCM, the proposed mean 

target biomass corresponds to an SRP level of 0.9 µgP/L (Figure B9-4, insets) and, using the regression 

equation presented as Figure B9-3, a TP level of 6.3 µgP/L. 

 

Phosphorus and Cladophora in the Eastern Basin - phosphorus levels in the eastern basin of Lake Erie 

have met the proposed Substance Objective for TP twice (2000 and 2003) and SRP three times (1997, 

2000 and 2008) in the past 40 years (Figure B9-6).  While it is tempting to posit that SRP concentrations 

are now on the decline in the eastern basin, the juxtaposition of intervals of low (1997-2000 and 2008-

2012) and high (2002-2007) SRP concentrations make it difficult to make that case.  Rather, a high 

degree of variability in both SRP and TP is characteristic of the eastern basin with little or no downward 

trend in concentration in the past two decades.  Considered from another perspective, the Cladophora-

phosphorus dynamic has resided in the linear, P-limited range from 1994-2000 and 2008-2012, but lay 

beyond the ‘hip’ connecting the P-limited and P-saturated regions in the intervening years (2002-2007; 

Figure B9-7).  Higgins et al. (2005) reported on surveys of ~100 km of shoreline at a depth of 2m in the 

eastern basin of Lake Erie where the standing crop of Cladophora averaged 281±144 gDW/m2 in 1995, 

158±101 gDW/m2 in 2001 and 176±133 gDW/m2 in 2002.  These measurements represent some of the 

highest biomass values measured in the Great Lakes, levels of standing crop consistent with the elevated 

SRP concentrations noted by Dove and Chapra (2015; Figure 6b).  Thus, the eastern basin of Lake Erie 

has historically been rich in phosphorus and has supported nuisance levels of Cladophora growth.  

Contemporary information on the phosphorus-Cladophora dynamic in the eastern basin is, however, 

limited with only one measurement of SRP since 2009 and, to our knowledge, no monitoring of 

Cladophora since 2002. 

 

Impact of Load Management – The proposed Substance Objective proposed for the Cladophora ERI 

corresponds to a total TP loads to Lake Erie of 7000 MTA, as calculated here.  Over the interval 1994-

2008, total TP loads to Lake Erie have averaged 9388±2685 MTA.  Thus a reduction in total TP load to 

Lake Erie of 25% would be required to meet the proposed phosphorus Substance Objective for the 

Cladophora ERI.  It is recommended, however, that natural variability in the TP load (C.V. = 29%) be 

taken into account when establishing targets.  
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Figure B9-6.  Concentrations of (a) TP and (b) SRP in the Eastern Basin of Lake Erie, 1970-2012 (EC data from 
Dove and Chapra 2015). 
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Figure B9-7:  Mean SRP Concentrations for the Eastern Basin of Lake Erie in Relation to the Maximum Standing 
Crop Cladophora ERI.  Bars represent the standard deviation for mean SRP concentration for the interval shown. 

 

Additional Considerations in the Nearshore – management of phosphorus in the offshore waters of the 

Great Lakes places its primary emphasis on well-mixed conditions, i.e. where tributary and point source 

inputs have become part of the larger water body and the system may be characterized and managed 

on a multi-basin or whole lake basis.  In nearshore waters, those inputs have not yet been mixed with 

and assimilated by the larger water body and phosphorus concentrations will be higher and more 

variable than in offshore waters.  The impact of a particular discharge may thus exist over an extended 

area of the nearshore where longshore currents transport phosphorus away from a source and initiate 

mixing with offshore waters.  For this reason, P-management in relation to the Cladophora ERI must be 

addressed by integrating conditions in the well-mixed offshore boundary and the more spatially and 

temporally dynamic nearshore as impacted by tributaries and point sources.  

 

Although not verified through regulatory monitoring, anecdotal evidence and satellite sensing (Figure 

B9-8) indicate that Cladophora is more abundant, more widely distributed and more likely to create 

nuisance conditions on the north shore (Canadian waters) of the eastern basin than along the south 

shore (U.S. waters).  This would be consistent with the fact that the Grand River delivers TP and SRP 

loads of 200-350 and 50-150 MTA to the north shore (Shaker, 2014) while there are no tributary or point 

source discharges of this magnitude along the south shore.  Measurements of SRP along the north shore 

to the east and west of the Grand River mouth (Figure B9-9; Joanna Majarreis, University of Waterloo, 

unpublished data), indicate that the Grand River discharge has the capacity to increase SRP 

concentrations in the Canadian nearshore well above offshore levels.  Thus, it is not sufficient to address 

phosphorus dynamics with respect to the Cladophora ERI based simply on whole-lake or multi-basin 
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calculations.  Instead, a 3D modeling framework must be employed where tributary and point source 

impacts and the attendant heterogeneity of the nearshore region may be taken into account. 

 
 

 
 
Figure B9-8.  Cladophora Distribution in the Eastern Basin of Lake Erie.  Image acquired from the Michigan Tech 

Research Institute, http://geodjango.mtri.org/static/sav/. 

 

 

 

 

 

 

 

 

 

 

 

Figure B9-9:  Mean Surface Water Soluble Reactive Phosphorus Concentrations for Samples Collected in May 
and June 2013 at Nearshore (<1 km) and Offshore (~5 km) sites in the Vicinity of the Grand River (unpublished 

data of Joanna Majarreis, University of Waterloo) 
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nuisance growth of the alga in the eastern basin.  This Cladophora ERI value was then used in concert 

with the Great Lakes Cladophora model to establish a Substance Objective for soluble reactive 

phosphorus, 0.9 µgP/L.  Next, an empirical model based on measurements made in the eastern basin 

was used to convert the SRP Substance Objective for expression as total phosphorus, 6.3 µgP/L.  Final, a 

mechanistic, multi-basin, mass balance model for total phosphorus in the Great Lakes was employed to 

establish the total TP load for Lake Erie corresponding to the TP-based expression of the phosphorus 

Substance Objective, 7000 MTA.  We recommend that load, a 25% reduction from the average total TP 

load to Lake Erie for the period 1994-2008, as the revised load with respect to the Cladophora ERI.     

We believe it to be critical that water quality managers recognize the significant differences between 

nearshore and offshore environments and their respective ERIs.  Because phosphorus discharges from 

tributaries and point sources pass through Cladophora habitat as they move toward mixing and 

assimilation with open waters, it is not sufficient to simply consider conditions in the open lake 

boundary to coastal environments.  Thus, P-management in relation to the Cladophora ERI must utilize 

predictive tools, e.g. a 3D model, which can accommodate both nearshore-offshore exchange and the 

nearshore phosphorus dynamics nearshore as influenced by tributaries and point sources. 
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