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DISCLAIMER 
 

This document provides technical guidance to States, authorized Tribes, and other 

authorized jurisdictions to develop water quality criteria and water quality standards 

under the Clean Water Act (CWA) to protect against the adverse effects of nutrient 

over-enrichment. Under the CWA, States and authorized Tribes are to establish water 

quality criteria to protect designated uses. State and Tribal decision-makers retain the 

discretion to adopt approaches on a case-by-case basis that differ from this guidance 

when appropriate. While this document presents methods to strengthen the scientific 

foundation for deriving nutrient criteria, it does not substitute for the CWA or USEPA 

regulations; nor is it a regulation itself. Thus it cannot impose legally binding 

requirements on USEPA, States, authorized Tribes, or the regulated community, and it 

might not apply to a particular situation or circumstance.  USEPA may change this 

guidance in the future. 
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EXECUTIVE SUMMARY 

 
As prescribed by the Clean Water Act, numeric nutrient water quality criteria are 

derived to protect the designated uses of waterbodies from nutrient over-enrichment. 

The U.S. Environmental Protection Agency (USEPA) recommends three types of 

approaches for setting numeric nutrient criteria (USEPA 2000a and 2000b), including: 

reference condition approaches, stressor-response analysis, and mechanistic modeling. 

This document elaborates on the second of these three and its purpose is to provide 

information on the scientific foundation for using empirical approaches to describe 

stressor-response relationships for deriving numeric nutrient criteria.  This document 

describes a five step process for analyzing stressor-response relationships that can be 

used to derive numeric nutrient criteria. 

 

The document begins with a brief introduction to nutrient 

criteria and the criteria derivation approach and reviews 

the purpose and scope.  This section introduces the 

process by which stressor-response relationships can be 

used to derive nutrient criteria.  This process is laid out in 

five steps.  

 

The first section of the document describes step 1, 

selecting and evaluating data.  Step 1 reviews techniques 

for selecting the variables that appropriately quantify the 

stressor (i.e., excess nutrients) and the response (e.g., 

chlorophyll a (chl a), dissolved oxygen, or a biological 

index).  Selecting response variables that relate directly to 

measures of designated use are most appropriate since 

criteria must ensure protection of the designated uses.  

This step then describes data exploration, visualization, 

and summary. Exploratory techniques include histograms, 

box and whisker plots, Quantile-Quantile plots, cumulative 

distribution plots, scatter diagrams, and spatial mapping.  

The visualization step helps the analyst understand how 

variables change across space and time, general relationships among variables and how 

one or more variables co-vary.  Conditional probability analysis, a more quantitative 

statistical approach for summarizing the data can also be used for data exploration.   

 

Step 2 is assessing the strength of the cause-effect relationship represented in the 

stressor-response linkage.  When stressor-response relationships are used to establish 

nutrient criteria, it is important to assess the degree to which changes in nutrient 

concentration are likely to cause changes in the chosen response variable. This can be 

accomplished using conceptual models, existing literature, and empirical models.  The 

Step 1 – Selecting and 
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effect relationship

Step 3 – Analyzing Data

Step 4 – Evaluating 

estimated stressor-
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step 2 section describes these approaches and their application for nutrient criteria 

derivation. 

 

Step 3 is data analysis. In Step 3 of the process, data are analyzed to estimate stressor-

response relationships.  Types of analyses are presented in two main subsections that 

provide different approaches for deriving criteria: (1) translating existing response 

thresholds into candidate criteria using estimated stressor-response relationships and 

(2) identifying thresholds from inherent characteristics of the stressor-response 

relationships.  Each subsection begins with an overview of the process by which an 

estimated stressor-response relationship is used to derive a nutrient criterion with each 

approach.  Then, different statistical methods are described, the data requirements for 

each are reviewed, and example applications relevant to nutrient criteria derivation are 

presented.  The first part of the step 3 section focuses on both bivariate modeling 

techniques including linear regression, logistic regression, and quantile regression, as 

well as multiple linear regression for use with multiple predictors.  Regression 

techniques come with underlying assumptions that, if met, provide a relatively easy way 

to analyze data and evaluate stressor-response relationships for deriving candidate 

criteria.  When there are multiple factors contributing to a response, simple linear 

models often can be strengthened by incorporating additional predictors or stratifying 

on other variables.  Multiple linear regression models are one approach for doing this.  

Multiple regression models require more data, but they provide an equation that shows 

the relationship between two or more stressors and a response simultaneously.  

Different considerations for using particular bivariate and multiple regression models 

are discussed.  The second part of the step 3 section describes techniques for identifying 

a threshold in a stressor-response relationship that may be used to derive criteria.  At 

times, the relationship of response variables to nutrients changes as nutrient 

concentrations increase.  Nutrient concentrations associated with this change in 

response provide another way to derive a criterion.  Non-parametric changepoint 

analysis and discontinuous regression modeling methods are presented as techniques to 

identify these changes or thresholds. 

 

Step 4 in the process is evaluating the estimated stressor-response relationships.  A 

number of approaches can be used to develop estimates of stressor-response 

relationships, and so this step reviews how to evaluate and compare different estimates 

of the stressor-response relationship and select those most appropriate for criteria 

derivation.  The step 4 section reviews the validation of predictive performance for a 

model.  The final objective in step 4 is to demonstrate how to select a stressor-response 

model using the response variable that best represents the data. 

 

The final step in the process, step 5, is evaluating candidate stressor-response criteria.  

The process of using a stressor-response relationship to translate an existing response 

threshold to a comparable nutrient criterion is designed so that acceptable values of 

response variables are predicted at lower nutrient concentrations.  That is, a criterion 

should be set to the upper-most value of nutrient concentrations that are likely to result 
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in response variables that meet management objectives (e.g., protect designated uses).  

In this last step of the process, an approach is outlined for predicting conditions after 

implementing different nutrient criteria.  These predictions can then be used to evaluate 

different candidate criteria and guide the selection of an optimal value in terms of 

resource protection based on the stressor-response relationships. 

 

Nutrient criteria are important for protecting our nation’s waterbodies from the 

negative effects of excessive nutrients.  These criteria can be derived using a variety of 

approaches, including stressor-response relationships.  This guidance lays out a specific 

process for conducting such analyses. It builds off existing nutrient criteria guidance and 

provides further scientific support for using empirical approaches to derive nutrient 

criteria using stressor-response relationships. The process described will support States, 

Territories, and authorized Tribes in incorporating stressor-response relationships into 

their nutrient criteria development programs and further the goal of reducing nutrient 

pollution nationwide.
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Introduction 

 
Under the Clean Water Act (CWA), States, Territories, and authorized Tribes are 

responsible for establishing water quality standards (WQS) that include designated uses 

such as aquatic life and recreation, criteria that define levels of water quality variables 

protective of the designated uses, and an antidegradation provision.  Nutrients are 

essential for plant and microbial growth and at natural concentrations are generally 

considered beneficial.  Over-enrichment by nitrogen and phosphorus stimulates 

excessive rates of plant and microbial growth and can produce biological and physical 

responses in surface water that adversely affect water quality and aquatic life.  

Nutrients affect both waterbodies directly receiving nutrients and downstream 

waterbodies. The United States Environmental Protection Agency (USEPA) nutrient 

criteria guidance recommends that criteria be derived for both total nitrogen (TN) and 

total phosphorus (TP) (primary causal variables) and chlorophyll a and clarity (primary 

response variables) that are protective of designated uses.  The guidance does not 

preclude the use of alternative causal or response variables, and suggest several 

additional variables such as dissolved oxygen, trophic state indices, and biocriteria 

(USEPA 2000a).  

Overview of nutrient criteria derivation approaches 

 

The USEPA has provided a series of peer-reviewed technical approaches and methods 

for deriving nutrient criteria (USEPA 2000a, 2000b, 2001, and 2008).  USEPA’s view is 

that the criteria derivation process for the toxic effect of chemical pollutants is not 

applicable for nutrients because effects, while linked to widespread and significant 

aquatic degradation, occur through a process of intermediate steps that cannot be 

easily tested in simple laboratory studies.  As a result, nutrient criteria derivation relies 

in large part on empirical analysis of field data. 

 

Basic analytical approaches for nutrient criteria derivation include: (1) the reference 

condition approach, (2) stressor-response analysis, and (3) mechanistic modeling 

(USEPA 2000a, 2000b). The application and consideration of established (e.g., published) 

nutrient response thresholds is another acceptable approach (USEPA 2000a).  Each 

approach alone may be appropriate for a State to derive scientifically defensible 

numeric nutrient criteria.  As each approach has different characteristics and data 

needs, these should be considered in the context of individual State situations and 

available information.  

 

States and USEPA should carefully consider the strengths and characteristics of each 

analytical approach with respect to data availability and designated use protection 

needs.   As mentioned, threshold values from or based upon published literature 

provide an additional source of information.   Evaluating criteria estimated from 
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different approaches can reduce some of the uncertainties inherent in any single 

approach.  Thus, USEPA guidance has made it clear that these approaches may be used 

either independently or in combination depending upon available data and the context 

being addressed (USEPA 2000a).  The approaches are briefly summarized below. 

Reference condition approach 

 

The reference condition approach described in detail in all of the previously published 

nutrient criteria guidance documents (e.g., USEPA 2000a, 2000b, 2001, and 2008) 

derives candidate criteria from distributions of nutrient concentrations and biological 

responses in reference waterbodies.  Reference waterbodies (within a waterbody class; 

e.g., rivers or lakes) represent least disturbed and/or minimally disturbed conditions 

(sensu Stoddard et al. 2006) and share similar characteristics to the waterbodies for 

which criteria are being derived.  Criteria are derived by compiling measurements of 

causal and response variables from reference waterbodies and selecting a value from 

the distribution.  USEPA’s nutrient criteria guidance recommends the use of percentiles 

derived from the reference waterbody distributions, since these waterbodies represent 

an example of the biological integrity expected for a region (USEPA 2000a).  

Stressor-response approach 

 

The stressor-response approach involves estimating a relationship between nutrient 

concentrations and biological response measures related to designated use of a 

waterbody (e.g., a biological index or recreational use measure) either directly or 

indirectly, but ideally quantitatively.  Then, nutrient concentrations protective of 

designated uses can be derived from the estimated relationship.  This approach relates 

nutrient concentrations to response measures and thus to designated uses and is the 

focus of this document.  

Mechanistic modeling approach 

 

The mechanistic modeling approach predicts the effects of changes in nutrient 

concentrations using site-specific parameters and equations that represent ecological 

processes.  Mechanistic models include a wide range of process-based water quality 

models that are described in some detail in the nutrient criteria guidance documents 

(e.g. USEPA 2000a, 2000b), and in greater detail in water quality modeling textbooks 

(e.g., Chapra 1997). Mechanistic models can account for site-specific effects of nitrogen 

and phosphorus pollution and mechanistically link changes in nutrient concentration to 

impacts on water quality relevant to biological conditions. 

Purpose of this document 

 

As noted, the use of nutrient stressor-response relationships to derive nutrient criteria is 

one of the recommended approaches in USEPA nutrient criteria guidance (USEPA 2000a, 
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2000b). The nutrient criteria guidance states that “relations (predictive models) 

between biocriteria and nutrients could be used to set nutrient and biocriteria, based on 

a desired level of biotic integrity or other valued ecosystem component” (USEPA 2000a, 

and see USEPA 2000b, 2008).   In addition, USEPA has used stressor-response 

relationships for other criteria derivation.  The Framework for Developing Suspended 

and Bedded Sediments (SABS) Water Quality Criteria (USEPA 2006a) provides guidance 

on the use of stressor-response relationships using field-derived data to derive 

suspended and bedded sediment criteria.   

 

The purpose of this empirical approaches guidance document is to provide information 

on the scientific foundation for using empirical approaches to describe stressor-

response relationships for deriving nutrient criteria.  This document supports and is 

consistent with the existing nutrient criteria guidance (USEPA 2000a, 2000b, 2001, and 

2008).  The statistical and analytical approaches described below represent a 

scientifically defensible means of identifying patterns and relationships in field data.  

Examples illustrate how these approaches could be applied for purposes of deriving 

criteria.  Although the examples provided focus on streams and lakes, the information 

presented in this document should be applicable to any waterbody type.  The document 

is intended for State, local and tribal government water resource managers and other 

interested stakeholders, with some scientific training.  Information in this document can 

be used when preparing to evaluate empirical data as well as during the planning phase 

of a field study or monitoring program.  This document is not intended to provide 

exhaustive methods on how to complete individual analyses, and interested readers 

should consult qualified analytical experts or appropriate literature for more 

information on methodological detail. 

A five step process for using stressor-response relationships to derive nutrient criteria 

 

Five steps are involved when stressor-response relationships are used to derive 

numerical nutrient criteria (Figure 1).  First, data are assembled, and the nutrient and 

response variables on which the analysis will focus are selected.  Second, the strength of 

the cause-effect relationship between the selected nutrient and response variables is 

assessed.  Third, data are analyzed to estimate stressor-response relationships, and 

these stressor-response relationships are used to derive candidate nutrient criteria.  

Fourth, stressor-response relationships estimated by different statistical approaches are 

compared and evaluated.  Finally, candidate nutrient criteria are evaluated, and 

appropriate criterion values identified.  The next five sections of this document 

correspond to each of these steps.  
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Figure 1 – Detailed flow diagram of steps in stressor-response relationship based nutrient criteria 

derivation. 
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1 Selecting and exploring stressor and response variables 

1.1 Selecting stressor and response variables 

 
The first step in estimating a stressor-response relationship 

is to specify the variables that are to be used to quantify 

nutrient concentrations (i.e., the stressor) and the response 

(Figure 1).  In the context of this document, as in previous 

guidance on nutrient criteria [USEPA 2000a], variables are 

defined as measurable attributes that can be used to 

evaluate or predict the condition of a waterbody.  For 

nutrient criteria, stressor variables will likely be a 

measurement of nutrient concentration (e.g., TN, TP).  

 

Selection of response variables requires consideration of at 

least two factors.  First, the designated use that is likely to 

be most sensitive to increased nutrients (e.g., aquatic life 

use support) should be identified.  Second, endpoints that 

indicate whether the designated use is supported should be 

selected (e.g., health of the benthic macroinvertebrate 

community), and a measure of the selected endpoint (i.e., 

the response variable) should be identified (e.g., a 

multimetric index value).  An appropriate response variable, 

therefore, (1) can be used to measure whether the 

designated use of the waterbody is supported, and (2) responds causally to changes in 

nutrient concentration.   Some response variables satisfy both of these considerations.  

For example, chlorophyll a concentration in lakes has been shown to respond directly to 

changes in nutrient concentrations (Vollenweider 1976, Carlson 1977, Wetzel 2001) and 

can be directly related to support aquatic life use (USEPA 2000a, 2000b, 2001, and 

2008). 

 

The degree to which a selected response variable satisfies the factors listed above can 

influence the statistical analysis applied to the data.  A response variable that is strongly 

and causally related to nutrients often may be effectively modeled with a bivariate 

approach, whereas a response variable that is causally related to nutrients but whose 

effect may be obscured by other factors may require a model with multiple explanatory 

variables to accurately estimate the effects of nutrients.  In cases in which the selected 

response variable does not directly measure attainment of the designated use, 

additional modeling may be required to associate the selected response with use 

attainment. 
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1.2 Exploring, visualizing, and summarizing available data 

 
A first step for any analysis of observational field data is to visually examine the data by 

viewing distributions of and relationships among the variables.  This exploratory data 

analysis (EDA) (Tukey 1977) helps the analyst understand the properties of different 

variables, which can be useful for determining the validity of applying some of the 

statistical methods.  EDA also provides insights into how different factors co-vary in the 

dataset, providing a basis for selecting variables to include in subsequent statistical 

models.  In this section, several basic plotting techniques are presented, followed by a 

description of conditional probability analysis, a more formalized statistical approach for 

summarizing how changes in nutrient concentrations are associated with the probability 

of waterbodies attaining their designated use. 

1.3 Basic data visualization 

 

The basic visualization techniques that will be discussed are histograms, box and 

whisker plots, Quantile-Quantile (Q-Q) plots, cumulative distribution functions (CDFs), 

and scatter plots. 

 

A histogram summarizes the distribution of the data by placing observations into 

intervals (also called classes or bins) and counting the number of observations in each 

interval. The y-axis can be number of observations, percent of total, fraction of total, or 

density (height of bar times width is fraction of observations in the interval).  The 

distribution of bars in the histogram depends upon how one decides to divide the data 

into intervals.  Examples of histograms are shown in Figure 2 for TP and TN from the 

EMAP-West Streams Survey dataset (Appendix A). 
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Figure 2.  Examples of histograms of EMAP-West Streams Survey log-transformed TN and TP. Units are 

µµµµg/L. 

 

A box and whisker plot (also referred to as boxplot) summarizes the distribution of a 

variable in terms of 5 numbers: the median (50
th

 percentile), hinges (25
th

 and 75
th

 

percentiles), and extremes (minimum and maximum) (Tukey 1977).  A standard boxplot 
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consists of a box defined by the hinges, a line or point on the box at the median, and a 

line (whisker) drawn from each hinge to the extreme value. 

 

A slight variation on the standard boxplot is shown in Figure 3 for variables from the 

EMAP-West Stream Survey, where the whiskers extend to a set distance from the hinge, 

and outliers beyond the span are identified. The span is typically defined as 1.5 × (upper 

hinge value – lower hinge value or inter-quartile range). 

 

Because of their compact form, boxplots are particularly useful for comparing variable 

distributions of different data subsets.  In Figure 3, the difference in the distributions of 

TN and total richness across ecoregions can be easily discerned. For example, the Plains 

region generally has higher total nitrogen concentrations and the mountains generally 

more macroinvertebrate taxa.  One limitation for boxplots is that all of the variables are 

equally weighted. Hence, sample weights provided by a probability survey cannot be 

incorporated in this representation of the variable distribution.  
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Figure 3.  Example boxplots from EMAP-West Streams Survey data for log(TN)(left plot) and total 

species richness (right plot).  Variable distributions within different ecoregions shown. Units are µµµµg/L 

for Log(TN). MT : Mountains, PL: Plains, XE: Xeric. 

 

A Q-Q plot or probability plot typically compares the distribution of a variable to a 

particular theoretical distribution (e.g., normal distribution, Wilk and Gnanadesikan 

1968). The Q-Q comparison plot with a normal distribution provides a graphical means 

of assessing the normality of a variable.  Q-Q plots for TN values in EMAP-West Streams 

Survey data indicate that log-transformed values are more normally distributed than 

raw measurements (Figure 4).    
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Figure 4.  Quantile-quantile plots comparing TN (left plot) and log(TN) (right plot) values from the 

EMAP-West Streams Survey to normal distributions. Units are µµµµg/L. 

  

An empirical CDF is another visual representation of the distribution of values for a 

particular variable.  Possible values of the variable, x, are each plotted against the 

probability that observations of the variable are less than the specified value. The 

reverse CDF is commonly used, which displays the probability that the observations are 

greater than a specified value. In constructing a CDF, weights (inclusion probabilities) 

can be used if they are available from a probability survey design.  In this way the 

probability that a value of the variable in the statistical population is less than a 

specified value is estimated.  Confidence limits can be placed around the CDF, computed 

for probability samples by an estimation formula or by resampling.  CDFs for phosphorus 

data from the EMAP Northeast Lakes Survey (Appendix A) are shown in Figure 5. The 

CDF for the sampled sites is shown in black (unweighted data), while the estimated CDF 

for the statistical population of all lakes in the northeast U.S. (weighted by inclusion 

probabilities) is shown in blue.  The median phosphorus concentration is that 

concentration on the x-axis where a line drawn from the proportion value of 0.5 on the 

y-axis intercepts each cumulative distribution line.   For all of the lakes sampled (black 

line) the value is 11 µg/L, while the estimated median for all of the lakes in the 

northeast U.S. (blue line) is 17 µg/L.  
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Figure 5.  Cumulative distribution functions for phosphorus from EMAP Northeast Lakes Survey data. 

Black line: unweighted, blue line: weighting as prescribed by the probability design. Units are µµµµg/L. 

 

Scatter plots are used to visualize relationships between different variables.  An example 

scatter plot of log10 transformed TP versus total macroinvertebrate species richness is 

shown in Figure 6.  In addition to scatter plots, a useful method for identifying and 

visualizing a possible underlying relationship between the two plotted variables 

(independent of any specific model) is to approximate this relationship using a data 

smoother.  Different smoothing algorithms have been proposed, including locally 

weighted regression (e.g., loess, Cleveland 1979, 1993, Cleveland and Devlin 1988, 

Cleveland et al. 1992), and penalized regression splines (Wood and Augustin 2002).  

Most statistical software packages provide access to one or more of these smoothers.  

The smoothed relationship between TP and total species richness in this example 

suggests that a threshold exists at approximately TP = 10 µg/L (log[TP] = 1).  Total 

richness remains relatively constant at TP concentrations less than this threshold, but 

decreases at higher TP concentrations.  The location of this potential threshold can be 

evaluated using discontinuous linear regression (section 4.3). 
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Figure 6.  Scatter plot of log(TP) vs. total richness in the EMAP-West Streams Survey dataset.  Non-

parametric smooth fit to data shown as solid line. Units are µµµµg/L for log(TP). 
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A scatter plot matrix for EMAP-West Streams Survey data (Figure 7) provides a means of 

viewing simultaneously many combinations of what was demonstrated with a single 

scatter plot in Figure 6.  Combinations of variables from different rows are shown as 

scatter plots in the intersecting cells and diagonal cells indicate the position of each 

variable in each graph.  Graphs in the bottom half (below the variable names), the units 

of the variable above are on the x-axis and the variable to the right on the y-axis.  In the 

upper half (above the variable names), the variable to the left is on the y-axis and the 

variable below on the x-axis.  Note that increases in nutrient concentrations (both TP 

and TN) are associated with decreases in total macroinvertebrate species richness.  

These nutrient concentrations are also associated with the percentage of substrate 

sand/fines and with the predicted intensity of grazing activities in the watershed. These 

observations on relationships among variables can assist in determining an appropriate 

stressor-response relationship for use in identifying a candidate nutrient criterion. 
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Figure 7.  Scatter plot matrix of EMAP-West Streams Survey TN and TP (as log-transformed variables) 

against measures of animal grazing in the watershed, percent sand/fine substrates and total 

macroinvertebrate richness. Units are µµµµg/L for TN and TP. 

1.4 Maps 

 

Mapping data can provide insights into whether factors vary systematically in space. At 

a minimum, a map of locations where the data were collected can be produced.  A map 

of the locations of the lake sites that were sampled for the EMAP Northeast Lakes 

Survey, with symbols sized according to chlorophyll a concentration, shows no obvious 

spatial trends in chlorophyll a (Figure 8).  The spatial patterns exhibited in maps can 

provide insight into factors which co-vary with nutrient variables.  Although geographic 

information systems (GIS) are most frequently used to generate maps, exploratory 

spatial analysis can be done with most graphics and spreadsheet software applications.  
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Figure 8.  Map of EMAP Northeast Lakes Survey sample sites.  Symbol size is proportional to log(chl a) 

concentration. 

1.5 Conditional probability 

 

A conditional probability is the probability of an event Y occurring given that some other 

event X also has occurred. It is denoted as P (Y|X).  Thus, a conditional probability 

describes the probability of observing an event of interest in a subset of samples drawn 

from the original statistical population. These subsets are defined by conditions when X 

has occurred, in addition to those used to define the entire statistical population. A 

conditional probability is calculated as the ratio of the joint probability that Y and X 

occur simultaneously in a given sample from the original statistical population, P(Y, X), 

to the probability of X in the original population, P(X). This relationship can be written as 

follows:  

 

)(

),(
)|(

XP

XYP
XYP =  

 

The possible applications of conditional probability analysis are very broad.  In this 

context, its use is focused on the derivation of nutrient criteria in which conditional 

probability analysis describes the probability of environmental or ecological impairment 

(i.e., not meeting the designated use) given that a nutrient concentration is higher than 

a criterion value.  For example, conditional probability analysis can quantify the 

probability of a benthic community impact given that phosphorus concentrations in the 

water column exceed 100 µg/L.  A more detailed description of conditional probability 

analysis is provided in Appendix C. 

 



Empirical Approaches for Nutrient Criteria Derivation  

SAB Review Draft  

13 

 

For use in the exploratory phase, conditional probability analysis (CPA) can screen 

variables for use in the development of stressor-response relationships. For example, 

Figure 9 shows CPA plots for the EMAP Northeast Lakes Survey data with chlorophyll a 

as the response (using a threshold of 15 µg/L) with TP, TN, dissolved organic carbon 

(DOC), and turbidity as potential predictors, since each can potentially affect chlorophyll 

a.  Each point on a plot displays the probability of lakes exceeding the chlorophyll a 

threshold given that the indicated stressor level is exceeded.  For example, chlorophyll a 

exceeded the specified threshold in every lake with log(TP) concentrations greater than 

2 (TP > 100 µg/L).  This stressor value, at which the observed probability of exceeding 

the threshold is 100%, could provide an upper bound for candidate nutrient criteria. 

 

A CPA identifies possible stressors to examine for criteria derivation.  Additional 

information or analysis can then be considered to evaluate whether an appropriate 

causal relationship exists or can be supported.  
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Figure 9.  Examples of exploratory data analysis plots using conditional probability analysis (CPA) of 

EMAP Northeast Lakes Survey data for chlorophyll a as a response variable (threshold at 15 µg/L) and 

potential stressor variables of log(TP), log(TN), dissolved organic carbon (DOC), and turbidity.  Units are 

µµµµg/L for TN, TP, and DOC and NTU for turbidity. 

1.6 Classifications 

 

During data exploration the distributions of selected response and nutrient variables 

should be examined across different classes (e.g., ecoregions) to determine whether 
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values of these variables differ systematically (e.g., Figure 3, USEPA 2000a).  Stressor-

response analyses are best conducted for data collected from reasonably similar 

waterbody types, and classifying data can help ensure this type of homogeneity.   

2 Assessing the strength of the cause-effect relationship 

 

Excess nutrients have been shown to alter the structure 

and function of aquatic ecosystems (Allan 1995, Kalff 2001, 

Wetzel 2001). These ecological changes may be directly 

detected by some of the indicators used to determine 

whether a waterbody supports its designated use or they 

may be indirectly related to these indicators.  Hence, when 

stressor-response relationships are used to establish 

nutrient criteria, it is important to assess the degree to 

which changes in nutrient concentration are likely to cause 

changes in the chosen response variable (Step 2, Figure 1). 

 

Most stressor-response analyses of nutrients and response 

variables are based on empirical data collected in the field.   

Relationships estimated from these observational data can 

be confounded by other factors (e.g., bedded sediment) 

that co-vary with the nutrient concentrations, and so, 

assessing the strength of the cause-effect relationship can 

be difficult.  Laboratory studies provide much stronger 

causal inferences.  However, the applicability of 

information extracted from these studies and the 

conditions tested in the experiment need to be evaluated 

for comparability and relevance to the particular region for which criteria are being 

derived.   

 

A number of approaches for assessing the strength of a cause-effect relationship have 

been proposed.  For example, a detailed approach for identifying the likely causes of 

impairment at a single site is available (http://www.epa.gov/caddis), and many of these 

principles can be applied here where the focus is on stressor-response relationships 

across a population of sites.  Methods for assessing causal relationships related to 

human health have also been used extensively (e.g., Hill 1965, Rubin 1974, and 

Greenland 2000).  In the present context, to assess the strength of the causal 

relationship between chosen nutrient and response variables, conceptual models linking 

changes in nutrient concentrations to changes in response variables should first be 

considered, and existing literature documenting investigations of similar types of 

responses should be surveyed.  Additional alternate methods include statistical analyses 

designed to evaluate causal effects and experiments. 
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2.1 Conceptual models 

 

In the context of this report, a conceptual model is a description of the predicted 

relationship between nutrient stressors and environmental responses.  Conceptual 

models can include both a visual representation (Figure 10) and a written description of 

the predicted relationships.  Conceptual models may be as simple as a two-box model 

for a stressor and a response, or may be as complex as the many interactions included in 

some mechanistic models. The conceptual model should identify a priori expectations.  

These expectations may consist of simple positive or negative associations between 

different variables, or may actually include the strength of the presumed interaction.  

Many conceptual models linking excess nutrients to ecological changes are readily 

available in the published literature and on the Internet (e.g., 

http://cfpub.epa.gov/caddis/icm/ICM.htm). 

 

Conceptual models provide valuable tools for communicating both existing knowledge 

and assumptions regarding the effects of nutrients.  Furthermore, conceptual models 

can help identify other factors that may confound predicted relationships between 

nutrients and response variables.  When observational data are available quantifying 

different variables included in the conceptual model, it may be possible to test whether 

observations are consistent with the hypothesized relationships (see Section 3.1.3). 

2.2 Existing literature  

 

Existing literature can provide important qualitative evidence in support of a cause-

effect relationship between a chosen response and nutrients.  Existing literature should 

be evaluated critically to determine the strength of the causal relationships documented 

in each study.  Randomized controlled studies that document a biological response to 

increased nutrient concentrations and meta-analyses of these types of studies often 

provide stronger evidence of a causal relationship than simple analyses of observational 

data.  For example, many manipulative studies of the effects of nutrients on 

macroinvertebrate grazer taxa have identified reasonably consistent responses (see 

Feminella and Hawkins 1995), whereas analyses of associations between nutrient 

concentration and total species richness in observational data have found both 

increasing (e.g., Heino et al. 2003) and decreasing relationships (e.g., Wang et al. 2007).   

Study designs used to collect data and the statistical analyses that are applied to the 

data vary among studies and should be evaluated to determine their relevance and 

applicability for the context under consideration. 

 

Existing literature may not provide information for precisely the same response variable 

as has been selected for analysis, but information that considers closely related 

variables can be useful.  In many States and Tribes, macroinvertebrate indices of 

biological condition (e.g., index of biological integrity or IBI) are used to assess 

attainment of aquatic life use, and these indices would be natural choices for response 

variables.  Where existing literature is not available or relevant to the particular 
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multimetric index under evaluation, studies that have focused on individual metrics can 

also be used and relied upon to provide useful information.  For example, as discussed 

previously, a number of manipulative studies have established strong relationships 

between nutrient concentrations and macroinvertebrate grazer taxa (Feminella and 

Hawkins 1995, Hillebrand 2002).  Thus, if grazer taxa are included as component metrics 

in an IBI, these studies could provide supporting evidence of a stressor-response 

relationship.   

 

  
 

 

 

 

2.3 Alternate methods for assessing causal effects  

 

Supporting literature can provide qualitative evidence that the chosen response variable 

responds causally to changes in nutrient concentrations; however, more involved 

statistical models, such as structural equation models and propensity score analysis, can 

potentially provide quantitative support as well.  Structural equation models (SEM) are 

statistical models that test whether hypothesized relationships among variables (e.g., as 

displayed in a conceptual model) are consistent with the observed covariance structure 

among those variables (Shipley 2000).  In the context of estimating nutrient stressor-

response relationships, SEM can provide quantitative support for the predicted 

relationships described in the conceptual model.  For example, the model described in 

Figure 10 could be analyzed with SEM, testing whether the hypothesized relationships 

between changes in nutrient concentrations, intermediate variables, and the response 

variable are consistent with the observed covariance structure.  SEMs can provide 

strong evidence for rejecting or affirming hypothesized pathways and causal linkages 

(Shipley 2000).   They have been applied for analyzing nutrient effects in freshwaters 

(e.g., Riseng et al. 2004).   
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Figure 10.  Simplified diagram illustrating the causal pathway between nutrients and aquatic life use 

impacts.  Nutrients enrich both plant/algal as well as microbial assemblages, which lead to changes in 

the physical/chemical habitat and food quality of streams.  These effects directly impact the insect and 

fish assemblages.  The effects of nutrients are influenced by a number of other confounding factors as 

well, such as light, flow, and temperature. 
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Propensity score analysis was developed specifically to more reliably estimate stressor-

response relationships from observational data (Rosenbaum 2002).  Because many 

different factors can potentially co-vary with nutrient concentrations, an estimate of the 

causal effects of nutrients should also consider the effects of these other factors on the 

response variable.  One relatively simple approach for controlling for other factors is to 

identify samples in the dataset that are similar to the sample of interest with regard to 

covariate distributions, but differ with regard to the factor of interest.  For example, one 

can identify groups of streams that differ in their nutrient concentrations, but are similar 

with respect to most other observed environmental factors.  If only a single factor (e.g., 

bedded sediment) co-varied with the factor of interest, one could stratify the dataset by 

this one factor, splitting the dataset into groups with similar values of bedded sediment.  

Stratifying by different factors becomes more difficult as the number of factors 

increases, and propensity score analysis was designed to mitigate this constraint.  

Propensity scores (Rosenbaum and Rubin 1983, Rosenbaum 2002, Imai and Van Dyk 

2004) summarize the contributions of all known covariates as a single variable (the 

propensity score).  As a result, stratifying by propensity score splits the dataset into 

groups in which all covariate distributions are similar.  Then, the causal effects of 

nutrients can be more confidently estimated within each group because the 

distributions of other covariates are similar.   

 

Propensity score analysis provides a robust approach for controlling the confounding 

effects of other factors.  Furthermore, propensity score analysis can potentially be 

directly applied to a field dataset collected from the region of interest, using the 

selected response variable, and provide quantitative support for the existence of a 

stressor-response relationship.  Propensity score analysis controls for factors for which 

data are available, and is ideal for large datasets where many different measured 

variables are available.  More detailed information on propensity scores and an example 

application are provided in Appendix B. 

 

Experimental validation of causal relationships between selected nutrient and response 

variables can also be considered.  This approach involves using specific experimental 

designs (e.g., controlled experiments) employing in situ manipulations, mesocosms, 

and/or laboratory experiments.  Such approaches have long been used to test nutrient 

effects in aquatic systems (e.g., Schindler 1974, Elwood et al. 1981, Schindler et al. 1987, 

Peterson et al. 1993, Rosemond et al. 1993, and Cross et al. 2006).   

3 Analyzing data 

 
In Step 3 of the process (Figure 1), data are analyzed to estimate stressor-response 

relationships.  Analyses are presented in two main subsections that provide different 

approaches for deriving criteria: (1) translating existing response thresholds into 

candidate criteria using estimated stressor-response relationships and (2) identifying 

thresholds from inherent characteristics of the stressor-response relationships.  Each 

subsection begins with an overview of the process by which an estimated stressor-
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response relationship is used to derive a nutrient criterion 

value.  Then, statistical methods are described, the data 

requirements for each are reviewed, and example 

applications relevant to nutrient criteria derivation are 

presented.    

3.1 Translating a response threshold to a candidate 

criterion: single explanatory variable 

 
In many cases, a threshold for the selected response 

variable is available that defines values of the response 

variable where designated uses are supported.  For 

chemical acute water quality criteria, the USEPA has 

defined this threshold as the lower 5
th

 percentile of the 

distribution of applicable acute values to represent a low 

overall effect level to species in the broader ecosystem.  

This threshold was judged to be protective of all species 

(Stephan et al. 1985).  A comparable approach is not 

applicable to deriving water quality criteria for nutrients 

because adverse effects to the designated use of a 

waterbody occur at concentrations of nutrients below the level which is shown to be 

toxic to organisms.  Alternative approaches for establishing thresholds for nutrients are 

available, though.  For example, a protective level may be pre-determined if criteria 

already exist in State standards to protect the designated use (e.g., biological criteria).  

Also, expert opinion regarding protective levels of variables can be methodically 

collected (Reckhow et al. 2005), and surveys can identify conditions that support user 

expectations for different waterbodies (Heiskary and Walker 1988). 

 

Some response variables may be indirectly associated with a designated use, and 

therefore, specifying a direct response threshold may be more difficult.  One possible 

analytical approach is to model the relationship between the selected response variable 

and a variable for which a response threshold is available.  For example, data 

exploration may suggest that one characteristic of the aquatic community responds 

strongly to increased nutrients (e.g., oligochaete abundance), but this metric does not 

directly measure attainment of any designated uses.  One could potentially model the 

relationship between oligochaete abundance and a multimetric index for which 

threshold values are available.  This auxiliary model would then provide a threshold for 

use in establishing a candidate nutrient criterion from the relationship between 

oligochaete abundance and nutrient concentrations.  Applying this approach requires 

considerably more statistical modeling, and evaluating the uncertainties between the 

two models would require careful consideration.  In general, focusing attention on 

response variables that can be more clearly linked to designated uses will result in 

simpler analyses. 
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When a threshold value is available for the selected response variable, then an 

estimated stressor-response relationship can be used to “translate” this response 

threshold into a comparable nutrient criterion (Figure 11).  The horizontal red line in 

Figure 11 represents the point at which designated uses are supported, and the 

intersection between the solid black line and the horizontal red line indicates the 

nutrient concentration at which, on average, predicted values of the response variable 

are equivalent to the threshold value.  This nutrient concentration then provides a 

possible criterion (label A, in Figure 11).   For example, in lakes, a criterion for water 

clarity, expressed in terms of Secchi depth may already exist, and this criterion could be 

used in conjunction with an empirical relationship between TP and Secchi depth to 

estimate a protective phosphorus concentration. 

 

In all models of empirical data, variability in the stressor and response measurements, 

and uncertainty in the model structure influence prediction uncertainty.  That is, for any 

specified nutrient concentration, predictions are more accurately characterized as a 

range of possible values of the response variables, given any particular nutrient 

concentration (dashed lines in Figure 11).  In some situations, this uncertainty can be 

incorporated into the criterion determination.  In the example shown in Figure 11, the 

lower prediction interval represents a boundary above which approximately 95% of 

observations are located.  Then, the intersection between the lower prediction interval 

and the red horizontal line provides a nutrient concentration (label B, Figure 11) at 

which the value of the response variable at approximately 95% of sites will be at least 

the value of the specified response threshold. 
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Figure 11.  Plot showing example of stressor-response relationship, where the response is a direct 

measure of designated use or can be easily linked to a designated use measure.  The solid line is the 

mean estimated relationship.  The dashed lines are the upper and lower 95% prediction intervals.  The 

red horizontal line indicates the response variable threshold, and the vertical red lines indicate two 

possible criteria (A and B). 
 

Note that although the relationship shown in Figure 11 is linear, it does not preclude 

applying this approach to relationships of any form (e.g., non linear relationships as 
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shown in Figure 6).  In this section, methods are presented for performing the analytical 

approach described here. 

3.1.1 Simple linear regression (SLR) 

 

Description and Data Requirements 

 

Simple linear regression is a method for testing the relationship of a dependent variable 

(y-axis) with some independent variable (x-axis) and for developing a predictive 

relationship between the two.  SLR is a well-established method for conducting such 

analyses and is described in the existing nutrient criteria guidance (USEPA 2000a).  The 

result of a simple linear regression is a line that describes the relationship between the 

two variables and the coefficients for that line.  Simple linear regression uses a least 

squares function to calculate the coefficients for the line.  

 

SLR assumes that the XY pairs of points are numeric data that represent independent 

samples from some underlying population.  For example, a typical dataset for use in 

deriving nutrient criteria would consist of independent samples from different streams 

in a particular State or region. The range of conditions represented by the data should 

span the range of conditions over which one wishes to evaluate relationships and/or 

make predictions.  Predictions extrapolated outside this range are more uncertain. SLR 

assumes the relationship is linear and that the error term of the model (unexplained 

variance) is normally distributed and exhibits constant variance.  Various 

transformations exist for one or both variables if one expects the relationship to be non-

linear.  Frequently used transformations with water quality data include the common 

and natural logarithms applied to data that are strongly skewed with many relatively 

small values and a few very large values, and arc-sine square-root transformations, that 

are applied to data measuring proportions or percentages.  Transformations can make 

interpretation more complex and may require back-transformation.  In some cases, one 

can analyze non-linear responses using non-linear regression techniques.   

 

The results of a SLR are commonly evaluated using several diagnostic statistics, which 

can quantify characteristics of the relationship estimated between the nutrient variable 

and response variable and help assess the appropriateness of regression model 

assumptions.  Frequently calculated statistics include the statistical significance of the 

model coefficients, which tests whether the estimated model slope and intercept are 

significantly different from 0.  The statistical significance of the slope of the estimated 

relationship between the nutrient variable and the response variable provides some 

indication of whether the relationship exists beyond what one would expect from 

chance alone.  The coefficient of determination (R
2
) is a measure of the proportion of 

variance in the response that is explained by the regression model.  Plotting the 

difference between each observed value and its mean predicted value (i.e., the 

residuals) against the independent variable provides a qualitative means of assessing 
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the assumption that residual variance is constant across the range of modeled 

conditions. Other diagnostic tests include tests for leverage or influential points.  

 

When used for deriving nutrient criterion values, SLR is applied in a predictive mode, so 

it is important to verify the underlying assumptions of the method using the diagnostic 

tests described above. Model predictions can also be validated with independent data 

or with bootstrapping or cross-validation techniques [see Section 5 (Step 4)].     

 

SLR has been applied frequently in environmental analysis and, specifically, in nutrient 

criteria analysis.  The Nutrient Criteria Technical Manual for Rivers and Streams (USEPA 

2000a) includes the results of SLR of periphyton chlorophyll a versus TP for over 200 

streams around the world (Dodds et al. 1997) and references the often used predictive 

equation for suspended chlorophyll versus TP from 292 temperate streams (Van 

Nieuwenhuyse and Jones 1996). 

 

Example Applications 

 

Three examples are provided of applying SLR for criteria derivation.  In the first example, 

the relationship of TP concentration to the concentration of phytoplanktonic chlorophyll 

a in northeastern lakes as part of the EMAP Northeast Lake Survey was tested (Figure 

12).  Matched pairs of data from lakes were used and represent grab samples of 

nutrients taken at the time of chlorophyll sampling (see Appendix A for data 

description).  In this application, the question was whether chlorophyll a concentrations 

were significantly associated with TP concentration.  Initial correlation analysis 

suggested the two variables were related and SLR was used to test the strength of the 

relationship and to generate a predictive model from the data.  Chlorophyll a did 

increase with TP, but both chlorophyll a and TP concentrations varied over a wide range 

and their distributions were heavily skewed (i.e., appear to be non-linear).  By log-

transforming TP and chlorophyll, the values better fit a linear model because they were 

more uniformly distributed across the x-axis, and the relationship was approximated 

with more confidence. 
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Figure 12.  Log(TP) versus log(chl a) using EMAP Northeast Lakes Survey data.  Solid line: mean 

regression relationship, dashed lines: 90% prediction intervals.  Red horizontal line indicates chlorophyll 

a = 15 µg/L.  Units are in µg/L. Regression Equation: Log(chl a) = -0.41 + 0.97[log(TP)]; R
2
=0.61, p<0.001. 

 
The SLR results show that in this model, every order of magnitude increase in TP was 

associated with an order of magnitude increase in chlorophyll a.  Log TP explains 61% of 

the variation in log chlorophyll.  Other factors, including other nutrients, influence 

chlorophyll in these lakes and it may also be that factors co-varying with TP explain a 

portion of the 61%.  Prediction intervals (shown as dashed lines in Figure 12) provide an 

estimate of the range of possible chlorophyll a values predicted for a given log(TP) 

value.  

 

Chlorophyll is used as a predictor of trophic state in lakes (Carlson 1977) and a value of 

15 µg/L has been used as a cutoff between mesotrophic and eutrophic conditions 

(Vollenweider and Kerekes 1980).  If one wished to protect the designated use against 

eutrophy based on this threshold value and data shown in Figure 12, then, the 

regression equation could be used to predict a mean TP value associated with that 

chlorophyll threshold of 15 µg/L (red horizontal line of Figure 12).  Using the equation 

defining the regression line in Figure 12 and remembering to convert the resulting 

criterion from a log-transformed value back to its original units, a mean chlorophyll 

concentration of 15 µg/L would be predicted to occur on average at a TP concentration 

of log(TP) = 1.6 (TP = 40 µg/L).   

 

Prediction intervals provide estimates of the range of possible chlorophyll a values that 

might be observed for a given value of log(TP), and different prediction intervals can be 

used to define criteria with different degrees of “protectiveness”.  For example, lakes 

below a TP concentration of 40 µg/L have less than a 50% chance of exceeding the 

chlorophyll a threshold of 15 µg/L.  Similarly, the upper prediction interval in Figure 12 

indicates that lakes below a log(TP) concentration of 1.2 (TP = 16 µg/L), have less than a 

10% chance of exceeding the chlorophyll threshold.  Other criteria corresponding to 

different prediction intervals can be calculated, but note that estimates of percentages 

of lakes maintaining the desired biological threshold apply only to lakes with TP 
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concentrations that are equivalent or less than the specified criterion.  Estimates of the 

effects of different candidate criterion values on all lakes in the study area require 

further calculations [see Section 6 (step 5)].  

 

The second example illustrates the relationship between nutrients and 

macroinvertebrate metrics.  This relationship represents two variables separated by a 

greater distance along the causal pathway because nutrients are generally not directly 

toxic to macroinvertebrates except at very high concentrations, but may impact 

macroinvertebrates negatively at lower concentrations via enrichment pathways (Figure 

10).  Many States use macroinvertebrate metrics, such as tolerant species richness or 

total species richness, for assessing biological condition (USEPA 2002), and 

macroinvertebrate metrics and indices formed from combinations of these metrics 

often provide a direct measurement of the degree to which a waterbody supports 

aquatic life use (Kerans and Karr 1994, Barbour et al. 1996, Klemm et al. 2003). 

 

Here, total species richness was plotted against log-transformed TN (Figure 13) using 

data from the EMAP-West Stream Survey Xeric region stream dataset (herein referred 

to as EMAP West Xeric region streams), collected by the USEPA EMAP-West Streams 

Survey (Appendix A).  A threshold value of total stream macroinvertebrate species 

richness typically would be defined as part of State water quality standard as the point 

at which aquatic life use is supported, and has been assumed to be 40 for illustrative 

purposes (red horizontal line on Figure 13).  Total species richness decreased with 

increased TN, and the mean regression prediction intersects the assumed biological 

threshold at log TN = 2.5 (320 µg/L).  This value defines a candidate criterion below 

which streams would have a greater than 50% chance of maintaining the desired 

biological response threshold of 40 taxa. 

 

Prediction intervals around the mean relationship are larger than in the previous 

example, and the lower 10% prediction interval does not intersect the biological 

threshold line.  A criteria could be easily estimated, however, based on the mean 

regression for where a greater than average chance of maintaining the desired 

biological response threshold of 40 taxa exists, and for several percentiles below this but 

not for 10%.  Including additional variables in the regression model may reduce the 

residual variance and alter the resulting criterion values. 
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Figure 13.  Log(TN) versus total species richness in EMAP-West Xeric region streams.  Solid line: mean 

regression relationship, dashed lines: 90% prediction intervals. Red horizontal line indicates total 

richness = 40.  Units are µµµµg/L for log(TN). Regression equation: Total Richness = 72 – 13[Log(TN)], 

R
2
=0.19, p<0.001. 

 

A third example was developed using data on nutrients and stream benthic 

macroinvertebrates from the Maryland Biological Stream Survey (MBSS) program 

(http://www.dnr.state.md.us/streams/mbss/). EPT species richness calculated from 

MBSS macroinvertebrate samples from the Piedmont ecoregion was combined with 

total phosphorus data from those same streams and used to explore the response of 

EPT richness to increasing nutrient concentrations.  Significant portions of the Piedmont 

ecoregion are urbanized.  Urbanization generates other stressors that impact 

macroinvertebrates in addition to nutrients.  Therefore, Piedmont sites with high 

amounts of urbanization were removed to reduce covariance and focus more directly on 

nutrient effects.  EPT richness declined significantly with increasing total phosphorus in 

these Piedmont streams, although TP explained very little of the decline in EPT richness 

(r
2
 = 0.05, Figure 14).  The MBSS scores EPT richness based on expectations for least 

disturbed streams and the midpoint of the distribution of EPT scores from least 

disturbed streams to most disturbed Piedmont streams is an EPT richness of 8.  From 

the figure, an EPT richness of 8 is associated, on average, with a TP concentration of 180 

µg/L TP.  As with the example above, a concentration of TP could be estimated below 

which sites would have a greater than 50% chance of meeting the EPT threshold and 

greater percent likelihoods above 50% could be estimated, but in this case not the 90% 

chance because the lower decile (hatched line) does not intersect the threshold.   
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Figure 14.  Log(TP) versus EPT species richness using the least urban MBSS Piedmont ecoregion stream 

dataset.  Solid line: mean regression relationship, dashed lines: 90% prediction intervals. Red horizontal 

line indicates EPT richness = 8.  Units are µµµµg/L for log(TP).  Regression equation: EPT Richness = 13.9 – 

2.63[Log(TP)]; R
2
=0.05, p<0.005. 

3.1.2 Quantile regression (QR) 

 

Description and Data Requirements 

 

Regressions on ecological data often exhibit unequal residual variance due to missing 

explanatory variables and interactions among the factors affecting biological conditions. 

When residual variance is unequal, the range of the scatter of samples about the mean 

regression line differs for different parts of the line, and more than a single slope (rate 

of change) may describe the relationship between the response and nutrient variable.  

Quantile regression (QR) is a statistical method that can quantify these relationships by 

estimating linear relationships for different quantiles of data (Koenker and Bassett 1978, 

Koenker and Hallock 2001, Cade and Noon 2003, Koenker 2005, Brenden et al. 2008).  

Just as classical linear regression methods based on minimizing sums of squared 

residuals enable one to estimate models for mean functions; QR methods offer a 

mechanism for estimating models for the median value and the full range of other 

quantiles. 

 

QR can be useful for informing criterion selection for responses that do not satisfy the 

assumptions of SLR.  As described above, when the magnitude of residual variance 

differs for different predictor values, SLR estimates of prediction intervals can be 

incorrect.  QR (e.g., for 5
th

 and 95
th

 percentiles) provides a direct means of estimating 

these prediction intervals, and comparison of QR estimates of these prediction intervals 

with SLR estimates provides one means of testing SLR assumptions. QR also can directly 

identify a relationship between a stressor and response when one suspects that a 

particular factor sets an upper limit to the value of the response variable (Cade and 

Noon 2003), and such applications have been used to set criteria for conductivity (FDEP 

2008) and sediment (Bryce et al. 2008).  Other variations of QR exist that combine QR 
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with, for example, split-point regression and extend the approach for identifying 

thresholds (Brenden et al. 2008, Brenden and Bence 2008). 

 

Example Applications 

 

QR was applied to the EMAP Northeast Lakes Survey chlorophyll a data (Figure 15).  The 

95
th

 prediction intervals from quantile regression were similar to that predicted by SLR, 

suggesting the regression assumptions for SLR were appropriate.  The resulting 

candidate TP criterion based on the median value was the same as predicted by mean 

SLR (40 μg/L).   
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Figure 15.  Log(TP)  vs. log(chl a) for EMAP Northeast Lakes Survey.  Dashed lines are the 5th and 95th 

percentile estimated by quantile regression.  Solid line is the 50th percentile. Red line indicates where 

chlorophyll a = 15 μg/L.  Units are μg/L.   

 

Quantiles estimated for the relationship between total species richness and log(TN) in 

EMAP-West Xeric region streams exhibited more variability than observed in the 

northeastern lakes example(Figure 16).  Much of this variability can likely be attributed 

to uncertainties associated with estimating extreme quantiles (e.g., 5
th

 and 95
th

 

quantiles) from relatively small sample sizes.  In the present case, the 143 samples that 

were available likely were insufficient for accurately estimating the 5
th

 and 95
th

 

quantiles.  This variability is important information, and some of the differences in slope 

observed across different quantiles suggest that regression assumptions, such as 

constant variance, are not supported by these data.  The 50
th

 percentile line crosses the 

biological response threshold at approximately log(TN) = 2.4 (TN = 250 µg/L), a value 

that is lower than that given by the mean SLR relationship and below this concentration, 

there is a greater than 50% chance of meeting the total richness threshold.  Greater 

percent likelihoods above 50% could be estimated, but in this case not the 90% chance 

because the lower decile (hatched line) does not intersect the threshold.   
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Figure 16.  Log(TN) vs. total species richness for EMAP-West Xeric region streams.  Dashed lines indicate 

10th and 90th quantiles estimated with quantile regression, dotted lines indicate the 5
th

 and 95
th

 

quantiles, and the solid line indicates the 50th quantile.  Units are µµµµg/L for log(TN).  Red line indicates 

where total species richness = 40. 

 
A second example was developed using data on nutrients and stream benthic diatoms 

from the USEPA EMAP Mid-Atlantic Integrated Assessment (MAIA) and United States 

Geological Survey (USGS) National Water Quality Assessment (NAWQA) program.  

Diatom data collected by the two programs were combined and a trophic state index 

(TSI) based on the van Dam trophic state index (van Dam et al. 1994) was calculated 

using the diatom information (J. Stevenson, pers. comm.).  Values of this index indicate 

increasing trophic state, much as the lake TSI does (Carlson 1977).  A value of 4.5 

indicates a shift from mesotrophic to eutrophic conditions.  TSI values increased 

significantly with TP concentration, and the TP concentration associated with a TSI value 

of 4.5 using the median regression was log(TP) = -1.55 (TP = 0.028 mg/L)(Figure 17).  As 

with the EMAP-West Xeric example above, a concentration of TP could be calculated 

that would result in a greater than 50% chance of sites meeting the response threshold. 

As above, percent likelihoods above 50% could be estimated, but not the 90% chance 

because the upper decile (hatched line) does not intersect the threshold.  
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Figure 17.  Log(TP) vs. benthic diatom TSI for the EMAP-MAHA/USGS-NAWQA regional dataset.  Dashed 

lines indicate 10th and 90th percentiles estimated with quantile regression, and the solid line indicates 

the 50th percentile.  Units are mg/L for log(TP).  Red line indicates where TSI = 4.5. 

3.1.3 Logistic regression 

 

Description and data requirements 

 

Logistic regression predicts the probability of an event occurring as a function of 

different explanatory variables.  Thus, the dependent variable in a logistic regression 

takes only two possible values: either the event occurred in a sample, or it did not.  In 

the context of criterion development, the event would be an observation of an 

impairment (e.g., chlorophyll a concentration > 15 μg/L).  In most other respects, logistic 

regression is very similar to SLR.  As with SLR, the model can be fit to observed data 

using maximum likelihood estimation, and statistical tests are used to determine 

whether model coefficients differ significantly from zero. 

 

Example application 

 

Logistic regression was applied to the stream macroinvertebrate example considered 

previously for SLR.  Here, though, the assumption that total richness values below 40 

indicate impairment was applied before fitting the model, by assigning a value of 1 to 

samples in which the threshold was exceeded and 0 to all other samples.  The modeled 

probability of impairment is shown in Figure 18. 
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Figure 18.  Modeled probability of impairment (i.e., total richness < 40) as a function of log TN for 

EMAP-West Xeric region streams. Units are µµµµg/L for log(TN). Solid line: mean relationship, dashed lines: 

90% confidence intervals for mean relationship. 

 
The probability of impairment (i.e., total richness < 40 taxa) increased as TN 

concentration increased.  A candidate criterion value could be identified from logistic 

regression results by selecting an acceptable probability of impairment.  For example, 

the intersection between a 50% probability of impairment and the regression curve 

specifies a candidate criterion value of approximately log(TN) = 2.6 (TN = 400 µg/L).  

Uncertainty in the location of the mean relationship could be incorporated by examining 

the intersection between different confidence intervals and the desired target 

benchmark.  This value differs from SLR-based and quantile regression-based candidate 

criteria values that are predicted to maintain 50% of sites at or above the desired 

biological threshold. These differences across modeling approaches recommend that 

certain regression assumptions be confirmed for consistency.   

 

In this application, continuous data (i.e., total species richness) has been transformed to 

binary data (i.e., impaired vs. not impaired), and inherent to this data transformation is 

a loss of information.  Therefore, applying logistic regression as illustrated here may not 

fully take advantage of the information in the dataset.  Logistic regression is best applied 

to response variables that are originally expressed in terms of binary alternatives (e.g., 

presence or absence of particular valued species). 

3.1.4 Application of bivariate models 

 

The methods described thus far model the effects of a single stressor variable on a 

single response variable.  This section reviews factors related to the use of bivariate 

stressor-response models for deriving nutrient criteria.  These issues should be 

considered when interpreting the conclusions from bivariate analyses and in 

determining how the results should be incorporated into the criteria derivation process. 
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Bivariate analyses can provide straightforward and simple visual and statistical 

measures of specific responses to specific nutrient variables.  Most are fairly easy to 

interpret and to explain to audiences without substantial scientific or analytical 

experience.  They generally provide valuable interpretations that are consistent with 

what can be visually observed in the data.  They can deduce valid and useful predictive 

relationships that can be effectively applied to manage environmental results.  Lastly, 

these analyses are also relatively easy to produce and are available with most desktop 

statistical and spreadsheet software packages.   

 

An important aspect of bivariate models is that they may not account for all the 

variables known to affect the response variable and therefore, can oversimplify 

relationships between nutrient and response variables.   An analyst is assuming that the 

nutrient variable being modeled is the major factor affecting the response and is 

dominant over the range of interest.  Other factors may co-vary with the nutrient 

variable being modeled, and it may be that the covariates affect the response more 

strongly than the selected nutrient variable.  Methods for better understanding the 

relationships of such co-variates are addressed in 4.2 and subsequent sections. 

3.2 Translating a response threshold to a candidate criterion: multiple explanatory 

variables 

 

In this section, the concepts involved with inferring a candidate criterion based on 

relationships between a response with a known stressor threshold level and a nutrient 

concentration are extended to cases where multiple predictor variables are considered, 

especially ones that may also affect the response.  Multiple linear regression models are 

described here but other analytical options exist including propensity score analysis 

which was introduced and explained in section 3.1.3 and is further elaborated in 

Appendix B. 

3.2.1 Multiple linear regression (MLR) 

 

Description and Data Requirements 

 

MLR is frequently used in environmental analyses.  It is appropriate for attempting to 

predict responses that may be influenced by multiple factors, for identifying those 

factors, or for controlling for the effect of certain factors when testing the effect of a 

stressor.  In the context of nutrient criteria derivation, MLR has been applied for 

classification as well as for identifying candidate criteria (Dodds et al. 2002, 2006, 

Soranno et al. 2008).   

 

Multiple linear regression is an extension of SLR where the effect of each explanatory 

variable is modeled as a linear function.  In its simplest form, each explanatory variable 

exerts an effect on the response that is independent of the values of the other variables.  

Values of the coefficients in MLR models are predicted using the same general 
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approaches used in SLR, the data requirements are the same, and the diagnostics 

include most of the same statistics: variance explained, significance of the model and 

each parameter, residuals inspection, etc.  The assumptions for MLR are the same as 

those for SLR, namely that the error terms are independent, have constant variance, 

and are normally distributed.  Generally, strong collinearity among variables should be 

evaluated because they may artificially inflate the variance explained by the model, and 

may affect model fit. 

 

Selecting the appropriate explanatory variables to include in addition to the nutrient 

variable is a key aspect of using MLR to estimate nutrient criteria, and these selections 

should be driven based upon an understanding of the linkages between different 

variables in the studied system (Figure 10).  Some automated methods (e.g., stepwise 

variable selection) are available for selecting predictor variables that best account for 

observed variability in the response and should be used to help explore possible models, 

but not necessarily for final model selection (Harrell et al. 1996).   

 

Various techniques can be used to avoid overfitting, in which models apply only to the 

calibration data and have very poor predictive power outside the calibration data.  One 

rule of thumb regarding the appropriate number of predictors suggests that at most 1 

predictor variable is allowed per 10 independent samples (Harrell et al. 1996).  

Validating models with independent data is also valuable and strongly encouraged [see 

Section 5 (Step 4)].  Statistical criteria are also available to select the optimal model 

predictors (e.g., Akaike Information Criterion, Adjusted R
2
).   A variety of additional 

analyses are available for building MLR models, including methods for identifying 

outliers and leverage points, alternative model selection procedures, and additional 

diagnostics. 

 

Recently, more sophisticated multilevel modeling approaches using Bayesian analysis 

have been used to refine nutrient-chlorophyll dose-response models using multiple 

predictors (Lamon and Qian 2008).  These models combined classificatory predictors 

based on ecoregion, and sampling methods with nutrient-algal response models to 

generate a family of stressor-response models to use under different combinations of 

conditions (ecoregion and water quality methods for chlorophyll and N and P 

measurement).  Similarly, hierarchical partitioning models (Chevan and Sutherland 

1991, MacNally 2000, 2002, Morrice et al. 2008) and partial correlation models (King et 

al. 2005) have also been used to determine the influence of multiple intercorrelated 

stressor variables on water quality. 

 

Example Applications 

 

In the first example MLR is used to model the effects of TN on total macroinvertebrate 

species richness in EMAP-West Xeric region streams.  Here, as a first illustration of the 

use of MLR, the effects of substrate composition, quantified as percent sand/fine 
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sediment (SED), on total richness are modeled in addition to log(TN).  The resulting, 

fitted model can be written as follows: 

 

Total richness = 67 – 7.5 log(TN) – 0.18 SED 

 

This model explains 32% of the variability in total richness, and both predictor variables 

are significant (p < 0.001).  The coefficient for TN estimated here is comparable to 

coefficients estimated with propensity score analysis (Appendix B), and so effects 

observed in this simple model seem consistent with effects estimated from more 

involved analyses. 

 

Because only two explanatory variables are used, the model can still be effectively 

visualized using scatter plots (Figure 19) by plotting the combinations of the explanatory 

variables as symbols and by superimposing contours that indicate the predicted mean 

species richness for any combination of explanatory variables.  As with previous 

examples, a response threshold of total richness equal to 40 is used for illustrative 

purposes only (shown as a red line). 
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Figure 19.  Log(TN) versus percent sand/fines in EMAP-West Xeric region streams.  Contours indicate 

predicted mean values of total richness from multiple linear regression model.  Units are µµµµg/L for log 

total N. 

 
Protective criterion values for TN vary with the value of SED at each site.  That is, as SED 

increases, the value of TN required for maintaining 50% of sites at a minimum total 

richness of 40 decreases.  One possible approach for specifying a criterion using this 

model is to evaluate the TN criterion that corresponds to different conditions observed 

for SED.  For example, one could use the 75
th

 percentile of SED as a target, assuming one 

needs to protect against relatively poor sediment conditions. This SED value is equal to 

65 % sand/fines. Fixing SED at this value would result in a log(TN) candidate criterion 

value of 2.05 (112 µg/L) to maintain total richness, on average, at 40. The percentile 
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assumed for sediment could be adjusted depending on reasonable management 

expectations for sediment given natural conditions and rehabilitation potential.  For 

example, one could assume that the criterion should be estimated based on an 

assumption that no other factors are negatively influencing the response variable.  In 

this case, one would select a relatively low percentile for SED (e.g., the 25
th

 percentile) 

and calculate a corresponding TN criterion. 

 

A model of the same data was built incorporating an additional natural variable and is 

given by the equation: 

 

Total richness = 27 – 8.4 log(TN) – 0.14 SED + 16 log(PPT), 

 

where PPT= average annual precipitation.  Solving again for the relatively worst case 

scenario of the 75
th

 percentile of sediment and the 25
th

 percentile of annual 

precipitation (29.5 inches) representing more stressful, dry conditions would yield a 

target log(TN) of 2.04 (TN = 110 µg/L). 

 

In the next example, the effects of two nutrients on chlorophyll a in the EMAP 

Northeast Lakes Survey dataset were explored.  Chlorophyll a may be limited by both N 

and P.  In this model, the influence of TN and TP are included simultaneously in 

predictions of chlorophyll a.  The same dataset used in the SLR example to show that 

chlorophyll increased with TN was used for this example. 

 

Both predictors (TN and TP) were statistically significant in MLR model (p < 0.001).  The 

final model is given by: 

 

Log(Chlorophyll) = -1.19 + 0.80 Log(TP) + 0.37 Log(TN) . 

 

This model explained 63% of the variance in log(chl a) across these lakes, which is a 

small increase over the percentage of variance explained by SLR.  A scatter plot of 

log(TP) versus log(TN) indicates that the two nutrient concentrations are strongly 

correlated (Figure 20).  The approach described above of fixing one explanatory variable 

at a specified percentile can be used here as well, but with a caveat.  In this case, fixing 

log(TN) at its 25
th

 percentile value and calculating a criterion for log(TP) would result in a 

combination of TN and TP concentrations that was not observed in the dataset. This can 

be used with this understanding, but one could also use the SLR model, which assumes 

that the effects of both TN and TP can be modeled with TP only and was nearly as 

effective in explaining observed variability in chlorophyll a.  The use of SLR in this 

situation, with known covariates, will reflect the influence of the variable being modeled 

and all variables that covary with it. 
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Figure 20.  Log(TP) versus log(TN) for EMAP Northeast Lakes Survey sites.  Contours indicate predicted 

mean log(chl a) concentrations.  Units are µµµµg/L for log(TP) and log(TN). Red contour indicates assumed 

biological response threshold of chlorophyll a = 15 μg/L. 

 
A multiple linear regression model was also built for the MBSS example for EPT richness 

and total phosphorus introduced in section 4.1.1.  In this instance, epifaunal substrate 

score (EPISUB), a habitat metric measured by MBSS as part of their stream assessment 

protocol, was also a significant predictor of EPT richness.  Epifaunal substrate score 

reflects the quality of the faunal substrate and higher scores indicate less fine sediment, 

more stable substrate, particularly large cobble and/or stable woody debris.  As with the 

EMAP West example above, protective TP values change with the quality of the 

epifaunal substrate.  The multiple linear regression for both predictors was: 

 

EPT richness = 6.9 – 1.3 log(TP) + 0.4 (EPISUB). 

 

This model explained 14% of the variance in EPT richness (p<0.001), and each predictor 

contributed to the model (EPISUB, p<0.001; TP, p < 0.15).  The significance of TP 

declined as a predictor when combined with epifaunal substrate in the MLR model 

relative to the SLR model. 

 

As epifaunal substrate condition declines, the value of TP required for maintaining 50% 

of the sites as an EPT richness of 8 declines (Figure 21).  Assuming a goal of protecting 

epifaunal substrate conditions representing at least sub-optimal epifaunal substrate 

conditions (sub-optimal epifaunal substrate scores start at 10 or 50% of the maximum 

score of 20) as a target and, therefore, fixing the epifaunal substrate score at 10, a TP 

concentration of 107 µg/L would be required to maintain EPT richness, on average, at 8 

taxa.  Again, the epifaunal substrate target could be adjusted depending on 

management expectations for epifaunal substrate quality and rehabilitation potential.   
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Figure 21.  Log(TP) versus epifaunal substrate scores from the least urban MBSS Piedmont ecoregion 

stream dataset.  Contours indicate predicted mean values of EPT richness from the multiple linear 

regression model. Units are µµµµg/L for log(TP). 

3.3 Identifying thresholds from stressor-response relationships 

 

In some cases, characteristics of the estimated stressor-response relationship can 

inform the selection of candidate criteria.  In the relationship shown in Figure 22, a 

threshold in the relationship occurs when nutrient concentrations reach the point 

indicated by the red arrow.  For example, species richness may remain stable through 

replacement of intolerant species with tolerant species until concentrations exceed the 

highest tolerances, beyond which species richness begins to decline.  Values of the 

response variable beyond this point decline steeply.  Candidate criteria could be defined 

above or below this threshold point, depending on the degree of confidence one had in 

the estimated relationship and the degree to which one wanted to protect against loss 

of the designated use.  In this section, methods for performing such analyses are 

described. 
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Figure 22.  Stressor-response relationship showing threshold behavior. Red vertical arrow indicates a 

possible criterion value. 
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3.3.1 Non-parametric changepoint analysis (nCPA) 

 

Description and Data Requirements 

 

Non-parametric changepoint analysis (nCPA) refers to a suite of non-parametric 

methods used for identifying thresholds or changepoints in bivariate relationships.  

When a dependent variable is related to an independent variable and scatter plots 

suggest that a threshold or change in the statistical attributes of the dependent variable 

exists with increases or decreases in the independent variables, changepoint analysis 

can be used to identify where that changepoint exists (Breiman et al. 1984, Pielou 1984, 

Qian et al. 2003).  In addition to evidence of a changepoint in a plot, there is often a 

scientific basis to expect thresholds in nature, where systems do not respond linearly to 

stress, but rather frequently exhibit non-linear responses (e.g., May 1977,  Odum et al. 

1979,  Connell and Sousa 1983, Scheffer et al. 2001, Brenden et al. 2008, Andersen et al. 

2009).  nCPA has been used for identifying thresholds associated with nutrient stressors 

and various responses in freshwaters including effects on plants and invertebrates (King 

and Richardson 2003, Qian et al. 2003, 2004). 

 

nCPA is used to find some point in the relationship between x and y, where some 

statistical attribute of y (e.g., the mean or variance) is most different above some point x 

than below it.  In the hypothetical figure below (Figure 23), the mean and variance of Y 

below the value c are different than above it.  The significance of this changepoint can 

be evaluated and it is presented as either the single changepoint value, a single value 

with an empirically derived confidence interval, or as a distribution of changepoints 

based on resampling (King and Richardson 2003, Qian et al. 2003). 

 

 
Figure 23.  Hypothetical relationship between an independent variable X and a dependent variable Y.  

The value c indicates a changepoint in the relationship between X and Y, characterized by a change in 

the mean of Y on either side of c. 
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Functionally, changepoint analysis is conducted by ordering observations along a 

stressor gradient (X) and determining which point along that gradient splits the 

response variable into the two groups with the greatest difference in statistical attribute 

(e.g., mean, deviance or variance)(King and Richardson 2003).  As mentioned earlier, 

there are different methods for determining changepoints depending on the statistical 

attribute that is evaluated.  Changepoint analysis, as described in this context, will refer 

to the deviance reduction method based on mean values (King and Richardson 2003, 

Qian et al. 2003), an abbreviated version of the classification and regression tree (CART) 

methodology of Breiman et al. (1984).  Deviance is the within-group variance of the 

response variable Y (using means for the group rather than the overall mean).  nCPA 

works by moving iteratively across the entire range of observed stressor values and 

calculating a deviance estimate for each value of X.  The changepoint is defined as that 

point that maximizes the deviance reduction (∆i): 

 

( )iii DDD 〉≤ +−=∆  (Breiman et al. 1984), 

 

where D = deviance for the data as one group, D≤i is the deviance of y below and 

including xi, and D>i is the deviance of y above xi along an ordered predictor variable 

x1,…,xn, and i is an index for the (Y,X) pairs ordered from smallest to largest on the X 

variable.  The changepoint is the value of x that maximizes ∆i. This changepoint splits the 

data into two groups with the greatest difference in the mean value.   

 

Uncertainty in the changepoint location can be quantified with resampling techniques.  

For example, bootstrap resampling has been used to estimate uncertainty around 

changepoint estimates, as well as cumulative probability curves (King and Richardson 

2003).  Also, χ2
 tests have been used to test whether changepoints are statistically 

significant (King and Richardson 2003), although these authors argued that uncertainty 

around the changepoint was more important and they only applied the χ2
 test when 

cumulative distribution patterns for changepoints were wide.   

 

Changepoint analyses are not subject to the same restrictive assumptions of linear 

regression as deviance reduction is a non-parametric analysis, and can therefore be 

used to effectively model nutrient and response variables whose underlying relationship 

is non-linear and/or whose residual variance differs across the range of modeled values 

(King and Richardson 2003).  For linear relationships and relationships characterized by 

wedge-shaped factor ceilings (Carter and Fend 2005), which are also common with 

stressor-response relationships in water quality analysis, the linear modeling techniques 

described above are the more appropriate approaches to use (King and Richardson 

2003).  Preliminary visual analyses will likely indicate which relationships may yield non-

linear changepoints.   
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Example Applications 

 

In this first example, a changepoint was identified in the relationship between 

chlorophyll a concentrations and TP in the EMAP Northeast Lakes Survey dataset.  It 

appeared from visual inspection that the relationship between these two variables was 

not linear, but rather chlorophyll increased slowly with TP and then increased 

dramatically at some TP threshold (Figure 24).  nCPA was conducted on these data to 

evaluate whether a significant changepoint existed.  The deviance reduction method 

and bootstrap resampling were used to estimate the changepoint and empirical 

confidence intervals around the changepoint, respectively.  

 

 

 
Figure 24.  Plot of chlorophyll a versus log total phosphorus in EMAP Northeast Lakes Survey sites.  The 

solid vertical line is the changepoint estimate and the dashed lines represent 95 % confidence intervals 

around the changepoint estimate. Units are µµµµg/L for log(TP) and chlorophyll a. 

 

A changepoint was identified at 55 µg/L TP, above which chlorophyll a concentrations 

increased rapidly with additional phosphorus.  The confidence interval around the 

changepoint was large, 50 – 90, and a χ2
 test gave evidence (p<0.05) of a significant 

changepoint.  Constraining the minimum group size required to identify a group split 

can be used to reduce the influence of specific values which can reduce the variance 

around the changepoint (R. King, pers. comm.).  Where multiple changepoints exist, 

regression trees can be used to identify each subsequent splits (King and Richardson 

2003). 

 

The second example is from the EMAP-West Xeric region dataset.  The relationship 

between TN and total macroinvertebrate species richness exhibited a non-linear pattern 

and was evaluated for a potential changepoint using nCPA analysis (Figure 25).  In this 

case, a changepoint was identified at log(TN) of 3.0 (1000 µg/L TN).  The 90
th

 percent 

confidence interval around this estimate was approximately 250 µg/L to 2.2 mg/L TN. 
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Figure 25.  Log(TN) vs. total species richness in EMAP-West Xeric region streams.  Solid vertical line 

indicates changepoint estimate.  Dashed vertical lines indicate 90% confidence intervals for 

changepoint estimated using bootstrap resampling. Units are µµµµg/L for log(TN). 

3.3.2 Discontinuous regression models 

 

Description and Data Requirements 

 

Discontinuous regression models, including piecewise or breakpoint regression (also 

split-point, join point or hockey-stick regression), are a suite of non-linear estimation 

techniques that can be used to evaluate locations in bivariate plots where the linear 

relationship between the dependent and independent variable changes.  This modeling 

approach has been used widely in environmental applications (Barrowman and Myers 

2000, Ryan and Porth 2007, Brenden and Bence 2008), and has also been applied for 

nutrient-response analyses (e.g., Dodds et al. 2002).   

 

Discontinuous regression models test whether a specific value of the independent 

variable might split a single model into two regression models (one above the value and 

one below the value) that better minimize the loss function (e.g., sum of squared 

deviations) associated with a set of stressor-response data.  In this case, the user may 

want to test whether a specific potential threshold or breakpoint exists; on either side 

of which, relationships between the stressor and response differ.  In addition to testing 

specific values, discontinuous regression can also search iteratively through the data to 

fit a point that minimizes the loss function (Barrowman and Myers 2000).  One can also 

perform this analysis as a non-linear regression where the functional form changes at 

the breakpoint (e.g., 2 straight lines that are continuous at the breakpoint but have a 

discontinuous slope).  There are a variety of methods.  The application for threshold 

identification in a nutrient criteria context used a quasi-Newton method (Dodds et al. 

2002), but other search methods have been used including grid search methods to 

identify globally best solutions (Barrowman and Myers 2000, Seber and Wild 2003).  
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Once a point is found that minimizes the loss function on either side of a point, one can 

evaluate the model fit for each line using standard SLR model fit tests (e.g., model 

significance, coefficient of determination, and residual plots).  One can also test whether 

the resulting lines are significantly different, which is important for determining whether 

a piecewise or split-point model is an improvement over a single linear or non-linear 

model (Kim et al. 2000, Tiwari et al. 2005, UCLA Academic Technology Services 2009).   

Other variations exist and alternative models, including quantile piecewise regression, 

can also be used (Brenden et al. 2008). 

 

Example Application 

 

Total species richness and TP data from the entire EMAP-West Stream Survey dataset 

(as opposed to the Xeric region used in previous examples) were used.  The relationship 

between these variables was fit using an iterative piecewise regression routine to 

identify a split-point in the relationship between TP and total species richness (Figure 

26). 

 

The routine used in this example employed a Gauss-Newton search method to identify 

the breakpoint that minimizes the standard sum of squared deviations.  A breakpoint 

was identified at a log(TP) value of 1.0 (10 µg/L).  Error around breakpoints identified 

with piecewise regression can be estimated using resampling techniques, as described 

for other analyses. 
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Figure 26.  Log(TP) vs. total species richness for EMAP-West Stream Survey data.  Line indicates fit from 

piecewise linear model. Units are µµµµg/L for log(TP). 

4 Evaluating estimated stressor-response relationships 

 

A number of different approaches can be used to develop estimates of stressor-

response relationships, and so the next step (Step 4, Figure 1) in deriving numeric 

nutrient criteria is to evaluate and compare different estimates of the stressor-response 
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relationship.  The predictive performance of different 

models can be validated (4.1), and the models can be 

qualitatively assessed in terms of different sources of 

uncertainty (4.2).  The final objective is to select a single 

stressor-response model for each response variable that 

best represents the data (4.3). 

4.1 Model validation 

 
One approach for validating model predictive 

performance is to use the estimated model to predict 

responses in independent validation data (i.e., data not 

used to calibrate the original relationship).  Independent 

validation data can be acquired in a number of ways, 

including resampling the study area using the same 

protocols used when collecting the calibration data.  

However, this approach may be impractical due to 

resource constraints.  Alternatively, a subset of the 

original dataset can be held out of the original analysis 

and reserved for model validation.  Different approaches 

for holding out data have been proposed.  One common 

and robust approach for evaluating the predictive accuracy of the model is to randomly 

select samples from the study area of interest, and reserve these as validation data.  The 

stressor-response model can then be calibrated with the remaining data and applied to 

the validation data.  When using stressor-response relationships to derive nutrient 

criteria, one concern is that estimated relationships will be confounded by unsampled or 

unmodeled factors that are correlated with the chosen nutrient variable.  If a validation 

dataset is specified by randomly selecting samples from the original dataset, it is likely 

that the covariance structure of the validation data will be similar to that of the 

calibration data, and the validation test may be misleading.  Thus, a complementary 

approach to randomly reserved validation data is to hold out a non-random subset of 

the original dataset.  For example, in a multi-State dataset, one could reserve data from 

a particular State for subsequent validation studies.  Within a given State, one could 

reserve data from a particular geographic region.  This non-random subset will likely 

have a different covariance structure from the calibration data, and can provide a more 

rigorous test of the estimated model. 

 

Predictive performance can be quantified by calculating statistics such as a root-mean-

square predictive error (RMSPE), which provides an estimate of the average difference 

between predicted values and observed values.   

 

Step 1 – Selecting and 

Evaluating Data

Step 2 – Assessing the 

strength of the cause-

effect relationship

Step 3 – Analyzing Data

Step 4 – Evaluating 

estimated stressor-

response relationships

Step 5 – Evaluating 

candidate stressor-

response criteria
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Where yobs,i is the observed value of the response variable at site i, ypred,i is the model 

predicted value of the response variable at site i, and N is the number of sites.   

 

Model accuracy will vary substantially depending upon the number of predictive 

variables included in the model, and the strength with which the response variable is 

associated with the different predictor variables.  However, for the present purposes, it 

is important to check whether RMSPE calculated for validation data is comparable to 

that calculated for calibration data.  If RMSPE from validation data is comparable to that 

observed for calibration data, then the model is less likely to be overfit. 

 

To illustrate this approach for model validation, data from Massachusetts was excluded 

from the EMAP Northeast Lakes Survey dataset, and the SLR model relating 

log(chlorophyll a) and log(TP) was refit using the remaining data.  The model was then 

used to predict chlorophyll a in Massachusetts.  Model predicted values were relatively 

close to the observed values (1:1 line in Figure 27). 
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Figure 27.  Predicted log(chl a) vs. observed log(chl a) for EMAP Northeast Lakes Survey sites in 

Massachusetts.  Solid line indicates 1:1 relationship. Units are µµµµg/L. 

 

RMSPE calculated for the calibration dataset was 0.28, while RMSPE calculated for the 

held-out validation data from Massachusetts was 0.27, so the modeled relationship was 

robust. 
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4.2 Qualitative assessment of the uncertainty of the estimated stressor-response 

relationship 

 
Models are by definition an approximate representation of reality, and when using 

models for decision-making it is prudent to consider model accuracy.  Model 

assumptions should be reviewed, and uncertainty regarding model structure should be 

considered.   

 

Model assumptions specific to each statistical method have already been considered 

(Step 3), and the appropriateness of these assumptions should be evaluated with 

respect to the data.  All stressor-response models estimated from cross-sectional or 

synoptic data must also invoke the assumption that spatial differences in sites can be 

substituted for temporal differences without a substantial degradation of model 

accuracy (i.e., the space-for-time substitution).  More specifically, stressor-response 

relationships will often be developed using data collected from many different sites 

within a State or study region, but when these stressor-response relationships are used 

to inform nutrient criteria, they are interpreted in terms of their effects on single sites.  

Space-for-time substitutions have long been used in ecological studies because long-

term temporal data are often not available (Fukami and Wardle 2005).  In the context of 

the ecological effects of nutrients, some studies have also shown this assumption to be 

generally valid (e.g., lake nutrient-chlorophyll a models, Jones and Knowlton 2005).   If 

long-term data in a small number of sites are available, analysis of these data can 

provide support for the validity of the space-for-time substitution. 

 

Uncertainty in model structure should also be considered before finalizing stressor-

response models.  Questions to consider include whether all appropriate environmental 

factors have been included in the model, and whether the specified functional form for 

each variable is appropriate.  Unmodeled environmental factors that co-vary with the 

nutrient variable and affect the response variable on their own can influence the 

estimated effects of the nutrient variable.  Some of these variables can be identified 

during the initial data exploration phases of the analysis (Step 1).  When data for these 

variables are available, their potential influence on the estimated effects of nutrient 

concentrations can be quantified by including them as explanatory variables in a 

multiple linear regression.  Propensity score analysis also provides a robust means of 

incorporating these variables into estimates of stressor-response relationships.  The 

effects of variables for which data are not available can only be considered qualitatively.  

Conceptual models specifying linkages between human activities, stressor variables, and 

response variables (Step 2) can provide insights into possibly important, but unsampled 

variables. 

 

The functional forms assigned to the nutrient variable and to other explanatory 

variables should also be considered.  Simple and multiple linear regressions assume that 

these function forms are linear (i.e., straight lines), and often this assumption provides a 

sufficiently realistic representation of the relationship between the nutrient and 



Empirical Approaches for Nutrient Criteria Derivation  

SAB Review Draft  

44 

 

response variables.  Fitting loess regression and other non-parametric smoothing 

regressions (Step 1) that relax the assumption of linearity can provide some indication 

as to whether linear models are appropriate. 

4.3 Select the stressor-response model  

 
Six approaches have been described for modeling stressor-response relationships, and 

one or more of these methods may have been applied to a specific response variable.  

These methods differ in the assumptions they impose on the residual distribution, the 

functional form of the stressor response relationship, and their data requirements 

(Table 1).  At this point in the analysis, one should review the assumptions associated 

with each method and select the model that is most appropriate for the available data.   

 

Of these methods, simple and multiple linear regressions impose the strictest 

assumptions regarding the data, but when appropriately applied, these models provide 

the strongest means of inferring the effects of different criteria.  Residual variance 

should be normally distributed (i.e., Gaussian) and constant over the range of predictor 

variables.  This assumption is particularly important when inferring probabilities of 

impairment from fitted relationships.  Relationships are also assumed to be linear. Each 

of these assumptions can be tested using regression diagnostic plots, or by fitting 

alternate, less restrictive models.   
 

Table 1.  Summary of different method characteristics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plotting residual values against predicted mean values can provide an indication as to 

whether residual variances are constant.  Alternatively, quantile regression can be used 

to estimate upper and lower percentiles (e.g., the 95
th

 and 5
th

 percentiles) of the 

Method 
Residual 

distribution 

Functional 

form 

Data 

requirements 

Simple linear 

regression 

Constant 

variance 

Gaussian 

linear moderate 

Logistic 

regression 
Binomial sigmoidal moderate 

Quantile 

regression 
none linear high 

Multiple linear 

regression 

Constant 

variance, 

Gaussian 

linear high 

Change point 

analysis 
None 

Step 

change 
moderate 

Discontinuous 

regression 

Constant 

variance 

Gaussian 

Piecewise 

linear 
high 
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response variable, as a function of the nutrient variable.  Then, the distance between 

these two quantiles provides an alternate indication of whether residual variances are 

constant.  When residual variance changes substantially, quantile regression can also 

provide an alternate means of estimating candidate criteria.  

 

The first four methods listed in Table 1 assume that the stressor-response function is a 

straight line (i.e., linear).  With logistic regression, this straight line is a logit-transformed 

function such that the final curve describing the probability of impairment is sigmoidal.  

In cases in which a linear model is not appropriate, split point regression can represent 

relationships that feature a single change in slope.  Changepoint analysis is even more 

flexible as it inherently only assumes that the distribution of mean response values 

changes in some unspecified manner along the range of predictor values (see Section 

3.3).  Note that most of the linear methods can be extended to curvilinear functional 

forms, either by transforming the predictor variables or by fitting non-parametric curves 

to the data (e.g., Wood and Augustin 2002).   

 

Data requirements for these methods are generally comparable.  They require paired 

observations of stressor and response variables meeting the assumptions described for 

each analysis.  Quantile regression requires more data to estimate extreme quantiles 

(e.g., 5
th

 and 95
th

 percentiles), and the data requirements for multiple linear regression 

increase with additional explanatory variables. 

 

In the examples based on EMAP Northeast Lakes Survey data, SLR explained nearly the 

same amount of variability as MLR, and quantile regression indicated that the residual 

variance of chlorophyll a was reasonably constant across different values of log(TP).  

Therefore, basing nutrient criteria on SLR seems appropriate.   

 

The example based on macroinvertebrate data from EMAP-West Xeric region stream 

provided a more challenging choice of stressor-response model.  Quantile regression of 

the bivariate relationships suggests that SLR assumptions were not appropriate.  Also, 

MLR identified a significant influence of other explanatory variables on the effects of TN, 

and controlling for these other covariates changed the estimates of the effects of TN on 

macroinvertebrate species richness.  Because multiple variables contribute to the 

observed values of richness, the MLR model likely provides the most accurate estimates 

of nutrient effects.    

 

In both of these examples, it has been assumed that a threshold value for the response 

variable is available, and so, one of the first four methods in Table 1 have been selected 

to translate this response variable threshold to a numeric nutrient criterion.  In cases in 

which response thresholds are not available, use of the last two methods in Table 1 is 

recommended. 
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5 Evaluating candidate stressor-response criteria 

 
The process of using a stressor-response relationship to 

translate an existing response threshold to a comparable 

nutrient criterion inherently requires that the values of 

response variables are predicted at lower nutrient 

concentrations.  That is, a criterion should be set such 

that when nutrient concentrations are reduced to this 

value at sites at which the criterion is exceeded, the 

values of the response variable at these sites meet 

management objectives (e.g., a certain proportion of sites 

maintain designated uses).  In this last step of the process, 

step 5 (Figure 1), an approach is outlined for explicitly 

predicting conditions that might result after implementing 

nutrient criteria.  These predictions can then be used to 

evaluate candidate criteria. 

 

As described in step 3, for EMAP Northeast Lakes Survey 

data, lake chlorophyll a concentrations are significantly 

associated with TP concentrations (Figure 28).  Following 

the methods outlined in step 3, a criterion to maintain 

chlorophyll a at 15 μg/L in approximately 50% of lakes 

could be set by calculating the point at which the 

chlorophyll a concentration predicted by the mean simple linear regression line is the 

same as the desired biological threshold.  The value of this candidate criterion is log(TP) 

= 1.6 (TP = 44 μg/L) (red arrow in Figure 28).   
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Figure 28.  Simple linear regression estimate of stressor-response relationship.  Red horizontal line 

indicates a possible threshold value for chlorophyll a of 15 μg/L.  The red arrow indicates a candidate 

nutrient criterion. Units are µµµµg/L. 

 

Inherent in this use of the stressor-response model is a prediction of the potential 

change in the value of the response variable at sites at which log(TP) exceeds the 
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candidate criterion.  More specifically, imagine that lakes in which the candidate 

criterion was exceeded were managed such that TP was reduced to the criterion value.  

The new chlorophyll a in these managed lakes could be predicted by projecting 

chlorophyll a values from the current nutrient concentration back to the criterion value, 

using the estimated stressor-response relationship.  An example of this prediction for 

one lake is shown as a blue arrow in Figure 29, where the slope of the arrow is identical 

to the slope estimated from the simple linear regression, and the arrow extends from 

the observed values of log(TP) and chlorophyll a to the candidate criterion value for 

log(TP) and a predicted value of chlorophyll a.   
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Figure 29.  Example of using an estimated stressor-response relationship to project the effects of 

criterion.  Units are µµµµg/L for log(TP) and log(chl-a). 

 

This process can be repeated for all sites that exceed each candidate criterion, as 

illustrated in Figure 30. (A candidate criterion value of log TP = 2 is assumed here to 

reduce the number of arrows on the figure and improve plotting clarity).  Then, after 

predicting chlorophyll a concentrations for these sites, the new distribution of 

chlorophyll a values (Figure 31) across the dataset can be examined with respect to 

management targets for the biological response.   
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Figure 30.  Example of projecting chlorophyll a in lakes to a candidate criterion value of log(TP) = 2 (TP = 

100 μg/L). Units are µµµµg/L for log(chl-a). 
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Figure 31.  Resulting distribution of chlorophyll a after projection.  Solid blue symbols show projected 

chlorophyll a concentrations at sites where original log(TP)  was greater than 2. Units are µµµµg/L for 

log(TP) and log(chl-a). 

 

Where the assumptions associated with predicting conditions at lower nutrient 

concentrations are consistent with assumptions inherent to using stressor-response 

relationships for setting criteria, these predictions can be used to assess the potential 

effects of candidate criteria.  One way to use these predictions to evaluate the effects of 

candidate nutrient criteria is to calculate the predicted probability of exceeding the 

biological threshold in sites that originally exceeded the candidate nutrient criterion.  In 

Figure 30, eight lakes exceeded the candidate criterion of log(TP) = 2.  After the 

candidate criterion is implemented, projected chlorophyll a concentrations in these 8 

lakes still exceeded the targeted biological threshold (Figure 31).  Thus, the predicted 

probability of impairment is still 100% even after implementation of this candidate 

nutrient criterion.  The predicted probability of impairment defined here is exactly 

analogous to the conditional probability of impairment described in step 1, and the two 

values can be shown on the same plot to compare observed conditions with predicted 

conditions after the implementation of different candidate criteria (Figure 32).   
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Figure 32.  Observed and predicted probabilities of impairment for different nutrient concentrations.  

Solid line: observed probability of impairment.  Solid symbols: predicted probability of impairment. 

Units are µµµµg/L for log(TP). 

 

The predicted probabilities of impairment are 0% for nutrient criteria less than 

approximately log(TP) = 1 (TP = 10 µg/L), while predicted probabilities of impairment are 

100% for criterion values greater than about 1.8 (TP = 63 µg/L)  (Figure 32).  In between 

these two limits, different predicted probabilities of impairment are associated with 

different candidate criteria.  Examining the predicted effects of candidate criterion in 

this way provides information that is more directly applicable to risk management 

decisions.  That is, for any criterion value one can state the probability of impairment for 

sites at which current nutrient concentrations exceed the candidate criterion value.  
 

One further advantage of using this approach to evaluate candidate criteria is that the 

framework expands easily to incorporate more involved analyses of the stressor-

response relationship.  So, this approach can be applied regardless of the type of model 

selected for estimating stressor-response relationships.  Stressor-response relationships 

for the EMAP West Xeric region streams provide a case in which the effects of increased 

nutrients are best estimated using MLR (Figure 33).  In this case variability about the 

mean relationship between total richness and TN is large, and reducing TN 

concentrations does not appear to strongly affect the number of sites that attain the 

specified response threshold.    
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Figure 33.  Total species richness vs. log(TN) for EMAP-West Xeric region streams.  Arrows indicate 

predicted direction of change from multiple linear regression.  Red horizontal line indicates possible 

response threshold, and dashed vertical line indicates possible criterion value. Units are µµµµg/L for 

log(TN). 

 
Plots of predicted probabilities of impairment are consistent with qualitative 

observations from the scatter plot (Figure 34).  Candidate criteria that are greater than 

approximately log(TN) = 2.7 (TN = 500 µg/L) do not substantially change the probability 

of observing impaired sites, while candidate criteria between log(TN) = 2 and 2.7 (TN = 

100 - 500 µg/L ) reduce the probability of impairment by about 10%.  Candidate criteria 

less than 2 have more marked effects on the probability of impairment.  In this case, 

stressor-response analyses indicated that MLR provided the most accurate estimates of 

the effects of TN, but different criterion values were identified by each method.  The 

predictive summary shown in Figure 34 provides a means of evaluating each candidate 

criterion value with respect to predicted probabilities of impairment. 
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Figure 34.  Observed and predicted probabilities of impairment for EMAP-West Xeric region streams.  

Predicted probabilities of impairment based on a MLR model (solid black symbols). Units are µµµµg/L for 

log(TN). 
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In addition to the assumptions discussed above, several different aspects of model 

uncertainty can influence the predictions calculated from stressor-response 

relationships.  First, the slope of the estimated stressor-response relationship is 

uncertain.  One estimate of this uncertainty is the standard error for the regression 

coefficient provided.  This standard error could be incorporated into the predictions for 

each point, but calculation of this standard error assumes that the model is correctly 

specified.  Unmodeled factors that are correlated with the nutrient variable and 

influence the response variable on their own can add further uncertainty to the 

estimated regression coefficient that would not be represented by the estimated 

standard error.  Thus, a qualitative assessment of the accuracy and potential biases of 

the estimated model (as discussed in step 4) is critical.  For example, if a qualitative 

assessment of the value of the regression coefficient suggests that the effects of 

nutrients are over-estimated (i.e., the magnitude of the regression coefficient is too 

large), then projected values of total richness would be higher than would be observed.  

This uncertainty may suggest that a lower criterion value would be appropriate.   

 

Predictions based on the estimated slope of the stressor-response relationships are also 

subject to assumptions regarding the validity of space-for-time substitution and 

assumptions regarding the nature of management actions.  As noted in step 4, stressor-

response relationships are likely to be estimated using data collected across many 

different sites. Then, in setting candidate criteria, one assumes that this relationship is 

applicable to individual sites, where nutrient concentrations change over time.  In 

predicting only the effects of reductions in nutrients, one also assumes that 

management actions only influence nutrient concentration.  In reality, most 

management actions would likely affect other stressors as well.  For example, increasing 

the extent of riparian buffers is known to reduce both TP loading and inputs of fine 

sediment.  Thus, projecting conditions based only on changes in nutrient concentration 

may underestimate the effects of certain management actions.  Finally, estimates of the 

effects of nutrients are based on data in which other factors co-vary with nutrient 

concentrations.  When nutrient concentrations are reduced to calculate predictions, the 

combination of the decreased nutrient concentrations with other environmental factors 

may diverge from combinations of nutrients and other factors that are observed in the 

dataset.  Thus, confirming that predicted conditions are still within the range of 

observed conditions can help protect against extrapolating beyond the scope of the 

data. 

 

The effects of both unmodeled factors that are not correlated with the nutrient variable 

and sampling variability of the response variable are also important.  In Figure 33, 

observed values of total richness are distributed widely about the mean regression line 

because of these two sources of variability.  This residual variability influences the 

percentage of sites that exceed the total richness threshold and ultimately, influences 

the perceived effectiveness of the candidate criterion in helping to reach management 

objectives.  Ideally, residual variability would be explicitly modeled when predicting 

conditions at lower nutrient concentrations.  However, the simpler approach adopted 
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here takes this variability into account by projecting the value for each sample from the 

original, observed value for that sample.  That is, the existing residual variability in the 

observations is maintained in the predictions at lower nutrient concentrations.  This 

approach assumes the magnitude of residual variability is constant across the range of 

modeled conditions, an assumption that has already been invoked when fitting the 

original regression model.  Note that because of residual variability, a model prediction 

for a single site should not be interpreted as an accurate projection of future conditions 

at that particular site.  The uncertainty for predictions for individual sites is at least as 

large as the observed residual variability, so it is very difficult to accurately predict 

future conditions at a single site.  However, when errors are normally distributed the set 

of predictions for all sites can provide a reasonably accurate estimate of the distribution 

of conditions after the implementation of a candidate criterion. 

 

The list of assumptions and uncertainties described here is extensive, but as noted 

earlier, these issues are present regardless of whether predictions are explicitly 

calculated and examined.  That is, when stressor-response relationships are used to set 

candidate criteria, predictions of conditions at lower nutrient concentrations are 

implicitly assumed.  Therefore, evaluating criteria in terms of predicting conditions 

provides a means of more clearly understanding and communicating sources of 

uncertainty in the analysis.   

 
Criteria based on the characteristics of the stressor-response relationship (e.g., change 

points) may be more challenging to evaluate.  If regression models that represent the 

stressor-response relationship are available from other analyses, and a response 

threshold has been defined, then the approach outlined here can be applied.  However, 

in many cases, criteria may be based on characteristics of the stressor-response 

relationship because response thresholds are not available and/or regression models 

cannot be fit.  In these cases, evaluation of the appropriateness of candidate criteria is 

more subjective.  A threshold behavior (e.g., Figure 26) may indicate that some 

assimilative capacity for excess nutrients is available in the system, and therefore, 

setting the criterion at this threshold may be particularly appropriate.  Evidence of the 

same type of response in other studies may provide support for the selected criteria. 
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Appendix A – Data Descriptions 

 
EMAP-West Streams Survey: This was the western States component of the USEPA ORD 

program to conduct a statistically-valid survey of the biological condition of streams 

throughout the U.S.  This project sampled wadeable stream reaches across 12 western 

States during the summers of 2000 to 2002. The stream reaches were selected for 

sampling with a probability design. Extensive biological, chemical, physical habitat, and 

landscape-scale parameters were collected at each sample site. A total of 827 sites were 

sampled and have the full suite of measurements available. Refer to USEPA (2006b) for 

details of the survey.  More detailed information is also available on the EMAP website 

(http://www.epa.gov/emap/). 

 

EMAP Northeast Lakes Survey: This was an early pilot program of USEPA ORD EMAP 

project. Data were acquired in 1991-1994 and are available from the EMAP web site.  

Approximately 330 lakes were sampled over four years. The lakes were selected for 

sampling with a probability design, and a suite of indicators were collected. Specifics of 

the survey can be found in Halliwell et al. (2001), Whittier and Kincaid (1999), and 

Whittier et al. (1997, 2001).  

 

EMAP Mid-Atlantic Integrated Assessment: This was a Mid-Atlantic sampling program of 

the USEPA ORD EMAP focused on characterizing water quality conditions in streams 

across the Mid-Atlantic Highlands region (an area that includes the Central 

Appalachians, the Central Appalachian Ridges and Valleys, and the Blue Ridge 

Mountains ecoregions).  Approximately 850 sites were sampled between 1993 and 1998 

and a suite of indicators were collected consistent with most EMAP programs.  Specifics 

of the survey and results can be found in Stoddard et al. (2006). 

 

USGS National Water Quality Assessment (NAWQA) Program: NAWQA is a national 

water quality monitoring program initiated by the USGS in 1991 as a long-term water 

resources monitoring network in support of State and federal management needs.  

NAWQA focuses its efforts on large river basins or study units and sampled 51 study 

units between 1991 and 2001.  NAWQA collects data on macroinvertebrates, fish, algae, 

water quality, and habitat.  They also characterize land use within each watershed 

draining to their sampling sites.  The Susquehanna River Basin Study Unit includes sites 

in several ecoregions, including the Allegheny Plateau and Ridge and Valley.  NAWQA 

sampling protocols are all available along with detailed reports on the Susquehanna 

River Basin Study unit at the NAWQA website (http://water.usgs.gov/nawqa/). 

 

Maryland Biological Stream Survey (MBSS) Piedmont dataset: The Maryland Biological 

Stream Survey was started by the Maryland Department of Natural Resources in 1993 

and has been sampling streams around the State using a combined randomized and 

fixed sentinel site network design for the last 16 years.  The MBSS samples 

macroinvertebrates, fish, habitat, and water chemistry using standardized protocols.  
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They also characterize land cover/land use characteristics for the watersheds draining to 

each site.  The program has sampled more than 2000 sites since inception.  The 

Piedmont dataset consists of those sites sampled by MBSS on the Piedmont ecoregion. 

More detailed information is also available on the MBSS website 

(http://www.dnr.md.gov/streams/mbss/). 
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Appendix B – Propensity Score Analysis 

 

Propensity score analysis was developed specifically to more accurately estimate 

stressor-response relationships from observational data (Rosenbaum 2002).  This 

approach provides a means for optimally controlling for the effects of all observed 

covariates when estimating the effects of nutrients.  That is, to best estimate the causal 

effect of the selected nutrient variable, one would like to identify groups of samples that 

are similar with regard to covariate distributions, but differ with regard to the nutrient 

variable.  If only a single factor (e.g., substrate sediment) co-varied with the nutrient 

variable, one could stratify the dataset by this one factor, splitting the dataset into 

groups with similar values.  However, this approach rapidly becomes impractical as the 

number of factors increases.  Propensity scores (Rosenbaum and Rubin 1983, 

Rosenbaum 2002, Imai and Van Dyk 2004) summarize the contributions of all known 

covariates as a single variable.  A propensity score is estimated by modeling the value of 

the nutrient variable as a function of covariate values using regression analysis.  Then, 

the predicted mean nutrient concentration in each stream is the propensity score.  

Stratifying by the propensity score effectively splits the dataset into groups with similar 

covariate distributions.  Once the dataset is stratified, causal effects of nutrients can be 

more confidently estimated within each group because distributions of other covariates 

are similar. 

 

To most effectively apply the propensity score approach, extensive data quantifying 

covariate values, in addition to the nutrient and response variable, must be collected at 

all sampling locations.  These relatively intense data requirements derive from the fact 

that the analysis cannot control for covariates for which data are not available.  

Operationally, any environmental factor that is thought to co-vary with nutrient 

concentrations should be included in the analysis.  Examples include measurements of 

other direct stressors on the aquatic community (e.g., substrate sand/fines, water 

chemistry), natural factors that determine stream type (e.g., watershed size, geographic 

location, canopy cover), and land use summaries that provide information regarding the 

intensity of nearby human activities (e.g., percent agriculture in the catchment).  In 

addition to the large number of different variables, propensity score analysis requires 

data from a large number of distinct sites because a broad variety of different sites are 

required to effectively identify groups of sites with similar covariate distributions. 

 

Example Application  

 

USEPA Office of Research and Development (ORD) EMAP West Stream Survey data 

(Appendix A) are ideally suited for applying propensity score analyses because a broad 

suite of variables was collected at each site, and many sites were sampled.  A 

generalized additive model (Wood and Augustin 2002) was used to model observed TN 

concentrations as a function of fourteen covariates (elevation, grazing intensity index, 

longitude, log annual precipitation, log catchment area, log Cl
-
, log HCO3

-
, log SO4

=
, 
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percent substrate sand/fines, stream temperature, percent catchment agriculture land 

use, percent catchment urban land, percent open canopy, and riparian agricultural 

disturbance).  Then, model-predicted mean values of log TN at each site were the 

propensity scores for each site (Imai and Van Dyk 2004), and the entire dataset was 

divided into 6 groups based on equally-spaced percentiles of the propensity score.   
 

Table 2.  Correlation coefficients between covariates and TN.  Correlation coefficients tabulated for full 

dataset (rf) and maximum absolute value of r across strata (Max|r|).  *Correlation coefficient of 0.31 

for elevation was only observed in one stratum. 
Covariate rf Max(|r|) 

Elevation -0.21 0.31* 

Grazing intensity index 0.64 0.19 

log annual precipitation -0.51 0.25 

log catchment area 0.51 0.23 

log Cl
-
 0.64 0.12 

log HCO3
-
 0.56 0.21 

log SO4
=
 0.64 0.07 

Longitude 0.63 0.24 

Percent catchment agriculture 0.61 0.29 

Percent catchment urban 0.34 0.12 

Percent open canopy 0.49 0.11 

Percent substrate sand/fines 0.65 0.26 

Riparian agricultural disturbance 0.53 0.21 

Stream temperature 0.48 0.20 

 

TN co-varied strongly with a number of variables in this dataset.  In the full dataset, TN 

was strongly positively correlated (r > 0.5) with grazing intensity, catchment area, Cl
-,
 

HCO3
-
,SO4

=
, agriculture land use in the catchment and in the riparian zone, and percent 

substrate sand/fines (column labeled rf in Table 2).  It was also strongly negatively 

correlated with annual precipitation.  After stratifying by propensity score, the strength 

with which each covariate was correlated with TN decreased across all strata.  The 

maximum absolute value of correlation coefficients across all strata decreased to less 

than 0.3 for all variables except for elevation.  Elevation was correlated with TN with r = 

0.31 in only one stratum, and in all other strata, correlation strength was less than 0.21.  

Overall, stratifying by propensity score effectively reduced the degree to which other 

variables were correlated with TN. 

 
Since other environmental variables are only weakly correlated with TN within each 

stratum, these variables are much less likely to confound regression estimates of the 

effects of TN on total richness calculated for each stratum.  Thus, one can more 

confidently infer that regression estimates of TN effects reflect stressor-response 

relationships. The effects of TN on total invertebrate richness (Figure 35) varied across 

different strata.  In Strata 1-3, increased TN had weakly positive (and not statistically 

significant) effects on total richness, whereas in Strata 4-6, increased TN was associated 
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with significant decreases in total richness.  So, one could conclude from this analysis 

that in certain types of streams, increased TN concentration likely caused decreases in 

total richness.  In Strata 4-6, a one unit change in log(TN) was associated with a loss of 6 

to 9 taxa.   

 

Propensity score analysis can be applied to any field dataset, given enough covariate 

data, and thus, can be used to estimate the effects of nutrients on the chosen response 

variable.  Because the effects of covariates are greatly curtailed by this analysis 

approach, the estimated effects can be more confidently attributed to stressor-response 

relationships. 
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Figure 35.  Relationships between TN and total invertebrate richness within each stratum.  Solid lines 

are the linear regression estimates, and dashed lines are the 95% confidence intervals around those 

estimates.  Strata roughly correspond to a gradient of human disturbance, from well-shaded, forested 

streams (Stratum 1) to open canopy streams in grazed areas (Stratum 6). 
 
 



Empirical Approaches for Nutrient Criteria Derivation  

SAB Review Draft  

67 

 

Appendix C – Conditional Probability Analysis 

 

Conditional probability is fundamental to all of probability and statistics. It is generally 

covered in most probability texts and has been used in the analysis of data from 

numerous disciplines (e.g., Henry 1969, Mitchell 1991, Ming Tan 1996, Greenland and 

Bonow 2008). It is fundamental in Bayesian statistics where one views probability as a 

degree of belief (or confidence): how much confidence does one have in a specific result 

if certain information is true (Ashby 2006)?  The application of conditional probability in 

the analysis of thresholds in environmental data is quite recent.  This appendix describes 

application of conditional probability in the analysis of environmental information for 

exploring the relationship between candidate criterion values and the probability that a 

selected response variable will exceed a threshold indicating that a waterbody is not 

meeting its designated use. This relationship can further be analyzed to help identify 

candidate criteria.  The approach is referred to here as conditional probability analysis 

(CPA), and most of the material in this section is drawn from Paul and McDonald (2005). 

 

Description and Data Requirements 

 

The probability of an event y is denoted as P(y). A conditional probability is the 

probability of an event y when it is known that some other event x* has occurred, and is 

denoted as P(y|x*).  An example of a conditional probability would be the probability of 

degraded macroinvertebrate condition in a stream, given that lead concentrations in 

sediments exceed 10 µg/L.     

 

For use in developing and evaluating candidate criteria, conditional probabilities can be 

expressed in terms of the probability of not meeting the designated use, given that the 

observed stressor values exceed a candidate criterion.   This probability can be written 

as P(y = 1 | x > xC), where y = 1 denotes not meeting a designated use (unacceptable 

conditions), y = 0 denotes meeting designated use (acceptable conditions), x is the 

nutrient (stressor variable), and xC is the candidate criterion.  For example, one could 

calculate the probability of a stream not meeting its designated use, given that the total 

phosphorus concentration in the stream exceeds 120 µg/L. For discussion here, assume 

that as the magnitude of the stressor increases, the probability of not meeting the 

designated use also increases.   

 

The observed stressor values, xi, are treated as random values. If the data were acquired 

with a probability design (Cochran 1977), then the inclusion probability (IP) for a sample 

provides the probability that the sample was selected for a given draw from the target 

population. IPs are used as weighting factors for statistical estimation from the data.  

For a probability sample, every sample element in the target population has a non-zero 

probability of being selected. For non-probability samples, all samples are analyzed as 

having equal weights. 
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The response variable, yi, is a random variable, either from observations or from a 

modeled stochastic function.  Each value of yi is paired with an observed value of the 

stressor, xi. Then conditional probabilities can be calculated using the following 

relationship (Hogg and Ledolter 1992), 
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where P(y = 1,x > xC) is the joint probability, that is, both the stressor exceeds the 

candidate criterion value and the waterbody does not meet its designated  use.  

 

The following two-step procedure is used to estimate the conditional probability not 

meeting a designated use, given that the observed stressor value is exceeded in a 

particular dataset: 

 

1. Identify a subset of the samples for which x > xC,. 

 

2. For the subset of the samples identified at step 1, estimate the probability of not 

meeting the designated use.  

 

This two-step procedure can be repeated for values of xC over the entire range of 

observed xi, and the resulting numbers describe an empirical conditional probability 

curve. The response variable is either from observations paired with the stressor 

variable or modeled as a stochastic function of the stressor variable. If the response 

variable is from observations, confidence intervals (CIs) for the empirical curve are 

estimated by one of two methods: (1) bootstrap resampling of the original data pairs 

(Manly 1997) or (2) assume that the subset of values for each xC value can be treated as 

a weighted simple random sample (SRS). 

 

Thresholds in the empirical conditional probability curve, if they exist, are identified by 

various techniques that can include changepoint analysis.  A changepoint is defined as 

the value xR (1 < R < N) that divides the response (empirical conditional probability 

curve) into 2 groups, y1 … yR-1 and yR … yN each with distinct characteristics defined in 

some manner (Qian et al. 2003).  The corresponding value of the stressor, xR, is called 

the threshold.   Changepoint analysis is a well-established procedure in the literature 

(Barry and Hartigan 1993; Groger et al. 2007). 

 

The techniques for the identification of thresholds include: deviance reduction (see 

section 3.3.1), non-overlapping confidence intervals, and change in curvature in fit of a 

non-linear double logistic curve. These techniques are briefly described and illustrated 

in the examples that follow. It should be noted that all thresholds should be evaluated 

for significance to establish that the estimated threshold represents a real change in the 

characteristics of the response variable and is not just an artifact of the method. 
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To apply CPA to a dataset for criteria development, at least 3 conditions should be 

satisfied. They are: 

 

1. The data should be sense representative of the aquatic resource for which 

criteria are to be derived so that results can be applied to unsampled locations. 

Data should be unbiased (e.g., for what purpose were the data originally 

collected?), and ideally, collected using a probability-based design. However, 

from a practical point of view, other data might be acceptable as long as it can 

be shown that the distribution of values is similar to the distribution of data 

collected using a probability-based design.   

 

2. A metric or measurement must quantify the levels of the stressor of interest. If 

the metric is a surrogate for the stressor of interest, then its relationship to the 

stressor of interest should be clearly articulated.   

 

3. A threshold in the response is known (as described in step 1) that quantitatively 

divides the aquatic resource into groups meeting and not meeting the 

designated use.  

 

For use of conditional probability analysis by those unfamiliar with statistical 

calculations, a spreadsheet module has been developed and is available for conducting 

CPA (Hollister et al. 2008). While the calculations are done in R, the user interface is an 

Excel add-in. It is available at http://www.epa.gov/emap/nca/html/regions/cprob/ 

(Figure 36).  An example of the use of CPA for identification of candidates in stressor 

identification is available at www.epa.gov/caddis. 
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Example Applications 

 

In the two datasets used in these example applications, the site selections were made 

with a probability-based design. For all of the examples presented here, the sample 

values are treated as having equal weight to simplify the examples. The results of these 

examples would be applicable only to the sites that were sampled by the study.  

Because of this simplification, insights derived from these examples may not be 

generally applicable to the study area. 

 

The first example uses data from the EMAP Northeast Lakes Survey (Appendix A).  

Chlorophyll a and total phosphorus water samples are used for the identification of 

candidate criterion for phosphorus with chlorophyll a as the response.  A scatter plot of 

chlorophyll a vs. total phosphorus (log-log transformed) (Figure 12) indicates that the 

chosen stressor and response variables are strongly associated with one another.   

 

The cumulative distribution function (CDF) of total phosphorus for all of the lakes is 

shown in Figure 37.  Also shown in this figure are conditional CDFs (CCDFs) for eutrophic 

lakes and non-eutrophic lakes, where chlorophyll a is used as demarcation (threshold) 

between eutrophic and non-eutrophic.  For this exercise, chlorophyll a = 15 µg/L is the 

Figure 36.  CPROB add-in module for conducting conditional probability analysis. 
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assumed threshold for the response variable that determines when these lakes do not 

meet their designated use. The CCDFs indicate a clear distinction between the 

distributions in these two groups. 
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Figure 37.  Cumulative distribution function (CDF) and conditional cumulative distribution functions 

(CCDFs) for total phosphorus concentrations for the EMAP Northeast Lakes Survey data. Dotted line: 

conditioned on chlorophyll a < 15, dashed line: conditioned on chlorophyll a > 15. Units are µµµµg/L of 

log(TP). 

 
The empirical conditional probability curve for the probability of eutrophic conditions (> 

15 µg/L chlorophyll a, using observed responses) given that the observed phosphorus 

exceeds the value on the x-axis is shown in Figure 38.  The curve indicates that there is a 

100% probability of observing a lake in eutrophic condition given that total phosphorus 

level in the lake exceeds 50 µg/L.  Possible thresholds from visual observation of the 

curve occur around 25 and 50 µg/L for phosphorus, depending if one incorporates the 

confidence limits or not. The threshold from non-overlapping confidence limits is 

identified by drawing a horizontal line from the upper limit of the unconditional 

probability value (value at extreme left) and determining where it crosses the lower 

limit of the empirical curve, which is at 10 µg/L. 

 

The non-overlapping confidence limit threshold (10 µg/L total phosphorus) is the lower 

limit for a criterion of what could be detected as statistically different from what would 

be expected if observations were made across lakes in the whole geographic area (the 

unconditional probability). An upper limit for a criterion would be for 100% probability 

of a lake being eutrophic (50 ug/L total phosphorus).  

 

Also shown on Figure 38 (red line) is a non-linear least-squares curve fit to the double 

logistic curve: 
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Where D, B1, B2, and x0 are the regression parameters, with x0 as the value where the 

change in curvature (B1 to B2) occurs. The change of curvature is at 21.1 µg/L total 

phosphorus, with 95% confidence limits of 20.1 – 22.6. The 95% confidence limits of the 

slopes do not overlap, so this change point is significant. The deviance reduction 

changepoint is 20 µg/L total phosphorus, with 95% confidence limits of 18-23 µg/L. 
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Figure 38.  The empirical conditional probability curve (black open circles) for observing a eutrophic lake 

(chlorophyll a > 15 µg/L) if the total phosphorus concentration in the lake exceeds the x-axis value. 

Solid lines are 95% confidence limits. Red solid line is non-linear curve fit of double logistic curve. Units 

are µµµµg/L of log(TP). 

 
In summary, the results of the first example using CPA with non-overlapping confidence 

intervals for the EMAP Northeast Lakes Survey data with a use attainment threshold of 

15 µg/L chlorophyll a and equal weighting to all of the values, indicate a minimum 

candidate changepoint of 10 µg/L and a maximum of 50, while non-linear curve fit 

determined changepoint at 21.1 and deviance reduction determined a candidate of 20 

µg/L.   

 
The second example uses data from EMAP West Xeric region streams (Appendix A). The 

response variable is total species macroinvertebrate richness and the nutrient variable is 

total nitrogen. The threshold for total species macroinvertebrate richness separating 

acceptable from unacceptable conditions was assumed to be 40 for this exercise.  
 
The cumulative distribution function (CDF) of total nitrogen for all of the sampled 

streams is shown in Figure 39. Also shown in this figure are conditional CDFs (CCDFs) for 

streams with less than 40 total species richness and those with greater than or equal to 

40. The distributions of nitrogen values differ across these two groups.  
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Figure 39.  Cumulative distribution function (CDF) and conditional cumulative distribution functions 

(CCDFs) for EMAP-West Xeric region streams. Solid line: CDF for log(TN), dashed line: CCDF for log(TN) 

conditioned on total species richness ≥ 40, and dotted line: CCDF for log(TN) conditioned on total 

species richness < 40.  Units are µµµµg/L of log(TN). 

 

The empirical conditional probability curve for the probability of total richness < 40 

given that the observed total N exceeds the value on the x-axis is shown in Figure 40.  

The curve indicates that there is a 100% probability of observing a richness less than 40 

when log(TN) > 3.3.  The confidence limits (95%) determined by bootstrap resampling 

are shown as solid lines. The threshold from non-overlapping confidence limits is 

identified by drawing a horizontal line from the upper limit of the unconditional 

probability value (value at extreme left) and determining where it crosses the lower 

limit of the empirical curve, which is at approximately log(TN) = 2.7.   
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Figure 40.  The empirical conditional probability curve (black open circles) for observing a stream with 

total richness < 40 if the total nitrogen concentration in the stream exceeds the x-axis value. Solid lines 

are bootstrap 95% confidence limits. Units are µµµµg/L of log(TN).
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Appendix D – Acronyms 

 
CART – Classification and Regression Trees 

CDF – Cumulative Distribution Function 

Chl a – Chlorophyll a 

CPA – Conditional Probability Analysis 

CWA – Clean Water Act 

EDA – Exploratory data analysis 

EMAP – USEPA Environmental Monitoring and Assessment Program 

IBI – Index of Biological Integrity 

MLR – Multiple linear regression 

nCPA – Non-parametric changepoint analysis 

ORD – Office of Research and Development 

OST – Office of Science and Technology 

Q-Q – Quantile-quantile 

QR – Quantile Regression 

RMSPE – Root-mean squared prediction error 

SEM – Structural Equation Models 

SLR – Simple Linear Regression 

TN – Total Nitrogen 

TP – Total Phosphorus 

USEPA – United States Environmental Protection Agency 

WQS – Water Quality Standards 
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Appendix E – Glossary 

 
algae 

Chiefly aquatic, eukaryotic one-celled or multicellular plants without true stems, roots 

and leaves that are typically autotrophic, photosynthetic, and contain chlorophyll.  

 
algal biomass 

The weight of living algal material in a unit area at a given time. 

 

aquatic life use 

A beneficial use designation in which the waterbody provides suitable habitat for 

survival and reproduction of desirable fish, shellfish, and other aquatic organisms. 

 

assemblage  

An association of interacting populations of organisms in a given waterbody. Examples 

of assemblages used for biological assessments include : algae, amphibians, birds, fish, 

herps (reptiles and amphibians), macroinvertebrates (insects, crayfish, clams, snails, 

etc.), and vascular plants. 

 

benthos/benthic 

The assemblage of organisms associated with the bottom, or the solid-liquid interface of 

the aquatic system. Generally applied to organisms in the substrata. 

 

biological assessments or bioassessments  

Evaluation of the biological condition of a waterbody using biological surveys and other 

direct measurements of resident biota in surface waters.  

 

biological criteria or biocriteria 

Narrative or numeric expressions that describe the biological condition (structure and 

function) of aquatic communities inhabiting waters of a designated aquatic life use. 

Biocriteria are based on the numbers and kinds of organisms present and are 

regulatory-based biological measurements.  

 

biological integrity 

The ability of an aquatic ecosystem to support and maintain a balanced, adaptive 

community of organisms having a species composition, diversity, and functional 

organization comparable to that of natural habitats within a region.  

 

biological monitoring or biomonitoring 

Use of a biological entity as a detector and its response as a measure to determine 

environmental conditions. Toxicity tests and ambient biological surveys are common 

biological monitoring methods.  
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cause 

That which produces an effect (a general definition). 

 

chlorophyll a 

A complex molecule composed of four carbon-nitrogen rings surrounding a magnesium 

atom; constitutes the major pigment in most algae and other photosynthetic organisms; 

is used as a reliable index of algal biomass. 

 

confidence interval  

An interval defined by two values, called confidence limits, calculated from sample data 

using a procedure which ensures that the unknown true value of the quantity of interest 

falls between such calculated values in a specified percentage of samples. Commonly, 

the specified percentage is 95%; the resulting confidence interval is then called a 95% 

confidence interval. A one-sided confidence interval is defined by a single calculated 

value called an upper (or lower) confidence limit. 

 

cumulative distribution:  

A means of representing the variation of some attribute by giving running totals of the 

resource with attribute values less than or equal to a specified series of values. For 

example, a cumulative areal distribution of lakes would give, for any value of area, the 

total area covered by lakes with individual area less than or equal to alpha. A cumulative 

frequency distribution for lake area would give the total number of lakes with area less 

than or equal to alpha. The cumulative distribution function (cdf) of some specified 

attribute of a population is the function F(x) that gives the proportion of the population 

with value of the attribute less than or equal to x, for any choice of x. For example, if the 

attribute was lake area in hectares, F(a) would give the proportion of lakes with area 

less than or equal to a ha. (In some cases, the word "cumulative" may be omitted in 

discussions of the cdf, and the cdf is called the distribution function.)  

 

criteria 

Elements of State water quality standards, expressed as constituent concentrations, 

levels, or narrative statements, representing a quality of water that supports a particular 

use. When criteria are met, water quality will generally protect the designated use. 

 

designated uses 

Uses defined in water quality standards for each waterbody or segment whether or not 

the use is being attained. 

 

diatom  

Microscopic algae with cell walls made of silicon and have two separating halves. 

 

ecoregion 

A region defined by similarity of climate, landform, soil, potential natural vegetation, 

hydrology, and other ecologically relevant variables. 
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empirical 

Relying upon or gained from experiment or observation. 

 
endpoint  

An observable or measurable biological event or chemical concentration (e.g., 

metabolite concentration in a target tissue) used as an index of an effect of a chemical 

exposure. 

 

eutrophic 

Abundant in nutrients and having high rates of productivity frequently resulting in 

oxygen depletion below the surface layer. 

 

eutrophication 

The increase of nutrients in [waterbodies] either naturally or artificially by pollution. 

 

gradient 

The rate of change in value of a physical or chemical parameter per unit change in 

position. 

 
habitat 

A place where the physical and biological elements of ecosystems provide a suitable 

environment including the food, cover, and space resources needed for plant and 

animal livelihood. 

 

impairment  

Detrimental effect on the biological integrity of a waterbody caused by an impact that 

prevents attainment of the designated use. 

 

linear model 

Linear models have the form, 

 

ƒ(x)=ß0 + ß1x1 + ß2x2 + ß3x3... 

 

in which for any number of independent or explanatory variables (i.e., x1, x2, x3 ....), 

each independent or explanatory variable in the model is multiplied by an unknown 

parameter (i.e., ß1, ß2, ß3 ....), there is at most one unknown parameter with no 

corresponding independent or explanatory variable (i.e., ß0), and all of the individual 

terms are summed to produce the final function model. 

 

Although such a function may not describe a straight line, it is said to be linear in the 

parameters, because the problem can be reduced to system (i.e., one to many) of 

algebraic (i.e., linear) equations that can be solved for unique values of the unknown 

parameters (i.e., ß0, ß1, ß2, ß3 ....). 
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macroinvertebrates  

Animals without backbones of a size large enough to be seen by the unaided eye and 

which can be retained by a U.S. Standard No. 30 sieve (28 meshes per inch, 0.595 mm 

openings).  

 

metric  

A calculated term or enumeration representing some aspect of biological assemblage, 

function, or other measurable aspect and is a characteristic of the biota that changes in 

some predictable way with increased human influence. A multimetric approach involves 

combinations of metrics to provide an integrative assessment of the status of aquatic 

resources.  

 

mesotrophic 

Having a nutrient loading resulting in moderate productivity. 

 

μg/L 

micrograms per liter, 10
-6

 grams per liter 

 

mg/L 

milligrams per liter, 10
-3

 grams per liter 

 

minimally impaired  

Sites or conditions with slight anthropogenic perturbation relative to the overall region 

of the study. 

 

model  

A mathematical function with parameters that can be adjusted so the function closely 

describes a set of empirical data.  

 

monitoring  

Periodic or continuous surveillance or testing to determine the level of compliance with 

statutory requirements and/or pollutant levels in various media [air, soil, water] or in 

humans, plants, and animals.  

 

multimetric  

Analysis techniques using several measurable characteristics of a biological assemblage. 

 

multivariate 

Type of statistics that relates one or more independent (explanatory) variables with 

multiple dependent (response) variables. 

 

nutrients  

Elements (e.g., nitrogen and phosphorus) essential for the growth of organisms.  
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oligotrophic 

Trophic status of a waterbody characterized by a small supply of nutrients (low nutrient 

release from sediments), low production of organic matter, low rates of decomposition, 

oxidizing hypolimnetic condition (high DO). 
 
periphyton 

Associated aquatic organisms attached or clinging to stems and leaves of rooted plants 

or other surfaces projecting above the bottom of a waterbody. 

 

prediction interval 

A type of statistical interval that has a specified probability (commonly 95%) of enclosing 

the value of a "future" unit that is predicted based on the available data and does not 

belong to the sample used to generate the prediction, assuming that the future unit is 

drawn from the same population. In the context of regression analysis, standard 

prediction intervals relate to uncertainty when the fitted regression is used to predict 

the response (Y) variable for specific values of X variables. In cases of linear regression 

with a single X variable, prediction intervals associated with all X values are 

conventionally depicted as a band enclosing the fitted regression line, bounded by two 

curves that diverge as X increases in distance from the mean X, in either direction. 

Prediction intervals address both unit variation (e.g., as evaluated using sample 

quantiles) and statistical error in estimating unknown population parameters (e.g., in 

estimating a regression slope and intercept) and therefore can be distinguished from 

confidence intervals which only address the statistical error in parameter estimation. 

 

precision  

The degree to which replicate measurements of the same attribute agree or are exact. 

 

quantile  

The value of an attribute indexing a specified proportion of a population distribution or 

distribution function. Quartiles (25th, 50th, and 75th percentiles), the median (50th 

percentile), and other percentiles are special cases of quantiles.  

 

random sampling 

Generic type of probability sampling, randomness can enter at any stage of the sampling 

process. 

 

reference conditions 

Describe the characteristics of waterbody segments least impaired by human activities. 

As such, reference conditions can be used to describe attainable biological or habitat 

conditions for waterbody segments with common watershed/catchment characteristics 

within defined geographical regions. 
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reference site  

Specific locality on a waterbody which is unimpaired or minimally impaired and is 

representative of the expected biological integrity of other localities on the same 

waterbody or nearby waterbodies. 

 

resampling 

Any of a variety of methods used for estimating the precision of sample statistics (mean, 

variances, or percentiles) using subsets (jackknifing) or random sampling with 

replacement (bootstrapping) of available data. 

 

statistical significance 

The probability that a result is not likely to be due to chance alone. By convention, a 

difference between two groups is usually considered statistically significant if chance 

could explain it only 5% of the time or less. Study design considerations may influence 

the a priori choice of a different level of statistical significance. 

 

stratification, stratified random sampling 

Type of probability sampling where a target population is divided into relatively 

homogenous groups or classes (strata) prior to sampling based on factors that influence 

variability in that population.  In stratified sampling, a heterogenous environment is 

divided into homogenous strata or parts. Analysis of variance can be used to identify 

statistically different parameter means among the sampling strata or classes. The strata 

are the analysis of variance treatments. 

 

stressor 

Any physical, chemical, or biological entity that can induce an adverse response 

 

stressor-response relationship 

The relationship between the intensity, frequency, or duration of exposure to a stressor 

and the intensity or frequency of a biological response and/or a model of that 

relationship. 

 

trophic state 

The degree of nutrient enrichment of a waterbody. 

 

turbidity 

Cloudiness or opaqueness of a suspension. In this context, refers to the amount of 

suspended matter in the water column, usually measured in nephelometric turbidity 

units. 

 

variable  

A measurable attribute that can be used to evaluate or predict the condition of a 

waterbody. 
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variance  

A measure of the variability or precision of a set of observations. 

 

watershed 

The area of land that drains water, sediment, and dissolved materials to a common 

outlet at some point along a stream channel. In American usage, watershed is 

synonymous with the terms drainage basin and catchment. 


