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1 Introduction 
In pursuing its mission to protect human health and the environment, the EPA issues regulations 
with the goal of reducing environmental risks to human health.  These rules are informed by 
scientific analyses and often include benefit-cost analyses.  Indeed, benefit-cost analyses are 
prepared for every economically significant regulation—those with an estimated economic 
impact of $100 million or more in any one year—and others as required by law. 

The value of reductions in people’s mortality risks figure prominently in the estimated 
benefits for many regulations issued by the EPA.1  In 2004, as part of ongoing efforts to improve 
its regulatory impact analyses, the Agency began to explore alternative approaches for updating 
its mortality risk value estimates.  On several occasions during this process, the EPA enlisted the 
expertise of its Science Advisory Board’s Environmental Economics Advisory Committee (SAB-
EEAC).2  This White Paper represents the culmination of this effort and provides a description of 
the Agency’s proposed approach for estimating values for reductions in mortality risk for use in 
its benefit-cost analyses. 

Intended primarily for review by the SAB-EEAC, this White Paper describes the EPA’s 
application and implementation of recent SAB recommendations regarding updates to the EPA’s 
estimate of the value of mortality risk reductions, also known as the “value of a statistical life” 
(VSL).  The main purpose of this White Paper is to provide a detailed account and explanation of 
the steps that the EPA has taken to update its estimate of the VSL for use in benefit-cost analyses 

                                                           
1 For air rules, the reduction in expected fatalities each year accounts for over 90% of total monetized benefits 
from PM2.5 and ozone; for drinking water standards (cancer and microbial risks), reduced mortality risk 
accounts for upwards of 80% of monetized benefits. 
2 See Appendix A for a brief review of EPA’s engagement with the SAB’s Environmental Economics Advisory 
Committee on issues related to mortality risk valuation. 
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based on the recommendations received during the SAB review conducted in 2010.  The EPA is 
soliciting general feedback and specific comments on the application of the SAB 
recommendations and resulting estimation methodology with the ultimate goal of incorporating 
the revised approach and results into its Guidelines for Preparing Economic Analyses (USEPA 
2010a).  The EPA also intends to introduce new terminology to replace the often-misunderstood 
“value of statistical life” moniker once the estimate is updated.  For the purposes of this White 
Paper we retain the commonly-used “VSL” nomenclature.     

The remainder of this White Paper is organized as follows.  Section 2 provides necessary 
background: a brief summary of existing EPA guidance on valuing mortality risk reductions and 
the most recent recommendations provided by the SAB-EEAC.  Section 3 describes the selection 
criteria used to assemble the meta-analysis dataset that forms the basis of our updated estimate 
of the VSL and provides a synopsis of the studies selected when the criteria recommended by the 
SAB-EEAC are applied to the published literature.  Section 4 provides a detailed description of 
the estimation approach, Section 5 presents and discusses the results, and Section 6 provides a 
summary and concluding thoughts.  

2 Background 

2.1 Existing EPA guidance 

To value reductions in mortality risks in its benefit-cost analyses, the EPA uses an estimate of the 
VSL equal to $4.8 million ($1990).  This central estimate was derived from 26 estimates of the 
VSL culled from the hedonic wage and stated preference literatures, published between 1974 
and 1991, by fitting a probability distribution to the selected estimates and calculating the mean 
(IEc 1992).3  The estimate was originally developed for use in The Benefits and Costs of the Clean 
Air Act: 1970-1990 (USEPA 1997).  It was subsequently codified in the EPA's Guidelines for 
Preparing Economic Analyses (USEPA 2000) and was retained in the revised Guidelines released 
in 2010 (USEPA 2010a).  After adjusting for inflation and real income growth over time (using 
an income elasticity of 0.4), this estimate is $9.7 million in 2013.4  The Guidelines recommend 
that this value be applied to all mortality risk reductions in EPA regulations no matter the source 
of the risk and to all affected populations regardless of their characteristics.  While the effects of 
differences in risk and population characteristics can be examined qualitatively in the primary 
analysis, any quantitative examination of the influence of risk and population characteristics 
should be handled in sensitivity analyses (USEPA 2010). 

                                                           
3 The list of underlying studies, the probability distribution parameters and other useful information are 
available in Appendix B of The Guidelines (USEPA 2010a). The distribution itself was used for formal 
uncertainty analysis in The Benefits and Costs of the Clean Air Act: 1970 to 1990 (US EPA 1997). 
4 We report all estimates in 2013 U.S. dollars unless otherwise noted. The VSL value noted above ($4.8 million 
$1990) was adjusted for inflation using the CPI and income growth (with an assumed income elasticity equal 
to 0.4) between 1990 and 2013 to arrive at $9.7 million ($2013).     
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The Guidelines also indicate that analysts should account for latency and cessation lags 
when valuing mortality risk reductions, and should discount the benefits of future risk 
reductions at the same rate used to discount other costs and benefits.  Because the VSL 
represents the marginal willingness to pay for contemporaneous risk reductions, this is  done by 
estimating the lag between reduced exposure and reduced mortality risks, calculating 
willingness to pay in all future periods when mortality risks are reduced, and discounting back 
to the present.5   

Finally, the EPA’s Guidelines recommend accounting for increases over time in average 
income by using projections of real GDP per capita and applying a range of income elasticity 
estimates (0.08, 0.4, and 1.0) (USEPA 2010a).  The resulting future (real) VSL will therefore 
reflect the expectation that willingness to pay for health risk reductions will increase with 
income. 

The EPA’s basic approach to valuing mortality risk reductions was assessed and endorsed 
by the SAB during its review preceding the initial release of the Guidelines, with the adjustments 
for the timing of risk reductions and income growth incorporated following subsequent SAB 
reviews on these issues (See Appendix A for more detail).  The EPA has interacted with the SAB 
on issues related to mortality risk valuation on a number of occasions since the Guidelines were 
originally released in 2000, however the EPA’s guidance on mortality risk valuation has 
remained essentially unchanged (USEPA 2010a).  The SAB endorsed this position until the 
Agency could conclude its review of the relevant literature and develop a robust process for 
updating its VSL estimate (USEPA 2009).  

2.2 Recent SAB recommendations  

In December 2010, the EPA proposed several possible approaches for updating its mortality risk 
valuation estimates, described in “Valuing Mortality Risk Reductions for Environmental Policy: 
A White Paper” (hereafter the 2010 White Paper), and asked for recommendations from the SAB-
EEAC on these approaches.  Briefly, the charge questions associated with the 2010 White Paper  
requested advice on: 1.) replacing the often misunderstood term “value of statistical life” to one 
that more accurately describes the commodity being valued; 2.) estimating and applying a cancer 
differential to account for systematic differences in how cancer risks are valued relative to 
immediate accidental death; 3.) broadening the basis of studies on which mortality risk valuation 
estimates are based to include those that examine risk reductions stemming from publicly 
provided goods; and 4.) aggregating existing empirical valuation data using meta-analytic 
approaches.  The 2010 White Paper also described the EPA’s proposed study selection criteria.   

                                                           
5 Specifically, the present value of benefits in year 𝑡𝑡 are calculated as: 𝐵𝐵𝑡𝑡 = 𝑉𝑉𝑉𝑉𝑉𝑉 ∑ 𝑁𝑁𝜏𝜏∆𝑚𝑚𝜏𝜏(1 + 𝑟𝑟)−(𝜏𝜏−𝑡𝑡)𝐻𝐻

𝜏𝜏=𝑡𝑡 , 
where 𝑁𝑁𝜏𝜏 is the number of individuals for whom exposure is reduced in  year 𝜏𝜏, ∆𝑚𝑚𝜏𝜏  is the average reduction 
in mortality risk for the affected individuals in year 𝜏𝜏 accounting for any latency and cessation lags, 𝑟𝑟 is the 
discount rate, and 𝐻𝐻 is the time horizon of the analysis. 
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In its subsequent advisory report (USEPA 2011), the SAB provided detailed comments on the 
EPA’s proposed approaches and responded to study selection criteria the EPA had specified for 
identifying studies on which to base revised valuation estimates.  What follows is a brief 
summary of the SAB recommendations and the EPA’s implementation of them.  In some cases 
the SAB recommendations were unequivocal (e.g., use studies based on samples of U.S. 
populations only); in other cases the recommendations allowed for a range of implementation 
methods (e.g., estimates should pass validity tests).  In the next section we clearly explain the 
SAB's recommendations and our implementation of those recommendations for selecting 
studies and estimates.  

2.2.1 Change in terminology 

The proper interpretation of the VSL is an aggregation of individuals’ willingness to pay for a 
small reduction in each of their annual mortality risks.  Formally, an individual’s willingness to 
pay for mortality risk is the marginal rate of substitution between the individual’s probability of 
dying within the coming year and the individual’s current wealth—that is, the decrease in the 
individual’s wealth after a very small risk reduction that would leave the individual just as well 
off as before the risk reduction.  When summed over a large number of individuals such that 
there is one fewer expected death in that population over one year, the aggregate willingness to 
pay is referred to as the VSL.     

Partly because of this standard reporting convention, the VSL is sometimes misconstrued 
as a measure of the dollar value of avoiding certain death for a single individual.  Cameron (2010) 
discussed the confusions that often surround the VSL terminology in more detail.  Further, use 
of a VSL reporting convention can be difficult to describe and explain when the risk reduction 
associated with a policy results in a fraction of a statistical life. 

In the 2010 White paper, the EPA proposed a shift in terminology away from the often 
misunderstood “value of a statistical life” to a term that more accurately describes the nature of 
the health risk changes that are being analyzed in its benefit cost analyses.  The SAB-EEAC was 
generally supportive of this proposal and recommended that the Agency adopt a new term after 
carefully exploring a range of alternatives, with the aid of focus groups and discussions with 
relevant user groups (USEPA 2011, p. 1).    

The EPA continues to evaluate the potential advantages in terms of transparency and 
ease of interpretation that would be afforded by replacing “value of statistical life” with an 
alternative term.   Following the earlier advice provided by the SAB-EEAC on this topic, the EPA 
intends to select a new term to replace “value of statistical life” and “VSL” and incorporate the 
new terminology along with recommended reporting conventions in its Guidelines in the near 
future.  While new nomenclature has not yet been selected, two possible alternatives are “value 
of mortality risk” (VMR) and “value of risk reductions” (VRR) for mortality.  The second of these 
was suggested by the SAB-EEAC (USEPA 2011) and has been used in at least two published 
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studies since that time (Scotton and Taylor 2010, Hensher et al. 2011).  The specific choice of 
measurement units is arbitrary; as long as consistent units are used in an analysis the results will 
be valid.  Nevertheless, the use of standardized default units could have the practical advantage 
of promoting some degree of consistency among reported summary statistics describing the 
results of regulatory impact analyses.  For example, default measurement units for reporting 
estimates of the VMR or VRR for mortality could be $/micro-risk/yr, where a micro-risk is 
defined as a risk of 1 in 1 million.  In this case, a VSL estimate of $10 million per statistical life 
per year would be equivalent to a VMR or mortality VRR estimate of $10 per micro-risk per year.  

2.2.2 Health risk and policy context 

The 2010 White Paper discussed a number of recent studies that examined whether individuals 
are willing to pay more for reductions in risks of dying from cancer than for other sources of 
mortality risk.  At the time, EPA proposed applying a cancer differential to account for this risk 
characteristic when evaluating regulations that would reduce people’s exposure to carcinogens.  
Rather than support the application of a simple differential, the SAB advised that “the 
magnitudes of cancer and other hazard-specific differentials be evaluated as part of an integrated 
process used to estimate the value of mortality risk reduction and how it varies with risk and 
individual characteristics” (USEPA 2011, p. 12).  They further recommended that the “EPA 
explore alternative methods to estimate a distribution of appropriate [values] for relevant cases 
(e.g., deaths associated with exposure to airborne fine particulate matter, fatal cancers 
associated with exposure to environmental carcinogens).”   

Another context-specific characteristic with potential to influence willingness to pay for 
mortality risk reductions is whether the reduction is achieved through a public policy or a private 
good.  For example, the choice context could involve reductions in risks associated with drinking 
water from municipal water systems (a public context).  Alternatively, the choice context could 
involve a treatment to reduce individual risks associated with heart attacks (a private context).    
This distinction is important because altruism may influence people’s willingness to pay for risk 
reductions, and, all else equal, should make values for public risk reductions larger than those 
for private risk reductions.  The EPA asked the SAB whether it was acceptable to rely on studies 
that estimated willingness to pay for both public and private risk reductions and whether and 
how altruistic preferences should be incorporated into mortality risk valuation.  The SAB advised 
that the EPA include both public and private studies “without distinguishing between the two,” 
noting that “there is little empirical evidence that altruistic concerns are significant drivers of 
values for risk reduction.”  In addition, they advised that the EPA continue “exploring the 
estimated magnitude of the effect. If the effect is of sufficient magnitude to warrant accounting 
for it in economic evaluation of a program, it can be accounted for by using only studies that are 
closely matched to the required application or by adjusting results from other studies” (USEPA 
2011, p. 13). 
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Implementing these recommendations requires the identification of sufficient studies 
that meet established selection criteria (see section 2.2.3 below).  Three of the stated preference 
studies identified using the SAB recommended selection criteria provide values for reductions 
in fatal cancer risk (Hammitt and Haninger 2010; Chestnut, Rowe, and Breffle 2012; and Viscusi, 
Huber, and Bell 2014), however only two allow for within study comparisons of willingness to 
pay for reductions in fatal cancer risks with those due to other causes (Hammitt and Haninger 
2010; Chestnut, Rowe, and Breffle 2012).  Neither of these studies finds evidence of a cancer 
differential.   While a comprehensive review of other segments of the literature on valuation of 
reductions in cancer risk (e.g., risk-risk studies) is not addressed in this White Paper, we include 
the three studies in our subsequent analyses.  With regard to studies of public risk reductions, 
EPA did not find any valuation studies using U.S. residents that involved public risk reductions.  
Therefore, all studies included in the meta-analysis database involve private risk reductions.   

  

2.2.3 Types of study 

The vast majority of published studies that derive valuation estimates for reductions in mortality 
risk fall into one of two categories:  stated preference studies in which respondents report their 
willingness to pay for a change in risk through responses to surveys, and labor market studies in 
which wage risk tradeoffs are exploited through hedonic techniques to derive the value of a small 
change in risk.  Although there is some evidence that the two strands of literature yield 
systematically different estimates (Kochi, Kramer, and Hubbell 2006), the SAB indicated that this 
evidence is not sufficiently compelling to treat the results separately.  Rather, the SAB 
recommended combining the results when the studies addressed similar contexts, but also noted 
the importance of distinguishing between the two types of studies within an analysis to avoid 
confounding effects of other study specific factors:  

In evaluating how [the VSL] varies with context, it may be necessary to distinguish SP and 
hedonic wage estimates to avoid confounding effects of risk or individual characteristic 
with study type.  This does not imply that the two literatures must be treated 
independently.  Indeed to the extent that each literature provides useful information 
about [the VSL] in a particular context, or the variation of [VSL estimates] between 
contexts, it is important to combine their results (p. 22-23).    

The SAB indicated that all selected studies should be conducted in the United States, be 
based on samples representative of populations affected by EPA regulations, employ 
conceptually sound methods, and be published in peer-reviewed journals (though necessary 
parameters not reported in the articles could be obtained from supplemental materials or 
follow-up communications with the original authors).  In addition to these overarching criteria, 
the SAB also provided detailed selection criteria for the two strands of literature to identify 
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appropriate studies for use in extracting mortality risk valuation estimates.  These are 
summarized in Table 1.  Our implementation of these criteria is discussed in more detail below 
(see section 3). 

 

Table 1. Detailed SAB-recommended selection criteria by study type. 

Selection Criteria common to both study types 
Conducted in the U.S. 
Representative of populations affected by EPA regulations 
Include all estimates based on conceptually sound methods 
Published in peer-reviewed literature 
Provides enough information to calculate a VSL estimate if one is not reported 
Written in English 

Stated Preference Hedonic Wage 
Provides estimates of willingness to pay (as 
opposed to willingness to accept) 

Uses adequate measures of occupational 
risks (defined by SAB as use of Census of 
Fatal Occupational Injuries or equivalent) 

Provides quantitative information about 
uncertainty in estimates  

Excludes studies based extremely dangerous 
jobs 

Provides evidence of validity (e.g., evidence 
of responsiveness to scope) 

Controls for nonfatal injury risk 

Include estimates for adults onlya Controls for unobserved job characteristics 
using industry and occupational indicator 
variables 

 Does not rely on risk measures constructed 
at the industry level only  

a. We recognize that willingness to pay for mortality risk reductions using studies of adults may not be 
applicable to reductions in risks among children.  Indeed, the SAB cautioned against applying estimates for 
adults to children.  However, as the SAB acknowledged, there is a paucity of studies focused on children.  
Therefore, we based our analysis on studies of adult mortality risks.  This is an important area for further 
research.   

2.2.4  Statistical approach 

The 2010 White Paper described a number of alternative approaches for updating the Agency’s 
mortality risk valuation estimate including several forms of meta-analysis, estimation of a 
structural benefit transfer function, and development of a life-cycle consumption framework.  
The SAB indicated that a number of viable approaches exist for combining information from the 
existing literature for use in benefit-cost analyses of environmental policy.  Specifically, the SAB 
described four options for combining estimates: 
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1) “Develop independent estimates for relevant cases, using only studies that are closely 
matched on risk and individual characteristics.” 

2) “Develop a baseline distribution of estimates (perhaps for fatal injury) and a set of 
adjustment factors for risk and individual characteristics as warranted.” 

3) “Develop a meta-regression model to estimate [the VSL] as a function of risk and 
individual characteristics.” 

4) “Develop and estimate a structural preference function.” 
(see USEPA 2011, p. 11). 

The EPA considered each of the alternatives carefully and determined that some were 
more feasible than others.  Developing independent estimates for relevant cases (option 1 
above) would involve direct transfer of primary VSL estimates to analogous policy cases, i.e., 
those that share the same risk and population characteristics as the primary studies.  While this 
approach could in principal increase the accuracy of benefit transfers, it would have the 
disadvantage of possibly decreasing the precision of those transfers (since fewer primary 
estimates would be used in each case) and it would preclude evaluation of policies with no direct 
analogs among the available primary estimates.  Developing a baseline estimate (or distribution 
of estimates) and a set of adjustment factors for risk and individual characteristics  (option 2 
above) involves first deriving estimates for a baseline case (e.g., immediate fatalities due to 
accidental injury), and then estimating  adjustment factors based on a systematic review of 
evidence reflected in the scholarly literature to account for other risk characteristics (e.g., 
specific cause of death), individual characteristics (e.g., child vs. adult), and program 
characteristics (e.g., public, private) as sufficient information from new studies on these factors 
becomes available.  Estimating a meta-regression model as a function of relevant factors (option 
3 above) would involve collecting descriptors of the type of risk, sample demographics, and 
study methods associated with each primary VSL estimate, then regressing the VSL estimates on 
the full set of control variables.6  Developing a structural preference function (option 4 above) 
could in principle provide a strong theoretical foundation for benefit transfers, as noted by the 
SAB.  However, this option would require longer-term research and is not yet ripe for 
implementation in guidance.  

                                                           
6 This is the most general of the first three options suggested by the SAB and can be viewed as nesting the first 
two options.  At one extreme, if indicator variables were included for each unique combination of factors that 
are thought to influence the VSL then this approach involves an exactly identified regression model with as 
many parameters as observations—one fixed effect for each primary estimate, which would simply return the 
primary estimates themselves as the estimated coefficients.   This approach would amount to option 1 above.  
At the other extreme, if only a constant term were included in the meta-regression, this approach would amount 
to option 2 above, which involves estimating a baseline value of the VSL that could subsequently be adjusted 
for case-specific factors as sufficient information becomes available.  In between these extremes is a middle 
ground where a set of control variables (less than the number of observations) are included in the meta-
regression to estimate a benefit transfer function.    
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Based on these general considerations, and in light of the number of studies and 
estimates that meet the selection criteria recommended by the SAB-EEAC described above, the 
EPA chose an approach for updating the VSL that blends options 2 and 3.  Specifically, we used 
meta-analysis to estimate the average value (among the U.S. general adult population) of the 
marginal willingness to pay to reduce the risk of immediate death, hereafter referred to as “the 
VSL.”  In addition to the meta-analysis, we also estimated a parsimonious meta-regression model 
that pools all of the observations in the meta-analysis data set and controls for study type (HW 
or SP), means versus medians, and year of data collection.  We leave the task of estimating 
adjustment factors to account for the influence of risk and individual characteristics on the VSL, 
possibly through inclusion of additional control variables in the meta-regression model, for 
future work.  For completeness, we present our results in terms of willingness to pay for a micro-
risk reduction in mortality.  The following sections describe how we selected the primary 
estimates to be included in the meta-analysis, the estimation approaches we used to combine the 
estimates, and the estimation results. 

3 Summary of selected studies 
Based on the study selection criteria recommended by the SAB, we identified a number of 
suitable stated preference and hedonic wage studies that reported one or more estimates of the 
VSL.  The SAB recommended that the Agency allow multiple estimates to be drawn from the same 
underlying subsample or study.  Since alternative model specifications applied to the same data 
can produce alternative plausible estimates of the value of risk reductions, “it is preferable to 
include all estimates for the same (or overlapping) subsets that meet other acceptance criteria” 
(USEPA 2011, p. 22).  This preserves valuable information about the variation in the resulting 
mortality risk valuation estimates across specifications.  This is important not only for individual 
stated preference studies that present more than one specification using data collected from the 
same survey sample, but also across hedonic wage studies that rely on the same underlying large 
datasets. The SAB also emphasized the need to carefully account for statistical dependence 
among estimates and to consider how much weight be given to studies that contribute multiple 
estimates, although they did not prescribe a specific approach for doing so.  

3.1 Stated preference studies 

In the 2010 White Paper, the EPA had assembled a new dataset containing information on 
mortality risk valuation estimates culled from a set of stated preference studies based on the 
literature available at that time.  The database was constructed using searches of EconLit, 
conference proceedings, published and unpublished meta-analyses, a variety of working paper 
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series, and by consulting personal contacts.  These efforts generated a list of 33 stated preference 
mortality risk valuation studies published between 1988 and 2010.7   

In their review of the 2010 White Paper the SAB recommended modifying some of the 
EPA’s selection criteria for stated preference studies.  Specifically, the SAB recommended 
selecting studies based on U.S. populations only (rather than including studies from all high-
income countries), only including studies published in the peer-reviewed literature (i.e., studies 
from the “gray” literature should be excluded), and only including estimates that provide 
evidence of validity, such as passing a scope test.  To assemble the stated preference data for this 
study, we started with the dataset from the 2010 White Paper, applied the SAB recommended 
selection criteria listed in Table 1, and augmented the list with studies published since 2010. 

All selected studies provided estimates of willingness to pay for immediate mortality risk 
reductions.8  Estimates that either failed one or more important tests of validity or for which no 
evidence of validity was reported were excluded.  Passing an internal or external weak scope 
test—showing that WTP increases with the size of the risk reduction within or between 
subsamples of respondents (e.g., significant and positive coefficient on the risk variable)—was 
considered acceptable, as well as other forms of validity as discussed in Appendix  B.  In several 
cases, we requested additional information from authors or used supplemental materials to 
obtain or estimate standard errors and other parameters necessary for our analysis.     

As recommended by the SAB, we included multiple estimates based on identical 
subsamples from the selected studies.  All estimates were recorded in the currency and dollar 
year reported in the original studies and converted to 2013 dollars using the Consumer Price 
Index (CPI) and adjusted for income growth over time using alternative income elasticity 
estimates ranging from 0.1 to 1.7.9  In addition to both mean and median willingness to pay 
estimates and standard errors, the dataset includes the year of publication, the year the study 

                                                           
7 The earliest study that forms the basis of the recommendations of the existing EPA Guidelines (2000a) was 
conducted in 1974.  For the 2010 White Paper, the search for relevant studies was limited using this starting 
date, assuming that the earlier literature had been evaluated and judged to be obsolete prior to the release of 
the 2000 Guidelines.  The earliest study that met the selection criteria outlined in the 2010 White Paper was 
published in 1988.   
8 We only include estimates for immediate risk reductions or those that begin within one year (under the 
assumption that this is “nearly” immediate) in order to use estimates that are closely comparable to accidental 
deaths in the hedonic wage literature.  Viscusi, Huber, and Bell (2014) estimate willingness to pay for 
reductions in risks of bladder cancer caused by exposure to arsenic drinking water where symptoms typically 
begin 10 years after contracting the disease.  The authors estimate a comparable immediate risk reduction by 
applying a 3% or 7% discount rate to their results.  Alberini, et al. (2004) estimate willingness to pay for annual 
reductions in risk of death over 10 years.  We include these estimates as comparable to immediate reductions 
in risk.   
9 This range of income elasticity estimates is based on a review of the SP and HW literatures described in the 
attached memo from EPA’s Office of Air and Radiation.  In the interest of brevity and clarity the results 
presented in the main text of this White Paper are based on an income elasticity of 0.7, which is a balanced 
mean from the SP and HW literatures.  Appendix C presents results using several other income elasticity 
estimates ranging from 0.1 to 1.7. 
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was conducted, key sample characteristics, risk reduction information (e.g., magnitude, type of 
risk), scope tests, and public versus private risk reductions.     

    Nine stated preference studies met the selection criteria recommended by the SAB with 
a total of 28 VSL estimates.  This information enables us to implement a combination of analytical 
options discussed above.  To the extent that studies reported results by subsample (e.g., 
Cameron, DeShazo and Johnson 2010; Cameron, DeShazo and Stiffler 2010; Cameron and 
DeShazo 2013), we weighted the results using appropriate Census information to arrive at VSL 
estimates for the general adult population.  Table 2 provides the list of the selected studies and 
the number of mean and median VSL estimates drawn from each.  Table 3 shows additional 
studies that were considered but ultimately excluded from the database together with the reason 
for exclusion.  Appendix B provides a detailed description of each study included in the database, 
the specific estimates selected from each study, and the weighting that was applied to arrive at 
population estimates, where relevant.  
 

Table 2. Summary of selected stated preference studies providing 
estimates of the VSL. 

 
Study 

Number of estimates selected 

mean Median 
Hammitt and Graham (1999) 2 2 
Corso, Hammitt, and Graham (2001) 6 6 
Alberini et al. (2004) 2 2 
Hammitt and Haninger (2010) 0 2 
Cameron, DeShazo, and Johnson (2010) 0 1 
Cameron, DeShazo, and Stiffler (2010) 0 1 
Chestnut, Rowe, and Breffle (2012) 12 0 
Cameron and DeShazo (2013) 4 0 
Viscusi, Huber, and Bell (2014) 2 0 
Total number of estimates 28 14 
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Table 3. Stated preference studies excluded from meta-analysis.a 

Study  Reason for exclusion 
Alberini, et al. (2006) Latent risks; sample overlaps with Alberini, et al. (2004) 

Blomquist, et al. (2011) Unable to distinguish values for adults from children 

Brady (2008) Not a representative sample 

Buzby, et al. (1995) Not a representative sample (study is based on consumers 
who purchased grapefruit within the last year) 

Carson and Mitchell (2006) Not a representative sample (study is based on a survey of one 
small town in Illinois) 

Gerking, et al. (1998) Study uses a perceived measure of risk of fatality on-the-job 
that is constructed using a risk ladder.  Responses are 
considerably higher than those found in Bureau of Labor 
Statistics data.  Determined that the methods are not 
conceptually sound.   

Hakes and Viscusi (2007) Not a representative sample (study is based on a survey of 
Phoenix residents only) 

Ludwig and Cook (2001) Unable to distinguish fatal from non-fatal risks 

Morris and Hammitt (2001) Risks are not fatal 

Riddel and Shaw (2006) Not a representative sample; latent risks 

  
a. We do not include in this list the studies from the 2010 White Paper that were conducted outside the U.S. or 
were unpublished.   
 
 

3.2 Hedonic wage studies 

As with the stated preference study selection process, we used the database of hedonic 
wage studies we had assembled for the 2010 White Paper as a starting point, identified new 
studies that had been published after 2010, and re-evaluated the studies using the selection 
criteria recommended by the SAB (USEPA 2011).  Restricting our sample to studies using data 
from the Census of Fatal Occupational Injuries (CFOI) limited the number of available studies 
substantially.  The number was further reduced by removing those that did not control for non-
fatal injuries.  Per SAB advice, we only selected studies that relied on risk measures differentiated 
by industry and one or more other relevant characteristics (e.g., occupation, race, age, gender, 
immigration status).10   

                                                           
10 Specifically, the SAB noted that the EPA should “Eliminate any study that relies on risk measures constructed 
at the industry level only (not by occupation within an industry)” (USEPA 2011, p. 18).  It is not clear whether 
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Given our focus on deriving estimates of mortality risk valuation for the U.S. general adult 
population, only studies providing estimates for the working population as a whole were 
included.  If results were reported by subgroup within the study, we weighted the study 
estimates accordingly using relevant Census data to derive a population estimate.   

While many of the hedonic wage studies rely on Current Population Survey data for 
worker characteristics, we only excluded estimates that were clear duplicates carried over from 
one study to another by the same author.  Multiple estimates per study were otherwise drawn 
based on alternative specifications.  In addition to the mean estimates of VSL and associated 
standard errors, we also recorded the year of publication, the analysis year, and sample size.  As 
with our stated preference data, all estimates were recorded in the currency and dollar year 
reported in the study and converted to 2013 dollars using the Consumer Price Index (CPI) and 
adjusted for income growth over time using alternative income elasticity estimates.  

  Ultimately, we drew 46 estimates from the eight hedonic wage studies that met the SAB-
recommended selection criteria.  These studies are summarized in Table 4 below.   Additionally, 
we evaluated seven other studies that used CFOI data, but ultimately eliminated them from the 
dataset for reasons cited in Table 5.  Additional details about the selected studies, estimates, and 
Census weighting are presented in Appendix B. 
 

Table 4. Summary of selected hedonic wage 
studies providing estimates of the VSL. 

Study Number of 
estimates 

Viscusi (2003) 2 
Viscusi (2004) 4 
Kneisner and Viscusi (2005) 2 
Viscusi and Aldy (2007) 1 
Aldy and Viscusi (2008) 8 
Viscusi and Hersch (2008) 1 
Hersch and Viscusi (2010) 1 
Scotton and Taylor (2011) 3 
Scotton (2013) 24 
Total number of estimates 46 

 
 

                                                           
the SAB’s parenthetical addition was meant as an example or as a directive, and only four studies use industry-
occupation and meet other inclusion criteria.  Our interpretation allows for differentiation of the risk measures 
by industry and at least one other characteristic.  
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Table 5. Hedonic wage studies excluded from the meta-analysis.a 

Study  Reason for exclusion 
Evans and Schaur (2010) Not sufficiently representative due to reliance on Health and 

Retirement Survey and older workers. Does not control for non-
fatal injury risk. 

Evans and Smith (2008) Does not provide VSL estimates. Not sufficiently representative 
due to reliance on Health and Retirement Survey and older 
workers.  Does not control for non-fatal injury risk. 

Kniesner, Viscusi, and 
Ziliak (2006) 

Not sufficiently representative.  Results are for male head of 
household only. No controls for non-fatal injury risks. 

Kniesner, Viscusi, and 
Ziliak (2010) 

Not sufficiently representative.  Results are for male head of 
household only. No controls for non-fatal injury risks. 

Kneisner et al. (2012) Not sufficiently representative.  Results are for male head of 
household only. No controls for non-fatal injury risks. 

Leeth and Ruser (2003) VSL estimates for women do not control for non-fatal injury risk.  
Specifications that include non-fatal injury risk for women 
produce negative fatal risk coefficients.  Cannot construct a 
representative sample without comparable male and female 
results. 

Smith et al. (2004) Not sufficiently representative due to reliance on Health and 
Retirement Survey and older workers. Does not control for non-
fatal injury risk.  Does not use CFOI data. 

Viscusi (2013) Does not control for non-fatal injury risk. 
a.  The three most recent studies in this table (Evans and Schaur, 2010; Kneisner, Viscusi, and Ziliak 2010; 
and Kneisner, et al. 2012) were not included in the EPA 2010 White Paper. 

 

3.3 Data 

The process we used to select primary studies and VSL estimates is summarized in Figure 
1 using a PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) 
diagram (Moher et al. 2009).  Our final dataset is shown in Table 6, which indicates whether the 
study used stated preference (SP) or hedonic wage (HW) methods and the specific VSL estimates 
and standard errors we extracted to populate our meta dataset.  Generally, standard errors tend 
to be smaller for the SP estimates, which is to be expected given that these studies use 
experimental design methods to maximize study power.  Hedonic wage studies use much larger 
datasets, but they are observational, sometimes over multiple years, and tend to result in larger 
standard errors.  The table also indicates whether the estimate is a mean or median.  The SP 
studies reported one or both of these measures of central tendency, while the HW studies all 
reported mean VSLs.  The table also includes the year of data collection for each study.  For 
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hedonic wage studies that used datasets spanning multiple years, the indicated data collection 
year is the middle of the time period.  Appendix B provides more detail on the estimates extracted 
from each study, any necessary calculations to generate a VSL or standard error, and how data 
year and sample size are characterized. 
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Additional papers 
identified by SAB in US 

EPA 2011 (N=4) 
     

 
Total number of papers screened for eligibility  

(N= 90) 

Papers excluded 
(Nx = 54) 

International samples, not peer-
reviewed  

HW  Does not use CFOI  

Papers assessed for eligibility 
(N=36) 

 Papers excluded: 
Not representative of gen US 

population, does not report VSL, 
does not control for nonfatal risk, 

Adult risks not separable from 
children, fatal and nonfatal risks 

not separable; employs latent 
risks or unsound methods 

(Nx = 18) 
Papers eligible for use in quantitative synthesis 

(N = 18) 

General Population Estimates included 
in quantitative synthesis (meta-analysis) 

(n =88) 

Additional papers 
identified since SAB review 

(N =16) 

Estimates assessed for eligibility (n =372) 
   

Estimates excluded: 
HW: nx = 198 due to lack of control 
for nonfatal injury; estimates not 

useable in calculation of gen 
population estimates 

 
SP: nx=10 due to validity concerns 

 

Estimates weighted to create general 
population estimates (n= 164)* 

Figure 1: PRISMA Diagram for VSL estimate selection 
(Adapted from Moher et al. 2009) 

*See Appendix for more information on weighting procedure. 
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Table 6: Estimates used for VSL meta-analysis ($2013; income elasticity = 0.7). 

Article  

Study 

Type VSL 

Std. 

Error 

 Year 
data 

collected Mean 
Sample 

size 

Hammitt and Graham 
(1999) 
 
 
 

SP 3.51 0.39 1996  992 
SP 2.11 0.24 1996  992 
SP 7.93 0.39 1996  992 
SP 4.77 0.24 1996  992 

Corso, Hammitt, and 
Graham (2001) 
 
 
 
 
 
 
 
 
 
 
 

SP 5.66 0.76 1998  288 
SP 8.71 1.58 1998  288 
SP 15.45 3.21 1998  288 
SP 23.80 5.81 1998  288 
SP 4.89 0.72 1998  263 
SP 11.89 2.30 1998  263 
SP 6.42 1.01 1998  263 
SP 15.61 3.21 1998  263 
SP 4.59 0.63 1998  275 
SP 13.14 2.91 1998  275 
SP 5.05 0.81 1998  275 
SP 14.44 3.36 1998  275 

Alberini et al. (2004) 
 
 
 

SP 1.06 0.09 2000  556 
SP 2.33 0.26 2000  556 
SP 1.66 0.21 2000  548 
SP 7.30 1.12 2000  548 

Hammitt and Hanninger 
(2010) 
 

SP 7.34 1.34 2007  2018 
SP 7.45 1.34 2007  2018 

Cameron, DeShazo, and 
Johnson (2010) 

SP 9.22 2.11 2002  1801 

Cameron, DeShazo, and 
Stiffler (2013) 

SP 8.20 2.12 2002  1801 

Chestnut, Rowe, and Breffle 
(2012) 
 
 
 
 
 
 
 
 
 

SP 11.25 0.89 2002  845 
SP 7.01 0.46 2002  845 
SP 3.89 0.25 2002  845 
SP 9.97 0.99 2002  845 
SP 6.37 0.57 2002  845 
SP 3.64 0.35 2002  845 
SP 5.26 0.43 2002  845 
SP 3.07 0.21 2002  845 
SP 1.97 0.21 2002  845 
SP 6.27 0.60 2002  845 
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SP 3.67 0.39 2002  845 
SP 2.36 0.43 2002  845 

Cameron and DeShazo 
(2013) 
 
 
 

SP 8.05 3.44 2002  1801 
SP 7.65 3.43 2002  1801 
SP 7.36 3.47 2002  1801 
SP 7.66 3.57 2002  1801 

Viscusi, Huber, and Bell 
(2014) 
 

SP 11.68 0.09 2009  3430 
SP 16.59 0.12 2009  3430 

Viscusi (2003) 
 

HW 20.75 9.81 1997  93360 
HW 19.16 9.08 1997  93360 

Viscusi (2004) 
 
 
 

HW 7.04 3.76 1997  99033 
HW 4.19 3.31 1997  99033 
HW 7.88 4.64 1997  99033 
HW 4.36 3.99 1997  99033 

Kneiser and Viscusi (2005) 
 

HW 5.80 0.97 1997  99033 
HW 5.99 0.92 1997  99033 

Viscusi and Aldy (2007) HW 9.73 1.36 1998  120008 

Aldy and Viscusi (2008) 
 
 
 
 
 
 
 

HW 8.80 1.43 1993  123439 
HW 8.99 1.45 1994  123439 
HW 8.55 1.44 1995  123439 
HW 8.83 1.42 1996  123439 
HW 10.03 1.40 1997  123439 
HW 9.73 1.35 1998  123439 
HW 10.25 1.18 1999  123439 
HW 10.79 1.38 2000  123439 

Viscusi and Hersch  (2008) HW 11.00 4.21 1999  138175 
Hersch and Viscusi (2010) HW 10.67 8.76 2003  50673 

Scotten and Taylor (2011) 
 
 

HW 14.59 4.83 1997  43261 
HW 16.60 4.33 1997  43261 
HW 9.73 2.98 1997  43261 

Scotten (2013) 
 
 
 
 
 
 
 
 
 
 
 
 

HW 18.62 4.49 2006  121608 
HW 21.21 4.32 2006  121608 
HW 15.72 5.23 2006  121608 
HW 13.26 3.54 2006  121608 
HW 15.03 3.71 2006  121608 
HW 13.04 3.41 2006  121608 
HW 14.56 4.89 2006  121608 
HW 17.23 4.57 2006  121608 
HW 12.33 5.55 2006  121608 
HW 9.50 3.94 2006  121608 
HW 11.26 4.14 2006  121608 
HW 9.45 3.83 2006  121608 
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HW 17.17 4.94 2006  84336 
HW 17.78 3.45 2006  84336 
HW 19.35 4.85 2006  84336 
HW 19.92 3.41 2006  84336 
HW 14.68 4.63 2006  84336 
HW 16.21 2.84 2006  84336 
HW 6.42 3.45 2006  84336 
HW 7.03 3.45 2006  84336 
HW 9.13 2.75 2006  84336 
HW 7.69 2.93 2006  84336 
HW 8.82 2.93 2006  84336 
HW 9.48 2.14 2006  84336 

 
Figure 2 shows a graph of the primary VSL estimates from the selected studies.  The 

estimates are adjusted for differences in income using an income elasticity equal to 0.7 and 
reported in 2013 dollars, plotted against the year of data collection for their respective primary 
studies.  The primary VSL estimates range from roughly $1 to $24 million.  The means of the HW, 
SP mean, and SP median estimates are roughly $11.9, $8.6, and $5.4 million, respectively.   

 

Figure 2. Primary VSL estimates plotted by year of data collection. 
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4 Estimation methods 
After we assembled all VSL estimates from the primary literature that meet the SAB selection 
criteria, we used non-parametric and parametric approaches to develop central estimates of the 
average VSL among the general U.S. adult population.  The non-parametric approach involves 
calculating weighted averages of the primary VSL estimates, where the weights are intended to 
reflect the precision and degree of independence among the primary estimates.  This approach 
requires no assumptions about the data generating process aside from independence of the 
(groups of) observations that are re-sampled with replacement in the bootstrap procedure for 
variance estimation.  The parametric approach involves estimating the central value of the VSL 
and the average sampling and non-sampling variation of the primary estimates within and 
between the studies using maximum likelihood, which requires specifying the functional form of 
the relationship between the dependent variable and the independent variables plus specific 
distributional assumptions for the error components. 

4.1 Non-parametric estimation 

We computed non-parametric estimates of the average VSL, 𝑦𝑦�, by calculating the weighted 
average of the primary estimates.  We used a variety of weights to examine the robustness of the 
estimated VSL depending on the assumed nature of the relative precision of each primary 
estimate.   

The meta-analysis dataset comprises 𝑁𝑁 primary VSL estimates (hereafter referred to as 
“observations”) drawn from 𝐼𝐼 independent data samples (hereafter referred to as “groups”).11  
We denote the number of observations from group 𝑖𝑖 as 𝑚𝑚𝑖𝑖 , and the individual observations from 
group 𝑖𝑖 as 𝑦𝑦𝑖𝑖1, 𝑦𝑦𝑖𝑖2, …, 𝑦𝑦𝑖𝑖𝑚𝑚𝑖𝑖.  The general form of the non-parametric precision-weighted estimator 
is 

 𝑦𝑦� = ��𝑤𝑤𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖

𝑚𝑚𝑖𝑖

𝑖𝑖=1

𝐼𝐼

𝑖𝑖=1

. (1) 

 

                                                           
11 Of the 18 studies included in the meta-analysis dataset, the following 8 studies examined 1 independent 
sample: Hammitt and Hanninger (2010), Chestnut, Rowe, and Breffle (2012), Cameron and DeShazo (2013),  
Viscusi, Huber, and Bell (2014), Viscusi and Hersch (2008), Hersch and Viscusi (2010), Scotten and Taylor 
(2011), and Scotten (2013).  Alberini et al. (2004) examined 2 samples.  Hammitt and Graham (1999) and 
Corso, Hammitt, and Graham (2001) each examined 4 samples.  Cameron, DeShazo, and Johnson (2010), and 
Cameron, DeShazo, and Stiffler (2013) examined the same sample.  Viscusi (2003), Viscusi (2004), Kniesner 
and Viscusi (2004), and Viscusi and Aldy (2007) examined the same sample.  Aldy and Viscusi (2008) examined 
8 samples (including the sample examined by Viscusi [2003] and others).  See Appendix B for descriptions of 
each study and how groups of estimates were identified. 
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The 𝑤𝑤𝑖𝑖𝑖𝑖 ’s are normalized to sum to one, so the estimator is a weighted average of the 
observations.12  To derive optimal weights, we choose the 𝑤𝑤𝑖𝑖𝑖𝑖 ’s to minimize the mean squared 
error of the estimator.  First, we partition the error for each observation into group-specific and 
observation-specific components, 

 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑦𝑦 + 𝜂𝜂𝑖𝑖 + 𝜇𝜇𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 , (2) 

where 𝑦𝑦 is the true mean VSL among the general U.S. adult population (our target of estimation), 
𝜂𝜂𝑖𝑖  is a group-level non-sampling error,  𝜇𝜇𝑖𝑖𝑖𝑖 is an observation-level non-sampling error, and 𝜀𝜀𝑖𝑖𝑖𝑖  is 
an observation-level sampling error.  We assumed that the expected value of each error 
component is zero and that all error components are uncorrelated.13  The mean squared error 
of the estimator is 

 𝑀𝑀𝑉𝑉𝑀𝑀 = 𝑀𝑀[(𝑦𝑦� − 𝑦𝑦)2] = 𝑀𝑀 ����𝑤𝑤𝑖𝑖𝑖𝑖�𝜂𝜂𝑖𝑖 + 𝜇𝜇 𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖�
𝑚𝑚𝑖𝑖

𝑖𝑖=1

𝐼𝐼

𝑖𝑖=1

�

2

�. (3) 

Taking the derivative of (3) with respect to each 𝑤𝑤𝑖𝑖𝑖𝑖 , setting the resulting expressions equal to 
zero, and imposing the constraint that the weights must add to one, we find that the optimal 
(MSE-minimizing) weights are  

 𝑤𝑤𝑖𝑖𝑖𝑖 =
�𝑚𝑚𝑖𝑖𝜎𝜎𝜂𝜂2 + 𝜎𝜎𝜇𝜇2 + 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖2 �

−1

∑ ∑ �𝑚𝑚𝑖𝑖𝜎𝜎𝜂𝜂2 + 𝜎𝜎𝜇𝜇2 + 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖2 �
−1𝑚𝑚𝑖𝑖

𝑖𝑖=1
𝐼𝐼
𝑖𝑖=1

, (4) 

where 𝜎𝜎𝜂𝜂2 is the variance of the group-level non-sampling errors, 𝜎𝜎𝜇𝜇2 is the variance of the 
observation-level non-sampling errors, and 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖2  is the sampling error variance for observation 𝑗𝑗 
from group 𝑖𝑖.   

 To estimate the 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 ’s, we used the standard error for each observation reported in their 
respective original studies (or calculated by us as described in Appendix B).  The non-sampling 
error variances, 𝜎𝜎𝜂𝜂2 and 𝜎𝜎𝜇𝜇2, are unknown, so the optimal weights in equation (4) cannot be 
applied in practice.  However, below we describe estimators that we developed for the non-
sampling error variances so that estimates of the optimal weights could be used.   

In sections to follow we describe how we estimated 𝜎𝜎𝜂𝜂2 and 𝜎𝜎𝜇𝜇2 using non-parametric and 
parametric approaches.  In the remainder of this section we describe several alternative non-
parametric estimators that can be derived as special cases of equation (4), which represent 

                                                           
12 Constraining the weights to sum to one ensures that the estimator is consistent (assuming that the expected 
values of all error components are zero) but rules out shrinkage estimators, which in some cases can reduce 
the mean-squared error of the estimator by introducing some bias for a more-than-offsetting reduction in 
variance (e.g., Tibshirani 1996). 
13 Note that even though the error components are assumed to be uncorrelated, the total errors of the estimates 
within a group still will be correlated due to the common group-level error, 𝜂𝜂𝑖𝑖  .   
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competing assumptions about the relative sizes of the variances of the error components 
associated with the observations.  We used this set of alternative estimators to examine the 
robustness of the estimated VSL depending on the assumed nature of the relative precision of 
each observation and their possible correlations within groups, and to facilitate comparison to 
previous meta-analysis studies that may have used one of these alternatives as their primary 
estimators.  The non-parametric estimates that we calculated are:   

1. Simple mean: 𝑦𝑦� = 1
𝑁𝑁
∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖

𝑚𝑚𝑖𝑖
𝑖𝑖=1

𝐼𝐼
𝑖𝑖=1  .  This estimator would be optimal if the observation-level 

non-sampling error variance is much larger than the group-level non-sampling error 
variance and the sampling error variances.  Specifically, if 𝜎𝜎𝜇𝜇2 ≫ 𝑚𝑚𝑖𝑖𝜎𝜎𝜂𝜂2 + 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖2  for all 

observations 𝑖𝑖𝑗𝑗, then equation (4) simplifies to 𝑤𝑤𝑖𝑖𝑖𝑖 ≈
𝜎𝜎𝜇𝜇−2

∑ ∑ 𝜎𝜎𝜇𝜇−2
𝑚𝑚𝑖𝑖
𝑗𝑗=1

𝐼𝐼
𝑖𝑖=1

= 1
𝑁𝑁

.  We believe that this is 

the least realistic of the alternative assumptions used in this study, but the simple mean 
serves as a convenient benchmark for our other estimates and may be useful for comparison 
to previous literature surveys or meta-analyses.  

2. Mean of group means: 𝑦𝑦� = 1
𝐼𝐼
∑ 1

𝑚𝑚𝑖𝑖
∑ 𝑦𝑦𝑖𝑖𝑖𝑖
𝑚𝑚𝑖𝑖
𝑖𝑖=1

𝐼𝐼
𝑖𝑖=1 .  This estimator would be optimal if the group-

level non-sampling error variance is much larger than the variances of the group means.  
Specifically, if  𝜎𝜎𝜂𝜂2 ≫ (𝜎𝜎𝜇𝜇2 + 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖2 )/𝑚𝑚𝑖𝑖   for all observations 𝑖𝑖𝑗𝑗, then equation (4) simplifies to 

𝑤𝑤𝑖𝑖𝑖𝑖 ≈
�𝑚𝑚𝑖𝑖𝜎𝜎𝜂𝜂2�

−1

∑ ∑ �𝑚𝑚𝑖𝑖𝜎𝜎𝜂𝜂2�
−1𝑚𝑚𝑖𝑖

𝑗𝑗=1
𝐼𝐼
𝑖𝑖=1

= 1
𝐼𝐼𝑚𝑚𝑖𝑖

.  Note that this estimator gives equal weight to each group mean, 

while the simple mean gives equal weight to each observation.  We generally expect some 
correlation among observations in the same group, which implies a large 𝜎𝜎𝜂𝜂  relative to 𝜎𝜎𝜇𝜇  
and the 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 ’s, so we anticipate that this estimator will be more efficient than the simple mean.  
However, the mean of group means estimator does not account for differences in precision 
of the observations within groups.  The following three estimators are designed to account 
for within-group differences in the precisions of the observations. 

3. Sample size weighted mean: 𝑦𝑦� = 1
∑ ∑ 𝑛𝑛𝑖𝑖𝑗𝑗

𝑚𝑚𝑖𝑖
𝑗𝑗=1

𝐼𝐼
𝑖𝑖=1

∑ ∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖
𝑚𝑚𝑖𝑖
𝑖𝑖=1

𝐼𝐼
𝑖𝑖=1 , where 𝑛𝑛𝑖𝑖𝑖𝑖  is the sample size of 

the dataset used to estimate 𝑦𝑦𝑖𝑖𝑖𝑖  in the original study.  This estimator would be optimal if the 
variances of all observations are inversely proportional to the number of primary 
observations in the sample of data used to estimate them and the non-sampling errors are 
much smaller than the sampling errors.  Specifically, if 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖2 ∝ 𝑛𝑛𝑖𝑖𝑖𝑖−1  and 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖2 ≫ 𝑚𝑚𝑖𝑖𝜎𝜎𝜂𝜂2 + 𝜎𝜎𝜇𝜇2 for 

all observations 𝑖𝑖𝑗𝑗, then equation (4) simplifies to 𝑤𝑤𝑖𝑖𝑖𝑖 ≈
𝑛𝑛𝑖𝑖𝑗𝑗

∑ ∑ 𝑛𝑛𝑖𝑖𝑗𝑗
𝑚𝑚𝑖𝑖
𝑗𝑗=1

𝐼𝐼
𝑖𝑖=1

. 

4. Sampling error variance weighted mean: 𝑦𝑦� =
𝑠𝑠𝑠𝑠𝑖𝑖𝑗𝑗

−2

∑ ∑ 𝑠𝑠𝑠𝑠𝑖𝑖𝑗𝑗
−2𝑚𝑚𝑖𝑖

𝑗𝑗=1
𝐼𝐼
𝑖𝑖=1

∑ ∑ 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖−2𝑦𝑦𝑖𝑖𝑖𝑖
𝑚𝑚𝑖𝑖
𝑖𝑖=1

𝐼𝐼
𝑖𝑖=1  .  This estimator 

would be optimal if the non-sampling errors are much smaller than the sampling errors.  
Specifically, if 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖2 ≫ 𝑚𝑚𝑖𝑖𝜎𝜎𝜂𝜂2 + 𝜎𝜎𝜇𝜇2 for all observations 𝑖𝑖𝑗𝑗, then equation (4) simplifies to 𝑤𝑤𝑖𝑖𝑖𝑖 ≈
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𝑠𝑠𝑠𝑠𝑖𝑖𝑗𝑗
−2

∑ ∑ 𝑠𝑠𝑠𝑠𝑖𝑖𝑗𝑗
−2𝑚𝑚𝑖𝑖

𝑗𝑗=1
𝐼𝐼
𝑖𝑖=1

.  Note that if the sampling error variances of the observations are in fact directly 

proportional to the number of primary observations in the data used to estimate them, as 
assumed under alternative 3 above, then alternatives 3 and 4 are equivalent.  If they are not, 
and if the standard errors reported for each observation in their respective original studies 
represent better estimates of the true sampling error variances, then alternative 4 is superior 
to 3.  We expect the latter to be the case, so we generally prefer alternative 4 to 3 whenever 
both can be estimated.  We include alternative 3 mainly in the interest of comparison to our 
other estimators and to previous studies that may have used alternative 3 as a proxy for 4 
when standard errors were not available.  

5. Total error variance weighted mean: 𝑦𝑦� = ∑ ∑
�𝑚𝑚𝑖𝑖𝜎𝜎�𝜂𝜂2+𝜎𝜎�𝜇𝜇2+𝑠𝑠𝑠𝑠𝑖𝑖𝑗𝑗

2 �
−1

∑ ∑ �𝑚𝑚𝑖𝑖𝜎𝜎�𝜂𝜂2+𝜎𝜎�𝜇𝜇2+𝑠𝑠𝑠𝑠𝑖𝑖𝑗𝑗
2 �

−1𝑚𝑚𝑖𝑖
𝑗𝑗=1

𝐼𝐼
𝑖𝑖=1

𝑦𝑦𝑖𝑖𝑖𝑖
𝑚𝑚𝑖𝑖
𝑖𝑖=1

𝐼𝐼
𝑖𝑖=1 .  This is based 

on the optimal (MSE-minimizing) estimator derived above as reflected in equation (4), but 
uses estimated non-sampling error component variances, 𝜎𝜎�𝜂𝜂2 and 𝜎𝜎�𝜇𝜇2, since these quantities 
are not known and must be estimated from the data.  This estimator accounts for the relative 
precision of the observations within groups as well as the variance of non-sampling errors 
both within and across groups.  If we are able to calculate sufficiently precise estimates of the 
non-sampling error variances, then the total error variance weighted mean estimator will be 
the most efficient estimator among the weighted mean estimators considered here.     

To operationalize the total error variance weighted mean estimator, we first estimated 
𝜎𝜎𝜂𝜂2 and 𝜎𝜎𝜇𝜇2.  We did this in two steps.  First, we derived a consistent non-parametric estimator for 
𝜎𝜎𝜇𝜇2 from the expression for the expected value of the variance of the observations from group 𝑖𝑖, 
which is 

 𝑀𝑀�𝑣𝑣𝑣𝑣𝑟𝑟�𝑦𝑦𝑖𝑖𝑖𝑖�� = 𝑀𝑀 �
1
𝑚𝑚𝑖𝑖

��𝑦𝑦𝑖𝑖𝑖𝑖 −
1
𝑚𝑚𝑖𝑖

�𝑦𝑦𝑖𝑖𝑖𝑖

𝑚𝑚𝑖𝑖

𝑖𝑖=1

�

2𝑚𝑚𝑖𝑖

𝑖𝑖=1

�. (5) 

Substituting 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑦𝑦 + 𝜂𝜂𝑖𝑖 + 𝜇𝜇𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖  into equation (5), and then simplifying (using the 
assumptions that the expected values of all error components and the correlations among them 
are zero) gives 

 𝑀𝑀�𝑣𝑣𝑣𝑣𝑟𝑟�𝑦𝑦𝑖𝑖𝑖𝑖�� = �1 − 1
𝑚𝑚𝑖𝑖
� 𝜎𝜎𝜇𝜇,𝑖𝑖

2 + �1 − 1
𝑚𝑚𝑖𝑖
�

1
𝑚𝑚𝑖𝑖

�𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖2
𝑚𝑚𝑖𝑖

𝑖𝑖=1

. (6) 

Therefore, a consistent estimator for 𝜎𝜎𝜇𝜇,𝑖𝑖
2   is 
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 𝜎𝜎�𝜇𝜇,𝑖𝑖
2 =

𝑚𝑚𝑖𝑖

𝑚𝑚𝑖𝑖 − 1 𝑣𝑣𝑣𝑣𝑟𝑟�𝑦𝑦𝑖𝑖𝑖𝑖� −
1
𝑚𝑚𝑖𝑖

�𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖2
𝑚𝑚𝑖𝑖

𝑖𝑖=1

. (7) 

Because several studies in the meta-dataset contribute only one observation, we were not able 
to estimate group-specific non-sampling error variances for all groups.  And because several 
other studies include only two or three observations, we were not able to estimate non-sampling 
error variances for these groups very precisely.  Therefore, we estimated a common observation-
level non-sampling error variance, 𝜎𝜎𝜇𝜇2, by taking the sample size weighted mean of the 𝜎𝜎�𝜇𝜇,𝑖𝑖

2 ’s 
calculated for those groups that contain at least two observations: 

 𝜎𝜎�𝜇𝜇2 =
∑𝑖𝑖=1
𝐼𝐼 𝑚𝑚𝑖𝑖𝜎𝜎�𝜇𝜇,𝑖𝑖

2

∑𝑖𝑖=1
𝐼𝐼 𝑚𝑚𝑖𝑖

. (8) 

Next, with an estimate of 𝜎𝜎𝜇𝜇2 in hand, it is possible to estimate 𝜎𝜎𝜂𝜂2  using an analogous derivation 
starting from the expression for the variance of the group-level precision-weighted means: 

 𝑀𝑀[𝑣𝑣𝑣𝑣𝑟𝑟(𝑦𝑦�𝑖𝑖)] = 𝑀𝑀 ��𝑦𝑦�𝑖𝑖 −
1
𝐼𝐼
�𝑦𝑦�𝑖𝑖

𝐼𝐼

𝑖𝑖=1
�
2

�. (9) 

Substituting 𝑦𝑦�𝑖𝑖 = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖
𝑚𝑚𝑖𝑖
𝑖𝑖=1 , where 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑦𝑦 + 𝜂𝜂𝑖𝑖 + 𝜇𝜇𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 and 𝑤𝑤𝑖𝑖𝑖𝑖 =

𝜎𝜎𝜇𝜇2+𝑠𝑠𝑠𝑠𝑖𝑖𝑗𝑗
2

∑ 𝜎𝜎𝜇𝜇2+𝑠𝑠𝑠𝑠𝑖𝑖𝑗𝑗
2𝑚𝑚𝑖𝑖

𝑗𝑗=1
, into equation 

(9) and simplifying yields the following estimator for the group-level non-sampling error 
variance: 

 𝜎𝜎�𝜂𝜂2 =
𝐼𝐼

𝐼𝐼 − 1 𝑣𝑣𝑣𝑣𝑟𝑟
(𝑦𝑦�𝑖𝑖) −

1
𝐼𝐼 �𝑀𝑀[𝑀𝑀𝑖𝑖]

𝐼𝐼

𝑖𝑖=1

, where 𝑀𝑀[𝑀𝑀𝑖𝑖] =
1
𝑚𝑚𝑖𝑖
2�𝑤𝑤𝑖𝑖𝑖𝑖

2�𝜎𝜎𝜇𝜇,𝑖𝑖
2 + 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖2 �.

𝑚𝑚𝑖𝑖

𝑖𝑖=1

 (10) 

This completes our non-parametric approach to estimating a central value of the VSL based on 
the total error variance weighted mean of the primary VSL estimates.  We used this approach to 
estimate the average VSL among the general U.S. adult population, applying the five weighted 
average estimators described above to all of the primary estimates and various subsets based on 
whether the primary studies were hedonic wage or stated preference studies and whether the 
observations represent estimates of the mean or median VSL. 

4.1.1 Bootstrap standard errors 

We estimated standard errors for the weighted means using a non-parametric bootstrap 
approach, which can estimate the variance of an estimator (and other statistics of interest) even 
when no probability model for the data is assumed (Efron 1977).  Bootstrap approaches rely on 
an analogy between the sample and the population, so in general the reliability of bootstrap 
estimates will depend on how well the sample of data represents the population of interest 
(Mooney and Duval 1993).  If the analyst has no additional information and is not willing to make 
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unsupported structural assumptions about the data generating process, then the sample of data 
will by definition represent the best information available on the nature of the population.  In 
these cases, the empirical distribution defined by the sample itself represents the best available 
estimate of the underlying population distribution, therefore resampling from the sample 
provides the best possible approximation to resampling from the population.  The bootstrap has 
been found to perform well in a wide variety of settings (Efron 2003), including many cases 
where bootstrap estimates are more reliable than standard formulas based on asymptotic theory 
due to small sample bias (e.g., Mooney and Duval 1997 p 44-50) or other reasons (Singh 1981, 
Horowitz 2003). 

 Bootstrap estimation of the standard errors for our weighted mean estimators involves 
simulating many hypothetical meta-datasets by drawing groups with replacement from the 
primary meta-dataset.  To maintain the within-group correlation structure among the 
observations, we randomly drew I sets of groups with replacement from the primary sample of 
grouped observations.  We did not re-sample observations below the top (group) level (Davison 
and Hinkley 1997 p 100-101, Ren et al. 2010).  For each bootstrap sample, we calculated the 
weighted mean of the bootstrap observations in a manner directly analogous to the weighted 
mean calculations applied to the primary sample as described above.   

4.2 Parametric estimation 

In addition to the non-parametric estimation approach described in the previous section, we also 
used a parametric approach based on maximum likelihood to estimate the non-sampling error 
variances and the average VSL among the general U.S. adult population.  Specifically, we 
estimated a variant of a “random effects size” (RES) model (e.g., Borenstein et al. 2009, Nelson 
and Kennedy 2009), 

 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑋𝑋𝑖𝑖𝑖𝑖𝛽𝛽 + 𝜂𝜂𝑖𝑖 + 𝜇𝜇𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 , (11) 

where 𝑦𝑦𝑖𝑖𝑖𝑖  is the 𝑗𝑗th observation from group 𝑖𝑖, 𝑋𝑋𝑖𝑖𝑖𝑖  is a row vector of group- or observation-level 
attributes for observation 𝑖𝑖𝑗𝑗, 𝜂𝜂𝑖𝑖  is a group-level non-sampling error, 𝜇𝜇𝑖𝑖𝑖𝑖 is an observation-level 
non-sampling error, and 𝜀𝜀𝑖𝑖𝑖𝑖  is an observation-level sampling error.  We assumed that all error 
components are independently and normally distributed: 𝜂𝜂𝑖𝑖~𝑁𝑁�0,𝜎𝜎𝜂𝜂2�, 𝜇𝜇𝑖𝑖𝑖𝑖~𝑁𝑁�0,𝜎𝜎𝜇𝜇2�, and 

𝜀𝜀𝑖𝑖𝑖𝑖~𝑁𝑁�0, 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖2 �, where 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖  is the standard error reported by the authors (or calculated by us using 
auxiliary information when necessary as described in Appendix B) for observation 𝑖𝑖𝑗𝑗.  Because 
the sampling error variances are assumed to be known and equal to the reported standard 
errors, the parameters to be estimated are 𝜎𝜎𝜂𝜂2, 𝜎𝜎𝜇𝜇2, and the constituents of 𝛽𝛽.  

The log likelihood function used for estimation is based on the probability of the set of 
observations from group i, which are assumed to be correlated owing to the presence of the 
group-level non-sampling errors, 𝜂𝜂𝑖𝑖: 
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 Pr�𝑦𝑦𝑖𝑖1,𝑦𝑦𝑖𝑖2, … , 𝑦𝑦𝑖𝑖𝑚𝑚𝑖𝑖� = �𝑓𝑓(𝜂𝜂𝑖𝑖)Pr�𝑦𝑦𝑖𝑖1,𝑦𝑦𝑖𝑖2, … ,𝑦𝑦𝑖𝑖𝑚𝑚𝑖𝑖|𝜂𝜂𝑖𝑖�𝑑𝑑𝜂𝜂𝑖𝑖 . (12) 

We used numerical integration to approximate the unconditional probability in (12), so the 
contribution to the likelihood from group 𝑖𝑖 was calculated as follows: 

 𝑉𝑉𝑖𝑖(𝜃𝜃|𝑦𝑦,𝑋𝑋) = ��𝜙𝜙�𝜂𝜂𝑖𝑖𝑖𝑖 , 0,𝜎𝜎𝜂𝜂2��𝜙𝜙�𝑦𝑦𝑖𝑖𝑖𝑖 ,𝑋𝑋𝑖𝑖𝑖𝑖𝛽𝛽 + 𝜂𝜂𝑖𝑖𝑖𝑖 ,𝜎𝜎𝜇𝜇2 + 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖2 �∆𝜂𝜂
𝑚𝑚𝑖𝑖

𝑖𝑖=1

�
𝑍𝑍

𝑖𝑖=1

. (13) 

where 𝜃𝜃 ≡ �𝛽𝛽,𝜎𝜎𝜂𝜂2,𝜎𝜎𝜇𝜇2� is a vector containing all parameters to be estimated, 𝑦𝑦 and 𝑋𝑋 are the data, 
𝑧𝑧 = 1,2, … ,𝑍𝑍 indexes a large number of evaluation points for the integrand ranging from 𝜂𝜂 to 𝜂𝜂 

(i.e., 𝜂𝜂𝑖𝑖𝑖𝑖 = 𝜂𝜂 + 𝑧𝑧Δ𝜂𝜂 = 𝜂𝜂 − (𝑍𝑍 − 𝑧𝑧)Δ𝜂𝜂), and 𝜙𝜙(𝑦𝑦, 𝜇𝜇,𝜎𝜎2) is the normal probability density function 

with mean 𝜇𝜇 and variance 𝜎𝜎2 evaluated at 𝑦𝑦.  The log likelihood for the full set of observations is 

 𝑙𝑙𝑛𝑛𝑉𝑉(𝜃𝜃|𝑦𝑦,𝑋𝑋) = �𝑙𝑙𝑛𝑛�𝑉𝑉𝑖𝑖(𝜃𝜃|𝑦𝑦,𝑋𝑋)�
𝐼𝐼

𝑖𝑖=1

, (14) 

and the maximum likelihood estimates are the parameters that maximize the log likelihood 
function, 

 𝜃𝜃�𝑀𝑀𝑀𝑀 = 𝑣𝑣𝑟𝑟𝑎𝑎𝑚𝑚𝑣𝑣𝑎𝑎{𝑙𝑙𝑛𝑛𝑉𝑉(𝜃𝜃|𝑦𝑦,𝑋𝑋)}. (15) 

The maximum likelihood approach provides an alternative means of estimating the average VSL 
(𝑋𝑋�̂�𝛽, with the elements of 𝑋𝑋 specified appropriately) and the variances of the non-sampling error 
components, 𝜎𝜎𝜂𝜂2 and 𝜎𝜎𝜇𝜇2.   

4.3 Comparison to previous approach 

The EPA’s existing VSL estimate is $7.9 million in 2008$ (USEPA 2010 p 7-8), which, adjusted for 
inflation and income growth over time, is $9.7 million in 2013$.14  This estimate is based on the 
mean of a Weibull distribution fit to 26 primary VSL estimates from 5 stated preference studies 
and 21 hedonic wage studies published between 1974 and 1991 (Industrial Economics Inc. 1992, 
USEPA 1997 p I-3).  The 26 estimates are those included in a review of the VSL literature by 
Viscusi (1992).  The mean and standard deviation of the sample of primary estimates are $4.8 
and $3.3 million, respectively, and the mean and standard deviation of the best-fit Weibull 
distribution are $4.8 and $3.2 million (1990$).   

The calculation of the EPA’s existing VSL estimate used a single VSL estimate from each 
selected primary study.  No form of precision-weighting was applied, so each study and each 
included estimate received equal weight in the average.  The probability distribution fit to the 

                                                           
14 The $7.9 million in 2008$ is equivalent to $4.8 million (1990$) adjusted for inflation. 



27 

primary estimates represents the variability of the primary estimates themselves, not the 
variability of the sampling distribution of the (weighted) mean of the primary VSL estimates.  No 
form of meta regression was used to examine the influence of methodological or other factors on 
the VSL.   

 The estimation approach used in this White Paper removes any subjective assessment 
of the “best” single estimate from a study by allowing for multiple VSL estimates from each 
selected primary study, and uses precision-weights to account for differences in the uncertainty 
surrounding each primary estimate both within and across studies.  The standard errors 
reported in this White Paper represent the sampling variability of the central VSL estimates, not 
the variance of the set of primary VSL estimates that constitute the meta dataset. 

5 Results 
This section presents the results of applying the five non-parametric weighted mean estimators 
described in section 4.1 and parametric maximum likelihood estimation described in section 4.2.  
We interpret and discuss the implications of the results in section 6.  All results reported in the 
main text of this White Paper are based on an assumed VSL income elasticity of 0.7 (OAR memo 
2015).  Because this is a provisional estimate of the income elasticity, subject to revision pending 
SAB-EEAC comments, analogous results using income elasticities between 0.1 and 1.7 are 
reported in Appendix C.   

Non-parametric estimates of the average VSL among the general U.S. adult population are 
shown in Table 7.  All HW studies reported mean estimates only; SP studies reported mean or 
median estimates.  “Pooled” estimates are based on weighted averages of all included HW and 
SP observations, with no distinction between the two types of studies.  “Balanced” estimates are 
based on the simple average of the separate estimates calculated using HW and SP observations 
alone, shown in the first two columns of numbers in Table 7.  For the simple mean estimator, 
pooled and balanced estimates would be equivalent if there were an equal number of HW and 
SP observations in the dataset.  For the mean of group means estimator, pooled and balanced 
estimates would be equivalent if there were an equal number of HW and SP groups in the dataset.  
The pooled estimator would be more efficient if there are no systematic differences between HW 
and SP estimates of the VSL.  The balanced estimator allows for possible systematic differences 
between HW and SP studies and takes the average VSL from the two types of studies as the target 
of estimation.   
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Table 7. Non-parametric estimates of the average VSL among the U.S. adult general population 
[2013$/statistical life/yr]. Income elasticity = 0.7. 

Estimator mm/ma HWb SP pooled balanced 

1 simple mean 
mm 11.9 [ 1.13 ]c 7.53 [ 1.00 ] 9.83 [ 1.20 ] 9.73 [ 0.753 ] 

m 11.9 [ 1.13 ] 8.59 [ 1.91 ] 10.7 [ 1.29 ] 10.3 [ 0.969 ] 

2 mean of group 
means 

mm 10.4 [ 0.378 ] 7.86 [ 0.724 ] 9.01 [ 0.460 ] 9.11 [ 0.408 ] 

m 10.4 [ 0.378 ] 10.4 [ 1.15 ] 10.4 [ 0.587 ] 10.4 [ 0.545 ] 

3 sample size 
weighted mean 

mm 11.8 [ 1.25 ] 7.96 [ 1.25 ] 11.8 [ 1.27 ] 9.90 [ 0.880 ] 

m 11.8 [ 1.25 ] 8.67 [ 1.85 ] 11.8 [ 1.26 ] 10.3 [ 1.01 ] 

4 sampling var. 
weighted mean 

mm 9.27 [ 1.01 ] 6.65 [ 2.99 ] 6.69 [ 2.93 ] 7.96 [ 1.56 ] 

m 9.27 [ 1.01 ] 9.49 [ 3.34 ] 9.48 [ 3.13 ] 9.38 [ 1.76 ] 

5 total var. 
weighted mean 

mm 10.1 [ 0.396 ] 7.09 [ 0.829 ] 8.55 [ 0.640 ] 8.59 [ 0.461 ] 

m 10.1 [ 0.396 ] 8.28 [ 1.31 ] 9.42 [ 0.672 ] 9.19 [ 0.684 ] 

a. “mm” includes mean and median primary estimates, “m” includes only mean primary estimates. 
b. The “mm” and “m” HW estimates in the first column of numbers are identical because HW studies only 

reported mean VSL estimates.   
c. Numbers is square brackets are bootstrapped standard errors. 

 
As noted above, standard errors for the estimates shown in Table 7 were estimated using 

a one-level bootstrap approach.  In a sensitivity analysis, we also estimated the standard errors 
with a two-level bootstrap approach, first re-sampling groups with replacement then re-
sampling observations from each selected group with replacement.  This gave standard errors 
for the balanced estimates slightly larger than those shown in Table 7, by up to roughly $0.12 
million.  See Table C-11 in Appendix C. 

Non-parametric estimates of the non-sampling error variances are shown in Table 8.  For 
the HW primary estimates the estimated group-level (across group) and observation-level 
(within group) non-sampling error variances are roughly equal; for the SP primary estimates the 
estimated group-level non-sampling error variance is substantially greater than the observation-
level variance.  Pooling all observations produced non-sampling error variance estimates 
between those estimated using the HW and SP observations alone.  
  



29 

Table 8. Non-parametric estimates of  
non-sampling error variances. 

 mm/m 𝝈𝝈�𝝁𝝁 𝝈𝝈�𝜼𝜼 

HW mm 2.57 2.28 

 m 2.57 2.28 

SP  mm 5.04 0.53 

 m 3.20 0.95 

pooled  mm 4.07 0.97 

 m 2.81 1.23 
 

Parametric maximum likelihood results are shown in Table 9.  The SP and median dummy 
variables were entered multiplicatively, and year of data collection was standardized and 
entered additively.  Specifically, the form of the estimating equation was 

 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛽𝛽0�1 + 𝛽𝛽𝑆𝑆𝑆𝑆𝑑𝑑𝑆𝑆𝑆𝑆,𝑖𝑖𝑖𝑖��1 + 𝛽𝛽𝑚𝑚𝑠𝑠𝑚𝑚𝑖𝑖𝑚𝑚𝑛𝑛𝑑𝑑𝑚𝑚𝑠𝑠𝑚𝑚𝑖𝑖𝑚𝑚𝑛𝑛,𝑖𝑖𝑖𝑖� + 𝛽𝛽𝑦𝑦𝑠𝑠𝑚𝑚𝑦𝑦𝑡𝑡𝑖𝑖𝑖𝑖 + 𝜂𝜂𝑖𝑖 + 𝜇𝜇𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖  (16) 

where 𝑑𝑑𝑆𝑆𝑆𝑆,𝑖𝑖𝑖𝑖 = 1 if the primary estimate is based on stated preference data and 0 if based on 
hedonic wage data, 𝑑𝑑𝑚𝑚𝑠𝑠𝑚𝑚𝑖𝑖𝑚𝑚𝑛𝑛,𝑖𝑖𝑖𝑖 = 1 if the primary estimate is a median and 0 if it is a mean, and 𝑡𝑡𝑖𝑖𝑖𝑖 
is the standardized year when data were collected for the study from which primary estimate ij 
was drawn.  The column labeled pooled refers to a model in which HW and SP primary estimates 
were combined without controlling for the type of estimate (i.e., excluding 𝑑𝑑𝑆𝑆𝑆𝑆 from the set of 
control variables).  The balanced model controls for the type of estimate with 𝑑𝑑𝑆𝑆𝑆𝑆,𝑖𝑖𝑖𝑖 and adds half 
of the estimated coefficent 𝛽𝛽𝑆𝑆𝑆𝑆 to 𝑉𝑉𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻 (= 𝛽𝛽0) to arrive at 𝑉𝑉𝑉𝑉𝑉𝑉𝑏𝑏𝑚𝑚𝑏𝑏𝑚𝑚𝑛𝑛𝑏𝑏𝑠𝑠𝑚𝑚 (i.e., 𝑉𝑉𝑉𝑉𝑉𝑉𝑏𝑏𝑚𝑚𝑏𝑏𝑚𝑚𝑛𝑛𝑏𝑏𝑠𝑠𝑚𝑚 =
1
2𝑉𝑉𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻 + 1

2𝑉𝑉𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆, 𝑉𝑉𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻 = 𝛽𝛽0, and 𝑉𝑉𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 = 𝛽𝛽0 + 𝛽𝛽𝑆𝑆𝑆𝑆, so 𝑉𝑉𝑉𝑉𝑉𝑉𝑏𝑏𝑚𝑚𝑏𝑏𝑚𝑚𝑛𝑛𝑏𝑏𝑠𝑠𝑚𝑚 = 𝛽𝛽0 + 1
2𝛽𝛽𝑆𝑆𝑆𝑆). 
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Table 9. Maximum likelihood estimation results.  Coefficient estimates using only hedonic wage 
(HW) estimates, only stated preference (SP) estimates, HW and SP estimates combined with no 
control for study type (pooled), and HW and SP estimates combined with fixed effect for study 
type (balanced).  Numbers in square brackets are standard errors. 

Parameter HW SP pooled balanced 

𝛽𝛽0 10.7 [ 0.556 ] 9.66 [ 1.08 ] 10.1 [ 0.718 ] 11.0 [ 1.00 ] 

𝛽𝛽𝑦𝑦𝑠𝑠𝑚𝑚𝑦𝑦 1.59 [ 0.485 ] 1.18 [ 0.925 ] 1.13 [ 0.596 ] 1.33 [ 0.588 ] 

𝛽𝛽𝑆𝑆𝑆𝑆    -0.147 [ 0.112 ] 

𝛽𝛽𝑚𝑚𝑠𝑠𝑚𝑚𝑖𝑖𝑚𝑚𝑛𝑛  -0.482 [ 0.101 ] -0.479 [ 0.0852 ] -0.451 [ 0.095 ] 

𝜎𝜎𝜇𝜇  1.33 [ 0.628 ] 2.24 [ 0.349 ] 2.12 [ 0.287 ] 2.10 [ 0.288 ] 

𝜎𝜎𝜂𝜂  0.458 [ 0.924 ] 2.65 [ 0.702 ] 2.20 [ 0.460 ] 2.03 [ 0.468 ] 

𝑉𝑉𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻 10.7 [ 0.556 ]   11.0 [ 1.00 ] 

𝑉𝑉𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆  9.66 [ 1.08 ]  9.36 [ 0.937  ] 

𝑉𝑉𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑠𝑠𝑚𝑚   10.1 [ 0.718 ]  

𝑉𝑉𝑉𝑉𝑉𝑉𝑏𝑏𝑚𝑚𝑏𝑏𝑚𝑚𝑛𝑛𝑏𝑏𝑠𝑠𝑚𝑚    10.2 [ 0.702 ] 

 
The influence on the VSL of each study that contributes observations to the meta-analysis 

dataset is shown in Table 10.  The influence analysis was conducted by re-calculating all mean of 
group mean and maximum likelihood VSL estimates after dropping all observations from each 
study in turn.  Note that negative (positive) values in the table indicate that the study has a 
positive (negative) influence on the central VSL estimate when the study is included in the 
dataset.   

Table 10. Influence analysis.  Cell entries are the percentage change in each estimator if the 
study listed in the first column is excluded from the dataset. 

 mean of group means maximum likelihood 
Excluded study HW SP pool. bal. HW SP pool. bal. 
Hammitt and Graham (1999) 0 4.7 3.6 1.9 0.9 6.7 2.7 2.2 

Corso, Hammitt, and Graham 
(2001) 

0 -13.8 -5.9 -5.7 1.9 -22.8 -5.2 -7.5 

Alberini et al. (2004) 0 7.2 4.9 3.0 0.2 8.4 4.0 3.2 

Hammitt and Hanninger (2010) 0 0.1 0.6 0.0 -0.5 -0.5 -0.5 -0.5 

Cameron, DeShazo, and Johnson 
(2010) 

0 -0.5 0.1 -0.2 0.0 -0.7 -0.4 -0.4 
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Cameron, DeShazo, and Stiffler 
(2013) 

0 -0.1 0.2 0.0 0.0 -0.3 -0.2 -0.2 

Chestnut, Rowe, and Breffle 
(2012) 

0 11.1 6.4 4.6 -0.4 4.9 3.6 3.1 

Cameron and DeShazo (2013) 0 0.1 0.9 0.0 -0.1 2.9 1.6 1.2 

Viscusi, Huber, and Bell (2014) 0 -5.6 -2.6 -2.3 -0.7 -7.0 -3.5 -4.4 

Viscusi (2003) -1.9 0 -1.3 -1.1 0.4 0.3 0.1 0.2 

Viscusi (2004) 1.3 0 1.3 0.8 1.7 0.6 0.9 1.0 

Kneiser and Viscusi (2005) 1.8 0 1.0 1.1 3.0 0.3 0.8 1.0 

Viscusi and Aldy (2007) -0.3 0 -0.1 -0.2 0.2 0.1 -0.1 -0.1 

Aldy and Viscusi (2008) 7.3 0 -2.0 4.3 -2.1 1.4 0.2 2.2 

Viscusi and Hersch (2008) -0.4 0 -0.3 -0.3 0.0 0.1 -0.1 0.0 

Hersch and Viscusi (2010) -2.7 0 -1.5 -1.6 -0.9 0.5 -0.9 -0.7 

Scotten and Taylor (2011) -5.5 0 -9.6 -3.2 -7.6 -5.4 -6.2 -5.8 

Scotten (2013) -0.3 0 -0.2 -0.1 0.0 -0.1 0.0 0.0 

 

6 Discussion 

6.1 Preferred Methodology 

With respect to study methodology, we prefer the balanced estimates over the HW only, SP only, 
and pooled estimates.  It is our judgment that HW and SP methods both have strengths and 
weaknesses, so we cannot definitively choose one over the other.  HW studies use data on 
observed behaviors and so are not subject to the potential hypothetical biases that are of concern 
for SP studies. On the other hand, SP studies often focus on health conditions that are far more 
similar to the types of health risks that may be influenced by ambient environmental quality, 
such as various forms of cancer and cardiovascular disease.  Furthermore, placing equal weight 
on the central estimates from each strand of the literature makes the final estimate more robust 
to differences in the number of HW studies relative to the number of SP studies that meet the 
selection criteria and the systematic differences in variances arising from the experimental 
design of SP studies compared with the observational data used in HW studies.  We prefer 
estimates based on mean primary VSL estimates alone (excluding median estimates) because 
our target of estimation is the average VSL among the general U.S. adult population and the 
median observations show a clear tendency to be different from the mean observations.   



32 

All of the non-parametric estimators used in this White Paper are consistent, or 
asymptotically unbiased.  This means that, under the maintained assumption that all error 
components have expected values of zero, the average of the results from repeated meta analyses 
analogous to this one would converge to the true value of the average VSL as the number of 
repetitions grows large.  Therefore, the best estimator among the non-parametric estimators 
used in this White Paper is the one that is most efficient.  The mean of group means estimator 
has the smallest estimated standard error, so when selecting a proposed VSL estimate from 
among the non-parametric estimates we focus our attention on the mean of group means.   

The differences among the standard errors in Table 7 reflect the relative magnitudes of 
sampling and non-sampling error components associated with the primary estimates.  As 
explained in section 4.1, the relative magnitudes of the variances of the error components will 
determine which of the weighted mean estimators is most efficient.  That the mean of group 
means estimator in all cases has the smallest standard error indicates that the group level non-
sampling error variance (𝜎𝜎𝜂𝜂2) is typically larger than the variances of the group mean VSLs in our 
dataset.    

Under the maintained assumptions behind the derivation of the optimal weights given in 
equation (4), the total variance weighted mean would be most efficient if our estimates of the 
error component variances were sufficiently precise.  However, the standard errors for the total 
variance weighted mean are larger than those for the mean of group means (but smaller than the 
other estimators), which suggests that our estimates of the error component variances are too 
noisy for the total variance weighted mean to perform up to its full potential.  If we were able to 
increase the size of the meta-dataset, then the efficiency of the auxiliary estimates of the error 
component variances also would increase and so the estimated weights in the total variance 
weighted mean would approach the optimal weights derived in equation (4).  Therefore we 
would expect the relative performance of the total variance weighted mean estimator to improve 
as the size of the meta-dataset increases and eventually outperform the other weighted mean 
estimators.  

The maximum likelihood results shown in Table 9 indicate that VSL estimates from SP 
studies are on average nearly 15 percent lower than those from HW studies, but this difference 
is not statistically significant.  At least one previous study found that HW and SP estimates of the 
VSL tend to be significantly different (Kochi, Hubbell, and Kramer 2006).  Consistent with these 
previous findings, the non-parametric estimation results shown in Table 7 indicate that SP 
estimates of the VSL are on average lower than HW estimates.  However, all HW estimates are 
means while the SP studies reported both mean and median VSL estimates.  Comparing the HW 
estimates to the mean SP estimates suggests that the difference in the average estimates between 
the two methods is less pronounced than indicated by comparing all HW estimates to all SP 
estimates.  Specifically, using mean and median primary estimates, the nominal 95 percent 
confidence intervals (minus to plus 1.96 times the standard errors) for the HW and SP means do 
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not overlap for three of the five estimators (simple mean, mean of group means, and total 
variance weighted mean).  Using only mean primary estimates the HW and SP nominal 
confidence intervals  overlap for all five estimators.  Overall, these results, along with the results 
of the maximum likelihood model, suggest that for SP estimates may be somewhat lower than 
HW estimates but, based on the meta-dataset used in the present study, the evidence for this 
difference is not very strong. 

The results in Table 9 also suggest that median VSL estimates reported in the SP studies 
are on average between 45 and 48 percent lower than mean VSL estimates, a statistically 
significant difference.15  This reinforces our preference for focusing on those non-parametric 
estimates based on mean observations only.  The coefficient on the year variable is statistically 
significant in the HW and balanced models.  The data collection years of the underlying studies 
ranged from 1993 to 2009.  The year variable was centered and standardized for model 
estimation, so the estimated coefficient on the year variable of 1.33 in the balanced model 
indicates that the average estimated VSL has increased by $4.1 million over the 17 year span of 
data collection years.  Possible reasons for this result include that preferences may have changed 
over time such that people’s marginal willingness to pay for mortality risk reductions has 
increased, estimation methods have changed such that the bias of the estimates has reduced or 
increased over time, our assumed income elasticity estimate of 0.7 is too low,16 or some 
combination of these.  Without additional supporting evidence that the apparent time trend 
mainly reflects changes in preferences, or that VSL estimation biases have changed over time, we 
focus on the VSL estimates as reported in the bottom three rows of Table 9, which reflect the 
predicted average VSL at the mean data collection year of the underlying studies.    

The results of the influence analysis shown in Table 10 identify which primary studies 
represented in the meta-dataset have the strongest influence on the balanced mean of group 
means and maximum likelihood VSL estimates.  Studies that if excluded from the meta-dataset 
would change the balanced mean of group means VSL estimates by more then 3 percentage 
points are: Corso, Hammitt, and Graham (2001), Alberini et al. (2004), Chestnut, Rowe, and 
Breffle (2012), and Aldy and Viscusi (2008), and Scotten and Taylor (2011).  Studies whose 
exclusion would change the balanced maximum likelihood estimate by more than 3 percentage 
points are: Corso, Hammitt, and Graham (2001), Alberini et al. (2004), Chestnut, Rowe, and 
Breffle (2012), Viscusi, Huber, and Bell (2014), and Scotten and Taylor (2011).  The most 
influential study for both the non-parametric and parametric estimates was Corso, Hammitt, and 
Graham (2001), which, if excluded from the meta-dataset, would decrease the balanced mean of 

                                                           
15 As stated earlier, we prefer estimates based on mean VSL estimates because our target is the average VSL 
among the general U.S. population.   
16 In a sensitivity analysis where the maximum likelihood estimation was repeated using primary VSL estimates 
adjusted for income growth using an income elasticities 1.1, 1.4, and 1.7, the coefficient on the year variable 
was progressively smaller and its standard error was progressively larger.  See Table C-8 through C-10 in 
Appendix C. 
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group mean VSL estimate by 5.7 percent and the balanced maximum likelihood estiamate by 7.5 
percent.  

For reasons stated above, we prefer estimators that rely on mean VSL estimates from the 
primary studies and a balanced weighting of HW and SP estimates.  Based on the most efficient 
non-parametric estimator, the mean of group means, and the maximum likelihood estimation, 
our proposed VSL estimate is $10.3 million (2013$) at the 2013 level of U.S. per capita income.  
This value is conditional on an assumed VSL income elasticity of 0.7.  If the final 
recommendations from the SAB on VSL income elasticity lead us to choose an estimate other 
than 0.7, then our proposed VSL estimate would change accordingly.17 

6.2 Applying the estimates in benefit-cost analyses 

As noted earlier, the EPA is expecting to select a new term to replace “value of a statistical life” 
and “VSL” and incorporate the new terminology along with recommended reporting conventions 
in its Guidelines in the near future.  While we continue to explore alternatives for a new term, 
adjusting the value for a change in measurement units is straightforward and would have no 
bearing on the meta-analysis reported above.  Regardless of the terminology and measurement 
units that are used to describe and report the average marginal willingness to pay for mortality 
risk reductions, the total benefits estimated for a policy in a benefit-cost analysis would be 
unaffected.  The only possible difference would be in the order of mathematical operations used 
to calculate the total benefits associated with the mortality risk change.18    

Using the preferred estimates identified above for the proposed VSL, and assuming an 
income elasticity of 0.7, the annual value of a reduction in mortality risk of 1 in a million (or a 
micro-risk reduction) would be $10.3 (2013$) at the 2013 level of U.S. per capita income.   As 
with the VSL described above, if the final recommendations regarding income elasticity lead us 
to an alternative estimate, then the value of micro-risk reductions for mortality would change 
accordingly. 

6.3 Protocol for future updates 

As new studies that report VSL estimates are published, the study selection criteria described in 
section 3 will be used to determine their suitability for inclusion in the meta-analysis.  At regular 

                                                           
17 Alternative VSL estimates based on other candidate elasticity values are given in Appendix C.  Between 
elasticities of 0.1 and 1.7, the balanced mean of group means VSL estimate ranges from $9.40 to $12.2 million 
and the balanced maximum likelihood VSL estimate ranges from $9.48 to $11.5 million.   
18 Using the VSL terminology, the present value of benefits from mortality risk reductions in year t would be 
calculated as 𝑃𝑃𝑉𝑉 [$] = 𝑉𝑉𝑉𝑉𝑉𝑉 [$/statistical life/yr] × 𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡  [statistical lives saved/yr] × 1 (1 + 𝑟𝑟)𝑡𝑡⁄ , where 𝑟𝑟 is the 
discount rate.  Using the VMR or VRR terminology, the present value of benefits from mortality risk reductions 
in year t would be calculated as 𝑃𝑃𝑉𝑉 [$] = 𝑉𝑉𝑀𝑀𝑉𝑉 [$/micro-risk/yr] × ∆𝑚𝑚𝑡𝑡 [micro-risks/person/yr] × 𝑁𝑁𝑡𝑡  [people] 
× 1 (1 + 𝑟𝑟)𝑡𝑡⁄ .  The number of statistical lives saved in year t, 𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡 , is equal to ∆𝑚𝑚𝑡𝑡 × 𝑁𝑁𝑡𝑡 , so as long as correct 
conformable measurement units are used in the calculations then the estimated present value would be the 
same either way. 
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intervals—for example, roughly every 5 years—a new report will be published including results 
from an refreshed meta-analysis including all suitable studies published up to that time and the 
Guidelines will be updated accordingly.  We anticipate that the basic meta-analysis approach used 
in this report will also be used in future updates, subject to modifications recommended by the 
SAB or deemed appropriate by the EPA based on new theoretical or methodological advances 
reflected in the scholarly literature.  Any such modifications to the methodological approach will 
be made only after they are subject to internal and external peer review, following the EPA’s 
standard peer review protocols. 

In addition, the EPA will pursue a comprehensive review of the literature on the 
willingness to pay for reductions in cancer risks, including a review of the theoretical literature, 
stated and revealed preference literatures, and other studies as appropriate.  As indicated in 
Appendix B, three stated preference studies provide information on the value of cancer risk 
reductions.  However, the EPA did not conduct a thorough review of the literature for this White 
Paper.  A subject of future work is to more fully examine this literature to determine if and how 
the EPA can provide guidance for valuing reductions in cancer risks differently than other risks.   

7   Conclusions 
This White Paper summarizes SAB-EEAC guidance for the EPA’s update of the VSL and describes 
how the EPA implemented those recommendations.  The most material recommendations 
provided by the SAB-EEAC are the selection criteria used to create a database of primary 
estimates from the stated preference and hedonic wage literatures.  Eight hedonic wage studies 
and nine stated preference studies satisfy the study selection criteria providing a total of 88 
primary VSL estimates among them.  Including multiple estimates from the same study while 
controlling for statistical dependence among the primary estimates allowed the EPA to perform 
a robust meta-analysis accounting for uncertainties due to sampling and non-sampling errors 
both within and between studies.   

The EPA used several non-parametric approaches and maximum likelihood to calculate 
a number of VSL estimates and a standard error for each.  The non-parametric approaches range 
from a simple mean of primary estimates to a total variance weighted mean that uses auxiliary 
estimates of between- and within-group non-sampling error variances.  The estimators also 
differ in how median primary estimates were treated and whether and how estimates from the 
HW and SP literatures were combined.  The EPA’s preferred non-parametric approach gives 
equal weight to HW and SP studies and restricts the analysis to primary estimates of the mean 
VSL.  Maximum likelihood estimation allowed us to include all primary estimates and control for 
study type and median values.   

Conditional on the maintained assumptions described above, each of the estimators used 
in this White Paper is consistent.  To identify a single point estimate for use in regulatory analysis 
we propose relying on statistical efficiency to further narrow focus on the set of preferred 
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models.  Among the non-parametric approaches the mean of group means estimator had the 
lowest estimated variance.  While the total variance weighted estimator has the potential to be 
the most efficient, the meta-data contain insufficient information to precisely estimate the non-
sampling error variances.  The balanced maximum likelihood estimate is based on all 
observations in the meta-dataset and is nearly as precise as the non-parametric mean of group 
means estimate.  Based on the estimates from these two models, the EPA is proposing a central 
estimate of the average VSL among the general U.S. adult population of $10.3 million (2013$). 

The income elasticity used to adjust the primary estimates for income growth over time 
has a significant effect on the results of the meta-analysis.  The proposed VSL value and all other 
results presented above are based on a VSL income elasticity estimate of 0.7, which was 
generated by equally weighting mean income elasticity estimates from HW and SP studies 
(analogous to our “balanced” VSL estimate).  Other values for the income elasticity ranging from 
0.1 to 1.7 were used to generate alternative estimates, which are presented in Appendix C.  

 Beyond the VSL estimates themselves, the meta-analysis yielded several noteworthy 
results that provide additional insights into this area of research.  One such result arises from 
the comparison of revealed and stated preference estimates.  Some of the non-parametric 
weighted means show substantial differences between the SP and HW values when medians are 
included.  However, when the dataset was restricted to mean primary VSL estimates, the 
differences were much smaller.  The maximum likelihood results for the balanced model support 
this result with a significantly negative coefficient on the median dummy variable and an 
insignificant SP coefficient.  The maximum likelihood models also show a positive time trend 
even after adjusting VSL values for income growth, though this result is not statistically 
significant under assumed income elasticities of 1.1 or higher.   
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Appendix A 
This appendix provides a brief history of SAB advice regarding health risk valuation, excerpted 
from USEPA. 2010. “Valuing Mortality Risk Reductions for Environmental Policy: A White Paper.” 
 
Since its review of EPA’s Guidelines for Preparing Economic Analyses (USEPA 2000a) the SAB has 
offered several specific sets of recommendations on valuing risk reductions, particularly for 
mortality risks. 

In July 2000 the SAB-EEAC released an advisory report in response to EPA’s white paper, 
Valuing the Benefits of Fatal Cancer Risk Reduction, which focused on benefit transfer issues 
associated with using existing mortality risk values to estimate the benefits of EPA actions on 
carcinogens, including potential adjustments that could be made to existing risk values to 
account for this category of benefits (USEPA 2000b).  As noted earlier, after reviewing the White 
Paper and current economics literature, the SAB concluded that, while many of the issues raised 
in the White Paper were theoretically valid and potentially important, the empirical literature 
supported only accounting for latency and for income growth over time.  The SAB-EEAC did not 
consider other adjustments to EPA’s default mortality risk value to be appropriate for the 
Agency’s primary analyses, but could be addressed separately using sensitivity analysis.   

An August 2001 SAB report, Arsenic Rule Benefits Analysis: An SAB Review (USEPA 
2001), generally supported EPA’s estimate of the marginal willingness to pay for mortality risk 
reductions.  The SAB also offered additional recommendations to account for the time between 
reduced exposure and reduced mortality risks.  This report coined the term “cessation lag” for 
this concept and offered specific recommendations for estimating cessation lags based on the 
types of risk data available.  The SAB review also clarified that reductions in exposure to 
carcinogens—that is, exposure per se, aside from the increased cancer risks that the exposure 
causes—are not a separate benefit category under a damage function approach to valuing 
reduced risks.  The board noted that it is possible that there is an existence value for protected 
drinking water; however, without sufficient empirical evidence to estimate the magnitude of this 
value, it cannot be included in the quantitative benefits analysis.  Finally, the report indicated 
that it is appropriate to add the costs of illness to the willingness to pay for mortality risk 
reductions when estimating the benefits of reduced cancer mortality. 

EPA further consulted with the SAB-EEAC on additional mortality risk valuation issues in 
2004, developing a strategy to gather additional information on meta-analysis to inform both the 
SAB-EEAC and EPA (USEPA 2004).  In 2006, EPA returned to the SAB-EEAC with two documents 
for formal review: a White Paper addressing how remaining life expectancy affects willingness 
to pay for mortality risk reductions, and an expert report on the use of meta-analysis for 



43 

combining existing mortality risk value estimates.  A 2007 report, SAB Advisory on EPA's Issues 
in Valuing Mortality Risk Reduction, responded to both topics (USEPA 2007). 

On the subject of life expectancy, the SAB-EEAC noted that there was theoretical 
ambiguity on how willingness to pay might change with age (and, hence, remaining life 
expectancy).  The committee concluded that the existing economics literature does not provide 
clear theoretical or empirical support for using different values for mortality risk reductions for 
differently-aged adults or a constant “value of statistical life year” (VSLY).  Thus, the SAB-EEAC 
recommended that EPA continue using its traditional assumption of an age-independent 
willingness to pay for mortality risk reductions.  

To address meta-analysis, EPA assembled a work group of expert statisticians in 
December 2005 to discuss the meta-analysis of VSL estimates and to examine three existing 
meta-analyses: Mrozek and Taylor (2002), Viscusi and Aldy (2003), and Kochi, Kramer, and 
Hubbell (2006).  While the expert workgroup did not endorse any one of these studies, the panel 
did encourage the use of meta-analytic techniques for the analysis of the existing literature on 
VSL.  The workgroup recommended analyzing stated preference and hedonic wage data 
separately, and offered a set of principles that should be followed in conducting such an analysis 
(USEPA 2007).   The SAB-EEAC review of the Meta-analysis workgroup’s report stated that meta-
regression is “a useful statistical technique for identifying various aspects of study design or 
population characteristics that are associated with differences in VSL,” but concluded that meta-
regression is “not appropriate [for] combin[ing] VSL estimates” into a summary measure (USEPA 
2007 p i).  Rather, the SAB-EEAC suggested using meta-regression to examine how study design 
characteristics influence the VSL estimates and relying on other statistical techniques to 
determine a central estimate or range of estimates for use in benefit transfer to new policy cases. 
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Appendix B 
This appendix provides detailed notes on the selection and weighting of estimates from each 
study included in the meta-dataset.19  

Stated preference studies 

Hammitt and Graham (1999) conducted a stated preference study to examine sensitivity to 
scope.  The authors reported results for three surveys conducted to identify and investigate 
scope effects.  The first set of results replicate Johannesson et al. (1997).  We do not use these 
results because the associated willingness to pay (WTP) estimates were not sensitive to the 
magnitude of the risk reduction.  The second set of results from “survey 1” are included in our 
analysis (see more about this survey below) because these estimates did exhibit sensitivity to 
scope.  Finally, we did not use the third set of results from the survey about auto and food safety 
risks (“survey 2”) because the food safety risks described in the survey were not fatal and strong 
question ordering effects for the automobile-related risks were found, which raises questions 
about the validity of the estimates (more below).  

In survey 1 Hammitt and Graham (HG) examined WTP for reductions in fatal automobile 
risks via the purchase of an optional side airbag.  The survey was administered by telephone to 
a random sample of U.S. residents ages 18-65.  Respondents were asked two double-bounded 
dichotomous choice questions about their WTP to reduce risks associated with fatal automobile 
accidents.  Respondents were assigned one of two baseline risk levels (20/100,000 and 
25/100,000), which could be reduced to 15/100,000 (in question 1) or 10/100,000 (in question 
2) by purchasing an optional side airbag.  

We included two estimates from survey 1 in our meta-dataset, as indicated in Table B-1.  
These estimates (column 2 in Table 5 of Hammitt and Graham 1999) vary according to the size 
of the risk reduction.  Sensitivity to scope was examined by comparing the ratio of the WTP for 
larger risk reduction to that of the smaller risk reduction.  The ratio was greater than 1, but was 
not proportional to the size of the risk reduction, indicating that the estimates pass a weak 
external scope test.  Median WTP estimates and their associated standard errors were reported 
and are shown in rows 1 and 2 of Table B-1.  We calculated the VSL estimates and associated 
standard errors by dividing the reported WTP estimates by the size of the risk reduction.  The 
authors also reported estimates for the 10/100,000 and 15/100,000 risk reductions from a 
baseline of 20/100,000 and 10/100,000, respectively, but these estimates were not sensitive to 
the magnitude of the risk reduction, and in fact are inversely related, so we excluded them from 
our meta-dataset.  We were able to calculate estimates of the mean VSL from the reported 

                                                           
19 The estimates in 2013 dollars reported in this appendix have been adjusted for inflation and for income 
growth using an income elasticity of 1.0.  For simplicity they will be replaced with estimates adjusted only for 
inflation (not for income growth) prior to SAB review.   
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median estimates using the estimated standard deviation of the regression residuals as reported 
in Hammitt and Graham (1999) and indicated in the footnote to Table B-1.     
   

Table B-1. Hammitt and Graham (1999) estimates. 

Estimate in 
$millions 

(se) 

$year Mean Reference 
in original 

study 

Sample 
size 

Risk 
reduction 

Estimate in 
millions 

$2013 (se) 
2.08 (0.23) 1998 N Table 5, 

column 2a 
992 0.00005 2.97 (.33) 

1.25 (0.14) 1998 N Table 5, 
column 2b 

992 0.0001 1.79 (0.20) 

4.70 (0.23) 1998 Y calculatedc 992 0.00005 6.72 (0.33) 
2.82 (0.14) 1998 Y calculatedc 992 0.0001 4.04 (0.20) 

a.   Calculated based on the reported mean WTP as follows:  VRR=104/0.00005, se=11.49/0.00005.   
b.   Calculated based on the reported median WTP as follows:  VRR=125.1/0.0001; se=13.98/0.0001.     
c.   Calculated as VRR_mean=VRR_median*exp(0.5*sigma^2), where sigma=estimate of scale from results in 

Table 5 of HG, or 1.277. 
 

The authors also reported results for survey 2, which introduced some new features in 
the experimental design intended to improve sensitivity to scope.  The most notable feature is 
the use of a “risk indifference” elicitation method in which respondents were presented with the 
size of the risk change and the price of an air bag (either $150 or $900) and asked to state the 
minimum risk reduction required to be willing to purchase the airbag at the stated price.  These 
results are reported in Table 6 of Hammitt and Graham (1999).  Results for the full sample 
(column 2 in panels A and B of Table 6) indicate that the ratio of risks is nearly proportional for 
the first airbag and more than proportional for the second.  While these estimates pass strong 
external scope tests, they also exhibit strong question order effects that call into question the 
validity of the estimates.  The authors acknowledged the question order effects (p 54) and 
concluded that the risk indifference approach shows promise for use in stated preference 
surveys but “...needs to be replicated in other contexts before it is generalized” (p 58).  Therefore 
we did not include these estimates in our meta-dataset.  
  
Corso, Hammitt, and Graham (2001) conducted a stated preference study to examine the impact 
of different visual aids on the scope sensitivity of WTP for reductions in the risk of dying in fatal 
automobile accidents.  This study was motivated by the Hammitt and Graham (1999) study and 
the authors’ interest in investigating experimental design features to increase sensitivity to 
scope.  The survey was administered using the phone-mail-phone mode to a random sample of 
adults ages 18 and older in the U.S. between December 1998 and March 1999.  WTP was elicited 
using a double-bounded dichotomous choice question format.  The hypothetical risk reduction 
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was described in the survey to occur through the purchase of an optional side air bag that would 
be paid for via an increase in car payments over the next 5 years.  The authors used four 
treatments corresponding to different visual aids: no visual aid, linear ladder, log-linear ladder, 
and a grid of dots.  Each respondent answered one WTP question and was randomly assigned to 
one of eight versions of the survey.  Surveys varied according to the visual aid treatment (four 
alternatives) and the baseline risk of dying in an automobile accident (two alternatives: either 
2.5/10,000 or 2.0 /10,000).  For all treatments the optional air bag would reduce the annual risk 
to 1.5/10,000.  Therefore, one sub-sample of respondents faced a 1.0/10,000 risk reduction 
(larger risk reduction) and another sub-sample of respondents faced a 0.5/10,000 risk reduction 
(smaller risk reduction).  

As indicated in Table B-2 we extracted 12 estimates from this study that vary according 
to the visual aid and risk reduction treatments.  Six of the 12 estimates are based on reported 
median WTP that pass weak or strong validity tests, and the remaining six estimates were 
calculated to derive a mean WTP using author-provided information.   The six reported estimates 
were selected based on their sensitivity to scope as indicated in Tables 2 and 3 in Corso, Hammitt, 
and Graham (1999).  Table 2 provides coefficient estimates for a simple regression of WTP on 
the size of the risk change. This variable was statistically significant in the logarithmic and dots 
treatments only, and the magnitude of the coefficient WTP was proportional to the size of the 
risk reduction for these visual aids.  In addition, Table 3 of the original study shows coefficient 
estimates from models with additional covariates (e.g., demographic characteristics, perceived 
risk) indicating that WTP was sensitive to the size of the risk reduction for all treatments except 
the one with no visual aid.  Visual aids appeared to increase sensitivity to the magnitude of the 
risk reduction.  WTP was only proportional to the size of the risk reduction for the dots 
treatment, but was sensitive to the size of the risk change for the linear and log treatments. 
Therefore, we included the 6 reported estimates from Table 3 with linear, logrithmic, and dots 
visual aids.   

The estimates reported by the authors are estimates of the median WTP from a log-linear 
model specification.  We calculated mean estimates using information from Jim Hammitt.  
Specifically, Hammitt provided the full regression results including the estimated standard 
deviation of the regression residuals, 𝜎𝜎�, associated with each model.  We calculated the mean 
estimates as follows: 
 
𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚𝑠𝑠𝑚𝑚𝑛𝑛 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚𝑠𝑠𝑚𝑚𝑖𝑖𝑚𝑚𝑛𝑛𝑠𝑠

1
2𝜎𝜎�

2. 
 
To incorporate a measure of precision into our analysis we used the reported 95% confidence 
intervals from the parsimonious models in Table 2 of the original study to estimate the standard 
errors for the VSL estimates.  The median WTP estimates in Table 2 of Corso, Hammitt, and 
Graham (1999) are very close to the median estimates in Table 3 (e.g., median WTP for the larger 
risk reduction is $290 in the parsimonious model and $303 in the complex model), so we 
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assumed the 95% confidence intervals in the parsimonious model approximate the confidence 
intervals for the complex models and used those intervals to calculate standard errors for the 
Table 3 VSL estimates.  Finally, we calculated the standard errors of the means using the standard 
errors of 𝜎𝜎� provided by Jim Hammitt, using a formula analogous to the one given above for the 
VSL.   

Table B-2. Corso, Hammitt, and Graham (2001) estimates. 

Estimate in 
$millions 

(se) 

$year Mean Reference 
in original 

study 

Sample 
size 

Risk 
reduction 

Visual 
Aid 

Estimate in 
millions 

$2013 (se) 
3.7 (0.49) 2000 N Table 3, 

column 3 
288 0.0001 linear 5.01 (0.67) 

5.7 (1.04) 2000 N Table 3, 
column 3 

288 0.00005 linear 7.71 (1.40) 

3.2 (0.47) 2000 N Table 3, 
column 4 

263 0.0001 log 4.33 (0.64) 

4.2 (0.66) 2000 N Table 3, 
column 4 

263 0.00005 log 5.68 (0.90) 

3.0 (0.41) 2000 N Table 3, 
column 5 

275 0.0001 dots 4.06 (0.56) 

3.3 (0.53) 2000 N Table 3, 
column 5 

275 0.00005 dots 4.46 (0.72) 

10.11 
(2.10) 

2000 Y calculateda 288 0.0001 linear 13.68 
(2.84) 

15.57 
(3.80) 

2000 Y calculateda 288 0.00005 linear 21.07 
(5.14) 

7.78 (1.50) 2000 Y calculatedb 263 0.0001 log 10.53 
(2.03) 

10.21 
(2.10) 

2000 Y calculatedb 263 0.00005 log 13.82 
(2.84) 

8.59 (1.90) 2000 Y calculatedc 275 0.0001 dots 11.62 
(2.57) 

9.45 (2.20) 2000 Y calculatedc 275 0.00005 dots 12.78 
(2.98) 

a.    Calculated as VRR_mean=VRR_median*exp(0.5*sigma^2), where sigma=estimate of scale from results 
provided by Jim Hammitt in email, or 1.42 (se=0.106).   

b.    Calculated as VRR_mean=VRR_median*exp(0.5*sigma^2), where sigma=estimate of scale from results 
provided by Jim Hammitt in email, or 1.33 (se=0.094).  

c.    Calculated as VRR_mean=VRR_median*exp(0.5*sigma^2), where sigma=estimate of scale from results 
provided by Jim Hammitt, or 1.45 (0.109).   
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Alberini et al. (2004) conducted a stated preference survey to examine variations in willingness 
to pay (WTP) for reductions in a generic risk of death for individuals in the U.S. and Canada.  For 
the purposes of our analysis, we used results from the U.S. sub-sample only.  The survey was 
administered in 2000 to a national sample of U.S. residents ages 40-80 via an Internet panel 
(Knowledge Networks).  Payment for a risk reduction that would occur over the next 10 years 
occurred through an annual fee for an unspecified product.  Using a dichotomous-choice with 
follow-up question format, each respondent was asked two questions that varied according to 
the risk reduction. Wave 1 respondents were given a 5/10,000 annual risk reduction first; wave 
2 respondents were given a 1/10,000 annual risk reduction first.  The WTP and VSL estimates 
were based on responses to the first question only.  

As indicated in Table B-3, we drew four estimates from this study.  The authors conducted 
three validity tests for these estimates.  First, there should be a negative relationship between 
the percentage of respondents who answered “yes” to the initial payment question and the bid 
amount, a weak, internal scope test.  Second, there should be a positive relationship between 
WTP and the size of the risk reduction, another weak scope test that can be internal or external.  
Finally, the authors examined whether or not the relationship between WTP and the size of the 
risk reduction is proportional, a strong scope test.  The WTP estimates passed a weak, internal 
scope test.  The WTP estimates were sensitive to the size of the risk reduction, but were not 
proportional.  The authors reported standard errors for all estimates, which allowed us to 
incorporate measures of precision into the analysis.   

Table B-3. Alberini et al. (2004) estimates. 

Estimate in 
$millions (se) 

Mean $year Reference 
in original 

study 

Sample size Annual 
Risk 

reduction 

Estimate in 
millions 

$2013 (se) 

0.70 (0.06) N 1999 Table 7 556 0.0005 0.98 (0.08) 

1.10 (0.14) N 1999 Table 7 548 0.0001 1.54 (0.20) 

1.54 (0.17) Y 1999 Table 7 556 0.0005 2.15 (0.24) 

4.83 (0.74) Y 1999 Table 7 548 0.0001 6.75  (1.03) 

 

  
Hammitt and Haninger (2010) examined WTP to reduce risks of dying from pesticide residues 
on food for adults and children.  We used the results for adults only, which were elicited from a 
random sample of U.S. residents administered via an internet survey (Knowledge Networks).  
The authors also provided estimates of WTP for reducing automobile risks for the entire 
household, including children.  The authors divided the household risks by the average size of 
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the household to approximate an individual estimate.  However, because the survey question 
was about household risks we did not include these estimates in our analysis since the purpose 
of our study is to estimate values for individual risk reductions.   

The authors also examined how the WTP estimates varied according by disease type (i.e., 
cancer vs. other disease and affected organ), latency, and age.  The survey was administered 
between March and October 2007 and 2,018 surveys were completed.  The risk occurred via 
consumption of a pesticide in food; the reduction in risk was via purchase of a food in a “pesticide 
safety system” (it was not an organic food, just safer pesticides).  Risks could affect different 
organs (brain, bladder, liver, lymphocytes), disease types (cancer, non-cancer), and latency (1, 
10, 20 years).  Respondents were also randomly assigned to treatments with descriptions of 
symptoms and without.  Baseline risks were 3/10,000 or 4/10,000 and risk reductions were 
1/10,000 or 2/10,000 using a grid as a visual aid.  The authors used a double-bounded 
dichotomous-choice question to elicit WTP.  

We included two estimates from Hammitt and Haninger (2010) in our meta-dataset, as 
indicated in Table B-4.  The first estimate is from Table 2 (model 2) and includes both the VSL 
and its standard error.  This estimate was nearly proportional to the size of the risk as indicated 
by the magnitude of the coefficient on the larger risk reduction.  The reported VSL was based on 
a median WTP assuming 1 year of latency (which we judged to be comparable to the annual risk 
reductions reported in other studies in our meta-dataset) and a risk reduction of 1.5/10,000.  We 
also used one estimate from Table 3 (model 6) and its associated standard error.  This estimate 
was based on a model that includes a host of control variables, such as demographic 
characteristics and confidence in responses.  Again, the magnitude of the larger risk reduction 
coefficient indicated that WTP was nearly proportional to the size of the risk reduction.   

 Hammitt and Haninger (2010) provided median estimates of WTP for the risk reductions 
in their survey.  In follow up correspondence with the authors, we obtained estimates of the 
variance of the residuals, which allowed us to calculate mean WTPs assuming a normal 
distribution for the errors.  However, these imputed means were implausibly large—VSLs of $1.9 
billion and $1.2 billion for the two estimates in Table B-4, respectively—so we did not include 
these estimates in our meta-dataset.    

The study also provides estimates for reducing automobile risks for the entire household, 
including children.  Since the purpose of our study is to estimate values for individual risk 
reductions we do not include these household estimates.  While Hammitt and Haninger do divide 
the household risks by the average size of the household to approximate an individual estimate 
because the survey question was about household risks we do not include these estimates in our 
analysis.   
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Table B-4. Hammitt and Haninger (2010) estimates. 

Estimate in 
$millions (se)a 

Mean $year Table in 
paper 

Sample size Annual 
Risk 

reduction 

Estimate in 
millions 

$2013 (se) 
6.50 (1.19) N 2007 Table 2, 

column 2 
2,018 0.00015 7.30 (1.34) 

6.60 (1.19) N 2007 Table 3, 
column 2 

2,018 0.00015 7.42 (1.34) 

 
Cameron, Deshazo, and Johnson (2010) examined the impact of household size and structure on 
WTP for the health risk reductions presented in the Cameron and DeShazo (2013) survey 
described below.  Specifically, Cameron, DeShazo, and Johnson (2010) provided WTP results by 
gender, marital status (married or unmarried), age (30 or 45) and number of children in the 
household (zero, 1 child 2-5 years old, 2 children 2-5 years old, or 2 children 2-5 years old in a 
dual income household).  The original survey questions are for reductions in risk to self.  There 
are 28 estimates reported in Tables 4 and 5 based on illness profile #1, which reflects an estimate 
based on a zero latency period (i.e., sudden death).  Each estimate is from a sample of 1,801 
respondents with a 0.000001 (1 in 1,000,000) risk reduction.   

To construct an estimate of the average VSL among the general U.S. adult population, we 
weighted these 28 estimates using data from the 2010 Census on the number of individuals by 
age and gender in several steps.  First, we recorded the 28 estimates in Tables 4 and 5 reflecting 
different WTP estimates for males and females under illness profile #1.  We then averaged the 
estimates across different household sizes (i.e., 0 children, 1 child, 2 children).  Next we weighted 
these averaged estimates by the share of the population that is male or female, married or 
unmarried, and ages 30 or 45 using Census data.  Those weights are reported as Weight 1 in 
column 6 of Table B-5 below.  Finally, we weighted by the share of the population that is ages 30 
and 45 using Census data (which implicitly assumes the population only consists of 30 and 45 
year old individuals, or that VSLs at later ages are not substantially different).  The weights are 
reported in column 8 of Table B-5.  The final weighted estimate is shown in the last column of 
Table B-5.  All estimates were originally reported in $2003 and are recorded from Tables 4 and 
5 in the original study.  The estimates reflect median WTP; we were unable to calculate mean 
estimates from this study.  
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Table B-5. Cameron, DeShazo, and Johnson (2010) estimates. 

Estimate in 
$millions 

(se)a 

Gender Kids Age Estimate in 
millions 

$2013 (se) 

Weight 1 Weighted 
estimate 1b 

Weight 2 Weighted 
estimate 2 in 

$2013 (se) 
8.81 (1.93) Male, 

married 
0 30 11.15 (2.45) 0.261 9.10 (2.20) 0.495 7.640 (1.75) 

11.01 (2.40) 1 13.94 (3.04) 
13.16 (3.25) 2 16.66 (4.11) 
6.56 (1.74) Male, 

unmarried 
0 8.31 (2.21) 0.231 

8.74 (2.16) 1 11.07 (2.74) 
10.91 (3.04) 2 13.81 (3.85) 
3.59 (0.74) Female, 

married 
0 4.55 (0.94) 0.293 

4.50 (0.88) 1 5.70 (1.12) 
5.42 (1.23) 2 6.86 (1.56) 
6.26 (1.45) 2, dual-

income 
7.93 (1.83) 

2.62 (0.69) Female, 
unmarried 

0 3.32 (0.88) 0.214 
3.55 (0.86) 1 4.49 (1.09) 
4.45 (1.22) 2 5.63 (1.54) 
5.14 (1.47) 2, dual-

income 
6.51 (1.85) 

9.56 (1.74) Male, 
married 

0 45 12.10 (2.21) 0.323 6.20 (1.31) 0.505 
5.61 (1.03) 1 7.10 (1.30) 
3.57 (0.92) 2 4.52 (1.17) 
7.33 (1.52) Male, 

unmarried 
0 9.28 (1.92) 0.167 

4.09 (0.92) 1 5.18 (1.17) 
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2.42 (0.88) 2 3.06 (1.11) 
3.96 (0.57) Female, 

married 
0 5.01 (0.72) 0.335 

2.83 (0.45) 1 3.58 (0.57) 
2.01 (0.50) 2 2.54 (0.64) 
2.18 (0.56) 2, dual-

income 
2.76 (0.70) 

3.04 (0.52) Female, 
unmarried 

0 3.85 (0.66) 0.263 
2.06 (0.43) 1 2.61 (0.55) 
1.34 (0.51) 2 1.70 (0.65) 
1.42 (0.78) 2, dual-

income 
1.80 (0. 72) 

a.    Standard errors are calculated using information on the confidence intervals associated with the estimates provided in Cameron, DeShazo, and 
Johnson (2010). 

b.    Weighted estimate 1 = average of male/female, married/unmarried estimates*weight 1. 
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Cameron, DeShazo, and Stiffler (2013) used data from the Cameron and DeShazo (2013) survey 
to compare estimates from the U.S. to those from a companion survey conducted in Canada using 
the same survey and mode.  We used estimates from the U.S. sample only.  Cameron, DeShazo, 
and Stiffler (2013) reported a series of estimates based on a “sudden death simulation” for 
different ages (25, 35 and 65) and gender, resulting in 6 estimates from this study.  Estimates 
were reported on pages 268 and 269 in the original study in $2003.  We weighted the estimates 
in the same manner as used for the study by Cameron, DeShazo, and Johnson (2010) described 
above.  Using 2010 Census data we were able to weight by age and gender (no averaging was 
needed).  All estimates are based on an average household income of $42,000 and reflect median 
WTP.  We do not have sufficient information to calculate the mean estimates.   

We approximated the standard errors of the weighted VSL estimates the graphical 
information provided in an on-line appendix referenced in Figure 3 of the original study.  We 
enlarged each graphic to visually identify an approximate point estimate for the 5th and 95th 
percentiles associated with each WTP estimate.  We then used this information to calculate a 
standard error for each estimate.    

Table B-6. Cameron, DeShazo, and Stiffler (2013) estimates. 

Estimate 
in 

$millions 
(se) 

Age Gender Refer-
ence in 
original 

study 

Sample 
size 

Annual 
Risk 

reduct-
ion 

Estimate 
in millions 

$2013 
(se) 

Weight Weighted 
estimate 

in 
millions 
$2103 

(se) 
9.36 

(3.04) 
25 M p 269 1801 10-6 11.85 

(3.85) 
0.196 8.58 

(2.22) 
10.46 
(2.22) 

35-
50 

M p 268 1801 10-6 13.24 
(2.82) 

0.175 

5.83 
(2.09) 

65 M p 269 1801 10-6 7.38 
(1.92) 

0.124 

5.01 
(2.07) 

25 F p 269 1801 10-6 6.34 
(1.90) 

0.190 

5.72 
(1.38) 

35-
40 

F p 269 1801 10-6 7.24 
(1.27) 

0.176 

3.08 
(1.15) 

65 F p 269 1801 10-6 3.90  
(1.06) 

0.138 

 
 
Chestnut, Rowe, and Breffle (2012) examined differences in WTP estimates between the U.S. and 
Canada across different health endpoints (cancer and heart attack), risk reductions (1, 2, and 5 
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in 10,000) and question formats (choice question and payment card).  We use the results for the 
U.S. sample only.  The survey was administered to adults ages 35-85 using an internet survey 
(Knowledge Networks) in 2003.  There were 885 respondents to the U.S. survey.  Respondents 
were provided information on the type of fatal risk (cancer or heart attack), the annual risk 
reduction for the next 10 years, and then beyond 10 years, baseline risks, and costs for 
reductions.  The authors used a grid as a visual aid to depict risk reductions.  The risk reduction 
occurred via a health care program that had no side effects and would need to be paid for 
annually out of pocket.  Each respondent was asked four choice questions, followed by a payment 
card question.  For each choice question the respondent chose between two scenarios and then 
subsequently chose between the selected scenario and a status quo.  We used 12 estimates from 
this study, as shown in Table B-7.  We also used the reported 95% confidence intervals to 
calculate standard errors for the VSL estimates.  The coefficient on the size of the risk reduction 
was significantly different from zero, but did not indicate a proportional response in WTP to the 
size of the risk. 

Table B-7. Chestnut, Rowe, and Breffle (2012) estimates. 

Estimate in 
$millions 

(se) 

$year Mean Referenc
e in 

original 
study 

Sample 
size 

Risk 
reduction 

Health 
Endpoint 

Estimate in 
millions 

$2013 (se) 

8.09 (0.64) 2002 Y Table 9 845 0.0001 Cancer 10.48 (.083) 
5.04 (0.33) 2002 Y Table 9 845 0.0002 Cancer 6.53 (0.43) 
2.80 (0.18) 2002 Y Table 9 845 0.0005 Cancer 3.63 (0.23) 
7.17 (0.71) 2002 Y Table 9 845 0.0001 Heart attack 9.28 (0.92) 
4.58 (0.41) 2002 Y Table 9 845 0.0002 Heart attack 5.93  (0.53) 
2.62 (0.26) 2002 Y Table 9 845 0.0005 Heart attack 3.39 (0.33) 
3.78 (0.31) 2002 Y Table 10 845 0.0001 Cancer 4.89 (0.4) 
2.21 (0.15) 2002 Y Table 10 845 0.0002 Cancer 2.86 (0.20) 
1.42 (0.15) 2002 Y Table 10 845 0.0005 Cancer 1.84 (0.20) 
4.51 (0.43) 2002 Y Table 10 845 0.0001 Heart attack 5.84  (0.56) 
2.64 (0.28) 2002 Y Table 10 845 0.0002 Heart attack 3.42 (0.36) 
1.70 (0.31) 2002 Y Table 10 845 0.0005 Heart attack 2.20 (0.40) 

  
 
Cameron and DeShazo (2013) is the “flagship” paper from the Cameron and DeShazo series of 
studies used in our analysis.  This stated preference survey elicited WTP for a host of morbidity 
and mortality health endpoints that varied according to latency, type of cancer (breast, prostate, 
lung, colon, and skin), other diseases (heart attack, heart disease, stroke, respiratory illness, 
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diabetes, Alzheimer’s disease), automobile accidents, period of illness and recovery, if any, etc.  
Respondents could reduce their risks through the purchase of new programs that would change 
(improve) the specific illness profile.  The new programs involved blood tests and lifestyle 
changes and possible drug therapies.  The survey was administered to a representative sample 
of the general population of adults using an internet survey mode (Knowledge Networks); 1,801 
individuals responded to the survey.  Respondents were presented with five different choice 
scenarios and each scenario had three alternatives (two programs and the status quo).  In an 
Appendix (B), the authors examined a number of scope and validity tests for their estimates and 
concluded that responses are sensitive to the magnitude of the risk reduction, although not 
always in a proportional manner.   

We used nine estimates of the VSL for specific sub-populations from Cameron and 
DeShazo (2013) to calculate four estimates of the average VSL among the general U.S. adult 
population, as indicated in Table B-8.  The first four estimates were weighted with the each of 
the last five estimates such that sixe estimates were used to calculate each weighted average.  
The estimates from the study reflect different ages, income levels, and discount rates.  We could 
not determine a reasonable way to combine estimates across discount rates; therefore, we chose 
to weight each of the different age and income estimates by the four discount rates included in 
the study.   

Table B-8. Cameron and DeShazo (2013) estimates. 

Estimate in 
$millions 

(se) 

Discount 
rate 

Age Income 
 

Reference 
in original 

study 

Estimate in 
millions 

$2013 (se) 

Weight Weighted 
estimate in 

millions 
$2013 (se) 

8.33 (2.43) 0.03 45 $42,000 Table 2, 
column 3, 

row 1 

10.79 
(3.08) 

0.165 7.49 (3.22) 

6.74 (2.30) 0.05 45 $42,000 Table 2, 
column 4, 

row 1 

8.53 (2.91) 0.165 7.12 (3.19) 

5.48 (2.49) 0.07 45 $42,000 Table 2, 
column 5, 

row 1 

6.94 (3.15) 0.165 6.86 (3.23) 

6.82 (2.91) Individu
al 

45 $42,000 Table 2, 
column 6, 

row 1 

8.63 (3.69) 0.165 7.14 (3.32) 
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4.81 (1.72) 0.05 45 $25,000 Table 3, 
column 3, 

row 1 

6.09 (2.18) 0.148  

9.26 (2.99) 0.05 45 $67,500 Table 3, 
column 5, 

row 1 

11.72 
(3.78) 

0.155  

6.73 (2.23) 0.05 45 $42,000 
(none if 

sick) 

Table 3, 
column 5, 

row 1 

8.52 (2.83) 0.175  

0.72 (3.11) 0.05 35 $42,000 Table 4, 
column 2, 

row 1 

0.91 (3.93) 0.182  

5.91 (2.62) 0.05 65 $42,000 Table 4, 
column 2, 

row 7 

7.48 (3.32) 0.178  

  
 
Viscusi, Huber, and Bell (2014) conducted a stated preference survey designed to investigate 
whether people are willing to pay more to reduce cancer mortality risks than for reductions in 
mortality risks from other sources.  A random sample of U.S. residents were asked about their 
preferences for hypothetical government policies that would reduce the risk of bladder cancer 
from drinking water contaminated by arsenic at some cost to their household. The survey 
described exposure routes and symptoms of bladder cancer and indicated that symptoms 
typically occur 10 years after developing the disease.  An iterative choice question format was 
used to elicit willingness to pay.  Baseline risks were either 2 or 4 out of 100,000 annually.  The 
hypothesized risk reduction was either 2, 3, or 4 out of 100,000.  There were 3,420 respondents 
in the internet-based survey (Knowledge Networks), which was administered to individuals of 
age 18 and older in 2008 and 2009.  The authors applied a 3% discount rate to the results from 
all three choice questions to obtain estimates for an immediate risk reduction.  

We calculated standard errors for the reported VSL estimates using the confidence 
intervals reported by the authors for the undiscounted estimates.  The confidence intervals are 
small, indicating that the estimates are very precise.  In terms of validity, the authors do not 
explicitly address tests.  However, regression results indicate that respondents are willing to pay 
more for treatment that reduces risk to zero.   
  



PRELIMINARY DRAFT: All results provisional and subject to change. 

57 

Table B-9. Viscusi, Huber, and Bell (2014) estimates. 

Estimate in 
$millions (se) 

Mean $year Reference in 
original study 

Sample size Annual 
Risk 

reduction 

Estimate in 
millions 

$2013 (se) 
10.85 (0.085) Y 2011 Page 394 in 

text 
3430 0.000001 11.24 (0.09) 

15.96 (0.126) Y 2011 calculateda 3430 0.000001 16.53  (0.13) 

a.    In footnote 16 of VHB the authors provide the “benefit increase factor” for a 7% discount rate which we 
use to calculate a VSL.   

Hedonic wage studies 

Viscusi (2003) constructed job fatality risk measures separately for black and white workers 
based on BLS CFOI data collected between 1992-1997 to test for systematic differences in 
compensating wage differentials by race.  The mortality risk variables for the analysis were 
distinguished by race and by two digit SIC code industry groups.  Worker data were drawn from 
the 1997 CPS MORG. 

We draw our estimates from the “full sample” results reported Table 5 estimated 
separately by race using both ln(wage) and wage as the dependent variable.  For each 
specification (log or level) we weighted the estimated VSLs by the proportion of the 2013 total 
US population identified as “white” or “black or African American” by the US Census.  This 
produced two population-weighted VSL estimates for our analysis.   

We computed standard errors for the VSL estimates using the robust clustered standard 
errors reported for the risk coefficient, appropriately adjusted for population weighting.  Note 
that because the estimating equation is log-linear the VSL and its standard error also depend, 
respectively, on the wage rate and its standard error (Aldy and Viscusi 2008).  Following Viscusi 
(2015), where standard errors of the VSL are not provided in the original study we constructed 
them based on the standard errors of the risk coefficient alone.  Controls in the regressions 
included non-fatal injury and illness rate, public employment, nine occupational groups, industry 
controls for construction and manufacturing, and several demographic variables. 

Table B-10. Viscusi (2003) estimates. 

Estimate in 
$millions (se) 

Mean $year Table 
in 

paper 

Sample 
size 

Estimate in 
millions 

$2013 (se) 

Weight Weighted 
Estimate in 

millions 
$2013 (se) 

15.0 (7.64) Y 2002 5 83625 19.42 (9.90) 0.855 17.96 (8.49) 
7.2 (3.48) Y 2002 5 9735 9.32 (4.51) 0.155 

13.4 (7.06) Y 2002 5 83625 17.35 (9.14) 0.855 16.58 (7.86) 
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9.3 (4.08) Y 2002 5 9735 12.04 (5.28) 0.155 
 
 
Viscusi (2004) estimated values for both a full sample and several subsamples of workers.  The 
source of the risk data is BLS CFOI 1992-1997 and the risk measure is based on the workers 
industry-occupation group.  Worker data are full-time, nonagricultural workers age 18-65 who 
are not in the armed forces from the 1997 CPS MORG. 

We drew estimates from the full sample results reported Table 3, which presents 
separate VSL estimates based on a 1992-1997 averaged mortality risk and using only 1997 risk.  
The results are further differentiated by log-linear and linear specifications, resulting in four 
different VSL estimates.  The analysis included controls for non-fatal injury and illness, nine 
occupational classifications, public sector employment, and an array of demographic factors.  
Because the results were based on the full sample we did not apply any population weights. 
We calculated standard errors for the VSL estimates using the reported standard errors for the 
risk coefficients.  

Table B-11. Viscusi (2004) estimates. 

Estimate in 
$millions (se) 

Mean $year Table in 
paper 

Sample 
size 

Estimate in 
millions 

$2013 (se) 

Weighted 
estimate in 

millions 
$2013 (se) 

4.2 (2.24) Y 1997 3 99033 6.10 (3.25) n/a 
2.5 (1.97) Y 1997 3 99033 3.63  (2.86) 
4.7 (2.76) Y 1997 3 99033 6.82 (4.01) 
2.6 (2.38) Y 1997 3 99033 3.77 (3.45) 

 
 
Kneisner and Viscusi’s (2005) examined the impact on the estimated VSL from relative position 
on the wage distribution and relative age.  The source of the fatal risk measures was BLS CFOI 
data collected between1992-1997 and the risk measure was based on each worker’s industry-
occupation group.  Data on workers are non-agricultural full-time workers between the ages of 
18 and 65 from the CPS MORG files for 1997. 

We drew VSL estimates from the “Full Sample” portion of Table 1, labeled (ii) and (iii) in 
the original study.  Estimate (i) from the study is also a full sample estimate but appears to be 
replicated, for comparison purposes, from Viscusi (2004), which we included elsewhere.  The 
analysis included controls for injury and illness rate, nine occupational dummy variables, and a 
host of demographic variables. 

Standard errors for the VSL should be constructed by using the standard errors of the 
risk coefficient, wage, the coefficient of the interacted wage rank * fatality risk variable, and the 
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standard deviation of this constructed variable.  However, because some of this information was 
not available, we constructed standard errors for the VSL estimates using the reported standard 
errors of the risk coefficients alone.  Because this was a full sample study we did not apply any 
population weighting to these estimates. 

Table B-12. Kneisner and Viscusi (2005) estimates 

Estimate in 
$millions (se) 

Mean $year Table in 
paper 

Sample 
size 

Estimate in 
millions 

$2013 (se) 

Weighted 
Estimate in 

millions 
$2013 (se) 

3.46 (.58) Y 1997 1 99033 5.02 (.084) n/a 
3.57 (.55) Y 1997 1 99033 5.18  (0.80) 

 
 
Viscusi and Aldy (2007) examined the age variation in the VSL based on variation in job risks by 
industry and worker age.  Fatality risks were calculated using data from the BSL CFOI for the 
years 1992-1997, which was constructed by two- or three-digit industry SIC codes and five age 
groups spanning a range from 18 to 62 years old.  Worker data were obtained from the 1998 CPS 
MORG data file with a number of screens.  The sample excluded agricultural workers and 
members of the armed forces, those with less than a 9th grade education, workers with implicit 
hourly wages less than the minimum wage, and less than full time workers. 

We drew our estimates from Table 2, Panel B where risks are specific to age-industry 
groups and there are controls for nonfatal injury risks.  VSL estimates were provided separately 
for each of five age groups.  We constructed a single adult VSL by weighting these VSLs by the 
respective proportion of the age group to the entire population aged 18-62 in 2013.  We 
computed standard errors for the VSL estimates using the reported robust clustered standard 
errors for the risk coefficients, appropriately adjusted for population weighting.  The authors 
noted that there is a covariance term across the age-specific VSL estimates, but we lack the data 
to incorporate this into the calculated standard error for the weighted VSL.  The VSL estimates 
are based upon ln(wage) as the dependent variable and the specifications we draw upon include 
controls for non-fatal injury rates by industry and age group, nine occupation indicators, 
regional, and demographic variables.   

Table B-13. Viscusi and Aldy (2007) Estimates 

Estimate in 
$millions (se) 

Mean $year Table 
in 

paper 

Sample 
size 

Estimate in 
millions 

$2013 (se) 

Weight Weighted 
Estimate in 

millions 
$2013 (se) 

6.45 (1.47) Y 2002 2 120008 8.73 (1.99) 0.125 8.61 (1.20) 
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6.72 (1.63) Y 2002 2 9.09 (2.21) 0.236 
8.99 (2.08) Y 2002 2 12.16 (2.82) 0.222 
5.42 (2.05) Y 2002 2 7.33 (2.78) 0.241 
3.81 (2.17) Y 2002 2 5.15 (2.93) 0.176 

 
 
Aldy and Viscusi (2008) used an age-dependent fatal risk measure to estimate age-specific 
hedonic wage regressions.  The source of the fatal risk measures was the BLS CFOI data for 1992-
2000 and the risk measures were conditional upon a worker’s age group and two-digit SIC 
industry.  Data on workers were obtained from the CPS Merged Outgoing Rotation Group 
(MORG) files for 1993-2000, aged 18 to 62.  These data exclude agricultural workers, members 
of the armed forces, workers making less than minimum wage, less than full-time workers, and 
those with top-coded income.  The analysis controlled for nonfatal injury risk and expected 
worker’s compensation rate in addition to indicator variables for one-digit occupation, region of 
residence, public sector employment, and an array of demographic characteristics. 

We drew our estimates from Table 1.  Mean VSL estimates for each year were constructed 
by weighting the age-group specific VSL estimates.  Weights are the proportion of each age group 
in the total population of persons aged 18-62, taken from the proportion of the total age 18-62 
population in these age groups in 2013.  This resulted in seven VSL estimates from this study, 
each taken as value from a distinct sample. 

We computed standard errors for the VSL estiamtes using the standard errors reported 
for the risk coefficients from the wage equations, adjusted using the population weights.  In 
computing these standard errors, were were not able to account for the covariance across age-
specific VSL estimates. 

Table B-14.  Aldy and Viscusi (2008) estimates 

Estimate in 
$millions (se) 

Mean $year Table 
in 

paper 

Sample 
size 

Estimate in 
millions 

$2013 (se) 

Weight Weighted 
Estimate in 

millions $2013 
(se) 

0.95 (0.87) Y 2000 1 123439 
(assumed) 

1.29 (1.17) 0.125 7.10 (1.15) 
9.95 (1.69) Y 2000  13.46 (2.29) 0.236 
8.29 (2.14) Y 2000  11.21 (2.89) 0.222 
1.79 (1.76) Y 2000  2.42 (2.39) 0.241 
2.91 (2.18) Y 2000  3.94 (2.95) 0.176 
4.54 (.64) Y 2000  123439 

(assumed) 
6.14 (0.86) 0.125 7.40 (1.19) 

7.42 (1.48) Y 2000  10.04 (2.01) 0.236 
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7.09 (2.05) Y 2000  9.59 (2.77) 0.222 
3.4 (2.24) Y 2000  4.60 (3.03) 0.241 
4.3 (2.18) Y 2000  5.82 (2.94) 0.176 

4.57 (1.01) Y 2000  123439 
(assumed) 

6.18 (1.36) 0.125 7.11 (1.19) 
6.98 (1.49) Y 2000  9.44 (2.01) 0.236 
5.68 (2.12) Y 2000  7.68 (2.86) 0.222 
4.69 (2.15) Y 2000  6.34 (2.91) 0.241 
3.67 (2.2) Y 2000  4.96 (2.98) 0.176 

4.53 (1.48) Y 2000  123439 
(assumed) 

6.13 (2.00) 0.125 7.47 (1.20) 
7.36 (1.51) Y 2000  9.96 (2.05) 0.236 
8.04 (2.33) Y 2000  10.88 (3.16) 0.222 
3.93 (2.08) Y 2000  5.32 (2.81) 0.241 
2.77 (1.86) Y 2000  3.75 (2.52) 0.176 
5.48 (1.34) Y 2000  123439 

(assumed) 
7.41 (1.81) 0.125 8.68 (1.21) 

7.52 (1.66) Y 2000  10.17 (2.24) 0.236 
8.62 (2.04) Y 2000  11.66 (2.76) 0.222 
5.4 (2.08) Y 2000  7.31 (2.81) 0.241 
4.23 (2.3) Y 2000  5.72 (3.11) 0.176 

6.45 (1.46) Y 2000  123439 
(assumed) 

8.73 (1.98) 0.125 8.61 (1.19) 
6.72 (1.62) Y 2000  9.09 (2.19) 0.236 
8.99 (2.07) Y 2000  12.16 (2.80) 0.222 
5.42 (2.05) Y 2000  7.33 (2.78) 0.241 
3.81 (2.12) Y 2000  5.15 (2.87) 0.176 
3.43 (.082) Y 2000  123439 

(assumed) 
4.64 (1.10) 0.125 9.30 (1.07) 

7.45 (1.45) Y 2000  10.08 (1.97) 0.236 
9.13 (2.09) Y 2000  12.35 (2.82) 0.222 
8.7 (1.95) Y 2000  11.77 (2.63) 0.241 
3.2 (1.48) Y 2000  4.33 (2.01) 0.176 

3.74 (1.07) Y 2000  123439 5.06 (1.45) 0.125 9.99 (1.27) 
9.43 (1.69) Y 2000  12.76 (2.28) 0.236 
9.66 (2.44) Y 2000  13.07 (3.30) 0.222 
8.07 (2.11) Y 2000  10.92 (2.86) 0.241 
3.43 (2.24) Y 2000  4.64 (3.03) 0.176 
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Viscusi and Hersch (2008) examined the mortality cost of smoking (to smokers themselves) by 
using hedonic wage data to estimate the VSL by smoking status.  Workplace fatality rates were 
calculated from BLS CFOI data by industry-age-gender for the years 1996-2001, weighted by 
hours worked.  This resulted in gender-specific fatality risk measures by two-digit industry 
groups in five age groups, which range from 20 to 64 years old.  Worker data were obtained from 
the monthly CPS survey and the CPS Tobacco Use Supplements conducted in 1995-1996, 1998-
1999, and 2001-2002.   

We drew our estimates from Table 2, Panel A where the dependent variable was ln(wage) 
and there were no age variations in risk coefficients.  The VSL was estimated separately for 
smoker and non-smoker samples.  We weighted these separate estimates by the proportions of 
adults who did and did not smoke in 2012, as estimated by the Centers for Disease Control, to 
produce an estimate of the average VSL for the general U.S. adult population.  We computed 
standard errors for the VSL from robust clustered standard errors reported for the risk 
coefficient estimates, appropriately adjusted for the population weighting.  Controls included 
non-fatal injury rate, ten occupation groups, government employment, and demographic 
characteristics.   

Table B-15. Viscusi and Hersch (2008) estimates. 

Estimate in 
$millions (se) 

Mean $year Table 
in 

paper 

Sample 
size 

Estimate in 
millions 

$2013 (se) 

Weight Weighted 
Estimate in 

millions 
$2013 (se) 

7.39 (3.36) Y 2000 2 212067 10.00 (4.54) 0.819 9.98 (3.81) 

7.32 (3.38) Y 2000 2 66844 9.90 (4.57) 0.181 

 
 
Hersch and Viscusi (2010) examined the effect of immigrant status on risk compensation in the 
labor market.  We drew values from a specification based on fatality rates calculated using data 
from BLS CFOI between 2003-2005, calculated by two-digit industry, immigrant status, and age 
(by two age groups).  Worker data for these values were obtained from the 2003 CPS MOR, 
restricted to 1.) workers in occupations that had been characterized as blue-collar jobs in prior 
versions of the CPS, 2.) those who were net self-employed, 3.) earned hourly wages between 
$1.50 and $100, and 4.) were between the ages of 18 and 64.  

Column 3 of Table 3 contains the specification that provided the single value we extracted 
from this study.  This specification included both immigrant and native U.S. workers, controlled 
for non-fatal injury, immigrant status, immigrant–risk interactions, occupation, government 
employment, and other factors.  As reported on page 762, the estimated VSL for native U.S. 
workers was $7.95 million ($2003), while the estimated VSL was negative for immigrant 
workers.  An overall VSL for the entire sample was not reported.  We use the value for U.S. 
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workers only, accepting it as sufficiently representative to be included in our analysis, and do 
not incorporate the negative implied VSL for immigrants.  We computed a standard error for the 
VSL estimate using the standard error reported for the risk coefficient.  The study provided other 
specifications for sensitivity analysis but none of these controlled for non-fatal injury. 

Table B-16. Hersch and Viscusi (2010) estimates. 

Estimate in 
$millions (se) 

Mean $year Table in 
paper 

Sample 
size 

Estimate in 
millions 

$2013 (se) 

Weighted 
Estimate in 

millions 
$2013 (se) 

7.95 (6.53) Y 2003 3 61437 10.07 (8.27) n/a 
 
 
Scotten and Taylor (2011) developed estimates of the VSL based on risk rates that were 
differentiated by how the fatal injury occurred.  These fatality rates were constructed using BLS 
CFOI data collected between 1992 and 1997.  Occupations were aggregated into 22 categories 
and industries into 23 categories, and the risk measure was based on a worker’s industry-
occupation group.  The authors screened risk data to include only deaths that were likely to be 
considered as part of a wage-negotiation between employee and employer.  Risk rates also were 
created for three major categories of death: traditional accidental deaths, transportation-related 
deaths, and violent assaults.  Worker data were obtained from CPS MORG for years between 
1996 and 1998, limited to the high-wage segment of the labor market.  Compared to broader CPS 
samples, this resulted in a sample with a higher proportion of workers holding an undergraduate 
degree; are white, male, and married; and that live in a large metropolitan area. 

We drew our estimates from Table 3, which includes results from the full sample with 
risks undifferentiated by type.  The authors reported the standard error of the VSL estimates, so 
no auxiliary calculations were needed.  The analysis controlled for non-fatal injury risk (at the 
industry level), a range of industry and occupation groups, and a host demographic variables.  
The authors also reported results for differentiated risks and for subsamples, but we relied solely 
upon the broader-based estimates for comparability with the other primary VSL estimates in our 
meta-dataset. 

Table B-17. Scotton and Taylor (2011) estimates. 

Estimate in 
$millions (se) 

Mean $year Table in 
paper 

Sample 
size 

Estimate in 
millions 

$2013 (se) 

Weighted 
Estimate in 

millions 
$2013 (se) 

8.7 (2.88) Y 1997 3 43261 12.63 (4.18) n/a 

9.9 (2.58) Y 1997 3 43261 14.37 (3.74) 



PRELIMINARY DRAFT: All results provisional and subject to change. 

64 

5.8 (1.78) Y 1997 3 43261 8.42 (2.58) 

 
 
Scotton (2013) examined the sensitivity of the VSL to a number different choices in constructing 
the risk variable from BLS CFOI data as well as the specification of the hedonic wage equation.  
In all cases the source of the risk data was the BLS CFOI dataset.  Worker data were obtained 
from the 2006 CPS MORG dataset and pertain to full-time, nonfarm, payroll labor participants 
between the ages of 16 and 72.  While some results in the study relied upon a restricted 
subsample of these data, the estimates we extracted used the entire sample. 

We drew estimates from Table 2 of the study, excluding the first column which reports 
estimates from Viscusi (2004).  The remaining estimates in the table were divided into two sets 
based on whether the dependent variable was ln(wage) or wage.  Within these sets there were 
six different constructions for risk, representing alternative occupation and industry pairings.  
We used all of these alternatives for a total of twelve primary VSL estimates from the study.  The 
models included occupational controls, but no controls for public vs private industry.  The 
models also did not control for non-fatal injury because those measures were only available by 
industry or occupation.  However, the author noted that “including one or both of these non-fatal 
rates long with the various industrial and occupational controls adds little and changes nothing 
about the results of this study,” although that observation may be specific to conclusions about 
construction of the risk variable and choice of occupation-industry controls rather than the 
magnitude of the VSL itself.   

The study presented additional regression results in Table 4, based on models where the 
number of industry and occupation controls were varied in a log-linear model for two different 
risk measures.  Specifications ranged from no industry or occupation controls to 73 industry and 
21 occupation controls.  The author did not report VSL estimates but did report risk coefficients 
for these models.  We constructed VSL estimates from the specifications in column 4, which 
included both industry and occupation controls.  We also constructed VSL estimates from the 
regression results reported in Table 5, where the specification included more extensive industry 
and occupation controls.  In both cases we used the mean wage for the “restricted sample” 
reported in Table 1.  We computed standard errors for the VSL estimates from the standard error 
reported for the risk coefficients.  All of the estimates extracted from this study are “full sample” 
results that did not require any population-weighting. 

Table B-18. Scotton (2013) estimates. 

Estimate in 
$millions (se) 

Mean $year Table 
in 

paper 

Sample 
size 

Estimate in 
millions 

$2013 (se) 

Weighted 
Estimate in 

millions 
$2013 (se) 
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15.95 (3.85) Y 2006 2 121608 18.43 (4.45) n/a 
18.17 (3.70) Y 2006 2 121608 20.99 (4.28) 
13.47 (4.48) Y 2006 2 121608 15.56 (5.17) 
11.36 (3.03) Y 2006 2 121608 13.13 (3.51) 
12.88 (3.18) Y 2006 2 121608 14.88 (3.68) 
11.17 (2.92) Y 2006 2 121608 12.91 (3.38) n/a 
12.47 (4.19) Y 2006 2 121608 14.41 (4.84) 
14.76 (3.91) Y 2006 2 121608 17.06 (4.52) 
10.57 (4.76) Y 2006 2 121608 12.21 (5.50) 
8.14 (3.37) Y 2006 2 121608 9.41 (3.90) 
9.64 (3.55) Y 2006 2 121608 11.14 (4.10) n/a 
8.09 (3.28) Y 2006 2 121608 9.35 (3.79) 

14.71 (4.23) Y 2006 3 84336 16.99 (4.89) 
15.23 (2.96) Y 2006 3 84336 17.60 (3.42) 
16.58 (4.15) Y 2006 3 84336 19.16 (4.80) 
17.06 (2.92) Y 2006 3 84336 19.72 (3.37) n/a 
12.57 (3.97) Y 2006 3 84336 14.53 (4.58) 
13.88 (2.43) Y 2006 3 84336 16.04 (2.81) 
5.50 (2.96) Y 2006 4 84336 6.36 (3.42) 
6.02 (2.96) Y 2006 4 84336 6.96 (3.42) 
7.82 (2.36) Y 2006 4 84336 9.04 (2.72) n/a 
6.59 (2.51) Y 2006 4 84336 7.61 (2.90) 
7.56 (2.51) Y 2006 4 84336 8.73 (2.90) 
8.12 (1.83) Y 2006 4 84336 9.38 (2.12) 
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Appendix C  
This appendix contains results from sensitivity analysis over the assumed income elasticity of 
the VSL. 

Table C-1. Non-parametric estimates of the average VSL among the U.S. adult general 
population [2013$/statistical life/yr].  Income elasticity = 0.1.   

Estimator mm/ma HWb SP pooled balanced 

1 simple mean 
mm 11.3 [ 1.43 ]c 6.96 [ 0.907 ] 9.24 [ 1.27 ] 9.14 [ 0.843 ] 

m 11.3 [ 1.43 ] 7.93 [ 1.70 ] 10.0 [ 1.37 ] 9.63 [ 1.00 ] 

2 mean of group 
means 

mm 9.36 [ 0.423 ] 7.25 [ 0.672 ] 8.23 [ 0.441 ] 8.31 [ 0.396 ] 

m 9.36 [ 0.423 ] 9.44 [ 1.03 ] 9.40 [ 0.550 ] 9.40 [ 0.506 ] 

3 sample size 
weighted mean 

mm 11.3 [ 1.56 ] 7.53 [ 1.23 ] 11.2 [ 1.56 ] 9.39 [ 0.996 ] 

m 11.3 [ 1.56 ] 8.18 [ 1.81 ] 11.2 [ 1.57 ] 9.72 [ 1.09 ] 

4 sampling var. 
weighted mean 

mm 8.28 [ 1.03 ] 6.16 [ 2.83 ] 6.20 [ 2.76 ] 7.22 [ 1.51 ] 

m 8.28 [ 1.03 ] 8.92 [ 3.21 ] 8.90 [ 3.00 ] 8.60 [ 1.71 ] 

5 total var. 
weighted mean 

mm 9.15 [ 0.447 ] 6.57 [ 0.773 ] 7.90 [ 0.615 ] 7.86 [ 0.446 ] 

m 9.15 [ 0.447 ] 7.67 [ 1.18 ] 8.71 [ 0.654 ] 8.41 [ 0.628 ] 

a. “mm” includes mean and median primary estimates, “m” includes only mean primary estimates. 
b. The “mm” and “m” HW estimates in the first column of numbers are identical because HW studies only 

reported mean VSL estimates.  
c. Numbers is square brackets are bootstrapped standard errors.   
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Table C-2. Non-parametric estimates of the average VSL among the U.S. adult general 
population [2013$/statistical life/yr].  Income elasticity = 0.5.   

Estimator mm/ma HWb SP pooled balanced 

1 simple mean 
mm 11.7 [ 1.24 ]c 7.34 [ 0.968 ] 9.62 [ 1.22 ] 9.52 [ 0.782 ] 

m 11.7 [ 1.24 ] 8.36 [ 1.83 ] 10.4 [ 1.32 ] 10.0 [ 0.972 ] 

2 mean of group 
means 

mm 10.0 [ 0.392 ] 7.65 [ 0.702 ] 8.74 [ 0.456 ] 8.83 [ 0.400 ] 

m 10.0 [ 0.392 ] 10.0 [ 1.10 ] 10.0 [ 0.575 ] 10.0 [ 0.526 ] 

3 sample size 
weighted mean 

mm 11.6 [ 1.36 ] 7.81 [ 1.25 ] 11.6 [ 1.37 ] 9.73 [ 0.924 ] 

m 11.6 [ 1.36 ] 8.50 [ 1.84 ] 11.6 [ 1.37 ] 10.1 [ 1.03 ] 

4 sampling var. 
weighted mean 

mm 8.93 [ 1.02 ] 6.48 [ 2.95 ] 6.53 [ 2.87 ] 7.71 [ 1.56 ] 

m 8.93 [ 1.02 ] 9.30 [ 3.28 ] 9.29 [ 3.07 ] 9.12 [ 1.74 ] 

5 total var. 
weighted mean 

mm 9.77 [ 0.408 ] 6.91 [ 0.809 ] 8.33 [ 0.633 ] 8.34 [ 0.453 ] 

m 9.77 [ 0.408 ] 8.07 [ 1.25 ] 9.18 [ 0.666 ] 8.92 [ 0.655 ] 

a. “mm” includes mean and median primary estimates, “m” includes only mean primary estimates. 
b. The “mm” and “m” HW estimates in the first column of numbers are identical because HW studies only 

reported mean VSL estimates.  
c. Numbers is square brackets are bootstrapped standard errors.   
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Table C-3. Non-parametric estimates of the average VSL among the U.S. adult general 
population [2013$/statistical life/yr].  Income elasticity = 1.1.   

Estimator mm/ma HWb SP pooled balanced 

1 simple mean 
mm 12.4 [ 0.929 ]c 7.94 [ 1.07 ] 10.2 [ 1.15 ] 10.1 [ 0.706 ] 

m 12.4 [ 0.929 ] 9.05 [ 2.04 ] 11.1 [ 1.26 ] 10.7 [ 0.961 ] 

2 mean of group 
means 

mm 11.1 [ 0.352 ] 8.30 [ 0.754 ] 9.59 [ 0.487 ] 9.70 [ 0.415 ] 

m 11.1 [ 0.352 ] 11.0 [ 1.22 ] 11.1 [ 0.623 ] 11.1 [ 0.569 ] 

3 sample size 
weighted mean 

mm 12.3 [ 1.03 ] 8.28 [ 1.27 ] 12.2 [ 1.04 ] 10.3 [ 0.817 ] 

m 12.3 [ 1.03 ] 9.02 [ 1.89 ] 12.2 [ 1.04 ] 10.6 [ 0.959 ] 

4 sampling var. 
weighted mean 

mm 9.96 [ 0.967 ] 6.98 [ 3.11 ] 7.03 [ 3.04 ] 8.47 [ 1.63 ] 

m 9.96 [ 0.967 ] 9.87 [ 3.39 ] 9.87 [ 3.17 ] 9.91 [ 1.77 ] 

5 total var. 
weighted mean 

mm 10.8 [ 0.354 ] 7.46 [ 0.873 ] 9.01 [ 0.666 ] 9.12 [ 0.471 ] 

m 10.8 [ 0.354 ] 8.73 [ 1.37 ] 9.92 [ 0.694 ] 9.76 [ 0.709 ] 

a. “mm” includes mean and median primary estimates, “m” includes only mean primary estimates. 
b. The “mm” and “m” HW estimates in the first column of numbers are identical because HW studies only 

reported mean VSL estimates.  
c. Numbers is square brackets are bootstrapped standard errors.   
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Table C-4. Non-parametric estimates of the average VSL among the U.S. adult general 
population [2013$/statistical life/yr].  Income elasticity = 1.4.   

Estimator mm/ma HWb SP pooled balanced 

1 simple mean 
mm 12.7 [ 0.775 ]c 8.26 [ 1.13 ] 10.6 [ 1.13 ] 10.5 [ 0.683 ] 

m 12.7 [ 0.775 ] 9.43 [ 2.16 ] 11.5 [ 1.25 ] 11.1 [ 0.975 ] 

2 mean of group 
means 

mm 11.7 [ 0.342 ] 8.65 [ 0.784 ] 10.1 [ 0.507 ] 10.2 [ 0.426 ] 

m 11.7 [ 0.342 ] 11.5 [ 1.28 ] 11.6 [ 0.652 ] 11.6 [ 0.598 ] 

3 sample size 
weighted mean 

mm 12.6 [ 0.845 ] 8.52 [ 1.28 ] 12.6 [ 0.860 ] 10.6 [ 0.769 ] 

m 12.6 [ 0.845 ] 9.30 [ 1.92 ] 12.6 [ 0.856 ] 10.9 [ 0.933 ] 

4 sampling var. 
weighted mean 

mm 10.5 [ 0.929 ] 7.24 [ 3.20 ] 7.29 [ 3.12 ] 8.86 [ 1.67 ] 

m 10.5 [ 0.929 ] 10.2 [ 3.45 ] 10.2 [ 3.22 ] 10.3 [ 1.79 ] 

5 total var. 
weighted mean 

mm 11.3 [ 0.334 ] 7.76 [ 0.909 ] 9.36 [ 0.686 ] 9.54 [ 0.486 ] 

m 11.3 [ 0.334 ] 9.08 [ 1.45 ] 10.3 [ 0.714 ] 10.2 [ 0.742 ] 

a. “mm” includes mean and median primary estimates, “m” includes only mean primary estimates. 
b. The “mm” and “m” HW estimates in the first column of numbers are identical because HW studies only 

reported mean VSL estimates.  
c. Numbers is square brackets are bootstrapped standard errors.   
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Table C-5. Non-parametric estimates of the average VSL among the U.S. adult general 
population [2013$/statistical life/yr].  Income elasticity = 1.7.   

Estimator mm/ma HWb SP pooled balanced 

1 simple mean 
mm 13.1 [ 0.638 ]c 8.60 [ 1.20 ] 10.9 [ 1.10 ] 10.8 [ 0.675 ] 

m 13.1 [ 0.638 ] 9.81 [ 2.28 ] 11.8 [ 1.25 ] 11.5 [ 1.01 ] 

2 mean of group 
means 

mm 12.3 [ 0.342 ] 9.02 [ 0.817 ] 10.5 [ 0.531 ] 10.7 [ 0.441 ] 

m 12.3 [ 0.342 ] 12.1 [ 1.35 ] 12.2 [ 0.684 ] 12.2 [ 0.632 ] 

3 sample size 
weighted mean 

mm 13.0 [ 0.658 ] 8.77 [ 1.30 ] 12.9 [ 0.676 ] 10.9 [ 0.727 ] 

m 13.0 [ 0.658 ] 9.58 [ 1.96 ] 12.9 [ 0.671 ] 11.3 [ 0.919 ] 

4 sampling var. 
weighted mean 

mm 11.0 [ 0.886 ] 7.51 [ 3.28 ] 7.56 [ 3.20 ] 9.26 [ 1.70 ] 

m 11.0 [ 0.886 ] 10.4 [ 3.50 ] 10.5 [ 3.27 ] 10.7 [ 1.81 ] 

5 total var. 
weighted mean 

mm 11.9 [ 0.326 ] 8.07 [ 0.950 ] 9.73 [ 0.709 ] 9.98 [ 0.502 ] 

m 11.9 [ 0.326 ] 9.45 [ 1.52 ] 10.7 [ 0.741 ] 10.7 [ 0.778 ] 

a. “mm” includes mean and median primary estimates, “m” includes only mean primary estimates. 
b. The “mm” and “m” HW estimates in the first column of numbers are identical because HW studies only 

reported mean VSL estimates.  
c. Numbers is square brackets are bootstrapped standard errors.   
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Table C-6. Maximum likelihood estimation results, income elasticity = 0.1. Coefficient estimates 
using only hedonic wage (HW) estimates, only stated preference (SP) estimates, HW and SP 
estimates combined with no control for study type (pooled), and HW and SP estimates 
combined with fixed effect for study type (balanced).  Numbers in square brackets are standard 
errors. 

Parameter HW SP pooled balanced 

𝛽𝛽0 10.1 [ 0.534 ] 8.97 [ 0.991 ] 9.43 [ 0.664 ] 10.3 [ 0.923 ] 

𝛽𝛽𝑦𝑦𝑠𝑠𝑚𝑚𝑦𝑦 1.94 [ 0.480 ] 1.37 [ 0.852 ] 1.41 [ 0.551 ] 1.60 [ 0.543 ] 

𝛽𝛽𝑆𝑆𝑆𝑆    -0.152 [ 0.110 ] 

𝛽𝛽𝑚𝑚𝑠𝑠𝑚𝑚𝑖𝑖𝑚𝑚𝑛𝑛  -0.470 [ 0.101 ] -0.467 [ 0.0848 ] -0.437 [ 0.0952 ] 

𝜎𝜎𝜇𝜇  1.15 [ 0.551 ] 2.10 [ 0.325 ] 1.98 [ 0.267 ] 1.96 [ 0.268 ] 

𝜎𝜎𝜂𝜂  0.517 [ 0.641 ] 2.42 [ 0.646 ] 2.03 [ 0.421 ] 1.86 [ 0.430 ] 

𝑉𝑉𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻 10.1 [ 0.534 ]   10.3 [ 0.923 ] 

𝑉𝑉𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆  8.97 [ 0.991 ]  8.71 [ 0.864  ] 

𝑉𝑉𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑠𝑠𝑚𝑚   9.43 [ 0.664 ]  

𝑉𝑉𝑉𝑉𝑉𝑉𝑏𝑏𝑚𝑚𝑏𝑏𝑚𝑚𝑛𝑛𝑏𝑏𝑠𝑠𝑚𝑚    9.48 [ 0.646 ] 
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Table C-7. Maximum likelihood estimation results, income elasticity = 0.5. Coefficient estimates 
using only hedonic wage (HW) estimates, only stated preference (SP) estimates, HW and SP 
estimates combined with no control for study type (pooled), and HW and SP estimates 
combined with fixed effect for study type (balanced).  Numbers in square brackets are standard 
errors. 

Parameter HW SP pooled balanced 

𝛽𝛽0 10.5 [ 0.549 ] 9.42 [ 1.05 ] 9.88 [ 0.699 ] 10.7 [ 0.974 ] 

𝛽𝛽𝑦𝑦𝑠𝑠𝑚𝑚𝑦𝑦 1.71 [ 0.471 ] 1.25 [ 0.900 ] 1.23 [ 0.580 ] 1.42 [ 0.572 ] 

𝛽𝛽𝑆𝑆𝑆𝑆    -0.149 [ 0.112 ] 

𝛽𝛽𝑚𝑚𝑠𝑠𝑚𝑚𝑖𝑖𝑚𝑚𝑛𝑛  -0.478 [ 0.101 ] -0.475 [ 0.0851 ] -0.447 [ 0.0951 ] 

𝜎𝜎𝜇𝜇  1.27 [ 0.600 ] 2.19 [ 0.341 ] 2.07 [ 0.280 ] 2.05 [ 0.281 ] 

𝜎𝜎𝜂𝜂  0.480 [ 0.810 ] 2.57 [ 0.683 ] 2.14 [ 0.446 ] 1.97 [ 0.455 ] 

𝑉𝑉𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻 10.5 [ 0.549 ]   10.7 [ 0.974 ] 

𝑉𝑉𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆  9.42 [ 1.05 ]  9.13 [ 0.909  ] 

𝑉𝑉𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑠𝑠𝑚𝑚   9.88 [ 0.699 ]  

𝑉𝑉𝑉𝑉𝑉𝑉𝑏𝑏𝑚𝑚𝑏𝑏𝑚𝑚𝑛𝑛𝑏𝑏𝑠𝑠𝑚𝑚    9.93 [ 0.679 ] 
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Table C-8. Maximum likelihood estimation results, income elasticity = 1.1. Coefficient estimates 
using only hedonic wage (HW) estimates, only stated preference (SP) estimates, HW and SP 
estimates combined with no control for study type (pooled), and HW and SP estimates 
combined with fixed effect for study type (balanced).  Numbers in square brackets are standard 
errors. 

Parameter HW SP pooled balanced 

𝛽𝛽0 11.1 [ 0.573 ] 10.2 [ 1.14 ] 10.6 [ 0.758 ] 11.5 [ 1.06 ] 

𝛽𝛽𝑦𝑦𝑠𝑠𝑚𝑚𝑦𝑦 1.32 [ 0.526 ] 1.03 [ 0.977 ] 0.911 [ 0.630 ] 1.11 [ 0.622 ] 

𝛽𝛽𝑆𝑆𝑆𝑆    -0.145 [ 0.113 ] 

𝛽𝛽𝑚𝑚𝑠𝑠𝑚𝑚𝑖𝑖𝑚𝑚𝑛𝑛  -0.489 [ 0.101 ] -0.487 [ 0.0854 ] -0.461 [ 0.0948 ] 

𝜎𝜎𝜇𝜇  1.49 [ 0.696 ] 2.33 [ 0.365 ] 2.22 [ 0.300 ] 2.20 [ 0.301 ] 

𝜎𝜎𝜂𝜂  0.368 [ 1.43 ] 2.82 [ 0.742 ] 2.33 [ 0.488 ] 2.16 [ 0.496 ] 

𝑉𝑉𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻 11.1 [ 0.573 ]   11.5 [ 1.06 ] 

𝑉𝑉𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆  10.2 [ 1.14 ]  9.83 [ 0.741  ] 

𝑉𝑉𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑠𝑠𝑚𝑚   10.6 [ 0.758 ]  

𝑉𝑉𝑉𝑉𝑉𝑉𝑏𝑏𝑚𝑚𝑏𝑏𝑚𝑚𝑛𝑛𝑏𝑏𝑠𝑠𝑚𝑚    10.7 [ 0.741 ] 
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Table C-9. Maximum likelihood estimation results, income elasticity = 1.4. Coefficient estimates 
using only hedonic wage (HW) estimates, only stated preference (SP) estimates, HW and SP 
estimates combined with no control for study type (pooled), and HW and SP estimates 
combined with fixed effect for study type (balanced).  Numbers in square brackets are standard 
errors. 

Parameter HW SP pooled balanced 

𝛽𝛽0 11.4 [ 0.594 ] 10.6 [ 1.18 ] 11.0 [ 0.791 ] 11.9 [ 1.11 ] 

𝛽𝛽𝑦𝑦𝑠𝑠𝑚𝑚𝑦𝑦 1.11 [ 0.592 ] 0.911 [ 1.02 ] 0.730 [ 0.657 ] 0.935 [ 0.650 ] 

𝛽𝛽𝑆𝑆𝑆𝑆    -0.144 [ 0.114 ] 

𝛽𝛽𝑚𝑚𝑠𝑠𝑚𝑚𝑖𝑖𝑚𝑚𝑛𝑛  -0.495 [ 0.101 ] -0.493 [ 0.0856 ] -0.468 [ 0.0947 ] 

𝜎𝜎𝜇𝜇  1.61 [ 0.794 ] 2.41 [ 0.378 ] 2.29 [ 0.311 ] 2.27 [ 0.312 ] 

𝜎𝜎𝜂𝜂  0.212 [ 3.17 ] 2.95 [ 0.773 ] 2.44 [ 0.510 ] 2.27 [ 0.519 ] 

𝑉𝑉𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻 11.4 [ 0.594 ]   11.9 [ 1.11 ] 

𝑉𝑉𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆  10.6 [ 1.18 ]  10.2 [ 1.03  ] 

𝑉𝑉𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑠𝑠𝑚𝑚   11.0 [ 0.791 ]  

𝑉𝑉𝑉𝑉𝑉𝑉𝑏𝑏𝑚𝑚𝑏𝑏𝑚𝑚𝑛𝑛𝑏𝑏𝑠𝑠𝑚𝑚    11.1 [ 0.772 ] 
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Table C-10. Maximum likelihood estimation results, income elasticity = 1.7. Coefficient 
estimates using only hedonic wage (HW) estimates, only stated preference (SP) estimates, HW 
and SP estimates combined with no control for study type (pooled), and HW and SP estimates 
combined with fixed effect for study type (balanced).  Numbers in square brackets are standard 
errors. 

Parameter HW SP pooled balanced 

𝛽𝛽0 11.8 [ 0.539 ] 11.0 [ 1.24 ] 11.4 [ 0.826 ] 12.4 [ 1.16 ] 

𝛽𝛽𝑦𝑦𝑠𝑠𝑚𝑚𝑦𝑦 0.873 [ 0.452 ] 0.780 [ 1.06 ] 0.533 [ 0.687 ] 0.743 [ 0.680 ] 

𝛽𝛽𝑆𝑆𝑆𝑆    -0.142 [ 0.115 ] 

𝛽𝛽𝑚𝑚𝑠𝑠𝑚𝑚𝑖𝑖𝑚𝑚𝑛𝑛  -0.500 [ 0.101 ] -0.500 [ 0.0857 ] -0.476 [ 0.0945 ] 

𝜎𝜎𝜇𝜇  1.72 [ 0.576 ] 2.49 [ 0.391 ] 2.37 [ 0.322 ] 2.35 [ 0.323 ] 

𝜎𝜎𝜂𝜂  0.00 [ 3.31 ] 3.01 [ 0.806 ] 2.55 [ 0.534 ] 2.38 [ 0.542 ] 

𝑉𝑉𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻 11.8 [ 0.594 ]   12.4 [ 1.16 ] 

𝑉𝑉𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆  11.0 [ 1.24 ]  10.6 [ 1.08  ] 

𝑉𝑉𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑠𝑠𝑚𝑚   11.4 [ 0.826 ]  

𝑉𝑉𝑉𝑉𝑉𝑉𝑏𝑏𝑚𝑚𝑏𝑏𝑚𝑚𝑛𝑛𝑏𝑏𝑠𝑠𝑚𝑚    11.5 [ 0.809 ] 

 
 
 
 
 
  



PRELIMINARY DRAFT: All results provisional and subject to change. 

77 

Table C-11. Non-parametric estimates of the average VSL among the U.S. adult general 
population [2013$/statistical life/yr].  Income elasticity = 0.7.  Bootstrap confidence intervals 
based on re-sampling groups and observations within groups.  {Compare to Table 7.} 

Estimator mm/ma HWb SP pooled balanced 

1 simple mean 
mm 11.9 [ 1.28 ]c 7.53 [ 1.14 ] 9.83 [ 1.26 ] 9.73 [ 0.859 ] 

m 11.9 [ 1.28 ] 8.59 [ 1.91 ] 10.7 [ 1.36 ] 10.3 [ 1.16 ] 

2 mean of group 
means 

mm 10.4 [ 0.445 ] 7.86 [ 0.949 ] 9.01 [ 0.578 ] 9.11 [ 0.525 ] 

m 10.4 [ 0.445 ] 10.4 [ 1.17 ] 10.4 [ 0.615 ] 10.4 [ 0.625 ] 

3 sample size 
weighted mean 

mm 11.8 [ 1.37 ] 7.96 [ 1.31 ] 11.8 [ 1.38 ] 9.90 [ 0.950 ] 

m 11.8 [ 1.37 ] 8.67 [ 1.90 ] 11.8 [ 1.38 ] 10.3 [ 1.17 ] 

4 sampling var. 
weighted mean 

mm 9.27 [ 1.08 ] 6.65 [ 3.12 ] 6.69 [ 3.03 ] 7.96 [ 1.65 ] 

m 9.27 [ 1.08 ] 9.49 [ 3.44 ] 9.48 [ 3.22 ] 9.38 [ 1.80 ] 

5 total var. 
weighted mean 

mm 10.1 [ 0.448 ] 7.09 [ 0.932 ] 8.55 [ 0.694 ] 8.59 [ 0.519 ] 

m 10.1 [ 0.448 ] 8.28 [ 1.27 ] 9.42 [ 0.682 ] 9.19 [ 0.674 ] 

a. “mm” includes mean and median primary estimates, “m” includes only mean primary estimates. 
b. The “mm” and “m” HW estimates in the first column of numbers are identical because HW studies only 

reported mean VSL estimates.  
c. Numbers is square brackets are bootstrapped standard errors.   
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