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of the magnetic field because they occur too 
quickly. This particular magnetometer has 
its resonant frequency at fres � 10 kHz when 
unloaded, which decreases to an estimated 
value of 5 kHz when loaded with the �0.8­
�g sample. Shown in Fig. 3B is the calibrat­
ed magnetization of the sample versus in­
verse magnetic field. The quantum oscilla­
tions are periodic in the inverse magnetic 
field with a frequency of 615 � 20 T, in 
good agreement with the accepted value of 
600 � 5 T (5–7) (Fig. 3C). 

The data we report were taken on a 
sample roughly two orders of magnitude 
smaller in mass than is typical for magne­
tization measurements (7, 10, 11). Pulsed-
field magnetization studies of two-dimen­
sional organic compounds have long been 
accomplished with magnetometers com­
posed of compensated counterwound coils 
(10). The “trampoline” magnetometer and 
the counterwound coil magnetometer 
complement each other because the latter 
is particularly well suited for large samples 
and samples with rapid quantum oscilla­
tions. An alternate Si micromachined 
magnetometer design, the cantilever mag­
netometer (11), competes more directly 
with the trampoline magnetometer. This 
type of magnetometer uses a microma­
chined Si cantilever beam that holds the 
sample. The reported noise values are 
comparable to those for our trampoline 
magnetometer, although to date the can­
tilever magnetometer design is limited to a 
frequency response below 1 kHz and there­
fore has been demonstrated only up to 
peak magnetic fields of 36 T in longer 
pulse magnets (�1-s duration). 

The observed root-mean-square noise 
level of 7 � 10�11 A m2 was measured 
with only a 30-�s time constant and cor­
responds to a noise figure of �10�12 A m2 

Hz�1/2. This measurement was not limited 
by the noise generated during the pulsed 
magnetic field, even though no special 
effort was taken to isolate the magnetom­
eter from vibrations induced by the pulsed 
magnet. Thus, there is substantial room 
for improvement. We recently achieved a 
tenfold improvement in the resolution of 
capacitance measurements during the 
60-T pulsed magnetic field, which reduces 
the measured noise figure to �10�13 A m2 

Hz�1/2. We have also tested newer mag­
netometer designs, with springs 25 times 
as stiff ( fres up to 50 kHz), with the goal of 
accessing still higher frequency quantum 
oscillations. 
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DDT is reductively dechlorinated to DDD and dehydrochlorinated to DDE; it has been 
thought that DDE is not degraded further in the environment. Laboratory experiments 
with DDE-containing marine sediments showed that DDE is dechlorinated to DDMU in 
both methanogenic and sulfidogenic microcosms and that DDD is dehydrochlorinated 
to DDMU three orders of magnitude more slowly. Thus, DDD does not appear to be an 
important precursor of the DDMU found in these sediments. These results imply that 
remediation decisions and risk assessments based on the recalcitrance of DDE in marine 
and estuarine sediments should be reevaluated. 

DDT [1,1,1-trichloro-2,2,bis(p-chlorophe­
nyl)ethane] was one of the first synthetic 
pesticides to gain wide acceptance. Initially 
its use greatly enhanced crop yields, but pest 
species rapidly developed resistance so that 
its use in agriculture in the United States 
began to decline by 1959. It was effective 
longer in controlling mosquito-borne ma­
laria (1) and is still used for that purpose in 
some tropical countries. 

Because of environmental concerns, the 
use of DDT was banned in the United 
States and in some other countries in the 
early 1970s. By that time, however, it was 
distributed globally. Both DDD [1,1-di­
chloro-2,2,-bis(p-chlorophenyl)ethane] and 
DDE [1,1-dichloro-2,2,-bis(p-chlorophenyl)­
ethylene] existed as by-products in commer­
cial DDT formulations, and both may be 
formed by environmental degradation of 
DDT. DDT, DDD, and DDE (collectively 
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DDX) are found, in various proportions, in 
soils and sediments and have been reported 
at 3422 out of 22,000 sites identified as 
posing a danger to humans and animal life 
by the U.S. Environmental Protection 
Agency (EPA) in its National Sediment 
Quality Survey. 

One such marine site is the continental 
shelf off of the Palos Verdes Peninsula in 
southern California. Sediment core data 
collected over the last two decades by the 
Los Angeles County Sanitation District 
and the U.S. Geological Survey show that 
DDE is the most prevalent of the DDX 
compounds present in the shelf sediments 
and imply that the mass of DDE is decreas­
ing with time (2, 3). Bioturbation has 
been proposed as a mechanism responsible 
for this trend (3) because DDE is viewed 
as a recalcitrant compound (4). However, 
the concentration of trace metals in the 
sediments has remained constant with 
time, which is not consistent with biotur­
bation (5), and there is precedence for 
believing that DDE can be reductively 
dechlorinated to DDMU (6), which is also 
found in the sediment (2, 3). Thus, an 
alternative explanation for the disappear­
ance of DDE from the sediments, first 
proposed by List (7), is that it is being 
reductively dechlorinated to DDMU by 
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Table 1. Total recoveries at 32 weeks and proportions of 14C activity Some sulfate from the sediments (�600 to 1000 �g/ml, depending on the 
recovered after 32 weeks for various analytes for microcosms prepared site) was initially present in the methanogenic treatments, but this was 
with sediments from all three sites and under both methanogenic and consumed and there was no detectable sulfate present at the conclusion 
sulfidogenic conditions. No methane was detected (by gas chromatogra- of the experiment at 32 weeks (13). 
phy with flame ionization detection) in any of the sulfidogenic treatments. 

Sediment 3C Sediment 5C Sediment 8C 

Analyte Live Autoclaved Live Autoclaved Live Autoclaved 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Sulfidogenic treatments 
Percent 14C recovered as 

DDE 78.4 5.7 90.1 3.6 76.7 4.4 86.7 6.0 80.5 7.7 86.9 2.7 
DDMU 12.3 2.4 2.0 0.3 11.8 1.6 3.0 1.8 5.5 2.1 3.0 2.6 
TLC polar compounds 0.4 0.1 0.4 0.0 0.5 0.0 0.4 0.1 0.4 0.0 0.4 0.0 
Aqueous phase 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 
Total 91.2 5.6 92.6 3.7 89.1 5.6 90.2 5.3 86.2 5.8 90.5 2.2 

Sulfate (�g/ml) 1223 326 2446 249 742 243 2654 19 1123 119 2738 97 
Methanogenic treatments 

Percent 14C recovered as 
DDE 41.8 1.5 85.9 1.8 61.1 5.8 86.6 1.0 71.9 1.8 89.8 3.5 
DDMU 45.5 2.9 3.1 1.5 24.0 2.8 2.5 1.9 18.1 2.9 2.9 2.7 
TLC polar compounds 0.4 0.1 0.4 0.0 0.3 0.0 0.5 0.3 0.3 0.0 0.5 0.2 
Aqueous phase 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 
Total 87.8 1.5 89.4 1.4 85.5 5.5 89.8 2.5 90.4 3.5 93.2 1.3 

Methane (%) 9.8 3.2 0.0 0.0 8.4 5.6 0.0 0.0 6.0 4.4 0.0 0.0 

anaerobic marine bacteria in the same 
manner as PCBs (polychlorinated biphe­
nyls) (8). We therefore reexamined the 
possible fates of DDE and DDD in these 
marine sediments to determine whether 
DDE or DDD is the more probable precur­
sor of the DDMU currently found in the 
sediment. 

We prepared sediment slurries by mix­
ing equal volumes of Palos Verdes shelf 
sediments from one of three locations (3C, 
5C, or 8C) (9) with one of two anaerobic 
marine media. For sulfidogenic treat­
ments, the medium contained the same 
amount of sulfate (27 mM) normally 
found in seawater (10). For methanogenic 
treatments, the sulfate was omitted, and 
the ionic strength of the medium was 
maintained by increasing the amount of 
sodium chloride. The individual micro­
cosms consisted of 7 ml of sediment slurry 
(containing �2 g of sediment on a dry 
weight basis), spiked with 200 �g of  14C­
labeled DDD or DDE in 7 �l of acetone, 
in a tightly stoppered 20-ml glass vial. 
Autoclaved slurries served as controls for 
nonbiological effects. The microcosms 
were mixed thoroughly after addition of 
the DDD or DDE and then incubated 
statically at room temperature (22° to 
25°C). At 8-week intervals, the entire 
contents of four replicate vials were ex­
tracted separately and analyzed (11). 

Transformation of DDE in all nonauto­
claved microcosms was evident by thin-
layer chromatography (TLC) and autora­
diography (AR) of solvent extracts of the 
microcosms after 32 weeks of incubation 

(Fig. 1). The major metabolite had a rela­
tive mobility (Rf) of 0.42 and cochromato­
graphed with an authentic standard of 
DDMU. In contrast, there was much less 
extensive transformation of DDD, mainly 
to more polar products. Only a trace 
amount of DDMU was produced from 
DDD. It is evident from the corresponding 
changes in amounts of DDE and DDMU 
that the DDMU was produced from DDE 
(Fig. 2 and Table 1). 

The identity of DDMU was confirmed 
by gas chromatography–mass spectrometry. 
An authentic DDMU standard and puta­
tive DDMU in selected sample extracts 
gave identical retention times and mass 
spectra, with relative maximal abundances 
of 282 (DDMU parent ion) and 247, 212, 
and 176 m/z (mass-to-charge ratio) for frag-

Fig. 1. Autoradiograph of TLC plate showing 
DDMU formed from DDE in all three sediments 
(3C, 5C, and 8C) but not in the sterile controls. 
Polar metabolites (near origin) and a trace of 
DDMU were formed from DDD. 

ments representing loss of one, two, and 
three chlorines, respectively (12). 

DDMU was detected earlier and was 
formed more rapidly in methanogenic mi­
crocosms than in sulfidogenic ones (Fig. 3). 
In unamended methanogenic 3C sediment 
microcosms, DDMU was first quantifiable 
after 16 weeks of incubation, and its rate of 
formation between weeks 16 and 32 was 
0.85 nmol per gram of sediment (dry 
weight) per day. In sulfidogenic treatments 
with 3C sediments, DDMU was not detect­
able until 24 weeks, and its rate of forma­
tion between weeks 16 and 32 was 0.17 
nmol per gram of sediment per day. The 
sulfate was gradually depleted during the 

Fig. 2. Mass balance between DDE dechlorina­
tion and DDMU production in the live methano­
genic cultures prepared from 3C sediments. 
Comparable mass balance was obtained in all 
other treatments; there was no significant DDMU 
produced in any of the autoclaved control cultures 
(see Table 1). 
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Fig. 4. Initial steps in the com­
monly accepted DDT degradation 
pathway (thin arrows) and steps 

incubation, but 1223 �g/ml (about half of 
the initial amount) still remained after 32 
weeks (Table 1), and there was never any 
methane detected in the sulfidogenic treat­
ments. Thus, dechlorination of DDE to 
DDMU was slower for the sulfidogenic 
treatments but did occur in the presence of 
sulfate. 

The rate of DDMU formation (and 
therefore its amount at 32 weeks) varied 
depending on the site from which the 
sediment was collected (Table 1). It was 
greatest in 3C sediment microcosms and 
least in 8C sediment microcosms. In the 
case of 8C microcosms, the rates of 
DDMU formation were 0.42 and 0.10 
nmol per gram of sediment per day for 
methanogenic and sulfidogenic condi­
tions, respectively. These same rates were 
0.36 and 0.22 nmol per gram of sediment 

Fig. 3. Time course of dechlorination of DDE to 
DDMU in microcosms prepared from site 3C sed­
iment. These results were obtained by liquid scin­
tillation counting of scrapings from the TLC plates 
as shown in Fig. 1. The minimal background con­
centrations of DDE (3.4 �g/g) and DDMU (1.8 
�g/g) in the 3C sediments compared with the 100 
�g of 14C-DDE added per gram of sediment al­
lowed samples from these treatments to be ana­
lyzed by gas chromatography with electron cap­
ture detection (12), and comparable results were 
obtained. The error bars represent sample stan­
dard deviations and where not visible are smaller 
than the symbols. 

demonstrated for Palos Verdes 
sediment microcosms (thick arrows). The dashed 
arrow indicates a minor route. Further degrada­
tion of DDMU under anaerobic conditions has 
been shown previously (4). 

per day for 5C sediments. 
The sediments from the three sites con­

tained 36 to 58% sand, 26 to 42% silt, 16 to 
22% clay, and 3.2 to 3.6% total organic 
carbon. The pH of the pore water was 7.1 to 
7.4; total bacterial cells, counted by epiflo­
rescence microscopy, were 6.3 � 109 to 
1.3 � 1010 per gram. Concentrations of Se, 
Zn, Cd, Cr, Cu, Pb, Ni, and Fe were too low 
to adversely affect microbial activity. There 
were minimal differences in all of these 
parameters among sediments, and nothing 
to suggest a possible reason for the observed 
differences in rates and extents of DDE 
dechlorination among the sediments. 

The results of our experiments are in 
contrast to the generally reported DDT deg­
radation pathway (Fig. 4). We have found 
that in anaerobic marine sediments, DDE is 
readily dechlorinated to DDMU, and that 
the transformation of DDD to DDMU is 
relatively unimportant, occurring about 
three orders of magnitude more slowly. 

Our results provide direct evidence for 
the microbial dechlorination of DDE to 
DDMU under anaerobic conditions and 
demonstrate that the results of previous 
studies, largely with pure cultures or with 
poorly controlled aeration status, cannot be 
used to explain the fate of DDE in anaero­
bic marine sediments. Thus, the notion that 
DDE cannot be microbially transformed 
should be abandoned. 
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