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Glen D. Johnson 
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P.O. Box 2063 
Harrisburg, Pennsylvania  17105-2063 
 
Dear Mr. Johnson, 
 
Four questions were raised in your letter of August 21.  Hopefully our 
responses will be satisfactory.  If you still have any concerns please feel 
free to contact us again. 
 
First, concerning the "Analysis of Retesting Procedures" paper, we have re- 
examined our simulation code used to generate the power results given in that 
paper and have examined the code you provided as well.  It seems that the 
discrepancy between our results can be traced to the method by which you 
generate future values for comparison to the simulated prediction limits. 
 
The theory behind prediction intervals assumes that not only are the 
background measurements drawn at random from a (Normal) distribution, but 
that the future values to be compared against the prediction limits are also 
randomly drawn from the same population.  That is, two sources of variability 
are built into the equation used to calibrate the width of a prediction 
interval: variability in the background measurements (accounted for by the 
quantity t.99,n-1 and by 1/n under the root symbol) and variability in the 
future values (accounted for by adding I to 1/n under the root symbol). 
 
In your SAS code, the future values for a given effect size are always fixed 
at the expected mean level of the downgradient well.  No variation is built 
into these numbers; consequently our power results differ.  We have made an 
additional run of our simulations (based again on 10,000 iterations) to give 
you approximate power levels in the table below for each of the effect sizes 
you used.  These results make sense from the standpoint that if the 
alternative mean is close to the background mean, adding variation to the 
future values should increase how often these numbers fall above the 
prediction limit and hence increase the power over what you derived.  The 
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reverse situation should be true when the background and alternative means 
are far apart, as seen in the table, for then the alternative mean will 
generally be above the prediction limit, and variability in the future values 
will tend to lower the power somewhat. 
 
EFFECT    YOUR POWER     OUR POWER 
 
0.0       0.0000         0.0100 
0.5       0.0008         0.0257 
1.0       0.0051         0.0613 
1.5       0.0301         0.1189 
2.0       0.1116         0.2073 
2.5       0.2698         0.3319 
3.0       0.4756         0.4802 
3.5       0.6946         0.6256 
4.0       0.8473         0.7570 
4.5       0.9386         0.8568 
5.0       0.9801         0.9223 
 
With regard to the article by Robert Gibbons in Ground Water (Vol. 29, No. 4, 
1991), our basic reaction to the method Gibbons proposes for monitoring large 
networks of downgradient wells is not wholly unfavorable.  There do seem to 
be advantages to employing some type of retesting strategy in order to verify 
results from wells that show possible contamination.  EPA has in fact already 
approved a proposal from the State of California that adopts a retesting 
strategy.  However, the specific strategy put forward by Gibbons, that is, an 
initial tolerance interval followed by a prediction interval on any resampled 
wells, may or may not be the best retesting strategy.  The approved 
California proposal, for instance, consists only of prediction intervals with 
double resampling of downgradient wells that initially exceed the prediction 
limit.  Both resamples must be immediately collected from the monitoring well 
and both must pass the retest to verify that the initial failure was a false 
positive. 
 
In addition, Gibbons' article raises a few questions concerning the 
statistical logic used.  First, Gibbons' basic example hypothesizes a network 
of 20 downgradient wells, each being monitored quarterly for five 
constituents.  As Gibbons notes, this results in 100 sample measurements per 
quarter that must be tested statistically.  It is not true, however, that all 
100 values would be compared to single tolerance (or prediction) limit 
calculated from the background data.  Rather, each constituent would have to 
be tested separately, leading to five separate tolerance (or prediction) 
limits each used to test 20 measurements.  Clearly, it would not be the case 
that all five constituents would have  similar distributions of concentration 
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values.  This point is not crucial to Gibbons case, but it is worth 
emphasizing that his hypothetical framework should actually lead to more 
conservative prediction limits than he describes. 
 
Another point is that Gibbons' discussion of Type I error rates when 
comparing the performance of tolerance and prediction limits without 
resampling, particularly in regard to Figure 1 on p. 568, is somewhat misleading.  
Gibbons argues for instance that "the 95% prediction limit for the next 1000 
measurements achieves its nominal error rate of 5%.  However, the false positive 
rate for the 95% confidence 95% coverage tolerance limit is over 70%.  Even 99% 
coverage produces a false positive rate of approximately 17%."  What Gibbons 
means by false positive rate here is not the traditional Type I error 
probability, rather, it represents the frequency with which any of the 100 
sample measurements falls above the prediction or tolerance limit. 
 
For prediction limits these two definitions of error are the same, since the 
prediction limit is designed to contain all of the 100 samples.  For 
tolerance limits, however, Gibbons' definition of the false positive rate is 
not correct, because a tolerance limit is designed to "miss" a certain 
fraction of the tested measurements.  Under 95% coverage, a tolerance limit 
is expected to miss approximately 5 out of every 100 new samples.  The 
tolerance limit only falls in the Type I error sense, if the actual coverage 
of the limit is less than expected amount (e.g, 10 out of 100 samples fall 
above the limit instead of the expected 5 or less).  It is true enough that 
some measurements in a large enough sample will fall above the tolerance 
limit; however, this does not indicate a failure of the tolerance limit to do 
its job.  If 100 new measurements were collected from a single downgradient 
well, and at least 95 of those values fell below the tolerance limit, there 
would be no need to designate the well as possibly contaminated. 
 
Granting the above comments, Gibbons does recognize a basic problem in 
applying a tolerance limit approach to a set of measurements taken one per 
downgradient well.  That is, measurements which fall above the tolerance 
limit may indeed indicate contamination at particular wells, because distinct 
wells may have different distributions of the constituent being tested.  If 
data from many downgradient wells are pooled together, the tolerance limit 
approach assumes that each well has the same distribution of sample values 
and that values fall above the tolerance limit only because a large enough 
sample from any (normal) distribution will have a few extreme measurements.  
This assumption may not be true if just one or two downgradient wells have 
been contaminated, so that some of the extreme values are the result of 
contamination rather than just random variation in a large set of 
measurements.  In other words, by allowing a certain fraction of the values 
to be above the tolerance limit (typically 1% or 5% of the concentrations), 
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actual contamination at a very few wells could be missed. 
 
One solution to this problem is as Gibbons suggests to retest each well for 
which the sample measurement falls above the tolerance limit.  A more 
practical alternative not discussed in the article relates to the likely 
nature of contaminated wells for many constituents.  Experience with 
monitoring data suggests that an actual spill or leak from a monitored 
facility results in concentration levels elevated typically by one or more 
factors of magnitude above background levels.  Samples from wells 
contaminated in this way should be much greater in concentration than even 
extreme values from uncontaminated wells.  Consequently, it may be easy to 
identify contaminated wells by comparing the relative magnitudes of those 
samples which fall above the tolerance limit, even in the absence of any retesting 
strategy. 
 
Your inclination concerning ground-water sample independence with respect to 
quarterly measurements is consistent with our experience in evaluating 
ground-water monitoring data.  Keep in mind, however, that the 40 CFR Part 
264, Subpart F regulations require at least semiannual sampling, which may 
improve the likelihood of sample independence in slow moving ground water.  
Further, well purging procedures that are implemented prior to sample 
collection also improve sample independence. 
 
EPA is in the process of developing software for assisting Regional and State 
personnel in evaluating ground-water monitoring data.  The system (GRITS- 
ground-water research information system) is an enhancement to an EPA Region 
VII data base that uses Lotus files for data input and will perform all of 
the Subpart F statistical procedures.  We plan to provide training on the 
system and the included statistical procedures throughout the late summer and 
fall of 1992 (Philadelphia or a nearby metropolitan area will be a host 
training site). 
 
I hope that these comments have been useful.  Please contact me at (202) 260- 
3240 if I can be of further assistance. 
 
Sincerely, 
 
Original Document signed 
 
James R. Brown 
 
 
CC:  Denise Keehner 
     Vernon Myers 


