The Impact of Climate Change on Terrestrial Ecosystems

Climate Damages Workshop

Karen Carney, PhD
Stratus Consulting
Washington, DC
January 28, 2011
Outline

- Background
- Descriptions of key ecosystem impacts
 - Vegetation distribution and dynamics
 - Wildfire dynamics
 - Species extinction risks
- Future research needs
Background

- Why do ecosystems matter when assessing economic impacts of climate change?
- Provide critical services to people
 - Provisioning (e.g., food, water, raw materials)
 - Regulating (e.g., air quality, storm protection, waste assimilation)
 - Cultural (e.g., recreation, passive use)
- These services have substantial economic value
Background (cont.)

- Climate change affects:
 - What species are where
 - How productive an ecosystem is
 - Rates of ecosystem processes (e.g., decomposition, denitrification)
 - The disturbance regimes it experiences
 - Drought
 - Fire
 - Pest outbreaks

Photo credits: USFWS
Background (cont.)

- Which ecological impacts?
- Given focus on use in integrated assessment models, focus on impacts:
 - Ecologically important
 - Impact is large and relatively widespread
 - Economically important
 - Impact will affect ecosystem services with high values
 - Well understood
 - Need to quantify projected impacts in scientifically robust way
Outline

- **Background**
- **Descriptions of key ecosystem impacts**
 - Vegetation distribution and dynamics
 - Wildfire dynamics
 - Species extinction risks
- **Future research needs**
Key Ecosystem Impacts

- For each impact, will discuss:
 - Why the impact is likely to occur
 - The tools available to estimate the impact
 - What research has shown
 - Key uncertainties or other shortcomings with projecting future impacts
 - What key services are likely to be affected
Outline

- Background
- Descriptions of key ecosystem impacts
 - Vegetation distribution and dynamics
 - Wildfire dynamics
 - Species extinction risks
- Future research needs
Changes in Vegetation

- **How will climate affect vegetation?**
 - Changes in temperature, precipitation, relative humidity affect:
 - What species can live where
 - Ecosystem productivity
 - Wildfire frequency and intensity, a key disturbance agent
 - Will fundamentally alter our environment – where grasslands and forests are, and what kinds of animals we see in different areas (not static)
Changes in Vegetation (cont.)

- **Projecting future vegetation dynamics**
 - Dynamic global vegetation models (DGVMs)
 - Large scale patterns of vegetation change
 - Typically have interacting modules:
 - Biogeography model – potential vegetation given climate and soil parameters
 - Biogeochemistry model, which simulates the movement of nutrients
 - Fire model – disturbance by wildfire
Changes in Vegetation (cont.)

- **Projecting future vegetation dynamics (cont.)**
 - For specified time period and climate scenario, DGVMs can tell you:
 - Potential vegetation type (e.g., temperate deciduous forest, temperate mixed forest)
 - Plant biomass (by life form – trees, shrubs, grasses)
 - Carbon storage (above and below-ground)
 - Burned area/wildfire frequency
Changes in Vegetation (cont.)

- Projecting future vegetation dynamics (cont.)
 - Many DGVMs are available; commonly used:
 - MC1 – United States
 - Lund-Potsdam-Jena (LPJ) – Germany/Sweden
 - SDGVM – United Kingdom
 - Integrated Biosphere Simulator (IBIS) – United States
Changes in Vegetation (cont.)

- What research has shown

Changes in Vegetation (cont.)

- % change in tree coverage, SRES A1FI, 4 DGVMs, Hadley GCM
- Significant variability across models
- Some areas of general agreement
 - Varying degrees of Amazon forest dieback
 - Boreal forest expansion

Changes in Vegetation (cont.)

- **Key uncertainties**
 - *Potential* vegetation only – most anthropogenic factors ignored; some can be addressed
 - Fires suppression can be accounted for
 - Can screen out urban/agricultural lands
 - Assume no barriers to plant dispersal
 - Pests and pathogens are ignored
 - Significant differences across DGVMs for the same region and climate scenario
Changes in Vegetation (cont.)

- **Affected ecosystem services**
 - Forestry
 - Timber
 - Non-timber forest products
 - Grazing
 - Forage productivity in grasslands, shrublands, savannas, and forests
 - Carbon sequestration and storage
Changes in Vegetation (cont.)

- **Take home**
 - Ecosystems across the globe will be affected, so this is a key impact to consider
 - Can examine multiple scales – countries, regions, the globe
 - Linked to critical ecosystem services
 - Good models, but difficult to know which ones are most reliable
 - Highly dependent on the GCM used
 - Look for areas of agreement, perhaps average DGVM results when possible
Outline

- Background
- Descriptions of key ecosystem impacts
 - Vegetation distribution and dynamics
 - Wildfire dynamics
 - Species extinction risks
- Future research needs
Wildfire Dynamics

How will climate affect wildfire?
- Fires will likely increase in many areas via various mechanisms
 - Direct
 - Higher temperatures = more fires
 - Higher temperatures (and decreased precipitation) = desiccation of vegetation and forest floor (fuel)
 - Indirect
 - Changes in vegetation type (grassland/forest)
 - Changes in productivity (fuel load)
Wildfire Dynamics (cont.)

- **Projecting future wildfire dynamics**
 - Statistical models
 - Examine past fire behavior
 - Identify factors (e.g., via stepwise linear regression) that are key to predicting fire
 - Use equation to predict fires in future (based on key variables)
 - DGVMs
Wildfire dynamics (cont.)

- What research has shown
 - Change wildfire freq. from 2000-2100, A1B
 - More fire: U.S., central South America, southern Africa, western China, Australia
 - Less fire: northern Canada, northern Russia

Wildfire Dynamics (cont.)

- Key uncertainties
 - For both statistical model and DGVM approaches
 - Methods only roughly approximate historical fires
 - Thus, provide similarly rough estimates of future wildfire dynamics
 - Timing/locations of specific fires cannot be predicted
Wildfire Dynamics (cont.)

- Affected ecosystem services
 - Timber/non-timber forest product provisioning
 - Recreation
 - Fire suppression (not an ecosystem service but a real cost)
 - Regulation of air quality – aerosols
 (see Spracklen et al., 2009, *Journal of Geophysical Research*)
Outline

- **Background**
- **Descriptions of key ecosystem impacts**
 - Vegetation distribution and dynamics
 - Wildfire frequency/intensity
 - Species extinction risks
- **Future research needs**
Species Extinctions

- **How will climate affect it?**
 - Climate (temperature/precipitation) is a key driver of species and ecosystem distributions.
 - As climate shifts, areas that support specific species may move (sometimes into areas inhabited by humans).
 - Habitat may disappear (e.g., alpine, cloud-forest dependent species).
 - These dynamics will likely increase the risk of species extinctions.

Photo credits: USFWS
Species Extinctions (cont.)

- **Projecting future species extinctions**
 - Most commonly involves application of “climate envelope” models
 - Use current distributions of a species to construct its climatic requirements
 - Under future climate change, then determine where species could live
 - Use species-area relationships to project extinctions
Species Extinctions (cont.)

- **What research has shown**

 - Results vary

 - 9–52% of species will be “committed” to extinction by 2050 (Thomas et al., 2004)

 - 20–30% of plant and animal species at risk of extinction with increase of 2–3°C (IPCC, 2007)

 - 0–60% extinctions for different taxa/methodologies (Pereira et al., 2010)

 - Envelope model did no better than “null” models in predicting species occurrence (null = species ranges are randomly placed in region; Beal et al., 2010)
Species Extinctions (cont.)

- **Key uncertainties**
 - Great deal of uncertainty within and across studies and modeling methods
 - Climate envelope models
 - May overestimate extinctions
 - Species may be flexible climatically
 - Biotic interactions may be more important than climate
 - May underestimate extinctions
 - Dispersal may be limited by habitat fragmentation
 - Impacts of climate change may be amplified by land use change
Species Extinctions (cont.)

- **Affected ecosystem services**
 - Another key issue...
 - How do you value global biodiversity?
 - Could query public
 - Some species may matter more to the public, and ecologically, than others
Species Extinctions (cont.)

- **Affected ecosystem services (cont.)**
 - Values could be tied to specific species, or suites of species
 - A given tree may provide highly valued wood
 - Bird watching/wildlife viewing is valuable
 - But values not tied to global extinction risk – linked to species, suites of species, and/or specific locations
Species Extinctions (cont.)

- **Take home**
 - Climate change is a threat to species, and more extinctions are likely to occur
 - Range of estimates available for species extinction risk
 - Robustness of estimates highly contested
 - Link to ecosystem services and values difficult
 - Proceed with caution
Outline

- Background
- Descriptions of key ecosystem impacts
 - Vegetation distribution and dynamics
 - Wildfire frequency/intensity
 - Species extinction risks
- Future research needs
Future research

- Integrating across approaches
 - Across all impacts, variety of methods available that provide different estimates of impact
 - Need to think carefully about how to integrate across studies/tools
 - Meta-analyses?
 - ‘Ensemble means’ of ecosystem impacts with different models?
 - Need to be done with different climate scenarios/GCMs
 - How can this be done practically?
Future research (cont.)

- **Major Gaps**
 - Need to develop large-scale, long term projections for changes in
 - Pest outbreaks
 - Interior wetland change/loss

 - Changes in snow pack dynamics
 - Large-scale impacts on freshwater/marine ecosystems
 - Implications for recreational values
Thank you!

Photo credit: USFWS
Wildfire Dynamics (cont.)

- What research has shown
 - Fire risk for three different time periods over 21st century
 - Higher fire risk:
 - U.S.
 - Amazon
 - Western China
 - Lower fire risk:
 - Northern Canada
 - Russia
 - Australia (?)