Estimating the Economic Value of Health Impacts of Climate Change

Maureen L. Cropper

University of Maryland
Resources for the Future

January 27th, 2011
The Task

- Given estimates of health impacts of climate change by region and time period, monetize value of health damages

- Should value damages after adaptation, plus costs of adaptation; presentation will focus on valuing health impacts per se

- Value changes in mortality risks
 - For children and adults
 - As a function of per capita income

- Value changes in morbidity
Presentation

- Main health impacts to be valued and countries in which they are likely to occur
- Valuation concepts
- Estimating the value of mortality risk reductions for adults in low income countries
- Estimating the value of mortality risk reductions for children in low income countries
- Valuing morbidity
Which Health Effects to Value?

- Possible health endpoints include:
 - Malnutrition
 - Diarrheal disease
 - Vector-borne diseases (malaria, dengue fever)
 - Deaths associated with temperature extremes, air pollution
 - Deaths associated with climate-related disasters

- According to McMichael et al. (2004) most DALYs lost due to:
 - Malnutrition
 - Diarrhea
 - Vector-borne disease
Estimated Deaths due to Climate Change* in 2000, by WHO subregion

Source: Map created by SAGE using data from McMichael et al. (2004)
Overview of Approaches to Valuing Death and Injury

- Human Capital - Cost of Illness (COI)
 - Values a life by the PDV of forgone earnings
 - Values an injury by medical costs and lost productivity

- Value of Statistical Life - Willingness to Pay
 - Values a life by sum of what people will pay for reductions in risk of death
 - For injuries, adds WTP for pain and discomfort to COI

- VSL – WTP approach is theoretically correct
Valuing Reductions in Risk of Death

- Goal is to estimate what an individual is willing and able to pay for a small reduction in his risk of death
 - It does NOT measure the amount an individual would pay to avoid death with certainty

- Suppose a person is willing to pay $500 to reduce his risk of dying by 1 in 10,000 over the coming year:
 - If 10,000 people will each pay $500 for a 1 in 10,000 risk reduction, together they will pay $5,000,000 for risk reductions that sum to 1 statistical life saved
 - We say that $5,000,000 is the Value of a Statistical Life.
Approaches to Valuing Mortality Risk Reductions

- **Revealed Preference Studies**
 - Use compensating wage (CW) differentials to value risk of death (most common approach)
 - Use data on purchase of safer vehicles or safety equipment (e.g., bicycle helmets)

- **Stated Preference Studies**
 - Ask people directly what they would pay for a change in risk of death (e.g., Contingent valuation (CV) studies)
Overview of VSL Estimates in the Literature

High-income OECD countries
- Approximately 4 dozen CW studies (30 in USA)
- Over 4 dozen CV studies
- 6 published meta-analyses of these studies since 2000

Middle-income countries
- Fewer than a dozen CW studies
- About two dozen stated preference studies

Low-income countries
- 1 study for Bangladesh; none for Africa
How Is VSL Transferred from One Country to Another?

- Most common approach is:

\[VSL_{\text{India}} = VSL_{\text{USA}} \times \left(\frac{Y_{\text{India}}}{Y_{\text{USA}}} \right)^\varepsilon \]

where \(\varepsilon \) is the income elasticity of the VSL. Usual assumption is that \(\varepsilon = 1 \).

- This implies:

\[\frac{VSL_{\text{USA}}}{Y_{\text{USA}}} = \frac{VSL_{\text{India}}}{Y_{\text{India}}} \]
Is the Conventional Approach Correct?

- **In High Income Countries VSL/Y ratio ≈ 140**
 - Ratio of VSL/Y is about 140 in Miller (2000) based on studies in 13 high income countries

- **In Middle Income Countries VSL/Y ratio ≈ 80**
 - Review of 17 VSL studies in middle income developing countries by Robinson and Hammitt (2009) implies a ratio of 80 (using better studies)

- This suggests that $\varepsilon > 1$.

- US labor market studies suggest that ε increases as incomes fall
How to Estimate the VSL for Developing Countries?

- Hammitt and Robinson (2010) suggest using an income elasticity of 1.5

- Cropper and Sahin (2009) also suggest $\varepsilon = 1.5$ based on a life-cycle consumption model

- Using a US VSL of 6.3 million (2007 USD) and $Y_{US} = $46,000 implies:
 - $VSL_{India} = (Y_{India})^{1.5} \times .64$
How to Estimate the VSL for Children?

- Studies of parents’ willingness to pay to reduce risks to children used to estimate the VSL

- Studies in high income countries suggest child VSL ≈ 2 x adult VSL

- However
 - Parents’ WTP may be different in countries where 1 out of 5 children die before age 5
 - USEPA uses same value for adults and children
 - Many World Bank studies have used Human Capital approach for children
Valuing Morbidity

Want to capture:
• Value of lost productivity
• Cost of medical treatment
• Value of discomfort, inconvenience and pain

Cost of Illness (COI) = Value of lost work time + Cost of medical treatment

Could add value of Quality-Adjusted Life Years (QALYs) lost to COI to capture pain and suffering since few direct WTP estimate available
Valuing Morbidity

- In US studies of health effects of air pollution, value of avoided morbidity is small relative to premature mortality
 - Case of chronic bronchitis ≈ .05 VSL

- Back-of-the-envelope calculations should be done before refining estimates

- Other impacts that may be relevant are:
 - Macroeconomic impacts of malaria (Gallup and Sachs, 2001; Tol, 2008)
Conclusions

- Greatest disease burden from climate change likely to be in Sub-Saharan Africa, South Asia and the Middle East
- Much of the disease burden will fall on children
- Value associated with health impacts depends crucially on:
 - How value of morality risks varies with income
 - How risks to children are valued v. risks to adults
- Most of the disease burden likely to come from mortality
 - But, link between diseases and economic growth could be important