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Abstract 
 
A calibration strategy using ridge regression to generate more precise estimates for a particular 
parameter in a regression model is proposed. Formulae to compute the proposed ridge estimates 
from standard OLS results are provided. Marginal effects of air pollution on property values for 
nineteen published studies are recomputed. Results show that ridge estimates are superior to the 
OLS estimates under the mean squared error criterion in all nineteen studies. The same strategy 
could be used to re-estimate key parameters of interest in other applications such as price 
elasticities for demand forecasts or the value of a statistical life from hedonic wage regressions. 
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1. Introduction 

One of the main concerns regarding the benefit measure of clean air derived from a 

hedonic housing model is that it varies widely. Smith and Huang (1995) review thirty-seven 

empirical hedonic property value studies and find that the benefit estimates range from zero to 

$98.52 (in 82-84 dollars) for a one unit (µg/m3) reduction in total suspended particulates (TSP). 

Some of the variation can be explained by the characteristics of different cities and the purposes 

of studies. However, the standard practice of including a large number of highly correlated 

regressors in the hedonic property value studies also reduces the estimation precision of the 

marginal benefit estimate of air quality. Multicollinearity is a common problem in the empirical 

hedonic property value studies, which does not result in biased estimation but the estimates can 

have large variances. It is also common in empirical economic analysis to focus on one or a few 

coefficient estimates. For example, the estimated price elasticities are used for demand forecasts, 

and the estimated wage premium of job risk from the hedonic wage regression can be used to 

estimate the value of a statistical life. From the policy standpoint, the precision of a particular 

coefficient estimate in these cases can be as important, if not more important, as the goodness of 

fit of the whole empirical model.  

The purpose of this research is to explore alternative, more precise estimates of a 

particular coefficient based on standard regression results. In particular, the benefit estimates of 

air quality from hedonic property value regressions are studied. A simple calibration strategy to 

generate more precise estimates for a particular parameter in a regression model is proposed. 

Ridge regression, an alternative to OLS especially when multicollinearity is a concern, is 

employed as a calibration tool to derive more precise estimates.1 Three estimators, the ordinary 

                     
1 The use of ridge regression among economists has dwindled due to biasness of the associated estimators. When 
multicollinearity significantly influences the reliability of a point estimate, trading bias for smaller variances can be 
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least squares (OLS) estimator, the ridge estimator proposed by Huang (1999), and the traditional 

ridge estimator proposed by Hoerl, Kennard, and Baldwin (HKB, 1975) are compared. In 

addition to potential precision gains, an advantage of these ridge estimators is that they can be 

easily computed. This study provides simple formulae to calculate the two ridge estimates and 

their mean squared errors (MSEs) for a particular coefficient based on the standard OLS 

statistics. The new ridge estimates associated with the marginal effects of air pollution on 

property values are calculated based on results from nineteen published property value/air 

pollution studies and are compared with the original OLS estimates. It is found that the ridge 

estimators give more precise estimates than the OLS estimator in all nineteen studies. 

2. Ridge Estimators 

A multiple linear regression model has more than one explanatory variable. Suppose that 

the policy makers are particularly interested in the effect of one variable, X1. Let Y be the 

dependent variable and X2 be the set of (a-1) other independent variables (including the intercept 

column). Then, the linear model can be written as follows. 

εββ ++= 2211 XXY          (1) 

where ε is an nx1 vector of independent and identically distributed random errors that follow a 

joint normal distribution N(0, σ2I).  I is the nxn identity matrix.  Assume that  and 11 XX ′
22 XX ′  

are non-singular.  The OLS estimator of β1 can be written as follows (Kmenta (1986), p. 398). 

        (2) ⎟
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an effective way to improve estimation precision, as demonstrated in the case study of valuation of air quality 
below. 
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(1) is correctly specified, β^1 is unbiased; thus its variance is also the MSE and is equal to 
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Hoerl (1962) suggests the following estimator: ( ) YXkIXX ′+′ −1 , where k is a positive 

constant called the biasing parameter. The estimator is known as the ordinary ridge regression 

(ORR) estimator. The ORR estimator can be generalized by extending kI to some diagonal 

matrix with non-constant elements and the generalized ridge regression (GRR) estimator results 

(Hoerl and Kennard (1970)). In general, ridge estimators can significantly improve estimation 

precision but introduce bias. Precision-accuracy trade-off is the characteristic of ridge estimators.  

In the case when the prime interest is a particular parameter in the model, say the 

coefficient of X1,  Huang (1999) proposes a ridge estimator that is derived from an MSE 

criterion: . The bias and variance of  can be expressed 

generally as 
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     2The detailed derivation of the optimal k* is available upon request. 
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is based solely on minimizing the MSE of , which is different from the common MSE 

criterion in ridge regression that is based on minimizing MSE of estimates of all coefficients in 

the model. The optimal k  does not depend on the parameters in the β

β̂ 1

*
2 vector. Back substituting 

the optimal k into MSE, the expression of MSE at k  is derived. *
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where  is the optimal ridge estimator of ββ̂ 1

*
1 associated with k*.  Substituting ( )*

1β̂MSE  for 

( )kMSE 1β̂  in the equation (2) in Huang (1999), it is clear that  is superior to in terms of the 

MSE criterion as long as σ

β̂ 1

*
β̂ 1

2 > 0 and β1<0.  

Since the optimal k depends on unknown parameters, σ2 and β 1 , a natural solution is to 

substitute OLS estimates into k*, denoted βσ ˆˆ~
1

/=k 2* .  Let β~1

*  be the adaptive (or feasible) 

estimator of β1 derived by substituting k
*~ into  and it can be expressed as follows.β̂1

k 3
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The adaptive ridge estimator β~
*

1  is not a linear estimator. Its small and large sample properties 

are summarized in the Table 1 in Huang (1999). 

One of the most applied adaptive ridge estimators is the one proposed by Hoerl, Kennard, 

and Baldwin (HKB, 1975). For comparison, this special case of GRR estimator is also examined. 

Hoerl, Kennard, and Baldwin applied the biasing parameter: to deriving the ridge ββσ ′/a=k 2
h

                     
     3In this paper, the estimators are distinguished by different notations.  The number of *'s indicates different ridge 
estimators.  A ^ denotes a regular ridge estimator with non-stochastic k and a ~ implies a ridge estimator with a 
stochastic k (i.e., an adaptive ridge estimator). 
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estimator .YMXkXMX= h
**
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Substituting the estimator of the biasing parameter ββσ ˆˆˆ~ ′/a=k 2
h  into , the HKB adaptive 

ridge estimator results. 

β̂
**

1
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The small and large sample properties of the HKB estimator can be found in Ullah et al. (1981) 

and Ullah et al. (1984). In contrast to the Huang estimator, β~
*

1 , which depends only on the OLS 

estimator of β1, the HKB estimator is constructed based on the OLS estimators of all β's.  Since 

both k
*~ and k h

~  are stochastic and depend on data, the adaptive estimators β~
*

1  and β~
**

1 do not 

guarantee a reduced MSE. Nonetheless, several Monte Carlo studies have shown reduction of 

MSE and enhanced stability by using adaptive ORR estimators especially when the problem of 

collinearity is severe (e.g., Hoerl, Kennard, and Baldwin (1975), Lin and Kmenta (1982), and 

Delaney and Chatterjee (1987)). 

3. Recovering Ridge Regression Estimates from OLS Results 

This section shows an important advantage of these ridge estimators--they can be easily 

                     
     4For the selection of a data based k value from a more general family of adaptive ridge regression estimators, see 
Tracy and Srivastava (1992). 
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computed based on the statistics in the standard OLS output. Information commonly reported in 

empirical studies includes regression coefficient estimates, t values and/or standard errors of the 

point estimates, residual sum of squares, F value, and R2. To recover β~1

* , β~1

** , and their 

corresponding MSEs from OLS results, two segments, 121 XMX ′  and YMX 21
′  must be 

expressed in terms of the OLS results.  It turns out that 121 XMX ′  and YMX 21
′  can be expressed 

as follows. 

2
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2
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2
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2

121
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1
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ˆ
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σ
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YMX

S
XMX
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=′

         (7) 

where  is the OLS estimate of  and is the standard error of . Substituting (7) into the 

expressions of 

2σ̂ 2σ
1β̂

S 1β̂

β~1

*  and β~1

** , the two ridge estimates can be easily calculated from the reported 

OLS results. The step-by-step derivations are given in Appendix A. 
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where t is the t statistic for  and a is the number of parameters estimated in the original 

model. By examining the formulae, essentially the ridge estimators perform systematic 

adjustments to the OLS estimate to counteract the instability of the point estimate resulted from 

high correlation among regressors. The formula to compute the Huang estimator indicates that 

the less significant (i.e., smaller t statistic or larger standard error) the OLS estimate of 

β̂ 1

1β , the 

 7



more prominent is the adjustment (that the multiple in the formula is further away from 1). In 

contrast, the formula to compute the HKB estimator involves the sum of squares of all the OLS 

parameter estimates in the regression model. As a result, its adjustment is not as aggressive as the 

Huang estimator in addressing the imprecision in the estimation of 1β  because it takes into 

account all the parameter estimates to produce a more conservative weight that is closer to 1. The 

above formulae also make transparent that the ridge estimators always give more conservative 

measures than the OLS estimates. 

The corresponding estimated MSEs are derived by substituting k
*~ , k h

~ , and into the 

definition of 

β̂

( )*
1β̂MSE  and ( )**

1β̂MSE  in (3) and (5).  They can be written in terms of the OLS 

summary statistics as well.5 (See Appendix A for the derivations.) 
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The MSE formulae in (10) and (11) can also be separated into the bias and variance components, 

respectively. 
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5 The estimators of MSE presented in (10) and (11) are intuitive but they are not unbiased. The MSE of an estimator 
consists of variance and bias that its estimation requires the information of the first two moments of the estimator. 
As seen in Dwivedi et al. (1980) and Huang (1999), the exact first two moments of the HKB and Huang estimators 
are very complex, which makes it difficult to come up with an unbiased estimator for MSE. Srivastava and Giles 
(1991) derive the exact unbiased estimators for the first two moments of a special case of the GRR estimator to 
enable the unbiased estimation of MSE but the procedure requires numerical integration using original data and it 
cannot be computed based solely on the standard OLS statistics. The small sample properties of the MSE estimators 
in (10) and (11) are to be examined in future research. 
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When the classical assumptions hold, the OLS estimator of 1β  is unbiased (zero bias) with 

estimated variance equal to . As seen from the above formulae, the bias of a ridge estimator 

depends on the magnitude and significance (or variability) of the OLS point estimators, so does 

the potential reduction in variance. The overall gain of trading bias for smaller variance is 

indicated by the reduction in MSE 

2
ˆ
1β

S

An alternative approach to derive ordinary ridge regression estimates is to run OLS on an 

augmented model (Vinod and Ullah (1981) which requires the original data. In addition, the 

covariance matrix of ridge estimates resulting from this procedure is incorrect and needs to be 

adjusted (Power and Bishop (1987)). The algebraic approach to calculating the new ridge 

estimates presented in this section utilizes existing OLS results and does not require regression 

reruns on original data. 

4. Re-calculating Benefit Estimates of Air Quality from Published Hedonic Housing Studies 

In this section, the ridge estimators are applied to re-examine the estimated impact of air 

pollution, specifically the amount of total suspended particulates (TSP), on property values in 

published studies in the past three and half decades. The formulae in (8) and (9) enable us to 

recalculate the coefficient estimates of the air quality variable. The nineteen property value 

studies selected for recalculation all report OLS results and include the total suspended 

particulates (TSP) as the measure of air pollution in the hedonic property value equation.6  The 

                     
  

6There is a wide variety of hedonic property value/air pollution studies. In this paper, I focus the review on those 
including the most common air pollutant, namely the TSP. Within the published property value/TSP studies, some 
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complete citations of the nineteen published studies are given in Appendix B. The original, 

published OLS estimates of the TSP coefficient and the recomputed ridge estimates of the 

nineteen studies, and their corresponding MSEs are reported in Table 1.7   

Comparing the HKB's ridge estimator β~1

**  and ( )**
1

~~ βESM  to the OLS results.  The 

improvement of β~1

**  over  appears to be small. Since1β̂ β~1

**  depends on all coefficient estimates, 

it is affected by the measurement units of the explanatory variables and the model size. The 

relatively large estimates of coefficients dominate the value of  in most studies and make 

the biasing parameter k close to zero. Hence, 

aS2
β̂ 1

β~1

**  is fairly close to  with an average of two 

percent shrinkage in magnitude. Among the nineteen housing price-TSP studies, Giannias (1996) 

uses the unconventional inverse TSP as the explanatory variable in the price equation. The HKB 

estimate for the Giannias study shows a higher MSE than the OLS estimate. For the rest of the 

eighteen studies, the HKB estimates show a slight improvement in precision. The estimated 

average improvement of precision is four percent.  

β̂ 1

The Huang estimates show an average of twenty-one percent shrinkage on the original 

coefficient estimates that the Huang estimator gives rise to a more conservative measure of the 

impact of air pollution on property values. The estimated precision of the coefficient estimates is 

indicated by the corresponding MSEs. By examining the ratio ( )*
1

~~ βESM  to , it is seen that S 2
β̂ 1

                                                                  
of them do not report the coefficient estimates of explanatory variables other than it for the TSP (e.g., Zabel and 
Kiel, 2000; Chay and Greenstone, 2000) that the HKB estimates cannot be computed from the reported results. 
Some of them employ estimation methods other than the OLS such as the method of maximum likelihood with Box-
Cox transformation (e.g., Bender et al. 1980; Sonstelie and Portney, 1980; Bender and Hwang, 1985; Stover and 
Leven, 1992) that the proposed algebraic approach for recovering ridge estimates does not apply and are excluded 
from the review. 
     7Note that the examined studies adopted various functional forms for the hedonic price equation.  The 
coefficient of the air quality variable indicates the impact of air quality on property values.  However, it is not 
necessary the implicit price of clean air. 
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the mean square errors of the ridge estimates are universally smaller than the variance of the 

original OLS estimates in all studies. Further, the smaller the t value, the more is the β~1

*  shrunk 

toward zero and the larger is ( )*
1

~~ βESM . That is, the precision of the estimated coefficient 

improves less when the original OLS estimate is less significant, which makes sense. In 

general, β~1

*  gives more reliable estimates since the estimated mean square error is uniformly 

reduced. The MSE reduction varies across studies. On average, the MSE is estimated to reduce 

by twenty-one percent. Further, the estimated average reduction of variance of the Huang 

estimates is over thirty percent.8

Given that the focus is to recover the marginal effect of one particular regressor (in this 

case the air quality variable), the Huang estimator appears to outperform the HKB estimator and 

the OLS estimator in terms of the MSE criterion in all nineteen studies. 

5. Concluding Remarks 

 Under ideal conditions when all classical assumptions hold and all explanatory variables 

contribute independently to the variation in the dependent variable, we prefer unbiased 

estimators. Note that the theoretical property of unbiasedness provides ‘accuracy on average’ but 

it does not guarantee ‘accurate point estimate’ from a random sample. When a policy decision 

relies heavily on a point estimate, and high multicollinearity is present to cause the point estimate 

of interest to vary significantly with model specification and samples, it is worthwhile exploring 

alternative estimators that are more efficient.  

This study employs adaptive ridge estimators to derive a set of more precise estimates 

                     
        8 The estimated variance and bias of the ridge estimates for each study are computed based on the formulae in (12) 
and (13). Unlike variance, the relative size of the bias of the ridge estimate to the bias of the OLS estimate cannot be 
computed since the OLS estimator is assumed to be unbiased (zero bias). Nevertheless, to give a sense of the bias in 
the ridge estimates, the average ratio of the estimated bias of the Huang estimate to the original OLS estimate is 0.21.  
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associated with marginal air quality benefits. In addition to the potential gain in precision, the 

new estimates can be easily calculated from OLS results. In this application, ridge estimation can 

be viewed as a statistical method to systematically calibrate the OLS estimates to derive more 

reliable benefit measures. Two ridge estimators, proposed respectively by Huang (1999) and 

Hoerl, Kennard, and Baldwin (HKB, 1975), are applied to the first stage estimation of the 

hedonic property value models. It is found that the Huang estimator provides significant 

improvement in estimation precision. In contrast, the traditional HKB estimator presents small 

efficiency gain in this case. It is because the Huang estimator is derived to focus on estimating 

the particular regression parameter of interest, while the HKB estimator has more concern on the 

goodness of fit of the regression model. Given that the goal is to improve the estimation of one 

particular parameter in a regression model, the Huang estimator is shown to be superior to the 

HKB estimator in this case. 

There are many situations that the strong policy interest lies on a particular regression 

coefficient such as estimating the price elasticity of demand, returns to scale in production, the 

wage differential due to job risk in a wage equation, and in this study the implicit price of air 

pollution. Using the proposed ridge estimators and the corresponding simple formulae to re-

examine and re-estimate the parameter of interest with better precision from existing studies can 

provide additional information to policy makers in various fields without incurring much 

additional costs. They can certainly be computed along with the standard OLS estimates for 

comparison in new studies. 

Note that the ridge estimates are more precise yet smaller than OLS estimates due to the 

shrinkage nature of ridge estimators. Carrying this result into the second stage estimation of the 

hedonic property value model, one may predict the willingness-to-pay for air quality to be 
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smaller. This implies that the benefit of improved air quality is measured more conservatively 

when applying ridge estimates and the choice of estimates can affect policy decisions. On the 

other hand, in situations when the OLS benefit estimates are perceived to be too high, ridge 

estimators may provide statistically sound calibration to produce alternative, more convincing 

estimates. 

The biasing parameter, k, in the adaptive ridge estimators is a function of the sample data 

and thus stochastic. Simulation results (e.g., HKB, 1975) show that the HKB estimator has a 

probability greater than 0.5 of producing estimates with smaller MSE than least squares. The 

probability of dominance increases with the number of regressors, σ2, and the severity of 

multicollinearity.  In this study, it is seen that the corresponding MSE of the Huang estimates are 

smaller than the estimated variance of the OLS estimator in all nineteen published studies. 

Further investigation via simulation to examine the empirical dominance of the Huang estimator 

over the OLS estimator is warranted.
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TABLE 1.  Comparison of OLS ( ), HKB (β̂ **~β ), and Huang ( *~β ) Estimates 

   OLS Results HKB Estimates  Huang Estimates   
Studies  Coef Variance Coef MSE  Coef MSE  

(Chronologically ordered) 

Location 

  

(MSE0)  (MSE1) 
0

1
MSE

MSE

  

(MSE2) 
0

2
MSE

MSE

 
Anderson & Crocker 71 Washington D.C. -0.0610 1.01E-03 -0.0610 1.01E-03 0.9987 -0.0480 7.95E-04 0.7863 
" " -0.1698 2.59E-03 -0.1686 2.55E-03 0.9862 -0.1558 2.38E-03 0.9176 
" " 0.0049 9.99E-04 0.0048 9.52E-04 0.9536 0.0001 2.34E-05 0.0235 
" " -0.0302 7.56E-04 -0.0298 7.36E-04 0.9734 -0.0165 4.13E-04 0.5467 
" Kansas City -0.0876 1.31E-03 -0.0875 1.31E-03 0.9984 -0.0748 1.12E-03 0.8541 
" " -0.0641 8.41E-04 -0.0639 8.37E-04 0.9948 -0.0532 6.98E-04 0.8301 
" " -0.1237 6.45E-04 -0.1222 6.32E-04 0.9797 -0.1187 6.19E-04 0.9595 
" " -0.0972 1.20E-03 -0.0953 1.16E-03 0.9650 -0.0862 1.07E-03 0.8870 
" St. Louis -0.1192 2.26E-03 -0.1190 2.25E-03 0.9973 -0.1029 1.95E-03 0.8630 
" " -0.0627 1.32E-03 -0.0624 1.31E-03 0.9920 -0.0469 9.91E-04 0.7479 
" " -0.1211 1.30E-03 -0.1195 1.26E-03 0.9754 -0.1113 1.19E-03 0.9188 
" " -0.0827 1.62E-03 -0.0821 1.60E-03 0.9856 -0.0668 1.31E-03 0.8081 
Deyak & Smith  74 Multiple SMSAs -0.0870 1.96E-03 -0.0866 1.95E-03 0.9911 -0.0691 1.56E-03 0.7940 
" " -0.0880 1.87E-03 -0.0875 1.85E-03 0.9883 -0.0709 1.51E-03 0.8050 
" " -0.0870 1.84E-03 -0.0866 1.82E-03 0.9894 -0.0700 1.48E-03 0.8040 
" " -0.0830 1.95E-03 -0.0827 1.94E-03 0.9930 -0.0647 1.52E-03 0.7790 
" " -0.0850 1.80E-03 -0.0847 1.79E-03 0.9935 -0.0680 1.44E-03 0.8000 
Smith & Deyak  75 Multiple Cities -0.1150 4.22E-03 -0.1149 4.19E-03 0.9929 -0.0872 3.20E-03 0.7580 
" " -0.0480 1.57E-03 -0.0480 1.57E-03 0.9990 -0.0285 9.35E-04 0.5940 
Berry  76 Chicago 0.4150 5.89E-02 0.3362 4.46E-02 0.7580 0.3092 4.39E-02 0.7450 
Polinsky & Rubinfeld 77 St. Louis -0.132 1.94E-03 -0.1317 1.93E-03 0.9958 -0.1188 1.74E-03 0.9000 
" " -0.137 1.16E-03 -0.1369 1.15E-03 0.9988 -0.1291 1.09E-03 0.9420 
" " -0.14 2.03E-03 -0.1385 1.98E-03 0.9796 -0.1269 1.84E-03 0.9064 
" " -0.149 1.09E-03 -0.1482 1.08E-03 0.9902 -0.1420 1.04E-03 0.9532 
Harrison & Rubinfeld  78 Boston -0.0510 4.10E-05 -0.0510 4.10E-05 0.9990 -0.0502 4.00E-05 0.9850 
Smith  78 Chicago -42.9100 8.55E+01 -42.6069 8.55E+01 0.9998 -41.0054 8.17E+01 0.9560 
" " -51.0900 2.82E+02 -51.0768 2.82E+02 0.9995 -46.1015 2.55E+02 0.9020 
Nelson 78 Washington D.C. -0.048 8.41E-04 -0.0480 8.40E-04 0.9991 -0.0352 6.16E-04 0.7326 
" " -0.078 6.76E-04 -0.0779 6.75E-04 0.9986 -0.0702 6.08E-04 0.9000 
" " -0.116 7.29E-04 -0.1159 7.28E-04 0.9988 -0.1100 6.92E-04 0.9486 
" " -0.093 7.29E-04 -0.0929 7.28E-04 0.9982 -0.0858 6.72E-04 0.9223 
Brookshire, et al.  79 S. Ca. Air Basin -316.890 1.30E+04 -316.890 1.30E+04 1.0000 -280.584 1.15E+04 0.8850 
" S. Ca. Air Basin 0.0000 0.00E+00 0.0000 0.00E+00 1.0000 0.0000 0.00E+00 0.9460 
Jackson  79 Milwaukee -1.4730 4.56E+00 -1.4730 4.56E+00 1.0000 -0.4751 1.47E+00 0.3230 
McDonald  80 Chicago 0.0010 1.60E-05 0.0010 1.60E-05 0.9999 0.0001 1.00E-06 0.0590 
" " 0.0030 7.00E-05 0.0030 6.80E-06 0.0966 0.0017 4.00E-06 0.5690 
" " -0.0020 9.00E-05 -0.0020 8.40E-06 0.0934 -0.0006 3.00E-06 0.3160 
Brookshire, et al.  82 Los Angeles -0.2218 3.36E-03 -0.2136 3.19E-03 0.9479 -0.2078 3.15E-03 0.9360 
Palmquist  84 Atlanta -45.4700 8.08E+01 -45.4690 8.07E+01 1.0000 -43.7608 7.77E+01 0.9620 
" Denver -26.0400 1.31E+01 -26.0400 1.31E+01 1.0000 -25.5461 1.29E+01 0.9810 
" Houston -11.8600 1.36E+01 -11.8600 1.36E+01 1.0000 -10.8168 1.24E+01 0.9120 
" Louisville -1.6000 1.11E+01 -1.6000 1.11E+01 1.0000 -0.2996 2.08E+00 0.1870 
" Miami -0.0030 0.00E+00 -0.0030 1.00E-07 0.9998 -0.0030 0.00E+00 0.9920 
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" Oklahoma City -0.2200 3.36E+00 -0.2200 3.36E+00 1.0000 -0.0031 4.77E-02 0.0140 
" Seattle -8.5900 3.37E+01 -8.5900 3.37E+01 1.0000 -5.8975 2.31E+01 0.6870 
Brookshire et al. 85 Los Angeles Co. -0.0018 8.09E-08 -0.0018 8.00E-08 1.0000 -0.0018 7.89E-08 0.9757 
" Bay Area Co. -0.004 9.21E-08 -0.0040 9.00E-08 1.0000 -0.0040 9.16E-08 0.9943 
" Los Angeles Co -0.001 3.98E-08 -0.0010 4.00E-08 1.0000 -0.0010 3.83E-08 0.9617 
" Bay Area Co. -0.004 1.68E-07 -0.0040 1.70E-07 1.0000 -0.0040 1.66E-07 0.9896 
Atkinson & Crocker  87 Chicago -97.0270 1.24E+02 -97.0267 1.24E+02 1.0000 -95.7684 1.22E+02 0.9870 
Blomquist, et al.  88 Multiple Counties -0.5344 3.37E-03 -0.5344 3.36E-03 0.9991 -0.5282 3.33E-03 0.9880 

Graves, et al. 88 

LA, Orange, 
Riverside, San 
Bernardino (CA) -0.012 5.89E-07 -0.0120 5.90E-07 0.9997 -0.0120 5.87E-07 0.9959 

" " -0.01 5.48E-07 -0.0100 5.50E-07 1.0000 -0.0099 5.45E-07 0.9946 
Giannias  96 Houston 6701.21 1.13E+07 3337.12 1.41E+07 1.2473 5351.55 9.04E+06 0.7986 
Chattopachyay  98 Chicago -0.1529 2.10E-03 -0.1528 2.10E-03 0.9990 -0.1403 1.93E-03 0.9176 
Average Improvement in 
Precision   0.9608  0.7935 
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Appendix A. Ridge Estimators Expressed in Terms of OLS Summary Statistics 
 
The typical OLS summary statistics: 
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