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CHAPTER I

INTRODUCTION

In the research described in this report, we have developed a random utility model

of demand for recreational fishing in Michigan, covering all water bodies and all

species types throughout all counties in the state. The major study sponsor, the

Michigan Department of Natural Resources (MDNR), funded the research to pro-

duce a model that could be used to improve fisheries resource management and to

perform natural resource damage assessments. One out of every two households in

Michigan has a fishing license, suggesting that fishing-related benefits will represent

a substantial portion of the total benefits of improvements in water and sediment

quality.

The travel cost model was designed to value recreational experiences. In a recent

state-of-the-art review of recreation models, Bockstael, McConnell and Strand (1991)

conclude that the random utility version of the travel cost model is particularly well-

suited to valuing changes in quality at one or more recreation sites. The random

utility model allows the researcher to model a wide range of substitution possibilities

and, consequently, provides a procedure for estimating the value of changes in environ-

mental quality. Nonetheless, many issues remain regarding the correct specification

of these models and the sensitivity of welfare estimation to specification errors.

We identified two major research objectives for this project. The first was to

1
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address several key methodological issues associated with implementation of the ran-

dom utility models. The second was to incorporate in the model sufficient data about

the environmental attributes of sites in the State to perform the policy analyses of

interest.

Below, we outline the model and the policy analysis we perform with the model.

With that background, we will then briefly highlight the methodological issues ad-

dressed in the report.

Overview of  the  Model

To implement the random utility framework for modeling recreational trip de-

mand, economists have identified two levels of consumer decisions: (1) How many

recreational trips does each individual take during a year or a season? and (2) What

attributes do people seek for each recreational trip? The first question pertains to

total demand for recreation, the macro decision. The second question pertains to the

micro decisions associated with an individual trip.

On any given choice occasion in a sport-fishing season, anglers must decide whether

or not to take a fishing trip. For participants, we model three levels of choices they

make for an individual trip: fishing site, by county; fishing product line, which cap-

tures distinctions by macro-species and water-body type; and trip duration. The

anglers’ decision structure is shown on page 3, along with the options available and

the factors hypothesized to influence each decision.

In our context of recreational fishing, the m a c r o  decision is the total number

of fishing trips anglers take during a fishing season. Since anglers may take trips

of different lengths: we model separately total demand for different trip- lengths.

Consequently, we handle the third-level choice for individual trips, trip duration,

within the macro-level participation model.

Though it is theoretically possible to model the discrete product-line/site choices
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CHOICE STRUCTURE OF SPORTFISHING ANGLERS

Al ternat ives:

Day

Weekend:  2-4  days

Vacat ion:  5+ days

G r e a t  L a k e s  C o l d w a t e r 8 3  M i c h i g a n  c o u n t i e s

G r e a t  L a k e s  W a r m w a t e r

Anadromous Runs

I n l a n d  ( L k + S t r m )  C o l d w a t e r

I n l a n d  L a k e s  W a r m w a t e r

I n l a n d  S t r e a m s  W a r m w a t e r

Factors influencing choice;

I nc l us i ve  va lue  o f  PL inc lus i ve  va lue  o f  s i t es T r a v e l  c o s t s

L o d g i n g / f o o d  c o s t P roduc t  l i ne  cos t s F i sh  ca t ch  ra tes

W o r k s t a t u s F i s h i n g  s k i l l / p r e f e r e n c e Quan t i t y  o f  r esou rces

A v i d n e s s  o f  a n g l e r D e m o g r a p h i c  a t t r i b u t e s N a t u r a l  b e a u t y

Household income A c c e s s i b i l i t y

M a r i t a l  s t a t u s C o n t a m i n a t i o n

Schoo l  vaca t i on
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and the total participation decision jointly, the data and computational requirements

for the correct treatment of the corner-solutions implied by zero trips of certain cate-

goriest makes an integrated utility-theoretic model practically infeasible. Essentially,

researchers face a trade-off: they either implement a utility-theoretic framework that

does not properly model the statistics of the corner solutions; or they model the micro

and macro decisions in separate models that may address the corner solution problem

but do not form an integrated utility-theoretic framework.

In our analysis we estimate separate models at the micro and macro levels. We

use the nested multinomial logit model (NMNL) to estimate the determinants of

site and product line choices on the micro- level. Due to severe data limitations at

the total participation level, our participation model is somewhat different from the

standard treatment in the literature. We do not know the total number of season

trips: our macro level information is limited to the duration between trips. and this

variable is censored because we only observe the duration from last trip to the survey

return date, not to the subsequent trip. By incorporating a key result from stochastic

renewal theory in our modeling. we are able to estimate the determinants of the

between-trip durations with a stochastic renewal model and then to derive the total

number of trips in a season from the duration model.

Though necessitated by the data limitations we face. this approach in fact may

provide several advantages. The most prominent advantage of the competing risks

approach is the capacity for modeling the dependency of choices among trips of differ-

ent types, which is lacking in most other empirical work with random utility models.

Most researchers have limited their analysis to day trips. Another advantage is that

we are able to incorporate time-varying covariates to account for changing fishing

conditions over the season at individual sites.
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Performing Pol icy  Analys is

In order to perform policy analysis with the model, it is important to incorporate

appropriate measures of site quality to capture the quality changes associated with

the policies. Michigan identified several policies of particular interest. In the resource

management area, the key concern was evaluating alternative fish stocking regimes.

In the area of natural resource damage assessments, the State wanted the capabil-

ity to estimate damages from power-plant related fishkills, toxic contamination at

state and federal Superfund sites, fishkills from acute toxic episodes, and acid rain

contamination.

In order to value these injury scenarios, the determinants of site choice in the

model had to include the key measures of environmental quality that change in the

scenarios, as they are experienced by anglers. The two key categories of quality

change are fish catch rates (to capture the stock effects) and toxic contamination

levels. We incorporated detailed information on fish catch rates from the MDNR

creel survey for the Great Lakes and anadromous fisheries, and generally found the

predicted positive relationships between expected catch rates and anglers’ valuation

of a site. Due to problems with endogeneity between participation and catch rates

for the inland product lines, we were only able to use measures of lake area or stream

length, broken down by quality level, for those product lines.

Unfortunately, we were not. able to use a fish consumption advisory measure to

capture toxic contamination in the Great Lakes product lines Because fish consump-

tion advisories apply to virtually all of the Great Lakes warmwater and coldwater

fisheries (except a few counties with no fish, and a few counties in Lake Superior),

the variable lacks the variability required for inclusion in the modeling. We used fish

advisory measures for inland product lines, but there were few inland resources with

advisories at the time of the angler survey, so there is limited variation in the advisory
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variable for those product lines also.

Toxic contamination in the Great Lakes product lines is measured by a variable

indicating that (selected) water bodies in the county have been designated as part

of an Area of Concern by the International Joint Commission. A noteworthy find-

ing in the empirical analysis is that designation of a county as an Area of Concern

has a substantial dampening effect on participation, an effect that spills over into

water bodies and species (fishing product lines) that are not directly located in the

(localized) Area of Concern within the county.

In constructing the model. we estimated how individuals value for fishing at a site

varied with the fish catch rates and contamination variables. To carry out a policy

analysis with the model, a resource expert must provide the “policy scenario”, which

specifies how the values of the environmental quality variables will change as a result

of the policy.

To illustrate the capabilities of the model for performing policy analysis. we apply

the model to two current contexts in which environmental injury is occurring in Michi-

gan. First, we calculate the damages to Michigan-licensed recreational anglers from

fish kills due to operation of the largest pumped- storage plant in the US. Second, we

calculate the benefits of cleaning up PCB contamination in a river in Michigan, which

would allow the State to remove dams currently containing contaminated sediments

and to open a substantial reach of the river for anadromous runs. The contamination

at this site is sufficient to merit designation of the site as an Area of Concern

Methodologica l  I ssues

We identified three key methodological issues raised in implementing the random

utility model:

1. modeling total trip participation across the season, given that we have detailed
information on a single trip and very limited information about total trip de-
mand;
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2. developing a consumer surplus measure that takes into account the changes in
predicted number of trips due to policy changes (as well as the change in value
per trip); and

3. performing sensitivity analysis of the model to alternative specifications, includ-
ing alternative treatments of the opportunity costs of time.

Participation modeling

The major methodological challenge is to link a macro- level model of total recre-

ational trip demand to the micro-level model of demand for fishing site and fishing

product line. Our participation model represents an innovative solution to the es-

treme limited-data problem we faced. The analytical framework, which develops esti-

mation procedures for a competing risk model with censored duration data and time-

varying covariates, has wide applicability beyond the recreational demand contest.

By modeling demand for trips of different durations, we are able to show that

two-thirds of the damages in our policy scenarios accrue to anglers taking trips of

longer than one day. If we had followed the standard procedure in the literature of

analyzing day trips only, we would have seriously underestimated damages.

In order to validate the participation estimates from the model, we compared the

estimated trip-days derived from our model against estimated trip-days based on analysis

of the MDNR creel survey. Because the procedures and criteria for counting trips and

trip-days are different in the two datasets, the comparison is not suited to statistical

testing. Though the differences between the surveys limit our ability to compare the

estimates, we conclude that the similarity of predicted participation between the model

and the annual diary data provides some evidence corroborating the participation model.
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Several possible avenues exist for improving model specification. We have not

explicitly addressed the “corner solution” problem, as Bockstael, Hanemann, and

Strand have labelled it. We need to test to see whether non- participants should be

treated differently from participants. Resolution of this issue is more complicated in

our dataset than in a more typical survey, where total trips are measured for a fixed

time period across all individuals. In our dataset, we observe “no trip” outcomes

over very different time periods, ranging from one to fourteen months. To model

"no-participation'', we must confront the question, over what length of time must a

licensed angler not participate to be considered a different type of person?

Consumer Surplus Measure

Linked with the macro modeling issue is the correct specification of the consumer

surplus measure. The standard measure employed for discrete choice models is based

on the assumption that total trips do not change with policy changes. This measure

will result in an under- or over-estimate of “true” consumer surplus, depending upon

whether total trips increase or decrease. We develop a consumer surplus measure

that incorporates the change in trips predicted by the participation model. Addi-

tional complexity is added to the measure with a nested multinomial logit model

(NMNL), when the choice occasion income is not observed and the marginal utility

of income is not constrained to be constant across alternatives due to the compu-
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tational complexity of such a procedure. We propose a simplifying procedure that

makes the calculation tractable under these circumstances.

Model Specification Issues

Finally, we analyze the sensitivity of model estimates to alternative treatments

of the time constraints faced by anglers in making their trip choices. Extensive

exploration in conventional (continuous demand) travel cost models has shown that

consumer welfare measures are extremely sensitive to the treatment of time, though

no consensus has emerged on the appropriate method for valuing time. Discrete choice

models have not been subjected to comparable exploration. In this study, we develop

a careful accounting of household allocation of time; the accounting highlights the

fact that different treatments of the time constraints imply different choice sets of

feasible sites: as well as different treatments of the opportunity costs of time in the

modeling.

Outl ine  of  the  Report

The report is organized as follows. Chapter II reviews the literature on random

utility models of recreation demand. The emphasis is on highlighting the method-

ological issues associated with implementing the random utility model. Chapters III

through V specify the theoretical framework for modeling the PL-site choice, for mod-

eling total trips in a season, and for calculating the exact seasonal consumer surplus.

Chapter VI is a description of the data sources. Chapters VII and VIII present es-

timation results of the multinomial logit and the participation models, respectively.

Chapters IX and X apply the model to two natural resource damage scenarios in

Michigan fisheries, one relating to fishkills and the other to toxic contamination, and

calculate the loss in consumer value as a result of the injuries. In the Appendix, we re-

port the sensitivity analysis of site choice model estimates with alternative treatments
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of the value of time.



CHAPTER II

DISCRETE CHOICE MODELS OF RECREATION DEMAND: A

BRIEF REVIEW

The purpose of this chapter is to provide a brief overview of random utility mod-

e l s  ( R U M )  fo recreation demand, highlighting some key methodological issues that

remain in model design and implementation. First used by Luce (1959) to model

psychological choice behavior. RUM was shown by McFadden (1974, 1978) to be

consistent with underlying consumer utility maximization behavior.1

An individual, upon deciding to take a trip on a choice occasion, is assumed to

choose the site among the available alternatives that offers him/her the highest utility.

The utilities that can be derived from visiting different sites are usually considered

deterministic to the individuals, but stochastic to the outside investigators due to

unobserved personal/site characteristics, data measurement errors, or simply random

elements in human decision-making process.

By assuming weak complementarity which posits that a consumer will not care

about marginal improvements of a commodity if he/she consumes none of it,2 i.e.,

’ See McFadden (1976, 1961, 1982, 1984), Amemiya (1981), Hensher and Johnson (1981), or

Maddala (1983) for surveys and discussions of qualitative response models.

’ This in effect rules out the non-use value of the commodity. See Maler (1974. p. 134) or Feenberg

and Mills (1980. p. 64).

11
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the utility function; conditional on site j being chosen: of individual i can be specified

as

where q j is the characteristics vector of site j, pij is the cost of i travelling to site j ,

and yt is the budget allocated to the trip duration in question. All the characteristics

vectors pertaining to unchosen sites are excluded as a result of the weak complemen-

tarity assumption. Note that individual-specific variables can also be omitted if v,~

is linear in its parameters since they have the same values across all alternatives and

thus will not affect the utility ranking of the feasible sites. 3

Since the conditional utility appears stochastic to researchers: a disturbance term

must be added to form the random utility

An individual i will then choose k among a set of feasible sites C i i f

(II.1)

By strategically choosing a utility function u and defining the joint probability dis-

tribution for E to make the mathematics tractable, we can calculate the probability

of an individual i going to site k. given i’s decision of participation:

The most widely adopted multinomial response model in the literature is the

multinomial logit (MNL) model. 4 because it yields a simple form of 7i,k  as well as other

computational advantages. In the MNL model, the random terms E are assumed to

3 This is in fact the result of adopting an additively separable utility form usually assumed for

estimation convenience.

4 See Train (1986), Ben-Akiva and Lerman (1985), McFadden (1974, 1976, 1984) and Maddala

(1983) for model specification.
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be i.i.d. type I extreme value distributed 5 The probability of an individual i choosing

site k among a collection R, of sites can then be shown to be

A restrictive feature of the MNL model is the Independence from Irrelevant Al-

ternatives (IIA) property. which states that the probability ratio of two sites being

chosen will stay the same regardless of the addition or deletion of other sites (or their

properties).6 This can be easily verified since the probability ratio

depends only on variables in u,., and u ,k. Given the weak complementarity assump-

tion. u rJ and ~,k consist solely of the quality variables of sites j and k, respectively.

While the multinomial logit models have the IIA property which is not very de-

sirable in many situations, researchers car, circumvent this problem by using the

more flexible generalized extreme valve (GEV) model, 7  which embodies the corre-

lation among sites within its joint distribution structure of the error terms. The

most commonly employed GEV model is the nested multinomial logit (NMNL);

which captures the inter-site correlation in the coefficient of the inclusive value in-

dex. Derivation of both MNL and NMNL from GEV can be found in Ben-Akiva

and Lerman (1985).9 The NMNL model is particularly useful when the number of

’ Ben-Akiva and Lerman use the G u m b e l  distribution, which is a slightly more general structure

than the type I extreme value distribution.

’ See Maddala (1963, pp. 61- 62) or Amemiya (1985, p. 298). Ben-Bkiva and Lerman (1985.

p. 109) point out that any model assuming the independence of all the disturbances would necessarily

yield the IIA property.

7 Introduced by McFadden (1978, 1961).

’ Some examples of empirical NMNL studies are Carson and Hanemann (1967) and Bockscael et

al. (1988)

’ Pages 127 and 304, respectively.
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alternatives is very large but the decision process itself can be properly described by

a tree structure to reduce computational complexity. I”

Like other discrete choice models, the RUM is used to explain the choice of site to

visit and possibly other characteristics for a specific trip, which is referred to as the

micro decision. As discussed below, the total number of trips taken during a season,

the macro decision, is generally estimated by other means.

Many researchers have estimated models based on the random utility discrete

choice approach to explain trip allocation decisions and to measure the welfare ef-

fects from environmental quality changes, including Hanemann (1978, 1982, 1984.

1985), Binkley and Hanemann (1978), Feenberg and Mills (1980), Caulkins (1982),

Caulkins, Bishop and Bouwes (1986), Rowe, Morey, Ross and Shaw (1985), Bockstael,

McConnell and Strand (1988), Morey et al. (1991, 1989). Jones et al. (1988, 1989,

1990), Parsons and Kealy (1990). Smith and Kaoru (1990), and Carson, Hanemann,

Gum, and Mitchell (1987).

The multinomial logit model is attractive not only because it can avoid some of

the problems of conventional travel cost methods, but also due to its computational

tractability and feasibility when the number of alternatives gets large. In a recent

state-of-the-art review of recreation models, Bockstael, McConnell, and Strand (1991)

conclude that the random utility version of the travel cost model is particularly well-

suited to valuing changes in quality at one or more recreation sites. The random

utility model allows the researcher to model a wide range of substitution possibili-

ties and, consequently, provides a procedure for estimating the value of changes in

environmental quality.

Simulations have been run to show the advantages the random utility method has

over other approaches. Kling (1986, 1988) uses Monte Carlo methods to generate var-

I” Conditions to be met for the employment of a nested analysis are explained in Ben-Akiva and

Lerman (1985, pp. 291-93) for a three- dimensional case.
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ious data sets for a Stone-Geary utility function and compares the welfare estimates

of different models with actually known measures. In their review, Bockstael, Mc-

Connell, and Strand conclude that Kling’s "stylized simulation experiments . . . give

preliminary support to the notion that discrete choice models produce better bene-

fit estimates in problems characterized by much substitution among sites, especially

when a large portion of the sample is observed to choose more than one site to visit

in a season.” (p. 256)

Nonetheless several fundamental methodological issues remain. Perhaps the most

thorny is to integrate the micro and macro levels of the modeling, with the correct

statistical treatment of the corner-solutions implied by zero trips of certain categories,

(otherwise known as the ‘corner-solution’ problem.) We consider this issue in some

detail in Chapter IV.

In this section, we discuss specification issues associated with specifying time

constraints and choice sets in the random utility models. One important issue that

has not been explored in the random utility context is the valuation of the opportunity

costs of time. As pointed out by Bockstael et al. (1987), recreationists often cite

time as more constraining than money in their recreation consumption. So the time

spent on recreation consumption is, in many cases, an important determinant of the

demand.

It has been recognized, since the early period of recreation demand modeling, that

the omission of time costs (i.e., the opportunity costs of on-site and travel) in con-

ventional travel cost models biases the parameter estimates and understates the final

welfare measures.”  The time-valuation literature since has focused on the context of

conventional travel cost demand models. I2 In the multinomial logit models of recre-

l1 See Clawson and Knetsch (1966) or Cesario and Knetsch (1970).

” E.g.. Cesario (1976), Smith et al. (1983), Kealy and Bishop (1986). Bockstael et al. (1987), and

McConnell (1990).
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ational demand reported in the literature, the treatment of travel time apparently has

varied substantially. However. our literature review revealed that authors frequently

did not explain how they defined the travel cost/time variables, rarely explained how

they defined a choice occasion, and never explained how an individual’s choice set of

feasible sites related to the time constraint for the choice occasion.

1. In the studies conducted by Bockstael et al. (1986, p. 213; 1987), all we know
is that they have a “trip cost” variable. No details are provided.

2. In their MNL model of southcentral Alaska sport fishing, Carson, Hanemann,
Gum, and Mitchell (1987) include only a round-trip distance cost13  variable,
computed as round-trip distance multiplied by the individua1 respondent’s re-
ported motor vehicle cost per mile. No time cost is included.

3. Morey et al. (1991. p. 4) state only that they have the “cost of a trip to site
j mode  m ” in their model. No explanation is given as to how this variable is
calculated.

4. Bockstael et al. (1988) calculate their travel cost variable as $.10 per mile plus
80 percent of the wage rate for individuals who worked for a wage and could
vary their time. A separate travel time variable is used for anglers who cannot
vary their work time.

5. McConnell et al. (1990) assume that anglers spend a fixed amount of time fishing
at the site, whatever site is chosen. Both the distance cost and the cost of travel
time thus enter the angler’s site decision. For anglers who work flexible hours,

the cost of travel time, valued at the wage rate, is included as part of the total
travel cost. For anglers without such discretion. travel time enters the utility

function directly.

6. Parsons (1990) allows the recreation period to be longer than the trip duration,
and includes the individual’s opportunity cost of time, distance cost, as well as
other expenses in the price of taking a trip.

7. In their Wisconsin lake recreation study, Parsons and Kealy (1990) measure
the travel cost as the sum of transit costs and opportunity cost of time. The
transit cost is assumed to be $.10 (1978 dollars) per mile. For the time cost,
they assume that all individuals stay on site for a fixed four-hour period. Each

l3 We use the term distance cost to refer to the cost of motor vehicle operation for the trip. The

term travel cost is meant to be the all inclusive measure, which consists of the distance cost and the

opportunity time cost of travelling
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individual is then assumed to value an hour at one third of his/her wage rate
for the travel time and on-site time l4

8. The travel cost measure in Smith and Kaoru (1990) is the sum of a distance
cost plus the opportunity cost of travel time. The former consists of the vehicle
operating costs measured as round-trip mileage times $.20 per mile; the oppor-
tunity costs of travel is measured as the predicted wage per hour for employed
respondents and the minimum wage for non-working individuals times travel
time. The travel time is estimated from the round-trip mileage by assuming an
average speed of 40 miles per hour.

The multinomial logit literature on recreational demand has not focused on the

question of how an individual’s choice set of feasible sites is defined. When is a site

too far for an individual to reach on a choice occasion? What are the time constraints

used for defining the choice sets? None of the papers mentioned above provide enough

information to answer these questions. I5 However, as we will show, these specification

choices indeed have a large impact on the MNL estimates. I6

We know of only one study that has analyzed explicitly the sensitivity of model

estimates to alternative definitions of choice sets. Smith and Kaoru (1990) consider

the geographical resolution of site definitions, evaluating the specification error from

increasing levels of aggregation across heterogeneous sites. They observe that site

definition does have important implications for specification of the nesting structure

of the model and for the benefits measurements associated with quality changes.

However: they conclude that their findings provide “rather strong support for using

l4 The wage rate is calculated as annual income divided by 2080, the average number of hours

worked in a year of their sample.

‘s Parsons and Kealy (1990)  only mention that  they include “lakes within a  day’s drive from

an individual’s home” in the individual opportunity set. In our case, though all the 83 Michigan

counties form the units of our site MNL analysis. not every county is in the choice set of an angler

on a certain choice occasion. This is especially true for the day anglers. Some counties are simply

beyond reach for a day trip. Some counties may be within reach, but heavy driving may make trips

to them infeasible. For example, it is unlikely that people are willing to drive ten hours each way to

a distant site in a single day.

l6 As Smith and Kopp (1980) point out , there are spatial limits to the legitimate use of travel cost

methods.
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random utility models to [estimate] the effects of quality attributes on people’s deci-

sion to use different recreation sites.” They further note that their study “strongly

reinforces the Bockstael, McConnell and Strand (1991) conclusions supporting the

RUM framework even in cases where the site definition and specification of the set of

alternatives is unclear.” (p. 27)



CHAPTER II I

INDIVIDUAL MICRO-LEVEL CHOICE MODELING

In this chapter we specify a utility-theoretic model to analyze the PL-site choices of

recreational anglers. In the following chapter we present the model of the macro-level

demand for total recreational trips per season.

Consumer Preferences and Behavior

Consider a consumer i who derives utility from two kinds of activity: consuming

market goods and taking fishing trips Let  Z = (Z’, Z2, . . , Z’) deno te  t he  nu -

meraire composite market good consumed by i in the T periods of a fishing season.

The periods are determined in such a way that the individual i can take no more

than one fishing trip in each period t = 1, 2, . . . ,  T. In each period, individual i will

decide whether to take a fishing trip for one of the total M product lines. The number

of feasible sites for product line m is J, which varies with product line choice and

individuals. The attributes of all PL-site combinations in all periods are denoted by

where  t, l and j are the indices for periods, PLs and sites,

respectively. Also, denote the costs’  individual i has to incur to fish for all possible

PL-site choices (l,j) in all periods t as P The participation and

’ The costs of recreational activities generally include license fees, site entrance fees, travel cost.

gear purchases. etc.

19
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PL-site decisions made by i are E = {6(L,j;,  ‘d t. 1, j): where Sfl,~j  has a value of 1 if

i decides to visit site j for PL 1 during period t, and a value of 0 otherwise. The

indicator variable 6t1  j) will be zero for all (I, j ) alternatives if the individual i does

not take a trip in period t. Individual i is assumed to maximize his or her utility,

given annual income y. The maximization problem facing i is thus

(III.2)

where S, is the vector of socioeconomic attributes of individual i. The first constraint

is the budget constraint, while the other constraints force the corner solution in

which the consumer i can only buy at most one of the quality-differentiated fishing

trips.  Note also that the parameter (Cs Q) in the utility function CT;  embodies the

weak complementarity assumption, which asserts that i will only obtain utility from

quality attributes Q through realized trips. The indirect utility function can then be

d e r i v e d  a s  I’, = ‘r-,(F),  Q 31 or 1; = ‘I’(P. Q. y: SJ.

Since the decision indicators 6fl j, can only take on integer values. a solution toI I

the above maximization problem can only be found by first comparing the utility

levels yielded by all possible trip choices over all 7’ periods and then selecting the one

that generates the highest utility. The procedure to solve this problem is described

in both Kling (1986) and Bockstael et al. (1986). Since solving the problem (III.2) is

computationally infeasible, simplification of the model is necessary.

A common practice is to impose further structure on the utility function. A use-

ful and reasonable strategy is to assume that individuals adopt a two-stage budgeting

process.  Individuals, seeking to maximize their utility, are hypothesized first to opti-
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mally allocate their season budget y among all T time periods, and then to determine

the actual consumption pattern in each period with the period budget y’.*

An implication of the two-stage budgeting process is that the utility function

is characterized by weak separability across budget categories, (such as recreation,

housing, food etc), where weak separability is defined as follows:3

Definition III.1 For a utility function u = ~(41, q2, a.. , qK) where qk is the vector
of commodities in lath category, the weak separability assumption requires that the
utility function IL be expressible as u = f(v,(qr),  v2(q2), . . . , z,K(qK)),  while strong
(or additive) separability further implies the simpler form of u = f(vr(qr)  i v2(q2) -
* - - + z’K(Qh.)).

Because our dataset (as with most datasets in recreation demand studies) has data

only on the most recent fishing trip, we must further assume weak separability across

choice occasions within the recreational fishing budget branch. With this restriction,

an angler’s ranking of possible fishing trips on a particular choice occasion does not

depend on how many fishing trips of different types he/she has already taken or will

take later in the season.

We further assume weak separability across site choices: the quality of a site only

affects an individual’s utility if the site is chosen. The recreational fishing sub-utility

function is defined over the vector of market goods associated with recreation 2’

and the vector of site characteristics for the chosen site, for each choice occasion t.

Therefore, i’s season utility function can be written in the form

U; = C’ ( u(Z~,~~Q~,SJ,  u(Z’~:~~Q~,S;),  . . . , u(Z~,~~Q~,  5';)).

When the allocation of y to each period t is done, the utility maximization problem

’ This assumption can be justified by observing that people frequently form a general price ag-
gregate about market prices in the near future and allocate their long-term income to different time
periods accordingly.

’ See Deaton and Muellbauer (1983, Part 2, Chapter 5) or Morey (1984) for a thorough treatment
of this topic. Discussion on two-stage budgeting can also be found in Varian (1984, pp. 146-49).
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can be attacked by solving  the following maximization problem for each period t

By substituting the budget constraint 2 t = y t - S'P t into the utility function ut, we

can reformulate the problem as

maximize

subject to

Consider period t where a micro PL-site choice decision has to be made by individual

i. Let ,C2, be i’s choice set of available PL-site (I; 3’) alternatives. Upon choosing not

to take a trip in period t, individual i will obtain the no-trip utility

Otherwise, if the PL-site (l,j) combination is chosen, he or she will, by weak comple-

mentarity, receive the following conditional utility

We can also define the unconditional utility function as
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One way to incorporate the participation decision in this framework is to compare

the no-trip utility 21: with the unconditional utility \‘i. A no-participation decision

will consequently be made if

and  hence  Ej,j, = 0, V (l,j) E 0t;. O n  t h e  o t h e r  h a n d ,  t h e  P L - s i t e  (m,lc) w i l l  be

chosen if

giving us brt,,fil =  1 .  a n d  6,?,,j, = 0 f o r  ali (E:j)  + (m:k).

Since there exist some unobserved factors affecting PL-site and participation deci-

sions, the utilities u: and uLfrjj are random from the analyst’s perspective. A PL-site

specific disturbance is, hence, introduced into the various utility functions to form

the random utility functions

(III.4)

The Micro-level Product Line/Site Decision

This section presents a model of the micro PL-site choice given that an individual

i has decided to take a trip. A rational individual i will prefer PL-site combination

(m,k) to (Z,j)  if
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Conditional on participation, consumer 2 will choose PL-site (m, k)  from his or her

feasible set of alternatives s1; if and only if

or equivalently

The probability ~(~.k) of individual i choosing PL-site (m, k) is then

where F(.) and f( .) are the cumulative distribution function (CDF) and probability

density function (PDF), respectively, of the residuals E.

What matters here is the difference u(,,,& - ZL~~,~) between utility levels offered by

(my k) and (1:j),  not their absolute magnitudes. Therefore, if the conditional utility u

is additively separable between the choice-specific and non-choice-specific attributes,

leading to the following form

the non-choice-specific personal attributes will drop out of the micro choice decision

because they are constant across all PL-site alternatives.

The Multinomial Logit Model

If the residuals E are independently and identically distributed with type I extreme

value distribution for which the CDF is
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and PDF is

then it can be shown that

which is the multinomial logit model.

The type I extreme value distribution is in fact a special case of the Gumbel

d is t r ibut ion5 that has the CDF

and PDF

where 71 is a location parameter and ,V is a scale parameter. The type I extreme value

distribution simply assumes that 7 = 0 and ,U = 1. The Gumbel distributed residuals

E all have the same mean

and variance

where 7 (Z 0.5772) is the Euler constant, and result in the probability of PL m-site

k alternative:

Since the parameter p is not econometrically identifiable, it is common practice to

set it arbitrarily to 1, yielding the same probabilities as the type I extreme value

distribution. As pointed out by Ben-Akiva and Lerman (1985, p. 104), the assumption

’ It is called conditional logit by McFadden (1974).

’ See Ben-Akiva and Lerman (1985, pp. 104-107) for a discussion.
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of a constant 77 for all alternatives is not restrictive as long as each systematic utility

has a constant term. Though the Gumbel distribution is used for analytic convenience,

its choice can be defended as an approximation to the normal density.

Note that the probability (III.5) can also be expressed as the product of a condi-

tional probability and a marginal probability

where

(III.6)

(III.7)

and

With the Gumbel assumption, it can be shown that

Hence the inclusive value index I, reflects weighted information about the alternatives

in PL m and is a measure of the expected maximum utility one can get from choosing

PL m.6

We assume that the systematic part U, of the random utility 2; can be separated

into the part that varies only with PLs and the part that varies with both PLs and

sites as follows:

In this case the probabilities (III.7) become

6 A discussion of the Gumbel properties is in Ben-Akiva and Lerman (1985, p. 105).
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Now the inclusive value index for product line m becomes:

where the "inclusive value” is the expected utility of an individual for the site-specific

attributes S, net of the integrating constant y.

Estimation can thus be carried out by sequentially applying MNL to each PL

m, calculating I, for all m PLs, and then calculating TIT(,.,,~) using formula (III.6).

Obtaining the maximum likelihood estimates of a multinomial logit model in general

poses no computational difficulty since it has been proved by McFadden (1974) that

the log likelihood function

is globally concave under relatively weak conditions. The Newton-Raphson algorithm

will therefore always converge within finite steps, often in just a few iterations, to a

unique solution.

The way a simple MNL models the PL-site decision is to treat each PL-site com-

bination as a feasible choice. Given that we have M product lines and J, potential

sites for each product line m (= 1, 2, . . . , Jr), the total number of alternatives one

faces is J = Cz,, J,,,: as illustrated in figure III.1. A restrictive feature of this mod-

eling approach is the aforementioned Independence from Irrelevant Alternatives. I t

is highly implausible that the odds ratio E of any two PL-site choices (m, k) and

(Z:j)  will be independent of the conditions of other available alternatives, as implied

by the MNL specification where

Consider a situation where an individual i can only choose between site A f o r

PL 1 and site B for PL 2. With the addition of a site C for PL 2 that has exactly
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Figure III.1: The flat micro PL-site decision structure.



To avoid the IIA restriction, the nested multinomial logit (NMNL) model is better

suited for our study.

the same attributes 7 as site B, the probability ~{~,B) would probably be only half its

original level, while fi(l ,Aj will, most likely, not change. This is just an analog of the
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famous red-bus/blue-bus problem in the transportation literature. Therefore, where

there are obvious differences in patterns of substitution and complementarity across

alternatives, the IIA assumption, and hence the MNL, is not appropriate.

Nested Multinomial Logit Model

Individuals are hypothesized to adopt a two-level tree-like deci-

sion process on any choice occasion. They first determine the target product line, and

then choose a site conditional upon the product line decision. This is illustrated in

figure III.2. The result is that the IIA property is imposed on sites within a product

line, but not across product lines.

Assume that the random

PL l arid then site j is

utility u (mj), an individual can receive from first choosing

where the attribute vector X(m,j) and random terms C,,,fi,j) are specific to the PL-site

choice (m,j), while variables in vector Z~ vary only with PLs. The PL characteristics

Z ~ are shared by all sites available to PL m. Also assume that the random terms e

follow the generalized extreme value (GEV) distribution defined below.

Definition III.2 The generalized extreme value distribution is defined as



30

Figure III.2: The two-stage micro PL-site decision structure.
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2. G is homogeneous of degree p > 0

3. lim 2/,-a G(yl,  y?: . ,yx) = ix for i = 1, 2, . . . , N

4. The sth derivative of G with respect to any combination of s distinct yr‘s,
i = 1, 2, ? .‘> Ar, is non-negative if s is odd, and non-positive if 5 is even.

McFadden (1978) proves the GEV distribution implies that the probabilistic-choice

model consistent with utility maximization gives choice probability of the form

where G, is the first derivative of G with respect to y,.

Now assume that the function G is homogeneous of degree 1 and has the form

Therefore, the disturbances E have the joint distribution

(III.8)

The probability of (m, k)  being chosen is then

(III.9)

(III.10)

(III.11)

where

is the inclusive value of the sites in PL m. Note that

constant (III.12)

Consequently, the IIA property continues to hold for sites in the same product line,

but not across product lines.
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The inclusive value I, is an index of the overall quality of fishing opportunities

of the sites in PL m, or the expected maximum utility the site, of PL m can offer,

excluding the utility one can get from PL attributes 2 that do not vary across sites.

Similarly we can calculate the inclusive value

(III.13)

as an index for the desirability of participation in recreation. The value I’ represents

the expected utility of taking a fishing trip’ and will be used in the participation

decision modeling.

Estimates of the parameters can be obtained by employing a two-step procedure:

First, the estimates for ,!3; ( z 13J6) are obtained by repeatedly applying MNL to

each product line m. The inclusive values I, can then be calculated and used, along

with the PL-specific variables Z,, in the second-stage MNL estimation of Q and 6.

The original parameters ,$ can then be recovered as  ,am = 6f?&.  Note that in the

simple logit setup (III.7). the parameter 6 is exogenously set to 1, thus excluding the

case where different PLs have inherently different utility effects.

The way the NMNL avoids the IIA property is to allow a general pattern of depen-

dence among the choices. This is embodied by the GEV distribution assumption, as

opposed to the independent residuals assumption of the simple logit model. This can

be more intuitively seen from an alternative derivation of the NMNL by Ben-Akiva

and Lerman (1985, pp. 285-91) or Cardell and Steinberg (1988).

They start by splitting the PL-site alternative residuals into two parts and assum-

ing that

where em is the random component attributable to the product line m and common

to all sites in PL group m. This generates a correlated structure for the errors across

6 Net of the constant terms from both the site and product line levels of analysis.
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alternatives in the same PL group W h e n  ecm,k) is Weibull distributed, it can be

shown that there exist some B E [0, 1] and a random variable E,.,,: independent of

e(,,,k), such that [e,,,Se e(m,k)]  is also Weibull distributed. The probability statements

derived from this specification are exactly identical to (III.9) and (III.11).

The parameter 0 is called the dissimilarity index because it indicates the share of

the common components in the error variance. The smaller 0 is, the more similar the

sites under PL m are.g  Therefore, as 0 approaches 0, the nested MNL becomes more

appropriate. The flat MNL can only be justified when 8 is close to 1.

McFadden (1978) shows that a sufficient condition for a NMNL model to be

consistent with random utility maximization is that the coefficient B of the inclusive

value I lies in the [0, 1] unit interval. An estimated t9 outside the unit interval range

hence raises questions about a potential mis-specification of the model.

Estimation of the Sequential Multinomial Logit

Due to the nonlinearity and complexity of the model (III.9), estimation by max-

imum likelihood is practically infeasible. Instead, the sequential estimation method

described above is employed.

One complication arising from this stepwise procedure needs to be addressed.

Because the inclusive value index variables used in all stages above the lowest level are

in fact estimated from the lower stages, not actually observed variables, the covariance

matrices calculated by MNL will be biased and have to be corrected. lo

A more serious problem with the sequential estimation method that can not be

’ Many authors use p = 1 - f? instead of 6 as a measure to indicate the correlation among
alternatives in the same group. For example, Maddala (1983), Bockstael et al. (1986, 1988), and
Greene (1989).

I” The process of correcting the estimated covariance matrix to generate consistently estimated
standard errors is described in the Appendix in McFadden (1981). Schmalensee and Joskow (1986)
also discuss techniques of using estimated parameters as independent variables.
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parameters 3 and 6 appear in both rklrn and ‘;;m of the probability statement (III.11),
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the full information maximum likelihood (FIML) estimates can only be obtained by

taking derivatives of the complete log likelihood function

with respect to the parameters p, 8 and cy and setting the first derivatives to zero.

Alternatively, the multi-stage procedure estimates p’ = ,316 in the first stage by

maximizing only

and then estimates Q: and 9 in the second stage by maximizing

These estimates are thus only limited information maximum likelihood. (LIML) esti-

mates since not all available information in the data is utilized.

The Nested Mult inomial  Logit  Speci f icat ion

We adopt a linear utility function for this study, which implies there are no in-

come effects from quality changes. Consequently, the compensating variation and

equivalent variations for a quality change will be equsl.‘l The utility an individual i

receives from choosing PL m and site k is assumed to be

( I I I . 1 4 )

I1 Most empirical MNL studies. from the early mathematical psychology work of Luce (1959) to
recent recreation demand studies of Bockstael et al. (1988) and Morey et al. (1988), adopt a linear
form for the conditional utility function. Feenberg and Mills (1980) argue that, though linearity can
hardly be literally true, it “may be a good approximation if the utility function is smooth and the
sample variances of the parameters are not too large” (p. 112). The most important reason for our
adopting a linear utility function, however, is the ease of consumer surplus computation. When the
conditional utility is nonlinear formula for the consumer surplus per choice occasion is very hard to
obtain.
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where  u; is the individual constant, Em is the PL constant,  .A(m,kj  is the PL-site

constant,  2, is the characteristics vector that varies only with PLs, and -Xtrr.,k!  are

the attributes specific to both PLs and sites. The random elements E are assumed to

follow the GEV distribution defined by (III.8).

Given the PL choice m, individual i will select a site k that offers the highest

“site” utility

The variables X we use in the estimation include site quality Q and the choice oc-

casion income net of travel costs to site k (1;  - Ptk). which is available to spend on

consumption of market goods, where P,k is the travel cost of an angler i visiting site

k. Therefore, the conditional utility function Z;(,,,k)  becomes

As explained above, we cannot obtain estimates for A: 77 and B at this stage; instead

we get  only A’ = X,/6, 77’ = 71,!6:  and /3; = /?,I6 for each PL m using the sample of

individuals who we observed choosing PL m.

In our analysis (as is generally the case) we do not have data on choice occasion

income. These missing data are not a problem in the site-choice level of analysis,

because the income is constant across sites and so drops out in the estimation (which

employs differences between the conditional utility functions.) However, when the

marginal utility of income is not constant across alternatives in a nested MNL model,

the lack of choice occasion income will affect the higher-level estimation - in our

analysis, the choice of product line - and the welfare calculations.

Consequently, we derive in some detail below the value of the lower-level inclusive

value index for sites in product line rn: I,,,, and of the higher-level inclusive value

index across product lines. The goal is to explicitly identify the role of the choice

occasion income variable. All inclusive value calculations are performed separately
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for each trip duration category.

The inclusive value I, for sites in product line m, as defined in (III.12), is

The estimated parameter 7 of the travel cost variable P,, is individual i’s constant

marginal utility of income for product line m. Because of missing data on choice

occasion income 1’-%: we can only calculate the pseudo-inclusive value 7, from the

estimates X’: q:, and pk.

In the upper-level PL-choice modeling in the NMNL we estimate the parameters

of the PL conditional indirect utility function

where I, is the inclusive value index calculated above from the lower-level site-choice

MNL estimation. As defined by (III.13), the inclusive value of taking a trip is
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If 77, = 7 for all m, then we can further simplify the formula:

(III.15)

The individual-specific constants ~i are not identifiable, and as stated above, we do

not know the choice occasion income T-,. Therefore, we cannot calculate the real level

I:, and so will use the pseudo-inclusive value I; in chapter V for the calculation of

consumer surplus.

Because Q; - 77)‘;  is constant across product lines (assuming 77, = 7): estimation

with 7: is equivalent to estimation with 1;. In Chapter V, we further show that if

the marginal utility of income is constant across alternatives, the lack of choice oc-

casion income does not pose problems for the welfare analysis. However, if MU is

not constant across product lines, then we cannot calculate 1; as the three separable

components in (III.15): the choice occasion income term remains an integral compo-

nent of the calculation. As a consequence, estimation using 7: in place of 1; yields a

mis-specification.

In our NMNL estimation procedure below, we do not impose the constraint of con-

stant MUI across product lines within a duration group,12  due to the computational

I2 We would not expect constant MUI across duration groups, but this issue does not pose any
difficulties because we model trip-duration choice within the participation model.
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complexity it would cause, though such a restriction seems conceptually appropriate.

We have developed a procedure for handling the problems posed by not constraining

the MUI to be constant. In the process of specifying the correct consumer surplus

formulas for the case of varying marginal utility of income, we derive in Chapter

V a “weighted” marginal utility of income, where the weights represent the ex-post

probabilities of choosing the alternative. The weighted MUI serves the same role in

the consumer surplus formula that the (constant) MUI serves in the simpler context.

We will substitute the weighted MUI in the calculation of If, in lieu of performing

the NMNL estimation with cross-estimation constraints. Employing this conceptual

framework, use of c in the estimation procedure is not a mis-specification.

The Valuat ion of  Time

The Analysis Framework

A critical component of the conditional indirect utility function for site alternatives

specified above in equation III.14 is the travel cost Plk per trip by individual i to site

I:. Conceptually. travel cost consists of two components - distance costs and time

costs. As discussed above in Chapter II the time cost component is controversial.

We derive in some detail several models which support several different treatments of

the opportunity costs of trip time in the discrete choice literature. We show how the

models imply not only different measures of travel cost but also different definitions

of the choice set of feasible sites.

Anglers are assumed to maximize utility subject to a full-income constraint for

the choice occasion, where full income refers to the money budget plus the value of

time, following the household production function literature. Note that, among the

sites within the angler’s choice set, we only observe the amount of time the individual
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allocated for a trip to the chosen site. We must make assumptions about how much

time an individual would allocate for trips to other sites.

The first two frameworks are based on an assumption that total trip time will

be the same for all sites (as for the chosen site); we label this the “exogenous total

trip time” framework. The two variants we develop employ alternative measures of

trip time. The third framework is based on the assumption that on-site time will be

the same for all sites (as for the chosen site); we label this the “exogenous on-site-

time” framework. We show below in the Appendix the potentially large effect these

differences may have on model results.

Variable Definitions

We first define the following variables for our discussion.

S = market goods (set price=1 as numeriare

D = number of days in trip

zc:  = post-tax wage rate

c = vehicle operating cost per mile

s = driving speed (miles per hour)

qs = quality of site j, where j = 1, . . , J

D3 = round-trip distance in miles to site j

P, = c Dj = round trip travel cost to site j

R, = D,/s = round trip travel time in hours to site j

S, = time spent on site j in hours

T, = R,-G,= total trip time to site j in hours

C = choice occasion time in hours

y = money allocated to the recreational choice occasion

I7 = full income allocated to the choice occasion



4 0

Exogenous Trip Time

Within the exogenous trip-time framework, we impose the assumption that an in-

dividual allocates all of the choice occasion time C either to visiting a site j, thereby

incurring round-trip travel time R, plus on- site time Sj, or to other activities (work-

ing, other recreation). We can write the generalized time budget, conditional upon

participation, for the choice occasion:

As defined previously, the indicator E, = 1 if site j is chosen for the visit, and E, = 0,

otherwise. If Ek = 1, then 6, = 0 for all j # k.

The sources of full income 1’ include WC, time during the choice occasion valued

at the post-tax wage rate u’:13 and y, the money income allocated for expenditure

during the period:

(III.16)

The uses of full income during the period are expenditures during the trip on market

I’ Recognizing that recreational activities take up time, much of the recreation demand literature
relates the opportunity time costs to the wage income forgone when a trip is taken. However, the
labor supply literature now recognizes that work, time may not be a continuous choice variable over
which individuals can freely trade-off income and recreation at the wage rate. Only individuals with
flexible work hours can adjust their marginal rate of substitution between work and recreation and
make it equal to their marginal wage rates. These individuals are said to be at interior solutions.
Others, who either have to work fixed hours or do not work at all, are at corner solutions, and their
wage rates cannot serve as the value of their leisure time.

Some authors in the recreation demand literature have also adopted this view and have treated
interior solutions and corner solutions differently. For people at interior solutions, work time is at
their discretion, and trip time can be traded for income at their marginal wage rate. For others
without such freedom, no opportunity, wage cost exists since they cannot increase their work effort
even if no trip is taken.

Unfortunately no wage rate was directly measured in our data, so the above treatment is im-
possible. The budget frontier therefore has to be assumed a straight line, and people are assumed
to be at interior solutions. We assume that people value their time at their wage rate, calculated as
annual personal income divided by projected working hours per year.
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goods X plus distance costs and time costs to the chosen site:

Setting sources equal to uses, we have

(III.17)

Conditional upon participation in recreation at site j (i.e., Sj = 1), we can solve for

A’ = y - P,. The indirect utility function conditional upon participation at site j is

Assuming a linear functional form, the conditional indirect utility function becomes

The important point to note is that time costs have completely dropped out of the

travel cost measure for site choice, because the amount of time allocated to "pro-

ducing" recreation (the choice occasion) equals the trip duration. The use of the

standard travel cost variable incorporating both time and distance costs cannot be

supported in this framework. I4 With a conditional direct utility function of the form

l4 Besides monetary vehicle costs P,. the amount of driving could conceivably have at least two
other effects on an angler’s utility: a reduction in available fishing time S, and the (dis)utility of
driving h!, itself. A more elaborate and complete utility function will, therefore, be

The linear estimating function is then



42

I*j(s, q,),  the time costs affect angler decision-making  only at the higher level where

the participation choices for each trip duration are made.

We suggest two alternative methods for implementing the exogenous trip duration

model: the first measures trip duration in hours, based on the self-reported hours (and

days) for the beginning and end of the trip; the second measures trip duration based

on the number of days the individual reported being away. Though the conditional

indirect utility specification is the same, the definition of the choice set for each

individual, the consistency checks for selecting individuals into the sample, and the

value of the time cost variable in the participation model differ.

Hypothesis 1: Exogenous Trip Time (Using Self-Reported Trip Hours)

In this case, total trip time T is based on self-reported trip duration. The amount

of income allocated to the choice occasion is calculated as (III.16). but has no practical

significance in the site choice analysis.

Let constant h be the presumed number of hours people are awake and active

during a day. Its complement h’ (E 24 -h) is then the time in hours people rest each

day. For a trip of D days, people necessarily must rest for (D - 1) nights, a total of

(D - 1) h’ hours, at their fishing site or on the road. Therefore. we impose two time

constraints for a D-day trip to any potential site j :

A 1 :  T,<_h’dIhy(D-!)h’

A2 : S, = T ,  -R, 2 (D - l)h’

The real marginal utility of income 7 = O1 cannot be identified. The marginal utility of income
measure we obtain without including the R, and S, terms in 1; is q’ = /?I - e, which is actually
a combination of the various driving effects. Anticipating negative utility from driving and reduced
fishing time, we have 02 < 0 and ,B, > 0. Therefore,

The resulting consumer surplus we derive using 7’ will consequently be an under-estimate of its real
value.
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Constraint A1 asserts that the total trip duration cannot exceed the limit of h’ hours,

which is the sum of active and resting time during the day. Constraint A2 enforces

that people still have time left after accounting for driving and resting to fish and

enjoy site amenities. Combined: they imply that R, 5 D h. In words; this posits that

round-trip driving time (R,) cannot take up all the time people are awake during the

trip.

Any site j that violates either A1 or A2 is considered infeasible for a visit on

the choice occasion in question. The time constraints A1 and A2 thus define the

individual choice set of feasible sites. People whose reported destination sites of the

observed trips violate these time constraints are thus treated as outliers and deleted

from the MNL sample. l5 The value selected for h hence plays a critical role in the

site choice analysis. i6 When a larger h is used: more people will be included in the

sample, and more sites will be included in each individual’s choice set.

To be included in the MNL sample: each angler’s destination site k must satisfy

time constraints A1 and A2 specified above. That is,

Tk 5 h-
s1 :

I
&=Tk-Rk >(D-1)h’-

For an individual in the sample S, who chooses site k (and hence has a pre-determined

total trip duration Tk). site j will be included in his or her choice set if and only if

T, E Tk 5 h-
Cl :

Sj=Tk-Rj 2(D-l)h’

r5 In the actual implementation of the model, an individual can be excluded from entering the
MNL sample due to three reasons: (1) the trip duration data T is missing, (2) the observed chosen
site itself violates the time constraint A1 and/or A2, or (3) the chosen site is the only feasible site,
so no other site is contained in his or her choice set. People who are left out from the site MNL
estimation for the third reason may be included in the upper level PL MNL estimation because the
inclusive value can still be calculated even though there is only one feasible site for the chosen PL.

iG The choice set definition in turn has direct effects on the MNL and total trip estimation, as well
as the final welfare calculation.
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The satisfaction of the first constraint of Ci is guaranteed since it is exactly the same

as the first restriction of Si for inclusion in the sample. The restrictions of Si are

applied to the selected sites, while the restrictions of   are applied to all other sites.

Hypothesis 2: Exogenous Trip Time (Using Total Trip-Days)

In this case, we eschew using self-reported measures of total trip time and alter-

natively impose the assumption that the total trip duration T equals the maximum

number of trip hours allowed in a D-day trip, h -. Therefore, T = h‘ = Dh -(D -1) h’ .

This procedure eliminates the measurement error and missing data problems posed

by the first procedure: but incorporates probably greater measurement error in the

trip time (cost) variable by imposing the assumption that each trip uses all waking

hours of the day.17

Under this hypothesis, the conditions A1 and A2 combined are equivalent to

S2: R&Dh.

The choice set of an individual can also be computed by including in it any site j

that satisfies

Cz: R,<Dh.

Hypothesis 3: Exogenous On-Site Time

The final hypothesis imposes an alternative assumption that on-site time is fixed

across site choices: rather than trip duration. To ensure an exogenously defined choice

occasion, we must include in the model the possibility of ‘slack time’ during the choice

occasion Even using this device. there is some question for day trips as to whether

I7 We can calculate the difference from the site-hours variable, but we do not know how much
measurement error there is in site-hours.
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one of the conditions for welfare analysis necessarily holds: that only one trip could

be taken during the choice occasion I6 We rewrite the time-budget from above to

acknowledge that choice occasion time C and trip time T are no longer assumed to

be the same duration:

where 6, is slack, and C = h’ = D h  - (D - 1) h ’ .

The solution to equation (III.17) in which we set sources equal to uses is:

By assumption, y, C, and S, are constant across sites, and so are not relevant to the

site choice decision-making. The measure of travel cost, however, is (-P, - w&j):

the time cost of travel is included along with the distance cost! unlike for the models

above. in which only the distance cost ( -PJ)  is included.

The conditions an individual must meet to get into sample Ss are the same con-

straints A1 and A2 that define S, above.  Therefore ,  5s = S,. For  an individual

i in the sample Ss whose actual destination is site k, the constant on-site time is

calculated to be

The choice set C’s of i is defined by including any site j that satisfies

Now the second constraint of C’s  is always satisfied.

Though the two samples of anglers S, and Ss, defined respectively for the exoge-

nous trip duration and the exogenous on-site time hypotheses, are identical, there is

I6 This hypothesis is adopted by McConnell et al. (1990) and Parsons and Kealy (1990). The latter
assumes that all anglers spend a fixed amount of four hours on site.
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no relationship between the choice sets Ci and Ca defined for an individual under the

alternative hypotheses. ig

It is also obvious that

since for S2 (1) the deletions necessitated by S, and S3 due to to missing data on

self-reported trip-lengths are avoided, and (2) the trip durations in S2 are assumed to

be their maximum value h’. It can further be shown that, for people in both samples

Si and Sz,

and, for people in both samples Ss and S2,

We will show the sensitivity of the model to the different trip time hypotheses in

the Appendix.

‘a It is easy to show this with examples. Suppose h = 15 and D = 1. For an angler with Tb = 5
and Rk = 2, a site j with R, = 6 will be in set CJ, whereas not in Cr. But if Tk = 14. Rk = 1
and R, = 4, constraints for Ca will be violated, while those for Ct are satisfied. The first example
is a short day trip (e.g., an afternoon trip) to a nearby site. In this case faraway sites might be
included in C3 and excluded from Cr. The second example is a long day trip (e.g.. a whole-day
fishing excursion) to a nearby site. In this case farther sites will probably be left out from CJ; but
still incorporated in Ct. Conceivably this will mainly happen to people taking day trips, as most
sites will be available to all anglers taking long trips.



CHAPTER IV

THE MACRO-LEVEL PARTICIPATION MODELING

After modeling the micro PL-site choice decision, the next step is to model the

determinants of the total number of trips a licensed angler takes during a season.. It

is theoretically possible to model jointly the discrete product-line/site choices and the

total participation decision; however, the data and computational requirements for

the correct treatment of the corner- solutions implied by zero trips of certain cate-

gories makes an integrated utility-theoretic model practically infeasible. Essentially,

researchers appear to face a trade-off: they either implement a “utility-theoretic”

framework that does not properly model the statistics of the corner solutions; or

they model the micro and macro decisions in separate models that may address the

corner-solution problem but do not form an integrated utility-theoretic framework.

In this chapter, we first discuss variants of the former approach, in which total

participation is modeled as the sum of independent participation decisions made

on each choice occasion throughout the season. We then summarize the Bockstael,

Hanemann and Strand (1986) critique of this approach and their alternative proposal

to model directly the corner solution. Finally, we develop our own model, which is in

the spirit of the second approach.

Due to severe data limitations at the total participation level, our model is sub-

stantialiy different from the standard treatment in the literature. We do not know the

47
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total number of season trips: our macro-level  information is limited to the duration

between trips, and this variable is censored because we only observe the duration

from last trip to the survey return date, not to the subsequent trip. By incorporating

a key result from stochastic renewal theory in our modeling, we are able to estimate

the determinants of the between-trip durations with a stochastic renewal model and

then to derive the total number of trips in a season from the duration model. To

accommodate the different trip durations, we develop a competing risks model; to

allow for variations in site quality throughout the open-water season: we incorporate

time-varying covariates in the model.

Part ic ipat ion as  the  Sum of  Independent  Trip Decis ions

To integrate the participation decision with the PL-site decision in one framework:

the utility level u. associated with not taking a trip on the current choice occasion

has to be specified. Individuals are hypothesized to determine whether to take a trip

by comparing u. with the expected maximum utility of taking a trip. A trip will

consequently be taken if and only if

For empirical estimation, the relationship between the random element ~0 associ-

ated with the no-trip utility u. and the other random terms e(l,j) has to be specified.

Bockstael et. al.  (1986) derive the repeated NMNL model by extending the gen-

eralized extreme value (GEV) distribution (III.8) employed for modeling of PL-site

choices in the previous chapter to the joint distribution

(IV.18)

The parameter 0 is still the common index of correlation of the random terms (m, j)
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for sites under PL rn.’ The participation decision is illustrated in figure IV.1

The probability that an individual will take a trip in period t with the given GEV

distribution (IV.18) can be shown to be

while the probability of no participation is

(IV. 19)

(IV.20)

Because the micro-level decisions regarding the trips are nested within the participate/

no-participation decision. the participation choice is not characterized by the IIA

restriction. With this model. the micro  PL-site choices and m a c r o  par t ic ipa t ion

decision can be estimated simultaneously if the participation and PL-site choice data

are available for all periods. However: the framework is one of repeated choices, where

the decision on any choice occasion is independent of the choices on all other choice

occasions

The Alaska fisheries study by Carson: Hanemann, Gum and Mitchell (1987) is the

only one to our knowledge that estimates a repeated nested logit model with complete

trip information throughout a season ’ In their model, a sport fishing angler can take

up to a maximum of three trips in a single week. Let 2’,t’ denote the utility an individual

i. can receive from taking k trips during week t. Then the participation probability

for having m (= 0, 1,2,3) fishing trips is

They then maximize the likelihood function

’ When u = 1. the no-trip option is treated as just another alternative, and the model degenerates
to a standard MNL (i.e., it is not nested over the participate/no-participate decision.)

’ Stating that fishing opportunities in Alaska change dramatically over a season. Carson et. al.
incorporate weekly choices in the mode! and allow the covariates to vary from week to week.
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Figure IV.1: The choice occasion participation decision
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where kx is the number of trips taken by i in week t. Because the mean number of

trips during a week taken by those with more than two trips was 3.63, the expected

number of seasonal trips is calculated as

More typically, researchers know the total number of trips in a season: but only

have detailed trip information about one trip. The recent paper by Morey et al. (1991)

provides a good example of a model designed for such data.3  With the available site

choice information J. the probability density for the micro decision can be formulated

as

where 5;: is the probability that i would choose his or her actual destination J, in the

MNL setup. The total number of trips K is then used to derive the combinatorial

participation probability density

where  7ry is the probability of i not taking a trip during the period that the site

decision is known, K, is the number of total trips taken by i, and T is the number of

choice occasions in the whole season. Morey et al. maximize the complete likelihood

function

The expected total number of trips an individual i would take when there are T choice

periods in a year is simply [T . (1 - 7ry)j.

3 Their model allows for different distributions for the participation and site choice decisions.
However, as they note, it is neither a repeated standard MNL nor a repeated nested MNL because
it does not incorporate a stochastic component in the indirect utility function conditional upon no
participation.
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The Crit ique  and an Alternat ive  Proposal

Bockstael et al. (1986, pp. 185-86 and 1987, p. 13) critique. the class of participa-

tion models highlighted above; on the grounds that they characterize total participa-

tion simply as a sum of independent decisions on each choice occasion. In particular,

they criticize the models because the occurrence of a season with no trips happens

merely by accident: the probability of no participation throughout the season is sim-

ply the product of the probabilities of no participation on each choice occasion.

When individuals no longer choose “interior solutions” to the utility maximization

problem. then the well-behaved, continuous properties of neoclassical demand theory

no longer hold. One must instead model the probability statements with Kuhn-

Tucker conditions. The problem with the models developed above is that they do not

incorporate the discontinuity of the indirect utility functions as individuals switch

among different consumption regimes.

A switching regressions model is appropriate to capture statistically the different

regimes. Unfortunately the dimensionality of the problem is generally one less than

the number of commodities not consumed. Given the level of detail in the random

utility models and the many expected corner solutions for most individuals, it appears

practically infeasible to integrate over the number of cumulative distribution functions

that would be required with either the direct or indirect Kuhn-Tucker conditions.

Bockstael et. al. conclude that “without attempting to estimate the corner solutions,

there appears to be no consistent way to link independent discrete choice decisions

and a macro decision for total trips with a common underlying utility maximization

framework” (1986, p. 186).)

They propose an alternative method in which the expected number of trips to all

sites over the season T may be interpreted as:
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where the second term on the right-hand side is the probability that the individual

engages in any recreation during the season.. The equation can be estimated with

Tobit, Cragg or Heckman selection procedures. In this method the decision to ever-

participate is estimated directly, allowing the researcher to characterize the role of

factors such as poor health, adverse financial conditions, or unusually heavy working

loads.

The Stochast ic  Renewal  Approach

A major data problem we confront in modeling total trip participation is that

we do not know the total number of recreational fishing trips. Therefore, we cannot

employ the conventional estimating approaches discussed above! in which the depen-

dent variable is the total number of trips. To accommodate our special data needs,

we have developed an alternative framework for modeling the decision about total

participation.

As noted above, our information about trips is limited to the duration between

trips, and this variable is censored: we only observe the duration from last trip to the

survey return date, not to the subsequent trip. Consequently, we estimate a duration

mode! of the period between trips, from which we then calculate the expected number

of trips. We draw upon a key result in stochastic renewal theory to adapt the duration

model to handle the right-censored data.

We incorporate time-varying covariates in the duration model. In addition, we

know the length of the most recent trip taken by an angler, which allows us to

estimate anglers’ demand for trips of different durations. To include this information:

we develop a competing risks framework in which individuals may end their spell

of no-trips by choosing any one of three trip-lengths (day; weekend, 2-4 days; or

vacation, 5+ days). Finally we have some individuals in the sample who took no

trips during the period about which they were questioned. We develop procedures to
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model this right- and left-censored duration data.

The development of the full model requires an extended discussion below due

to the many features that have been incorporated. To start,  we outline the basic

stochastic renewal model, in which the number of trips taken during a period of time

is a renewal process. We develop the participation model first for the special case

of an exponentially-distributed duration variable and Poisson-distributed trip counts,

because the intuition of the model is more accessible with the simpler formulas of

the special case. In the next sections of the chapter, we extend the exponential-

Poisson model to accommodate: right-censored inter-trip duration data; time-varying

covariates: competing risks; and right- and left-censored trip durations.

We then develop the model using the Weibull distribution for inter-trip durations,

in order to relax the special assumptions of the exponential-Poisson case. The sub-

sequent four sections follow a similar pattern to the discussion of the exponential

model.

The Stochastic Renewal Process

We assume that the number of trips taken during a period of time is a r e n e w a l

process: in which the between-trip duration s are independently and identically dis-

tributed. Let T be the random variable of independent time spells between successive

trips” taken by individual i. Denote the probability density function (PDF) of T b y

and the cumulative density function (CDF) by

’ We ignore the spell of a trip. There are two possible interpretations. First. trips are assumed to
be instantaneous events for modeling convenience. Second, when an angler decides to begin a trip
on a certain day, he/she decides simultaneous!y not to have another trip during the duration, of the
trip.
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The survival  function S(t): which yields the probability that the duration T will be

longer than t, is defined as

Hence S(0)  = 1 and S(x) = 0, while F(0)  = 0 and F(oo) = 1. Another conceptually

useful function, the hazard rate function, is defined as

which measures the conditional probability of taking the next trip at time t, g iven

that no trip has been taken before t. A model with a constant hazard rate is said to

be duration independent.

These functions will be used below to derive the maximum likelihood estimator

of T. Note that the PDF and hazard rate are just two different ways of describing

the same probability distribution. Given the PDF, the hazard rate function can be

uniquely determined, and vice versa.

Let us first look at the special case of the Poisson- Exponential distribution. As

Kiefer (1988, p. 652) points out, the exponential distribution is simple to work with

and to interpret. However. it may be too restrictive in that no duration dependency

is allowed. More flexible distributions, such as Weibull,  will be considered next.

The Exponential Distribution

Suppose the time spell T, between successively taken trips k and (k + 1) by in-

dividual i follows the exponential distribution with parameter A, > 0. All durations

are independently distributed. The PDF for Ti (2 0) is then

’ The exponential distribution. is a special case of the Weibull distribution. Thus we can conduct
a nested model test to check the appropriateness of using the exponential distribution.
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and the corresponding CDF is

Thus, the hazard rate is

Since it is constant for an individual i at any time t > 0; it is called the memory less

property which is unique to the exponential distribution. We assume A; = epsZ  > 0,

that is, the parameter A, is a log-linear function of X,, which consists of both personal

and site variables. /3 is assumed to be identical across al! individuals.

Given observations of the completed durations tp for each individual i in the data,

the log likelihood function LL can be formed as follows

The maximum likelihood estimates b can then be obtained by maximizing the log

likelihood function LL with respect to /3 and setting the first derivatives to zero. This

gives us

Note that the expected duration E[T t] for the exponential distribution f%(f)  given

above is just

Our goal, however, is the counting process N;(S),  which records the number of trip

occurrences in a time period S. In this case, the counting process N,(S) corresponding

to the exponentially distributed between-trip durations is Poisson distributed 6 with

’ See Ross (1963, pp. 35-36) or Taylor and Karlin (1984, pp. 188-89) for proof.
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the discrete PDF:

and expected value

The parameter Xi = eflsn (calculated for each individual i) has an intuitive inter-

pretation of being the expected number of trips individual i will take in one unit of

time. Taking days to be the unit of time, the expected number of trips in our Poisson

process thus can be readily calculated as the number of days S in a fishing season

multiplied by X 1 for each individual i .

To justify the use of the Poisson-Exponential distribution, we have to refer back

to the basic postulates of a Poisson process. It  has been proved that a counting

process {A:(S),  S 10) is Poisson distributed with parameter X (> 0) if the following.

postulates are satisfied: 7

1. A-(O)  = 0. That is, no trip has occured prier to the start of the time interval
s = 0.

2. The time intervals between trips are stationary and independently distributed.

A counting process is stationary if the distribution of the number of occurrences
(in this case, trips) in any interval of time depends only on the length of the
time interval. It is independent  if the number of occurrences taken in disjoint
time intervals are independent.

3 .  P{R(s)  = 1) = As A o(s)  as s --+ 0 .

This posits that the probability of having exactly one trip in a very short time
interval s is proportional to the length of the interval. The function o(s)  i s
defined to have the property that

4 .  P{N(s)  2 2) = o(s) as s - 0.

This posits that the probability of having at least two trips in a very short time
period s is very small and can be ignored.

’ See Ross (1983, pp. 32-34) or Taylor and Karlin (1984, pp. 181-184) for proof.
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These are reasonable assumptions to make regarding fishing-trip behavior. The ad-

vantage of using the Poisson-Exponential pair is that no extra work is necessary to

calculate expected total trips E ;!V(S)I.

Data Limitation

A severe limitation with our data is that we do not observe any completed spell T,.

What we have are only the date the last trip began (L;) and the date the questionnaire

was returned (R,). Consider R, to be a random censoring point which truncated the

spell in question before it was completed. s Let the unobserved date of the next trip

taken by i (after the questionnaire return date R,) be I Vi) which would have been the

endpoint of the sampled duration if it had not been terminated prematurely.

We can then define the following three random variables

Age:

Residual life:

Life of sampled observation:

Of these three variables, only age is observed. See figure (IV.2) to illustrate the

relationship among the three variables. This is illustrated in figure (IV.2).

It is well known in the stochastic processes literature that the expected length of

an inspected duration B, is greater than that of a population duration T,, due to the

greater likelihood of sampling longer intervals. This is called length-biased sampling.

To distinguish between the sampled interval B, and the population duration T,, the

latter will be called normal life in the discussion below, following the convention in

the stochastic processes literature.

For the exponential duration case, it can further be shown that (1) both A and

’ The censoring mechanism should be independent of the last trip date L,.
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Figure IV.2: The truncated between-trip duration

1-i have the same distribution as T, if sampling occurs after the renewal process has

been ongoing for a long time. and (2) the length of the sampled interval containing

the sampling point Ri is expected to be twice that of a normal life interval T;, known

as the famous inspection paradozg  Therefore, in the limit,

The solution to our limited data problem will then involve the following steps:

1. We can first estimate the parameters of the age (ail;)  distribution using the
available age data.

2. Since age -4, and normal life 7’;  have the same distribution, the parameters
obtained for A; are exactly those for T;.

’ See Taylor and Karlin (1984), pp. 282-84.
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3. The seasonal total trips can then be calculated using the estimate x,.

The procedure outlined above is not limited to the exponential case. We can al-

ways derive the distribution of age A f rom any given distribution function for the reg-

ular life T. Therefore it is genrally the case that parameters in the normal life distri-

bution can be estimated with age data/distribution, if normal life data/distributions

are not available.

Time-Varying Covariates

So far we have assumed that each individual i has a constant exponential param-

eter X t across time. Since conditions at recreation sites (part of the -X, vector) often

vary during a season. both S: and A, should be generalized to be time indexed. The

time-varying elements in ,Y, are called time-varying covariates. The probability of

an individual taking trips at different times will hence depend on the time-dependent

explanatory variables S?(L).

In the following discussion. a mere statement of interval t presupposes implicitly

a starting point of time 0. The notation t ,z will be used when necessary to indicate

that the duration t runs from time s to time P, instead of from 0 to t. The endpoints

are important now since the parameters A., are time dependent.

In the case of time-varying parameters, the CDF of T, (‘1 0) becomes

and the PDF becomes

with Ai > 0 at any moment of time t. The distribution functions still necessarily

have the properties that F,(O) = !! and F,(x) = 1. The  ins tantaneous  hazard  ra te

h 2(t) = X ,it j depends solely on the value of parameter A i at time t .



6 1

The probability that an individual i has a completed duration T, greater than t

and less than ‘r (t < 7’) is then

The corresponding Poisson counting process can be shown to have the distribution

w h e r e  X ; E JO” X I(~) du . The proof is only a generalization of that for the time-

independent version. The expected number of trips taken by i during a season from

day 0 to day S is then

Given observations of the completed durations t, (running from L t to 17J and

assuming X Jt) = e cs*(t) for time t, we can construct the log likelihood function L L

as follows

The discrete time version of the log likelihood function LL i s

The maximum likelihood estimate b is then the solution to the equation

The expected number of trips of individual i during a season from day 0 to day S i s

then simply
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Figure IV.3: Derivation of the age distribution

One more issue wemust address is the estimation of parameters ,0 when we only

have age data instead of completed durations. This can be done by first deriving the

distribution of age -4; as follows.

for  t < Ai. Note that Prob{.4;  > t} = 0 for t > A,. This  i s  shown in  f igure  ( IV.3) .

Basically, we are looking backwards from the given censoring point R, to find the

time the last trip occurred, not looking forwards in search of the next trip date.

Therefore, the CDF of age ~4;  is
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and the probability density of having an age -4, = t from the date of last trip i, (=

R, - t) to the survey return date R, is

The parameters ,8 can hence be estimated using age data and the age distribution

fA(t).  They are exactly those that appear in the normal life distribution. The total

trips can then be calculated as

Competing Risk Participation

To further enrich our participation model, consider the more complicated situation

where an individual can take either a day trip, a weekend trip. or a vacation trip.

Trips of unequal lengths are considered to represent different. substitute commodities

because their utility trade-offs may be different. In other words, long trips are taken

for purposes somewhat different from those of short trips. Here we’ll think of them as

different types of events (or risks) that would terminate the durations and index them

as d = 1, 2, 3. In the following discussion, individual index i is omitted for notational

simplicity.

The single-type exponential specification can now be extended by defining the

type-specific hazard rate as

This is the probability density of an individual i taking a type d trip immediately

after time t conditional on no trip occurrence of any type up to time t. The non-type-

specific hazard rate of individual i taking any type of trip at t is then simply
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since trips of different types cannot be taken simultaneously on a choice occasion,

r:e., they are mutually exclusive. It must necessarily follow that 0 5 hdt) 2 1 for all

t y p e s  d a n d  0 5 IL(~)  < 1.

The non-type-specific CDF of at least one trip of any type up to time t i s

and the non-type-specific survival function of no trip at all from time 0 to time t i s

The type-specific CDF of having at least one type d trip up to time t i s

and the type-specific survival function of no type d trip from time 0 to time t i s

do not untrue and

The non-type-specific PDF

measures the probability of having no trip up to time t and then a trip of any type

at time t. The type-specific PDF below

gives us the probability of having no trip before t and then a type d trip at t. N o t e

that by definition

As in the previous sections, let 2, and L, be the observed censoring date and last

trip date respectively. Also let D, be the type of the last trip taken by individual i i n
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our sample data. The likelihood function, incorporating the time-varying covariate

results, is

And the log likelihood function is

(IV.21)

(IV.22)

Alternatively, we can write the likelihood function L a s

Durations corresponding to all types except the chosen type D, are regarded as cen-

sored at individual i’s survey return date R;. The parameter /3d for A id(t) = esdsr(t)

can be estimated by maximizing the above likelihood function.

The expected number of type j trips taken by i during a season from day 0 to day

S is readily calculated as

The expected number of total trips taken by i is then cdEiNi~S)I.

Note that if individuals have homogeneous (i.e.. not time- varying) hazard Ad.  the

log likelihood function in the discrete time context reduces to

Let t, (= R, -L,) denote the observed age of i and xd be the number of individuals

in the sample whose last trips are type d. The MLE of Ad is then
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Censored Age Durations

One further complication we address with this model is to accommodate the cen-

sored age duration varible.

The variable Li denotes the date individual i took the last trip, as reported in

the questionnaire returned on date Ri. For some individuals k, however, L k is not

available, and all we know is that no trip was ever taken from the beginning of sample

per iod C (= April 1, 1983) up to the questionnaire return date Rk. This gives us

the left censored age data. Recognizing that age duration is essentially right-censored

trip duration! the data for these individuals can alternatively be itnerpreted as fight-

and left-censored trip durations.

The fact that the age duration has ‘survived’ the period from C to Rk suggests

that we augment the likelihood function (IV.21) with

to include the non-participants for whom we only have censored age. Therefore the

complete log likelihood function is

where Pi is the sample of participating people, and Fo is the set of non-participants.

Using Less Restrictive Distributions

Estimation can also be performed using other more flexible functional forms (e.g.,

Weibull, Log-Logistic. or Box-Cox hazards) for the distribution of between-trip du-

rations if the Poisson-Exponential dual appears too restrictive. Note that the expo-

nential distribution has only one parameter A, and its mean is equal to its standard

deviat ion E(T) = Vm = l/X. Therefore the mean and variance cannot be ad-

justed separately. As pointed out by Kiefer (1988), the exponential is unlikely to be
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an adequate description of the data if the sample contains both very long and short

durations.

Let f(t) and r(t) be the common PDF and CDF of the independently distributed

between-trip intervals T for all individuals. The mean interval between successive

trips is then

The estimation procedure for any f(t) is basically the same as that described in the

previous section. To my knowledge, however, no computer package can yet handle

the full time-varying competing risk age duration model, though partial estimation

can indeed be carried out by some existing commercial programs.‘”  In the following

sections: the more general Weibull distribution will be employed to illustrate the use

of other distribution functions and to test the exponential duration assumption.

The Weibull Distribution

Now assume that the between-trip time intervals are all independent and Weibull-

distributed with two parameters: a shape parameter r (> 0) and a scale parameter

X (> 0). The distribution functions arel’

P D F  :

C D F  :

S u r v i v a l :

H a z a r d :

The shape parameter determines the shape of the hazard function h(t).  W h e n

“’ For instance, Limdep (1989, chapters 27 and 28) can only handle Cox’s proportional hazards
model without competing risks, or basic Weibull with neither time-varying covariates nor competing
risks.

I1 For a brief discussion, on the Weibull distribution.,  see Lee (1980), pp. 162-67.
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7 > 1. the hazard rate h ( t ) increases with t: the case of positive duration dependence.

W h e n  7 < 1; the hazard rate h(t)  decl ines  with t, the case of n e g a t i v e  d u r a t i o n

dependence .  When  -, = 1, the model reduces to the exponential case and we have

a constant hazard regardless of the value of t. Therefore, the appropriateness of

employing the exponential distribution can be empirically tested by formulating a

test of the hypothesis Ho : y = 1 I2

The expected length of between-trip intervals is

and the variance is

where r is the gamma function defined asr3

Note that when -i = 1, we have p = r(2)/X  = l/X a n d  Q’ = 1/X2, e x a c t l y  t h e

exponential case.

The three tasks we need to perform to modify the basic Weibull distribution for

our estimation problem are

the derivation of the age distribution,

the inclusion of the time-varying covariates, and

the development of the competing risk model.

l2 The Weibull hazard is monotonic. Other generalizations that embed Weibull as a special case
are Log-Logistic and Box-Cox hazards, for example. Both hazards allow non-monotonic behavior.
See Lancaster (1990), chapter 3.

I3 r(zj is simply (Z - l)! when x is a non- negative integer.
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The Time-Varying Weibull Age Distribution

To derive the time-varying version of the Weibull distribution, we assume that the

scale of the hazard rate is time dependent, i.e., A(t) > 0 for all t. However, the shape

of the hazard function, determined by the value of ?. is preset and not time-varying.

This maintains ~ as a constant. For the estimation of the Weibull model, we further

posit that

where the explanatory variables .Y1 are constant through time while A-2(t)  vary with

time. Conceptually .Y1 consists of variables that determine the shape of the hazard

function, and X2(t)  contains the variables that affect the trip-taking probabilities at

t. There may possibly be overlapping between .Y1 and .X2 since A-2 can also have

components that do not vary with time. If Q~Yl > 0 (or equivalently, 7 > 1), an

individual is said to have positive duration dependence. If aX1 = 0 (or v = 1), there

is no duration dependence. Otherwise, negative duration dependence exists.

By modifying the basic Weibull distribution functions, we can derive the time-

varying Weibull probability system as follows:

Hazard :

Survival :

CDF :

PDF :

It is straightforward to verify that I’(O) = 0 and F(m) = 1 and
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and hence the above equations constitute a consistent distribution definition.

Following the notation of (t ; fzR- J used for age duration in previous sections, the

age distribution can be derived:

The Competing Risk Weibull Model

For the three types of trips (day, weekend and vacation, indexed by j = 1, 2, 3,

respectively) that an individual may take, we assume that

We further assume that the shape parameter y is constant and identical for all types

of tripsi

The type-specific hazard rate, under the assumption of inter-type dependence is

(IV.23)

The non-type-specific hazard rate, the sum of the type- specific hazards by definition,

is then simply

These hazard functions imply that

” There are two reasons for the different treatments. Firstly, we see no reason why different types
of trips should have different duration dependencies. Secondly, and more importantly, we need to
keep the model under a controllable degree of complexity.
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Figure IV.4: Hazard rate with inter-type dependence

The probability density of taking a type J trip at t, conditional on no trip up
to t, depends not only on the history of parameter XJ(~) before time t, but also
on the history of parameters of all other types.

The hazard ratio of having different types of trips at time t is not affected by the
parameter values in the past. This can be seen by noting that proportinoaltiy
holds as follows:

Figure (IV.4) shows the hazard rate behaviors of different trip types for the case of

positive duration dependence. Note that the hazards of all types become zero with

each trip occurrence (i.e., t = 0) whatever its type.r’

l5 In the case of negative duration dependence, all the hazards become infinity the moment after
a trip is taken.
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Figure IV.5: Hazard rate without inter-type dependence

The hazard rate based on inter-type dependence discussed above can be contrasted

with a hazard rate without inter- type dependence illustrated in figure (IV.5)

and

Note that the between-trip duration t is indexed by the trip type j since it is now

type-specific. When there is no inter-type dependence among different hazards, the

hazard rate of one trip type is not affected by the occurrences of trips of other types.

Therefore, the hazard rate of one trip type continues to increase until a trip of its

own type is taken, at that time it drops to zero while hazards of other trip types keep

increasing.
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In our analysis we assume that there is inter-type dependence and employ the

hazard rates defined in (IV.23). It is not difficult to verify that the distribution

functions corresponding to the hazards (IV.23) and (IV.24) are

Estimating the Weibull Model

Let fj(t liF:) denote the probability density of individual i taking the most recent

trip of type J, and having an observed age from L 1 to R,. The likelihood function for

the sample F1 for whom we have the last trip data is then

For the non-participant sample PO. we know only that no trip was taken from C, t h e

beginning of sample period. up to the questionnaire return date RIt. The likelihood

for this sample is

Combining the participants and the non-participants, the complete log likelihood

function is
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where

for a participant i in PI )

(for a non-participant k in PO).

The first derivatives with respect to the parameters a and 0 are consequently

a n d
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where

for a participant i in P,)

(for a non-participant k in PO)

and

And the second derivatives (the Hessian matrix) are
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and, for j f rn,

where

(for a participant i in PI)

(for a non-participant k in PO).

The maximum l ikel ihood es t imates  &. and b can be obtained by the Newton-

Raphson, algorithm. They are consistent: asymptotically efficient and asymptotically

normal. The variance- covariance matrix ( -E[T’2LL]-1)  can be approximated by
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If the null hypothesis Ijc : Q = 0 is rejected by the likelihood ratio test, the use of the

exponential distribution cannot be justified, and we have to calculate the expected

total seasonal trips for the Weibull model.i6

Renewal Counting Process for Weibull

If the use of the exponential is rejected in favor of the Weibull, the distribution

of the corresponding renewal counting process N(s);  s _> 0, has to be determined to

calculate the expected number of trips in season.

Define the random variable II-, as the sum of R consecutive between-trip durations.

i.e.,

The distribution of II’, is then the c o n v o l u t i o n  of the CDFs of the R dura t ions

T1. T2, . . . . T,.

Definition IV.1 If two independent random variables X and Y have the distribution
functions F,y and J’l-: respectively. then the distribution of their sum Z = X + Y i s
the convolution of Fs and Fy! defined as

Since all between-trip durations Yk have the. common CDF F(s) = Prob{T 5 s}: the

CDF of LTV,is the n-fold convolution of F(s)  with itself, denoted by l’,,. Hence.

consecutive

Given ,ri(s) E F(s), any F,(s) for R > 2 can be calculated using the recursive formula

I6 An interesting intermediate case is where the intercept is nonzero, but the slope coefficients are. .
zero.
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The probability of having exactly n trips in a time period S i s

The expected number of trips in the time interval S is then

While a closed-form formula for F, is difficult to obtain. the values of F,(S)

can be approximated by numerical solutions and the calculation of n-2(S) can be

carried out as follows for the discrete time case. First the values of F;(s)  = F(s)  for

s = 1,2. . ., S are calculated and stored. The values of T2(s)  for s = 1,2, . . . , S c a n

then be computed using the values of F1 now available.

This goes on until, for some A’! Fhy(S) is small enough to

t h a t  f(0) = 0 a n d  F,(O)  = 0. ‘tin. The  expec t ed  number

approximately

be safely ignored. Note

of seasonal trips is thus

The function nr( S), called the renewal function, will always converge since it is fi-

nite for a finite S, as proved in Ross (1983, p. 57). Note that the simple formula
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m(S) = S/p does not generally hold for other distributions besides the Poisson-

Exponential case, where it occurs due to the special memoryless property of the

exponential distribution. Though it is true that both respectively.

and

it is a mistake to use (S/p)  as the expected value of N(S) when S is not large enough.

In our study, S is the length of a fishing season, the time period during which we count

the trips. and is (sibstantially) less than infinity. Hence the extra work of calculating

m(S) has to be done if a less restrictive distribution like the Weibull is preferred.



C H A P T E R  V

C O N S U M E R  W E L F A R E  M E A S U R E

The calculation of consumer surplus is different with discrete choice travel cost

models than with conventional travel cost analysis. With discrete choice models,

we estimate the conditional utility functions and then compute directly the Hicksian

compensating variation (CV) or equivalent variation (EV). In the conventional travel

cost analysis, we generally calculate Marshallian measures of consumer surplus from

the estimated demand functions. i

The standard consumer surplus measure employed for discrete choice models is

based on the assumption that total trips do not change with policy changes. This

measure will result in an under- or over-estimate of “true" consumer surplus, depend-

ing upon whether total trips increase or decrease. We develop a consumer surplus

measure that incorporates the change in trips predicted by the participation model.

Additional complexity is added to the measure with a NMNL model when the choice

occasion income (budget) is not observed and the marginal utility of income is not

’ Feenberg and Mills (1980, pp. 114-115) calculate the welfare measure C’, defined as

where V is the indirect utility function. That is, C‘ is the amount by which the price would have
to be raised in order to offset the effect of the change in the quality. Hanemann (1983, pp. 134-35)
argues that CV is more appropriate than C’ since it is a natural generalization to the discrete choice
context of the conventional Hicksian compensating variation.

80
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constrained to be constant across alternatives due to the computational complexity

of such a procedure. We propose a simplifying procedure that makes the calculation

tractable under those circumstances.

Welfare  Measure  for  Individual  Choice  Occas ions

Procedures to calculate the choice occasion welfare changes in the NMNL context

have been developed by many researchers. 2 As defined previously by (III.4), let

be the maximum random utility an individual can receive on a choice occasion when

facing trip cost P, site quality Q, and choice occasion budget y. The expected com-

pensating variation C and equivalent variation & corresponding to a site quality change

from Q” to Q1 in the random utility model are defined as

(V.25)

(V.26)

C is the expected maximum amount of money individuals require to compensate

them for the change in site conditions, and & is the expected minimum amount of

money people require to compensate them for foregoing the quality change. Note that

both will be positive for quality improvement (Q’  + Q”), and negative for quality

d e t e r i o r a t i o n  (Q’  -X Q”). C + & for utility functions that yield different values of the

marginal utility of income at y” and yi.

It has been shown that for the MNL model

’ See Small and Rosen (1981) and Hanemann (1982, 1985). Hanemann (1983) also has the calcu-
lation for marginal exogenous variable changes. For applications see Carson and Hanemann (1987)
and Jones 1988, 1990).
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where I(P, Q, y) is the inclusive value of choices with parameters P, Q and individual

choice occasion income y . Therefore, we can rewrite equations (V.25) and (V.26),

defining the compensating variation, C, and equivalent variation, E:

In general. closed-form solutions for the consumer surplus measures C and & are not

available, and numerical techniques have to be employed.

However, with a linear-in-income conditional utility ZL, that has a constant mar-

ginal utility of income 77 (the coefficient on y): the above equations become

which simplify: respectively, to:

Therefore,

(V.27)

This formula presents the consumer surplus per choice occasion. The equality of C

and & is the result of the linear-in-income indirect utility assumption. When the

choice occasion income y is assumed fixed, i.e., y1 = y”, the second term on the right

hand side of equation (V.27) drops out.

The use of this formula is not limited to site quality changes only. As mentioned

in Bockstael et al. (1991), the value of adding or deleting sites can also be computed
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a s

where I*(P*, QGl  y”) is the inclusive value before the change, and I’(P’. Q’: y”) after.

However, the site change has to be small so that the choice occasion income y will

stay the same.

The above derivation assumes that the marginal utility of income is constant

across alternatives (as well as across quality changes.) When that assumption does

not apply. the derivation is more complicated. As Hanemann (1982) has shown:

Using the approximation that s z ln(l + z), this formula can be re-written to show

more clearly its similarity to the constant MCI version:

where

is the probability of choosing product line m after the quality change, and we define

;i to be the weighted MUI

Remember that in our framework, we model the trip-duration choice within the

macro-level participation model, external to the NMNL analysis. Consequently, we

calculate separate compensating or equivalent variations for each of the three trip-

duration groups. For simplicity, we have suppressed the subscript d for the trip-

duration groups in the formula above - but we will incorporate it explicitly in the

calculations below.
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Welfare  Measure  for  Mult iple  Choice  Occas ions

Since there are multiple choice occasions in a season, most researchers derive the

total consumer surplus by first calculating the choice occasion compensating variation

C, then multiplying C by the total number of trips *V over a season. This yields the

seasonal consumer surplus

Whe the r  N is taken as the number of trips ,V” before a site quality improvement

or the predicted number of trips N1 after an improvement. the calculation is not

accurate. In tile former case, the welfare gain associated with the new trips is not

included, whereas in the latter case, the formula gives an over-estimate of the true

10~s.~  For a quality improvement, we do know that the annual utility gain W i s

bounded by

The surplus C . .dro is the lower bound on the actual benefits because the increase in

total value associated with the increase in trips is not included. The surplus measure

C . -4-l  is the upper bound because the increase in value is calculated based on the

(greater) number of trips that would only be taken under improved site conditions.4

When there are only marginal changes in site quality and hence the change in total

trips N is small, these bounds are tight.

In this section, we propose a procedure to compute the seasonal consumer surplus

more precisely for a proposed improvement in site conditions. First, for each trip

type d (= day, weekend, or vacation) and each month n (= April - October) during

a season, we denote the “true“ pre- and post-policy inclusive values by lzd and 1Ad

(corresponding to the site qualities QO, and Q’,), respectively. As discussed above,

3 See Parsons (1990, p. 14) or Bockstael et al. (1988, p. 18) for a discussion.

’ See Parsons and Kealy (1990)
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we cannot calculate I:, or iAd because we do not know choice occasion income The

pseudo-inclusive values that we can calculate from the MNL parameter estimates are

denoted by I$ and IA,, respectively; as defined in (III.15). The expected number of

tr ips A’$ and ArAd can then be estimated with the competing risks duration model

proposed in chapter IV. Let yd be the choice occasion income for a type-d trip. The

expected seasonal compensating variation for an individual in the sample will consist

of two components: one associated with the trips already taken before the policy, and

the other associated with new trips that would only be taken after the policy.

Eased on the derivations above, the expected welfare gain for the *jr,“, trips of

duration d in month n that occurred before the improvement is

If we replace the MUI estimates that vary across product lines Trnd with the weighted

MUI for trip duration d, 7jdz in the formulas for the inclusive value indices IAd and

I:,. then this simplifies to:

For the (;2:& - A’:,) new trips that would only occur after the site improvement,

we assume that the expected no-trip utility u. is simply ;Q i;idz~di  for the linear con-

ditional utility function (III.14) since no travel cost is incurred and no site attributes

are enjoyed. The associated compensating variation is thus

Again if we substitute fd for rlrnd in Iid, the choice occasion income cancels out in the

before-policy and after-policy terms and this simplifies to:
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Therefore, the total seasonal CV for an individual i is the sum

(V.28)



C H A P T E R  V I

D A T A  S O U R C E S  A N D  D E S C R I P T I V E  S T A T I S T I C S

This chapter describes the data used in this study to estimate the models discussed

in previous chapters. Three categories of information have been collected from federal

and state sources: angler data: species- and month-specific catch rate data, and other

site quality data. Since the units of the site analysis are the 83 Michigan counties: all

site quality data and distance measures are defined on a county basis.i  We describe

each category of data in turn.

Angler  Survey Data

The primary dataset for estimating the model is a detailed mail surrey of 1% of

the anglers Licensed to fish in Michigan during the 1983 and 1984 license-years. This

survey was sponsored by the Michigan Department of Natural Resources (MDNR)

and had a response rate of 59%. The full sample size is 10,948 licensees, of whom 9,628

fished during 1983 or 1984 prior to their return of their survey.2 The survey provides

detailed information on the angler’s most recent fishing trip, including species sought:

’ See map VI.1 for the geographic locations of the 83 Michigan counties. They are numbered
alphabetically from 1 to 83.

’ The earliest survey returns would be from the surveys sent out in November or December 1983
or January 1984, which represent more than 60% of the total. The remaining surveys were sent out
in May 1984 and September 1984.

87
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location, trip length, trip expenditures, etc., as well as demographic background and

extensive fishing experience and preference information

Sample Definition

The model embodies three nested levels of choice: trip duration; fishing product

line; and fishing site. Below, we first explain how we define the anglers’ fishing product

lines and trip durations. We then explain our sample selection procedures and present

descriptive statistics for key analysis variables.

Definition of Product Lines

Kikuchi (1986) performed a factor analysis of the MDNR 1983-84 angler survey

which identified eleven distinct market segments of fishing experiences. We refer

to the segments as product  l ines  (PLs). Key distinctions among the product lines

include targeted species (coldwater or warmwater) and destination type (Great Lakes:

inland lakes, or inland streams). 3 Other distinctions include a category for ice fishing

anglers, a category for anglers targeting “anything biting.” and a minor category of

smelt anglers. The analysis also examined the role of fishing mode (boat, shore) and

method (casting, snagging, fly. ice, etc.), but did not find significant differences along

these dimensions. 4

Because ice fishing is quite limited, we restrict our study to open water angling that

occurs between April and October. The anadromous run product lines are further

restricted to April, May, September, and October. We combined the anadromous-

inland-lake and anadromous-inland-stream product lines due to small sample sizes,

3 Coldwater species consist of mainly salmon and trout, and hence are also called “salmonid.”

’ When estimating the MNL model for product lines in which both modes are well represented,
we also examined predictions separately by mode choice to reevaluate the modeling decision. We
observed no mode-related pattern to the prediction errors.
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particularly for the lake category. Inland lake coldwater and in!and stream coldwa-

ter are also combined for the same reason. The six product lines employed in our

MNL analysis are, therefore, Great Lakes coldwater (GLcd). Great Lakes warmwater

(GLww), anadromous run (Anad). inland lake/stream coldwater (LScd), inland lake

warmwater (ILww), and inland stream warmwater (ISww).

Definition of Trip-Duration Groups

The trip-duration categories were chosen on the basis of whether trip destination

types were different across the trip duration categories. Based on a x2 test, one-, two-,

three-, and four-day5 trips have significantly different destinations from one another.

Four- and five-day trips are only different at the 10% level. Destinations of trips of

five days are not significantly different from those of trips of greater length. The

results suggest that the effect of residential location, which dominates the site choice

for day trips, is not completely attenuated until five-day trips. Due to sample size

considerations, trips of two to four days are grouped together to form one category;

which we label “weekend” for convenience. 6 The three resulting duration groups are

hence one-day trips, weekend trips (2-4 days), and vacation trips (at least 5 days and

up to the maximum of 16 days).’ labeled as Day, Wkn, and Vac, respectively

’ The number of days in a trip is calculated from the date/time people left their homes and the
date/time people returned to their homes. If the combined hours in the first trip day and the last
trip day are greater than 12, both days count. Otherwise, the first and last days together count as
only one trip-day. For example: a trip from 10pm the first day to 7am the second day is considered
a l-day trip, even though it invo!ves two calendar days.

G Note that the categorization is strictly based on trip length, not on which days of the week are
involved, so that “weekend” trips do not necessarily occur over the weekend.

7 We truncate vacation trips at 16 days because it is two weeks plus the extra weekend days. We
delete people from our MNL analysis for whom the most recent trip was of more than 16 days, on
the grounds that the longer trips have many other purposes than fishing.
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Travel Distance and Cost

For the estimation of the model. we need to calculate the distance between an

individual’s residence and every county in his cr her choice set. To characterize travel

distance between origin (home) and destination, we used the county-to-county dis-

tance matrix developed by the Michigan State Department of Transportation, based

on highway distance measures The distances are measured between the geographical

centers of the 83 Michigan counties.

The travel distance is calculated slightly differently for in-state and out-of-state

anglers. For an in-state angler, the distance between the home county and any other

county can be obtained from the distance matrix. 8 For an angler from other states, the

point where he or she entered the state of Michigan (the entry point) is first assigned

according to his or her origin and destination. For the chosen site. the travel distance

outside Michigan is then calculated as the difference between the self-reported total

travel distance and the entry-destination distance.’ The distance between his or her

home and any other potential fishing site is then computed as the sum of the out-

of-Michigan distance and the distance between the entry point and the county in

question.

To calculate the travel time from the travel distance, we use the sample average

speed of 40.5 miles per hour. To calculate the distance-cost variable for a site, the

two-way distance is multiplied by the vehicle operating cost per mile, S.23.r’ and then

multiplied by the share of the total fishing party size represented by the respondent’s

family

’ For people who fished in their home counties, 10 is used as the one-way driving distance.

’ If the self-reported total travel distance is less than, the calculated entry-destination distance,
we use the self-reported driving time (in hours) instead for the calculation.

“’ This is the 1983/1984 estimate provided by the American Automobile Association (AAA).
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Sample Selection

To select individuals for the MNL analysis, we defined samples (from the 1%

MDNR sample of licensed anglers) that include all individuals whose choices met

the definitions of the six product lines and three duration groups, and who indicated

fishing as a purpose of the trip.

Of necessity: we deleted individuals if (1) there was an inconsistency between the

self-reported travel time/distance data and the values in the Michigan State Depart-

ment of Transportation distance matrix: because we could not be sure these individ-

uals were properly assigned to the product line or site,l’ or (2) there was incomplete

or inconsistent information on trip duration, trip location, or species sought. The

resulting sample, called ,V’ and consisting of 18 PL-duration subsamples (6 PLs by

3 durations). provides the basis for extrapolation of the analysis to the population of

licensed anglers.

However, estimation of the MNL model was restricted to a subset of the anglers

in each PL-duration group because all individuals with any missing data on the MNL

esplanatory variables had to be deleted. The sample used for MNL estimation is

called :^V’~~~~.  To create the analysis sample ;?TPA4RT  for estimating the parameters of

l1 We performed three types of data checking to make sure that information in the returned survey
questionnaires is internally consistent.

First, we compared the self-reported travel distance/time against the values in the State of
Michigan Department of Transportation origin-destination distance matrix. If inconsistency existed,
we checked questionnaires for coding errors. In 125 cases, coding or data problems were corrected
in home county, destination county, and self-reported distance variables. In some cases, it is obvious
that people reported round-trip distances where one-way distance was actually asked. In 41 cases.
we could not resolve the inconsistencies. and the data were discarded.

Second. we checked home county against the zip code variable. 16 people had improper values
assigned to their home county variable according to their zip codes. Other information, such as
travel distance and time, was also used to confirm the corrections.

Third: the destination counties of some people do not provide angling opportunities for the
species for which they fished. Me checked this inconsistency between fish species and destination
county. and made 30 corrections of coding errors.
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the competing risks participation model, (1) we further delete, from the MNL, sample:

observations missing either the age duration data” or the explanatory variables: and

(2) me include the non-participant. To predict total trips in the season: however, only

the explanatory variables are needed, so trip predictions are available for a slightly

larger sample, K:PRED, than NP~RT.

Table VI.1 presents the classification of the individuals in the MDNR sample and

their use in this study. Groups 0 and 1 are the non-participants, people who took

no trip from April 1, 1983 up to the time they returned the survey. l3 Groups 2 to

4 are the “pseudo participants“ because their trips were longer than 16 days and/or

were not for the purpose of fishing, and consequently were considered inappropriate

for inclusion in a welfare analysis of recreational fishing Groups 5 to 9 are the "true”

participants in our analysis. The MNL sample A; AI~L  consists of groups 6 to 9. The

participation analysis sample iY PART  consists of groups 1, 3, 4, and 9. Since we do

net need age data for total trips prediction. sample XPRED contains people in group

8 in addition to those in sample A’pdRT

Tables VI.2 to VI.4 present the means and standard deviations of angler char-

acteristics for the Day, Wkn, and Vac duration samples that we use for estimation.

The means for NS are similar to those for the analysis samples. The variables are as

follows.

HHY is the annual household income in dollars

WkHrs is the individual weekly work hours. It has a value of 40 if an individual
had a full-time job, and 20 for a part-time job. If a second job was also held by
the individual, 40 or 20 is further added for full-time and part-time, respectively.

W a g e  is the individual pre-tax wage rate per hour. It  is calculated as the
individual’s annual income divided by the annual work hours (= WkHrs x 52).
If less than $3.25, it is set to the minimum wage rate of $3.25 per hour. The

l2 Calculated from last trip date and survey return date.

l3 A respondent is classified as a non-participant only if all relevant trip information is missing,
including destination site, trip length, fish species sough, and trip date.
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post-tax wage rate used in the estimation is obtained by multiplying the pre-
tax wage by the individual’s tax rate, calculated according to individual income
bracket.

HmDest is the one-way distance in miles between an angler’s home and his/her
chosen fishing destination.

Instate is a (0,1) dummy variable. It is assigned 1 if the angler resided in the
state of Michigan: and 0 otherwise.

Fish Catch Rate  Data from the  MDNR Creel  Survey

Michigan‘s Great Lakes sport fishery has been monitored by the MDNR Fisheries

Division with a statewide contact creel census program since 1983.14  The objective

of the program is to obtain a continuous record of sport catch, catch rate, and catch

composition in the Great Lakes and important anadromous river fisheries. Though

sampling efforts and study areas are different each year, the creel census methodology

remains the same.

The Michigan creel census is based on a stratified design, using simple random

sampling within strata. Strata include port fished, month, weekday-weekend (holi-

day), and mode of fishing. Catch and effort estimates are made for each cell in the

stratified design and then combined to give monthly and seasonal figures.

The catch rates used in the analysis are calculated from the angler-party interview

data collected for each area sampled. In the creel survey, an angler party is defined

as one or more anglers who fished together. Angler parties are interviewed at the end

of their fishing trips at various boat launching ramps, marinas, piers, and along the

shoreline. Anglers are queried as to the mode of fishing (i.e., boat, shore, pier, open

ice, or shanty ice) they just used, where they fished, how long they fished, what they

I4 Information about the census operations can be obtained from the MDNR technical reports writ-
ten by Rakoczy and Rogers (1987) for the 1986-87 census operations, and Rakoczy and Lockwood
(1988) for the 1985-86 year.
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fished for, the numbers (by species) of fish they caught, and the number of fishing

trips they made or intended to make that day. Additional data are also collected on

each angler in the party, such as age and sex of the angler, zip code or county of

residence, and the types of angling methods used (casting, still fishing, trolling, etc.).

These data are recorded on an angler interview form by census personnel.

The catch rates used in our analysis are broken down by species and by month

for each county (the site unit in the analysis.) We combined the data on total catch

by species and total angler- hours data for ports in a county to calculate the average

hourly catch rates.

When estimating the site choice model for inland lake and inland stream product

lines, we did not use catch rate data because of endogeneity between catch rates

and participation. (As we explain below, me substituted measures of the quantity of

water resources, differentiated by quality.) For the inland PLs, participation appears

to adjust slowly to changes in catch rates: previous catch rates appear to drive current

participation. Whereas last month’s catch rate may have been high, inducing high

participation rates, the current catch rate may be low due to the high participation

rate last month. However, due to the slow adjustment process, current participation

may still be high. (Thus perverse results would occur with catch rates as explanatory

variables in the equations.) This is a special phenomenon for areas with limited

resources: which can be

participation could have

their major tributaries.

depleted by too many anglers. It is unlikely that angler

such an effect on large resources like the Great Lakes and

Great Lakes Coldwater Species Catch Rates

Five salmonid species are considered important for the Great Lakes coldwater

product line: chinook salmon, coho salmon, lake trout! rainbow trout, and brown

trout. The feasible open-water fishing months are April to October. All 41 Great
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Lakes counties provide angling opportunities for this product. ime.” Map VI.2 shows

the location of these Great Lakes counties.

Though not the most abundant Great Lakes species, various species of salmonids

are the target of most Great Lakes sport fishing anglers. During the 1985 open-water

fishing season, the Lake Michigan salmonid catch was composed of 59% chinook

salmon, 13% coho salmon, 16% lake trout, 5% rainbow trout, 6% brown trout, and

less than 1% of other sa!monids.‘6 For the 1986 fishing season: the percentages were

57%, 15%, 15%, 4%, and 8%, respectively. The other Great Lakes have similar catch

compositions. l7 Therefore, chinook salmon is the most important salmonid in terms

of the numbers of fish harvested. Lake trout and coho salmon are the second and

third most numerous salmonid in the Great Lakes sport catch. Table VI.5 reports

the means and standard deviations of the catch rates for these Great Lakes salmonid

species.

Anadromous Run Species Catch Rates

The same salmon species (chinook, coho, and rainbow) as those of Great Lakes

coldwater are adopted here for the anadromous run product line in the Great Lakes

river systems. Feasible fishing months are April, May, September, and October only,

during which periods salmon migrate down to and back from the Great Lakes. Salmon

anadromous run angling is possible in 44 Michigan counties, including most Great

Lakes counties and a few inland counties. ls Map VI.3 indicates the location of these

I5 Fishing in the five northernmost Lake Superior counties is, however, still restricted by ice in
April, and therefore is only available for six months from May to October. They are Baraga (5),
Gogebic (27), Houghton (31), Keweenaw (42), and Ontonagon (66).

‘c Such as pink salmon , Atlantic salmon, brook trout, and spake.

li For example, the percentages were 53%, 4%, 33%, 3%, and 7% for Lake Huron in the 1986
season.

ls The inland counties included are Eaton (23), Ingham (33), Ionia (34), Kent (41), Lake (43), and
Newaygo (62). Great Lakes counties excluded are Keweenaw (42), Monroe (58) and Tuscola (79).
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anadromous run counties.

Chinook salmon is still the most abundant salmonid in the anadromous run catch,

followed by rainbow trout and coho salmon. The catch rates are higher during the

fall runs (September and October) than the spring runs (April and May). Table VI.6

reports the means and standard deviations of the catch rates for the anadromous run

salmon species.

Great Lakes Warmwater Species Catch Rates

The fish species included in the Great Lakes warmwater product line are: yellow

perch, walleye, northern pike, smallmouth bass, and carp. Feasible fishing months

are April through October. 40 out of the 41 Great Lakes counties are available for

the Great Lakes warmwater fishing.2”

Yellow perch is the most numerous in the Great Lakes catch of all species, coldwa-

ter or warmwater. For instance: it made up 68% (69%) of ail the fish caught in Lake

Michigan during the 1985 (1986) fishing season,21 Table VI.7 shows that the yellow

perch catch rate is more than ten times that of any other warmwater species

Data on Other  Character is t ics  of  S i te  Qual i ty

Data from state and federal sources are used to derive site quality indicators. Site

properties that are generic to all product lines include

AOC is a dummy variable that indicates whether a county has been designated
as an ‘Area of Concern’ for toxic contamination by the International Joint Com-
mission 21 out of the 83 Michigan counties are designated Areas of Concern,
as shown in map VI.5.

I9 ‘Carp’ includes freshwater drum, catfish, and sucker. The ‘smallmouth bass’ category also
includes largemouth bass, bluegill, and pumpkin.

2r’ Luce county (48) is excluded due to its extremely low catch throughout all months of the season.

21 The percentage was as high as 79% for Lake Huron and 88% (including walleye) for Lake Erie
during the year 1986.
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% Forest measures the percentage of county land that is forested. This variable
is used as a proxy for natural beauty.

A continuous integer-valued variable Feature contains the number of unique
natural features, such as Pictured Rocks National Lakeshore and Sleeping Bear
Dunes National Lakeshore. Only 14 Michigan counties have special landscape
features.

Site Data for Great Lakes Counties

Site data specific to the Great Lakes product lines (both coldwater and warmwa-

ter) include the following for the 41 Great Lakes counties.

Number of parking spaces (GLprkg) in GL counties. Only 2 GL counties do not
have parking facilities.

Number of harbors (GLhrbr) in GL counties. Only 4 GL counties do not have

any harbor for boat mooring.

Number of slips for boat mooring (GLslip) in GL counties.

Number of ramps for boat launching (GLramp) in GL counties. 38 out of the
41 GL counties have ramps.

Table VI.8 reports the means and standard deviations of the Great Lakes product

line site characteristics.

Site Data for Anadromous Run Counties

Site data specific to the 44 anadromous run product line counties include

For anadromous run angling, the presence of a lake in an anadromous stream
(ANlake) provides opportunities for the use of a boat, in addition to the shore
angling available in all 44 counties. Only 10 anadromous run counties have
lakes. 22

Table VI.9 reports the means and standard deviations of the anadromous run site

data.

” They are Benzie (10), Berrien (11), Charlevoix (15), Houghton (31), Leelenau (45), Manistee
(51), Mason (53), Muskegon (61), Oceana (64), and Ottawa (70).
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Site Data for Inland Coldwater Counties

Since this product line is the combination of inland lake coldwater and inland

stream coldwater, variables pertaining to both are included. Those 73 counties that

offer inland coldwater angling opportunities are shown in map VI.4.

Inland Lakes

Three types of inland lakes are available for recreational angling: coldwater-only

lakes, warmwater-only lakes, and two-story lakes. A two-story lake has an upper

layer of water that is warm enough to support warmwater fish species, while the

water below is cold enough for coldwater angling to be possible. Data from MDNR

allow us to measure the acres of lakes in the separate categories. For the inland lake

coldwater product line, only the coldwater lake measures are used. A total of 67

Michigan counties have coldwater lakes for trout fishing.

Acres of the coldwater-only lakes (ILcdacre) in the county.

Acres of the two-story lakes (IL2story) in the county.

Total acres of the coldwater lakes (ILtotcd) in the county. This variable is the
sum of the above two variables.

Acres of the coldwater lakes with fishing consumption advisories (CntmLC) i n
the county. Only two counties have contaminated coldwater lakes.‘s

Inland Streams

Inland cold streams can be classified by their fish quality and tributary status.

A cold stream may be classified as top quality main stream, top quality tributary

stream, second quality main stream, or second quality tributary stream. 69 Michigan

counties are available for inland stream trout angling.

” They are Houghton (31) and Marquette (52).
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Variables pertaining to this specific product line are

Six counties are listed in the Michigan Fishing Guide 1983, section ‘Quality
Fishing,’ as having streams on which fly fishing is allowed to improve the quality
of fishing. A dummy variable IScdFly is used to indicate this possibility.

Miles of top quality main streams (IScd1main) in county.

Miles of top quality tributary streams (IScd1trib) in county.

Miles of second quality main streams (IScd2main) in county.

Miles of second quality tributary streams (IScd2trib) in county

Miles not elsewhere classified (IScdNEC) in county.

Miles of coldwater streams contaminated (CntmSC) in county. Only two coun-
ties have contaminated streams. ”

Table VI.10 reports the means and standard deviations of these lake and stream

variables.

Sire Data for Inland Lake Warmwater Counties

All 83 Michigan counties have warmwater lakes. The fishing resource variables

used are

Acres of the warmwater-only lakes (ILwwacre) in the county.

Acres of the two-story lakes (IL2story) in the county.

Acres of the warmwater lakes with fishing consumption advisories (CntmLW).
Only three counties have non-zero values.26

Table VI.11 reports the means and standard deviations of these lake acres variables.

24 These counties are Crawford (20), Lake (43), Missaukee (57), Oakland (63), Oscoda (68), and
Wexford (83).

25 They are Marquette (52) and Osceola (67).

2c They are Allegan (3), Houghton (31), and Ottawa (70).
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Site Data for In1and Stream Warmwater Counties

Like inland coldwater streams, the inland warmwater streams can also be classified

by their quality and tributary status. A warmwater stream could be top quality main

stream. top quality tributary stream, second quality main stream, or second qual-

ity tributary stream. All 83 Michigan counties have warmwater streams. Variables

specific to this product Line include

Miles of top quality main streams (ISww1main) in county.

Miles of top quality tributary streams (ISww1trib) in county.

Miles of second quality main streams (ISww2main) in county.

Miles of second quality tributary streams (ISww2trib) in county.

Miles not elsewhere classified (ISwwNEC) in county.

Miles of warmwater streams contaminated (CntmSW) in county. A total of 12
counties have contaminated warmwater streams. *r

Table VI.12 reports the means and standard deviations of these stream miles variables.

27 They are Allegan (3), Bay (9), Berrien (11), Clinton (19), Gratiot (29), Isabella (37), Kalamazoo
(39), Livingston (47), Midland (56), Monroe (58), Saginaw (73), and Shiawassee (78). Many of these
counties are in the Saginaw Bay area.
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Map VI.l: State of Michigan counties
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Map VI.2: Great Lakes product line counties



103

Map VI.3: Anadromous run product line counties
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Map VI.4: Inland coldwater product line counties
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Map VI.5: Areas of Concern in Michigan
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Table VI.1: Classification of sample observations

Group N Defini t ion

Non-participants:

0 738 No trip; no data for participation estimation

1 582 No trip; have data for participation estimation

Pseudo-participants:

2 1707

3 137

4 148

Participants:

5 1817

6 556

7 224

8 358

9 4681

Total 10948

Trip invalid, no data for participation estimation

Trip > 16 days; have data for participation estimation

Fishing not a trip purpose; have data for participation estimation

Trip valid; missing data for MNL analysis

MNL sample (trip hours missing)

MNL sample (trip hours available)

MNL sample; have data for participation prediction only

MNL sample; have data for participation estimation

Ful l  MDNR sample
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Table VI.2: Angler characteristics of the Day group

Sample HHY W a g e  W k H r s  H m D e s t  I n s t a t e

,v - 25937.33 8.45 29.02 29.07 0.96

[ N = 4 0 6 7 ]  ( 1 5 0 0 2 . 1 9 )  ( 7 . 4 6 )  ( 1 8 . 9 5 )  ( 3 9 . 4 8 )  ( 0 . 2 0 )

N MNL 26407.20 8.65 28.61 29.23 0.96

[ N = 2 6 6 6 ]  ( 1 5 2 1 6 . 0 3 )  ( 7 . 6 4 )  ( 1 9 . 1 2 )  ( 4 0 . 3 2 )  ( 0 . 1 9 )

l?'FART 26656.12 8.98 29.74 28.01 0.96

[ N = 2 3 7 0 ]  ( 1 5 2 5 5 . 6 6 )  ( 7 . 4 0 )  ( 1 8 . 4 9 )  ( 3 8 . 1 4 )  ( 0 . 1 9 )

Table VI.3: Angler characteristics of the Wkn group.

Sample HHY W a g e  W k H r s  H m D e s t  I n s t a t e

I\7 x 30092.23 10.65 32.76 131.14 0.84

[N=1653]  ( 1 6 0 4 9 . 0 9 )  ( 7 . 9 3 )  ( 1 6 . 7 6 )  ( 9 3 . 3 6 )  ( 0 . 3 7 )

I”‘:MNL 30106.46 10.64 32.27 131.05 0.83

[ N = 1 2 2 8 ]  ( 1 5 9 2 2 . 2 5 )  ( 7 . 9 6 )  ( 1 7 . 1 0 )  ( 9 4 . 4 5 )  ( 0 . 3 6 )

i\-FdRT 30209.84 10.85 32.98 132.17 0.85

[ N = 1 1 0 8 ]  ( 1 5 6 5 8 . 3 9 )  ( 7 . 6 1 )  ( 1 6 . 1 6 )  ( 9 4 . 5 3 )  ( 0 . 3 6 )

Table VI.4: Angler characteristics of the Vac group.

Sample HHY W a g e  W k H r s  H m D e s t  I n s t a t e

N’ 29357.35 9.71 29.40 235.16 0.73

[N=1915]  (15108 .86)  (7 .94)  (18 .33)  (159 .97)  (0 .45)

N MNL 29289.01 9.77 28.70 237.29 0.74

[N=1369]  (15004 .55)  (7 .94)  (18 .45)  (164 .07)  (0 .44)

N PART 29750.62 10.29 30.52 241.34 0.73

[N=1203]  (14970 .86)  (7 .53)  (17 .44)  (163 .41)  (0 .44)

Note: Numbers in parentheses are standard deviations.
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Table VI.5: Means and standard deviations of the GLcd catch rates

Month N  C h i n o o k Coho L a k e T  R a i n b o w  B r o w n T

April 36 0.026

(0.045)

May 41 0.030

(0.053)

June 41 0.022

(0.031)

July 41 0.044

(0.041)

August 41 0.056

(0.053)

September 41 0.039

(0.030)

October 41 0.037

(0.042)

0.019

(0.044)

0.018

(0.045)

0.007

(0.019)

0.003

(0.006)

0.005

(0.010)

0.018

(0.046)

0.022

(0.059)

0.001

(0.005)

0.065

(0.106)

0.073

(0.087)

0.056

(0.085)

0.042

(0.093)

0.014

(0.043)

0.002

(0.008)

0.015

(0.023)

0.010

(0.025)

0.003

(0.008)

0.001

(0.004)

0.001

(0.003)

0.004

(0.012)

0.020

(0.033)

0.028

(0.044)

0.009

(0.016)

0.005

(0.012)

0.003

(0.013)

0.002

(0.011)

0.001

(0.004)

0.017

(0.078)

Table VI.6: Means and standard deviations of the Anad catch rates

Month N  C h i n o o k Coho L a k e T  R a i n b o w  B r o w n T

April 44 0.0 0.0 0.0 0.090 0.0

(0.0) (0.0) (0.0) (0.102) (0.0)
May 44 0.0 0.0 0.0 0.079 0.0

(0.0) (0.0) ( 0 . 0 )  ( 0 . 0 8 8 ) (0.0)
September 44 0.112 0.037 0.0 0.011 0.0

( 0 . 1 7 7 )  ( 0 . 0 9 6 )  ( 0 . 0 )  ( 0 . 0 2 3 ) (0.0)
October 44 0.107 0.021 0.0 0.039 0.0

(0.163) (0.039) (0.0) (0.054) (0.0)
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Table VI.7:   Means and standard deviations of the GLww catch rates

Month N Y.Perch Walleye N.Pike SM Bass Carp

April 40 1.073 0.002 0.000 0.000 0.007

(1 .431 )  (0 .008 )  (0 .000 )  (0 .002 )  (0 .031 )
May 40 0.524 0.034 0.005 0.004 0.009 

(0 .735)  (0 .051)  (0 .011)  (0 .011)  (0 .021)

June 40 0.781 0.028 0.002 0.006 0.015

(0.816)  (0 .057)  (0 .006)  (0 .015)  (0 .042)

July 40 0.570 0.048 0.003 0.004 0.021

(0.589) (0.104) (0.007) (0.007) (0.070)
August 40 0.621 0.033 0.011 0.002 0.009

(0.714) (0 .081)  (0 .026)  (0 .005)  (0 .022)

September 40 0.921 0.023 0.002 0.004 0.010

(1.073) (0.066) (0.006) (0.013) (0.030)

October 40 1.254 0.010 0.004 0.001 0.007

(1.775)  (0 .028)  (0 .011)  (0 .004) (0.018)
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Table VI.8: Descriptive statistics: Great Lakes site attributes

Variable N Mean    Std Dev.   Minimum  Maximum
%Forest 41 0.547 0.291 0.7 0.97
Feature  41 0.366 0.733 0.0 3.00
AOC 41 0.341 0.480 0.0 1.00
GLprkg 41 205.512 169.034 0.0 720.00
GLhrbr  41 1.683 1.105 0.0 5.00
GLslip 41 893.927 1633.222 0.0 7951.00
GLramp 41 8.707 10.530 0.0 44.00

Table VI.9: Descriptive statistics: Anad site attributes

Variable N Mean Std Dev. Minimum Maximum
AOC 44 0.273 0.451 0.0 1.0

ANlake 44 0.227 0.424 0.0 1.0

Table VI.10: Descriptive statistics: LScd site attributes

Variable N Mean Std Dev. Minimum Maximum
AOC
Feature
IScdFly
IScd1main
IScd1trib
IScd2main
IScd2trib
IScdNEC
CntmSC
ILtotcd
CntmLC

73
73
73
73
73
73
73
73
73
73
73

0.192
0.260
0.082

19.671
24.877
59.000
79.945
3.630
0.315

2817.712
17.233

0.396
0.602
0.277

27.767
29.705
79.890
98.199

5.934
2.101

6159.408
138.062

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

1.0

3.0
1.0

112.0
144.0
478.0
456.0

30.0
17.0

33942.0
1178.0
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Table VI.11: Descriptive statistics: ILWW site attributes

V a r i a b l e  N Mean Std Dev. Minimum Maximum

AOC 83 0.253 0.437 0.0 1.0

Feature 83 0.229 0.570 0.0 3.0

ILwwacre 83 7652.084 6755.713 204.0 29219.0

IL2story 83 2414.048 5830.382 0.0 33897.0

CntmLW 83 50.096 265.674 0.0 1780.0

Table VI.12: Descriptive statistics: ISWW site attributes

Variable N Mean Std Dev. Minimum. Maximum

AOC

Feature

ISww1main

ISww1trib

ISww2main

ISww2trib

ISwwNEC

CntrnSW

83 0.253
83 0.229

83 28.578

83 21.711

83 22.639

83 105.446

83 3.976

83 3.042

0.437

0.570

30.022
28.624

35.032

89.374

6.912

10.170

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0

3.0

109.0

115.0

181.0

330.0

33.0

55.0



CHAPTER VII

EMPIRICAL RESULTS: MULTINOMIAL LOGIT MODEL

We present the multinominal logit estimation results in this chapter. First, we

discuss the empirical basis for our definition of the number of active hours in a day.

This parameter choice then affects the definition of the choice set for individuals,

particularly on the shorter duration trips of one and two days. We then report

estimates of the nested multinomial logit model. The major portion of the chapter

focuses on estimates of the determinants of site choice for each of the six product lines.

The final segment presents estimates of the second level of the nested structure, the

choice of fishing product line.

In this chapter the model we estimate is based on the assumption that total trip

time is exogenous for individuals when they are making their choice of which site to

visit. In other words, if they had chosen any other feasible alternative in their choice

set, the total trip time would have been the same as it was for the chosen site. As we

argued in Chapter III we have chosen this model as our base case because we believe

it incorporates a more consistent treatment of time than the others appearing in the

literature. In the Appendix we explore the sensitivity of the model to the alternative

assumptions about trip time discussed in Chapter III.

112
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Choice Set Computation: Implementation Details

To define the individual choice set of feasible sites, as discussed in chapter III, we

choose a value for the active hours h per day: to include people whose trip durations

are within two standard deviations above the mean of all people having the same

number of trip days.1 Consider the means and standard deviations of the observed

trip time for people whose trips last from 1 to 7 days below,

 Trip days, D 1 2 3 4 5 6 7

Trip time, T 7.56 25.77 52.65 77.84 101.21 126.46 152.17
(3.85) (11.05) (6.36) (6.43) (6.59) (5.76) (6.03)

Let p ~ and UD denote the mean and standard deviation of the trip time T in

hours for the observed D-day trips. The criterion we adopt is to select an h such

that, for any D.

(D-1) .24-h =p~+2uD.

Consequently h = 17 is used for the calculation of individual choice sets in the MNL

site analysis. People whose trip durations are greater than (D – 1 ) 24-17 are deleted

as outliers. 2

The Site Choice MNL Estimation

The MNL model is first applied repeatedly to the 18 PL-duration subsamples

(6 PLs by 3 durations) to estimate the parameters of the PL-specific site utility

functions. The inclusive value of the sites for each PL-duration group is calculated

from this analysis. For each duration group, the six PL subsamples are then pooled

together and MNL is again used to model the PL decision.

1 
This is a somewhat arbitrary decision. If a small value is used, we not only lose a lot of

observations for individuals who chose sites we define as infeasible for them but we may also exclude
sites that people actually consider visiting when making site choices. On the other hand, for some
people we may be defining the choice set too broadly.

2 Fewer than 2% of the total observations were excluded due to this time constraint violation.
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Great Lakes Coldwater Product Line.

Table VII.1 presents the MNL estimation results for the Great Lakes cold water

product line. All parameters are estimated with signs consistent with a priori predic-

tions, except for the Lake Trout catch rate in the Wkn sample. The Forest variable

is significant for all three duration groups, as is the AOC indicator. The Feature

variable is significant for the longer trips (i.e., Wkn and Vac groups). Most catch rate

variables are significant except Rainbow Trout. The catch rate of Brown Trout is not

used because it does not have much variation across counties. The access variables

(parking, harbor, slips, and ramps) are also excluded due to concern they may be

endogenously determined.3 Due to the limited observations we have in some of the

18 PL- duration subsamples, we cannot incorporate site dummies to estimate the

site-specific constant terms in the utility function.4

The travel cost coefficients provide estimates of the marginal utility of income

(MUI) for each group. As expected, the MUI decreases as the constraint on available

opportunities relaxes from the Day group to the Wkn and Vac groups.

The model predicts 51% of the actual choices made by the Day group, which indi-

cates that destination decisions for short trips are substantially driven by geographical

proximity. As the importance of geographical proximity declines with increasing trip

duration, the model is less effective in capturing the other factors influencing choices:

correct predictions are 15% and 14%, for Wkn and Vac groups respectively.5

3The State has attempted to construct access facilities at popular sites to accommodate demand,
which suggests a reverse causation as well as a direct causation from available facilities.

4Some subsamples have even fewer observations than the number of sites
5These low percentages can also be attributed to the larger choice sets of Wkn and Vac trips. On

average, number of feasible sites in a Wkn or Vac choice set is about twice that in a Day choice set.
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Great Lakes Warmwater Product Line

Table VII.2 presents the MNL estimation results for the Great Lakes warmwater

product line. The Forest variable is not significant for the Day and Wkn groups,

but is positive and significant for the Vac group. Feature has a positive sign and is

significant for the longer trips. These parameter estimates are consistent with our

expectation that people who stay longer on a site will care more about environmental

amenities. AOC is not significant for the shorter trips. For the Vac group, AOC is

significant but the sign is opposite our expectation.6

The catch rate estimates are mostly significant for the Vac trips. Only Northern

Pike is significant for the Wkn group and none is significant for the Day group. Some

species

among

have a negative sign for some duration groups, possibly due to high correlation

the catch rates, but they are not significant in those cases.

Anadromous Run Product Line

Table VII.3 presents the MNL estimation results for the Anadromous run product

line. The presence of lakes or reservoirs is important, as manifested by the significance

of the Lake dummy variable: when lakes occur in anadromous streams in a county,

anglers can choose either boat- or shore-based angling. The AOC variable is significant

for all trips, but has a positive effect on day-trip anglers. The positive AOC parameter

estimate for Day group may be picking up non-linearities in the utility function

with respect to travel distance (and cost). Most of the population is in the southeast

Michigan, and for those individuals, most nearby counties are Areas of Concern.

6According to Douglas Jester of the MDNR Fisheries Division, the reason for this perverse result
is that Saginaw Bay, where people go on longer trips, is one of the few areas with high walleye catch
rates, and also is one of the Areas of Concern.
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Chinook and Rainbow salmon catch rates are also important factors affecting peo-

ple’s site choice decision, whereas Coho is not.

Inland Coldwater Product Line

Table VII.4 presents the MNL estimation results for the inland coldwater (lakes

and streams) product line. Most parameters are imprecisely estimated, perhaps in

part because we have pooled two product lines, each with small sample sizes. Un-

expectedly, we do not pick up a significant positive effect for the opportunity to do

fly fishing at a site, as the lackluster results for the IScdFly dummy shows. AOC is

not significant for any group. The Area of Concern designation primarily applies to

Great Lakes contamination, so it is not surprising that it is not as much of a concern

for inland anglers as for Great Lakes anglers.

The coldwater stream miles variables and the Forest variable are highly correlated

(p > .6); we attribute the mixed performance of the stream miles variables to the

correlation. The negative parameter estimates for the stream contamination mea-

sure CntmSC indicate that anglers avoid contaminated streams when making a site

decision, except for the Wkn sample (which has an insignificant positive parameter

estimate). The fish consumption advisory variable for coldwater lakes CntmLC is

not significant (except for Wkn where it has a significant and perverse effect). These

results probably reflect the lack of variation in the variable: only two counties have

fish consumption advisories on coldwater lakes.

Inland Lakes Warmwater Product Line

Table VII.5 presents the MNL estimation results for the inland lake warmwater

product line. The parameters of the environmental amenities variables (AOC, Forest,

and Feature) are precisely estimated with predicted signs. Note this is the only inland

product line for which AOC parameter estimates are significant. The acres of inland
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warmwater lakes variables are very significant; the variables measuring acres of two-

story lakes are only significant for the Vac group. GntmLW is not significant, which

again probably reflects the lack of variation in the variable: only three counties have

fish consumption advisories on warmwater lakes.

Inland Streams Warmwater Product Line

Table VII.6 presents the MNL estimation results for the inland stream warmwater

product line. Feature is significant, with the predicted sign, for the longer trips, and

Forest is significant for all duration groups. The AOC dummy is not significant

for any duration group. The negative coefficients on the fish consumption advisory -

variable border on significance at the 10% level for the Wkn and Vac groups. All

the top quality stream parameter estimates have positive signs: the main stream

variables are significant; the tributary stream variables are not, though in the Vac

group it borders on 10% significance. All the second quality stream variables have

negative parameter estimates though none is precisely estimated.

The Product Line Choice MNL Estimation

The following variables are considered relevant when people make product line

choices:

The inclusive value (SiteIV) as an index of the
PL can offer.

The favorite catch species (FavCatch) dummy.

potential utility the sites of a

People indicated in the ques-
tionnaire which species (out of a total of 16 species) they like to catch most. 7

The product lines that contain the individual’s favorite species have a value of
1, otherwise they are set to 0.8

7The species composition of the six product lines are not mutually exclusive. For example, the
Great Lakes coldwater and the inland coldwater product lines overlap. The Great Lakes warmwater
and the inland warmwater product lines also share most of their fish species.

8People also indicated in the survey what their favorite eating species are. This variable is not
used because it is highly correlated with the favorite catch species.
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The favorite water type (FavWater) dummy. people revealed their water type
preference among Great Lakes, inland lakes, and streams/rivers. Product lines
whose water type is favored have a value of 1, and 0 otherwise.9

The expected supply costs (Supplies$). To predict the supply costs of the dif-
ferent product lines, the self-reported supply costs are regressed on number of
days in trip, angler party size, and the interaction of them separately for each
product line. The estimated parameters are then used to calculate the projected
product line costs.

The expected boat costs ( Boat $). similar regressions are run for the calculation
of the boat costs as those for the supply costs. This is done, however, separately
for people who own a boat and those who do not. The Great Lakes coldwater
product line is the most costly in terms of both supply costs and boat use costs.

Because the favorite species and favorite catch variables are so closely correlated with

the product line choices, we report regression results without those variables. When

those variables (with an average value of .8) are included, their power overwhelms

the effect of some of the other variables. We include five product line dummies, with

the Great Lakes coldwater (GLcd) dummy omitted as the base case.

Table VII.7 presents the MNL estimation results for anglers’ product line choice.

All parameter estimates of SiteIV are within the unit interval [0,1], which assures

us that the NMNL model is not violating the consumer random utility maximization

assumption. Also the coefficients of SiteIV are significantly different from 1 at 1%

level for all three duration groups, Therefore, the simple logit, in which the SiteIV

coefficient is assumed to be 1, is rejected.

The parameters of the supply and boat use costs are positive for some duration

groups, contrary to expectations.

some sort, people will also produce

through any of the other variables.

It is possible that by incurring higher costs of

a higher quality experience which is not captured

For example, the use of bigger boats may provide

9We also know the fishing mode and method that are favored by anglers. This information,
however, is not utilized because most PLs offer opportunities for the use of most modes/methods.
Angler experience is not included as a variable either since only inland cold stream angling demands
some skill.
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access to fishing opportunities that otherwise are not available.
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Table VII.1: MNL estimates for the GLcd product line

Day Anglers Wkn Anglers Vac Anglers
Dist$/100 –17.39

(-16.49)
–4.20

(-10.77)
–2.40

(-8.52)

–.98
(-4.26)

2.26

(4.74)

0.60
(3.62)

9.73
(5.62)

5.06
(3.20)

3.93
(3.40)

3.45
(0.88)

–625.2
205.3

13.8

195[151/44]
7785

AOC –1.54
(-8.60)

–1.75
(-8.07)

%Forest 2.34
(4.13)

1.23

(3.14)

Feature 0.08
(0.38)

0.51
(3.15)

Chinook Salmon 8.37
(3.88)

8.93
(5.66)

Coho Salmon 3.93
(1.90)

5.37
(3.34)

Lake Trout 3.31
(1.66)

–1.27
(-0.49)

Rainbow Trout 2.21
(0.42)

2.47
(0.70)

Log Likelihood

x2- test
%Choices Right

#People[MI/non-MI]
#Choices

–520.2
737.5
50.9

–795.7
321.3

15.3

338[327/11]
5624

195[151/44]
10201

Note: Numbers in parentheses are t- statistics.
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Table VII2: MNL estimates for the GLww product line

Day Anglers Wkn Anglers Vac Anglers
Dist$/100

AOC

%Forest

Feature

Yellow Perch

Walleye

Northern Pike

Smallmouth Bass

Carp

Log Likelihood
x2- test
%Choices Right

#People[MI/non-MI] 668[654/14]
#Choices 10179

-17.34
(-22.17)

-0.05
(-0.30)

-0.93
(-1.40)

0.20
(0.53)

0.08
(1.09)

-0.20
(-0.34)

0.73
(0.08)

9.37
(1.00)

2.97
(1.95)

-824.2
1743.3

62.7

-3.49
(-7.86)

-0.23
(-0.90)

-0.34
(-0.59)

0.84
(3.01)

0.13
(1.36)

0.53
(0.46)

10.45
(2.52)

-22.61

(-1.28)

-5.43
(-1.48}

-424.3
159.9

12.9

140[133/7]
5250

-1.47
(-5.01)

0.60
(2.92)

2.21
(3.06)

1 .62
(6 .34)

0.12
(0.94)

3.23

(2.32)

26.91
(7.46)

21.76
(2.36)

3.92
(2.08)

-389.3
195.3

18.2

132[105/27]
5280

Note: Numbers in parentheses are t- statistics.
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Table VII.3: MNL estimates for the Anad product line

Day Anglers Wkn Anglers Vac Anglers
Dist$/100 -15.72 -2.66 -1.45

(-10.10) (-5.89) (-3.09)

AOC 0.66 -0.86 -1.91
(2.56) (-2.64) (-3.18)

Lake 0.63 0.86 0.79.
(2.44) (3.89) (3.01)

Chinook Salmon 2.53 4.04 4.42
(3.53) (9.33) (9.15)

Coho Salmon -0.85 -8.80 0.88
(-0.27) (-1.72) (0.43)

Rainbow Trout 9.49 6.13 6.15
(4.63) (4.67) (3.93)

Log Likelihood -173.5 -309.4 -224.2
X2- test 276.7 177.8 157.0

%Choices Right 67.5 15.9 13.8

#People[MI/non-MI) 123[113/10] 107[77/30] 80[40/40]
#Choices 2133 4475 3520

Note: Numbers in parentheses are t- statistics.
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Table VII.4: MNL estimates for the LScd product line

Day Anglers Wkn Anglers Vac Anglers
Dist$/100 -24.49

(-14.44)

AOC 0.13
(0.39)

Forest 4.90
(4.40)

Feature -0.21
(-0.64)

IScdFly 0.32
(0.86)

IScd1main/100 -0.32
(-1.05)

IScd1trib/100 -0.59
(-0.92)

IScd2main/100 0.48
(2.19)

IScd2trib/100 0.44
(1.66)

SCnec/100 -0.27
(-0.11)

CntmSC -0.13
(-1.88)

ILTotCd/100 0.003
(1.49)

CntmLC/100 0.10
(0.37)

Log Likelihood -243.0
X2- test 671.1
%Choices Right 69.3

#People[MI/non-MI] 192[187/5]
#Choices 5343

-5.08
(-9.20)

0.18
(0.48)

7.36
(9.09)

-0.22

(-0.82)

-0.19
(-0.63)

1.11
(3.15)

0.40
(0.76)

0.03
(0.18)

-0.08
(-0.44)

-6.97
(-2.34)

0.02
(0.39)

0.001
(0.74)

0.43
(2.10)

-466.0
383.8

20.6

155[143/12]
10977

-2.13
(-6.11)

-0.12
(-0.30)

5.76
(6.81)

-0.38
(-1.26)

0.23
(0.70)

0.27
(0.69)

0.15
(0.30)

0.23
(1.45)

0.06
(0.33)

1.52
(0.75)

-.14
(-1.84)

0.002
(1.08)

0.11
(0.55)

-392.3
176.6

9.8

112[97/15]
8176

Note: Numbers in parentheses are t- statistics.
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Table VII.5: MNL estimates for the ILww product line

Pay Anglers Wkn Anglers Vac Anglers
Dist$/100 -23.66 -5.15 -1.71

(-35.29) (-18.60) (-14.20)

AOC -0.43 -0.81 -0.65
(-4.31) (-5.34) (-4.88)

Forest 2.83 3.62 2.83
(6.79) (12.06) (11.59)

Feature 0.21 0.33 0.54
(1.53) (2.59)  (5.68)

ILwwacre/100 0.007 0.006 0.007
(12.14) (9.74) (14.84)

IL2story/100 0.0004 0.0003 0.0027
(0.35) (0.37) (5.66)

CntmLW/100 -0.0006 0.006 0.016
(-0.40) (0.24) (0.74)

Log Likelihood -1645 -1613 -2455
x2- test 3353.2 791.5 870.7

%Choices Right 61.2 10.5 8.6

#People[MI/non-MI] 989[949\40] 459[369/90] 654[470/184]
#Choices 35284 36941 54282

Note: Numbers in parentheses are t- statistics.
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Table VII.6: MNL estimates for the ISww product line

Day Anglers Wkn Anglers Vac Anglers
Dist$/100

AOC

Forest

Feature

ISww1main/100

ISww1trib/100

ISww2main/100

ISww2trib/100

ISwwNEC/100

CntmSW

Log Likelihood
x2- test
%Choices Right

#People[MI/non-MI]
#Choices

-26.47
(-17.46)

-0.06
(-0.26)

1.81
(2.09)
-.29

(-0.83)

0.82
(2.55)

0.56
(1.12)

-0.16
(-0.61)

-0.24
(-1.73)

-1.39
(-0.93)

-.002
(-0.19)

-349.9
887.2

73.2

246[240/6]
8100

-6.08
(-7.95)

0.15
(0.44)

3.88
(4.79)

0.79
(2.54)

1.67
(3.63)

0.64
(0.93)

-1.02
(-1.88)

-0.37
(-1.79)

2.56
(1.23)

-0.028
(-1.63)

-249.5
136.7

21.9

73[67/6]
5747

-3.75
(-7.70)

-.14
(-0.40)

6.37
(7.46)

0.64
(2.48)

1.10
(2.48)

0.87
(1.57)

-0.60
(-1.29)

-0.02
(-0.10)

4.03
(2.01)

-0.098
(-1.59)

-3112.8
160.9

14.6

89[67/22]
7387

Note: Numbers in parentheses are t- statistics.
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Table VII.7: MNL estimates for the product line choice

Day Anglers Wkn Anglers Vac Anglers
SiteIV

Supplies$/100

Boat$/100

GLww(dummy)

Anad(dummy)

LScd(dummy)

ILww(dummy)

ISww(dummy)

Log Likelihood
x2- test
%Choices Right

#People
#Choices

0.925
(26.66)

0.034
(3.37)

0.015
(1.97)

1.579
(13.31)

-0.995
(-5.594)

-1.975
(-12.90)

0.359
(2.63)

-.191
(-1.451)

-3422

1928.8
50.5

2580
14213

0.438
(5.58)

-0.021
(-1.46)

0.001
(0.80)

-0.899
(-3.67)

-0.902
(-3.94)

-2.707
(-6.40)

-0.868
(-2.52)

–2.461
(-7.45)

-1844
429.8

38.9

1196
6715

0.246
(2.80)

0.003
(0.72)

0.002
(0.48)

-0.657
(-2.88)

0.285

(1.53)

-1.070
(-3.06)

0.922
(3.45)

-1.170
(-3.95)

-1730
770.2

51.8

1262
6769

Note: Numbers in parentheses are t- statistics.



CHAPTER VIII

EMPIRICAL RESULTS: THE PARTICIPATION MODEL

We report the estimation results of the competing risks model in this chapter.

We first present the exponential model estimates. We then report the Weibull model

estimates, which allow us to test the duration independence assumption of the expo-

nential model,

Variable Definitions and Analysis Sample

For the participation model, we estimate the determinants of individuals’ choices

about how many trips of different durations to take during a fishing season. The

explanatory variables include

 IV: The inclusive value of the product lines and sites available to an individual.
This variable varies with time and is computed for each month in the open-water
season (April - October) from the NMNL estimates.

We showed above in chapter III, equation (III.15), that the inclusive value
index could be decomposed into the sum of three terms: the pseudo-IV (which
does not include the unmeasured choice occasion income), the choice occasion
income, and an individual specific constant term. This variable is the pseudo-
IV. As noted below, we substitute an alternative income measure below for the
(unmeasured) choice occasion budget. The individual-specific term is captured
by the variables measuring individual characteristics. Because we substitute for
the components of the IV, we do not constrain the parameter estimates of the
various substitute variables to be equal.
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WageCost: The measure of the opportunity wage cost of taking a fishing trip,
which equals the after-tax wage rate times the number of trip-hours.  (In Table
VIII.1, we report the values of the after-tax wage variable.)

 HHY: Individual annual household income is substituted for the unknown choice-
occasion budget for recreational fishing.1

ExpRate: (0,1) dummy, =1 for people self-reported as “experienced” or “ex-
pert”; =0 for people self-reported as “beginner” or “somewhat experienced”.

No Work: (0, 1) dummy, =1 if the respondent is a student, unemployed, or
retired.

NoSpouse: (0, 1 ) dummy, =1 if the respondent does not have a spouse.

SpNoFish: (0, 1) dummy, =1 if the respondent is married and his/her spouse
does not fish.

NoKids: (0, 1) dummy, = 1 if the respondent has no child under 16 years old.

Table VIII.1 presents the descriptive statistics of the age duration and the ex-

planatory variables for the analysis sample. The mean and standard deviation of the

IV variable are not reported because IV varies with time. The sample sizes in this

table represent all observations included in the participation estimation. The full

sample of the 5376 observations comprises four subsamples:

1. The Day group — 2258 people whose last trips are day trips.

2. The Wkn group — 1070 people whose last trips are weekend trips.

3. The Vac group — 1105 people whose last trips are vacation trips

4. The Non-Partic group — 867 people for whom no trip was observed taken.

We split the Non-Partic group into two types of people: (1) the 582 people who did

not report a trip (No- Trip) and (2) the 285 people whose reported trip is not suitable

for being counted in the welfare analysis (Inelig Trip) .2 The “true” non-participants

1We can interpret this substitution to be in the spirit of the lifetime income framework, which
posits that people can borrow and lend freely across time periods.

2A trip is labeled as uncountable either because fishing was not a purpose of the trip or because
the trip was longer than 16 days, and so was motivated by many purposes besides recreational
fishing.
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did not take a trip between the beginning of the 1983 open-water fishing season

and their questionnaire return date, which ranges from seven to fourteen months.

Therefore, their sampled between-trip duration is left truncated at April 1, 1983 and

fight truncated at the questionnaire return date.  For the people last trip

is not a "countable” fishing trip, we can only conclude that no “countable” fishing

trip has occurred

questionnaire was

thirteen months).

between the time the uncounted trip was taken and the time the

returned, which ranges from one to nine months (with one outlier at

Therefore, the sampled between-trip duration is left-truncated by

the trip that is not countable and right-truncated at the return of the questionnaire.

The distribution of the age durations (or the censored ages for the non-participants)

in our sample is presented in table VIII.2. The different selection processes for the

two sub-groups of non-participants are clearly evident in the lower means and ranges

of the age variable for the Pseudo-Trip group. Since we only consider the open-water

fishing season (from April to October), a “year” consists of only seven months.

The Day, Wkn and Vac samples are smaller than their counterparts used in the

MNL analysis because we had to delete the people for whom we did not have the

questionnaire return dates or the last trip dates. For the MNL analysis, we only need

to know the month during which the trip was taken. For the participation analysis,

however, we require the complete month/day/year information in order to calculate

the age duration. 3Also, people whose questionnaires were returned on the same day

that their trips ended are excluded because they might have waited until after their

next trip to fill out (and mail) the questionnaires. In such cases, these two dates are

not independent and our random censoring assumption is violated.

3Actually we can further exploit interval information on age. For anglers for whom we only have
month and year data, for example, we can calculate upper and lower bounds of the age duration
and include an integral term (instead of a density term) in the likelihood function.
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Participation Model Estimates

Table VIII.3 presents the parameter estimates of the exponential competing risks

model. The IV parameter indicates that there is a positive relationship between trip

value and number of day and weekend trips taken by anglers, as predicted; however;

the relationship is negative for vacation trips. The parameter estimates are significant

for all trip lengths,

but fewer vacation

The WageCost

Therefore, people are likely to take more day and weekend trips,

trips, when trip value is higher.

variables are only significant (with the predicted negative effect)

for Day trips; the probabilities of taking a weekend or vacation trip do not appear

to be sensitive to the wage costs of the trips. People with higher household incomes

(HHY) tend to take more trips of all durations than lower income people. Greater

angler experience (ExpRate) is also associated with greater participation intensity.

To interpret the effect of not working (NoWork = 1, for students, unemployed and

retired people), we need to consider the combined impact of NoWork and WageCost,

where the wage cost is positive only for employed anglers. Though the NoWork

coefficient estimates are negative for all three duration groups, the net effect of not

working is negative only for Wkn and Vac (for which WageCost is not significant).

Consequently, the results indicate that non-working individuals are more likely than

working individuals to take day trips. The negative parameter estimate on NoWork

indicates there is a non-linearity in the relationship between participation probabilities

and WageCost when an individual does not earn wages.

To interpret the effect of marital status and whether a spouse fishes, we need to

look at both NoSpouse and SpNoFish variables. An angler is assigned to one of three

categories: (1) single, (2) married and spouse does not fish, or (3) married and spouse

fishes (the excluded category). For the single anglers, NoSpouse = 1 and SpNoFish

= 0. For the married anglers (with NoSouse = 0), SpNoFish = 1 if their spouses
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do not fish, and = 0 otherwise. The parameter estimates indicate that, relative to

having a spouse who fishes, having a spouse who does not fish significantly lowers

the probability of taking the longer trips. Being single does not have significantly

different effects than having a spouse who fishes, though a dampening effect on the

vacation probability does approach significance at the 10% level. Referring to table

VIII. 1, we know that the four analysis subsamples have the following distribution:

Status No-Trip Pseudo-Trip Day Wkn Vac
Single 26% 22% 23% 20% 19%
Married, SpNoFish=1 31% 27% 28% 27% 24%
Married, SpNoFish=0 43% 51% 49% 53% 57%

Note a larger proportion of the non-participants are single or have spouses who

do not fish: this contributes to the negative parameter estimates of the NoSpouse

and SpNoFish variables. Having no children under 16 years old also reduces the

probability of taking a day trips but has no effect on the probabilities of weekend or

vacation trips. 4These family variables do not have the large and significant effects

of IV, HHY, and ExpRate.

The Weibull model reported in table VIII.4 yields scale parameter estimates very

similar to, the values imposed in the exponential model. The existence of negative

duration dependence is suggested by the negative shape exponent a = –0.022 < 0.

The shape parameter is calculated as ~ = e 0022 = 0.978

shape exponent Q is not significantly different from 0, the

rejected.

< 1. However, since the

exponential model is not

From the estimated parameters in the exponential and Weibull models, we calcu-

late the predicted numbers of day, weekend, and vacation trips for the anglers in the

analysis sample, which are reported in table VIII.5 The negative duration depen-

dence in the Weibull model is sufficiently small that the predicted numbers of trips

4The estimated effect is only significant on Day trips.
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of each type are essentially the same for both models.

In future work, it would be desirable to evaluate whether we should treat the non-

participants differently from the participants in our analysis. In a population-based

sample, non-participants will include respondents who clearly did not intend to

participate (and who realized their intentions.) In contrast, our sample is restricted to

people who purchased Michigan fishing licenses during the survey years: non-

participants wanted the option to fish, but chose not to exercise the option. Nonetheless,

it is possible that sample non-participants differ substantially from participants in their

unobserved characteristics. Unfortunately, we do not have the data to identify special

circumstances such as illness or unusually heavy work or family obligations, which could

have been unanticipated at the time of the license purchases.5 The suggestion of negative,

duration dependence in our sample could be due to these or other sources of unobserved

heterogeneity between the participants and the non-participants.

To test this hypothesis, a conditional Weibull model could be estimated with only

the participants (conditional on participation during the survey seasons). If the original

competing risks model is correct (i.e., no unobserved heterogeneity exists), the 

conditional Weibull estimates should be very close to those of the unconditional Weibull

since the conditional Weibull involves only loss of efficiency.6 This additional analysis

was beyond the scope of this study.

5Table VII. 1 shows that the sample means for the non-participant groups are different from those of
the other three groups for key observed characteristics, though the differences are not significant (1) on
average, the non-participants have lower wages and household incomes (2) they have less angling
experience than people in the other groups; (3) a larger proportion of them do not work; (4) a larger
proportion of them do not have a spouse; and (5) a larger proportion of them do not have children under
16 years old. In Table VIII.1, we also can see that the mean censored age duration of the non-
participants is over three times the mean (uncensored) age for the Day and Wkn samples, and twice that
of the Vac sample.

6Defining the distinction between participants and non-participants is more complicated in our dataset
than with a more typical survey, in which total trips are measured for a fixed time period across all
individuals. In our dataset, we observe “no trip” outcomes over very different time periods, ranging from
one to fourteen months. To model “no-participation”, we must confront the question, “over what time
period must a licensed angler not-participate to be considered a different type of person?”
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External Validation of the Participation Model

In order to validate the participation estimates from the model, we compare total

participation predicted by the model against participation estimates derived from another

data source: mail surveys collecting participation diary data, sponsored by the Michigan

Department of Natural Resources during years 1980-82. Because the process and criteria

for counting trips and days are different in the two datasets, the comparison is not suited

to statistical testing. The diary mail survey was a 1% sample of all licensed anglers, with

a 62% response rate. The questions about trip participation elicited counts of angler-days

over the prior three months, in single-month increments. In the table below, we report

the number of angler days calculated directly from the data, by fishing product line. Two

adjustments are then made to these estimates to provide a more appropriate estimate of

open-water angler days. First, the MDNR estimates that the calculations overstate the

number of annual angler days by 35% on average, based on comparison of these trip

estimates against direct observation of participation in small area surveys.7 To correct the

overstatement, we divide the numbers by 1.35. Second, we adjust the total annual days

by a factor of .9 in order to limit the estimate to open-water angling days only, for

comparability with the sample employed in participation modeling. The adjusted totals

are reported at the bottom of the table.

7 Personal communication with Douglas B. Jester, Fisheries Division, Michigan Department of Natural
Resources, 1992.



134

Angler-Days Estimated from the MDNR Diary Survey8

Product Line 1980 1981 1982
Great Lakes Coldwater 2,150 2,575 2,220
Great Lakes Warmwater 4,620 4,690 4,710
Anadromous Runs 1,430 1,735 1,270
Inland Coldwater 2,000 2,250 1,590
Inland Warmwater 11,200 12,150 11,010

Annual Total 21,400 23,400 20,800
Adjusted Total 14,267 15,600 13,867

To compare model predictions against the diary data estimates above, we translate

the predicted number of fishing trips from the model reported in Table VIII.5 into

angler-days and extrapolate from the analysis sample to the population of anglers.

However, as noted above, the participation concepts are different in the two samples: the

analysis of the MDNR diary mail survey is designed to be all-inclusive of fishing days, 

whereas our demand analysis is restricted to trips suitable for inclusion in a welfare

analysis of the benefits of recreational fishing.9 We incorporate a partial adjustment for

this exclusion, as described below.

To calculate estimated angler days based on the recreational fishing model, we

translate trips T into days D by multiplying the number of weekend trips by the sample

mean weekend trip-length of 3.05 days, and the number of vacation trips by the sample

mean vacation trip-length of 9.12 days. 10The estimated

the 4433 participants and the 867 non-participants in our

VIII.6, separately for each model.

total trips and angler-days for

sample are presented in Table

Denote the predicted total number of (eligible) angler-days of the 867 non-

participants in the sample by D0 and that of the 4433 participants by D1. We then

8The unit is thousand angler-days.
9On the other hand, the variable measured in the angler survey used in the participation modeling is

number of trip-days.
10This is the average length of all trips between 5 days and 16 days in our sample.
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extrapolate as follows:

1,414,914 is the total angler population in 1983,
1320 is the number of no-trip people in the MDNR data,
1992 is the number of ineligible-trip people in the MDNR data,
7636 is the number of participants in the MDNR data, and
NO,N + NO,l + N1 = 10,948 is the total sample size of the MDNR data.
582 is the number of no-trip people in our analysis sample,
285 is the number of ineligible-trip people in our analysis sample, and
4433 is the number of participants in our analysis sample. 23

The total predicted (eligible) trip-days for the population,

different models, are calculated to be

corresponding to the

Model D O , N D O,I D 1 D *

Exponential 3,545 2,123 33,274 10,364,296

Weibull 3,518 2,122 33,124 10,322,086

The total angler-days estimated from our competing-risk model appears to be about

30% less than the MDNR diary mail survey estimate, without any adjustment for deletion

from the sample of trips of longer than 16 days or trips not originally planned for the

purpose of fishing. To take account of these ‘ineligible’ trips, we also report in Table

VIII.6 the number of days of ineligible fishing trips measured in the sample. This is a

very limited measure of omitted fishing days for the season: whereas all 5300 individuals

in the sample may take multiple trips per season that would not be counted in the welfare

analysis,11 we only count the days of one trip and we count them only for those 285

people whose most recent trip was ineligible. We calculated the total trip-days of the 285

11 
The exception is the 582 people who took no trips over one 7-month open water season (or longer.)



135A

people in the sample whose last trip was ineligible as DNE0,1 = 3931. We extrapolate12

this estimate to the population of anglers as follows:

With the partial adjustment, the prediction is about the same magnitude as the

MDNR figures. We infer that the differences in the definition of fishing days included in

the estimates may account for the differences between estimates, though we have

insufficient data to test fully the hypothesis. Though the differences in the concepts

being measured limit our ability to compare the estimates, we conclude that the similarity

of predicted participation between the model and the annual diary data provides some

evidence corroborating the participation model.

12It is possible that sampling bias or selection bias exists in our extrapolation procedures. The
individuals in both MDNR datasets were randomly sampled from the total licensed angler population;
however, according to Douglas Jester of MDNR Fisheries Division, people who are less experienced or
who fish less frequently do tend to be slower (and less likely) to return the questionnaires. As a
consequence, we may have an upward bias in our participation calculation from both data sources.
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Table VIII.1: Attributes of the participation analysis sample

No-Trip Inelig Trip Day Trip Wkn Trip Vac Trip
[Censored] Age
(in days)

Wage

HHY/104

ExpRate

NoWork

NoSpouse

SpNoFish

NoKids

246.96
(54.03)

5.45
(6.09)

2.20
(1.54)

0.38
(0.43)

0.43
(0.50)

0.26
(0.44)

0.31
(0.46)

0.71
(0.46)

N 582

98.01
(56.21 )

5.96
(5.83)

2.45
(1.47)

0.40
(0.48)

0.39
(0.49)

0.22

(0.42)

0.27

(0.45)

0.72

(0.45)

285

58.89
(50.83)

7.23
(5.66)

2.65
(1.52)

0.53
(0.50)

0.25
(0.44)

0.23
(0.42)

0.28
(0.45)

0.55
(0.50)

2258

64.10
(54.57)

8.70
(5.73)

3.02

(1.57)

0.51
(0.50)

0.17
(0.38)

0.20

(0.40)

0.27
(0.44)

0.56
(0.50)

1070

92.11
{52.46)

8.34
(5.80)

2.98
(1.50)

0.50
(0.50)

0.23
(0.42)

0.19
(0.39)

0.24
(0.43)

0.60
(0.49)

1105

Note: Numbers in parentheses are standard deviations.
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Table VIII.2: Distribution of the age (or censored age) duration length

#Months No-Trip Inelig Trip Day Trip Wkn Trip Vac Trip Sub-Total
1 0 22 718 274 122 1136
2 0 64 590 366 207 1227
3 0 56 423 151 224 854
4
5

0
0

58
36

253
142

108
 64

243
152

662
394

6 0 24 67 61 96 248
7 372 14 31 25 38 480
8 0 5 21 13 17 56
9 82 5 10 6 5 108

10 57 0 2 1 1 61
11 11 0 1 1 0 13
12 0 0 0 0 0 0
13 53 1 0 0 0 54
14 7 0 0 0 0 7

Total 582 285 2258 1070 1105 5300
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Table VIII.3: Competing risks exponential model estimates

Day Trips Wkn Trips Vac Trips
Intercept

IV

WageCost/10 2

HHY/104

ExpRate

NoWork

NoSpouse

SpNoFish

NoKids

-6.459
(-61.56)

0.780
(17.53)

-1.879
(-2.50)

0.045
(2.30)

0.372
(8.73)

-0.326
(-4.21)

-0.019
(-0.34)

-0.048
(-0.96)

-0.259

(-5.43)

-6.812
(-50.22)

0.312
(5.71)

-0.128

(-0.13)

0.123
(4.41)

0.295
(4.76)

-0.587
(-4.94)

-0.113
(-1.30)

-0.143
(-1.96)

-0.021

(-0.31)

Log Likelihood -29219.5994
x2 - test (DOF=27) 2791554.8012
Likelihood Ratio Index 0.9795

-5.791
(-51.25)

-0.437
(-16.25)

0.400
(0.40)

0.096
(3.51)

0.204

(3.36)

-0.213
(-1.82)

-0.130
(-1.52)

-9.264
(-3.58)

0.074
(1.11)

Note: Numbers in parentheses are t- statistics.



139

Table VIII.4: Competing risks Weibull model estimates

Day Trips Wkn Trips Vac Trips

Shape exponent a

Intercept

IV

WageCost/10 2

HHY/10 4

ExpRate

NoWork

NoSpouse

SpNoFish

NoKids

-6.455
(-60.88)

0.780
(17.36)

-1.909
(-2.51)

0.046
(2.31)

0.376
(8.71)

-0.331
(-4.21)

-0.020
(-0.35)

-0.049
(-0.97)

-0.260
(-5.39)

-0.022

(-1.78)

-6.811
(-49.93)

0.312
(5.69)

-0.141
(-0.14)

0.124
(4.41)

0.299
(4.80)

-0.589
(-4.94)

-0.113
(-1.30)

-0.144
(-1.96)

-0.022
(-0.33)

Log Likelihood -29217.9915

X2- test (DOF=28) 2791558.0169

Likelihood Ratio Index 0.9794

-5.787
(-50.78)

-0.440
(-16.07)

0.395
(0.39)

0.096
(3.51)

0.208

(3.41)

-0.215

(-1.83)

-0.129
(-1.49)

-0.265

(-3.56)

0.073
(1.08)

Note: Numbers in parentheses are t- statistics,
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Table VIII.5: Predicted number of trips per angler in an open-water
season

N Day Trip Wkn Trip Vac Trip

Exponential model:

Day Sample 2258 1.255 0.549 0.442

Wkn Sample 1070 1.157 0.568 0.516

Vac Sample 1105 0.905 0.495 0.671
No Trip 582 0.916 0.422 0.426
Inelig Trip 285 0.875 0.426 0.580

Weibull model

Day Sample 2258 1.248 0.546 0.440

Wkn Sample 1070 1.150 0.565 0.514

Vac Sample 1105 0.900 0.492 0.669

No Trip 582 0.910 0.419 0.423
Inelig Trip 285 0.869 0.423 0.578

Table VIII.6: Predicted number of total angler-days in an open-water
season

Day Trip Wkn Trip Vac Trip Total
Exponential model:

Total Trips (Participants), T1
5072 2394 2292

Total Days (Participants), D1 5072 7303 20899 33274

Total Trips (No Trip), T0,N 533 246 248

Total Days (No Trip), D0,N 533 750 2262 3545

Total Trips (Inelig Trip), T 0 , P 249 121 165

Total Days (Inelig Trip), D 0 , P 249 369 1505 2123

Weibull model:

Total Trips (Participants), T1 5043 2381 2283

Total Days (Participants), D1 5043 7262 20819  33124
Total Trips (No Trip), T0,N 530 244 246
Total Days (No Trip), D0,N 530 744 2244 3518
Total Trips (Inelig Trip), T 0 ,P 248 121 165

Total Days (Inelig Trip), D 0 , P
249 369 1505 2122



CHAPTER IX

POLICY APPLICATION: LUDINGTON PUMPED-STORAGE PLANT

Biological Scenarios

The economic principles of natural resource damage assessment can be illustrated

in the context of an important liability case in which the State of Michigan is suing

for damages as a result of fishkills attributable to the operation of the Ludington

Pumped-Storage plant on Lake Michigan.1 A related action has also been brought by

the State and the National Wildlife Federation before the Federal Energy Regulatory

Commission, which licenses hydro-power plants.

The largest hydropower facility of its kind in the country, the pump-storage plant

is responsible for the largest continuous fishkill in Michigan waters. Designed to serve

the peak load requirements of Michigan electric consumers, it pumps water from Lake

Michigan to a storage reservoir 360 feet above lake level during low-demand periods

and releases it back to the lake through six power-generating turbines during peak-

demand hours. When operating at full capacity, the plant is capable of producing

1.8 million kilowatts of electricity. Millions of fish are killed every year as they are

pumped in with water currents traveling at up to 6 ft/sec and later released through

1 Civil Action No, 86-7075-CE, State of Michigan Circuit Court.
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the pump-turbines. Death occurs as a result of pressure changes, direct contact with

the pump-turbine blades, and associated stress.

A study commissioned by the utilities that own the power plant estimated that

in 1980 the plant killed, among other fish, 1.1–3.2% of the entire biomass in Lake

Michigan of alewife, a forage species necessary to support the stocked recreational

trout and salmon fisheries, and 5.6% of adult-equivalents for combined angler harvests

of five trout and Salinon species. The trout and salmon fisheries most heavily affected

by the power plant are completely allocated to recreational uses.

Baseline: Current Plant Operation

This baseline situation represents the operation of the Ludington plant without

fish protection measures, from the initial plant startup in 1971 through 1988. Catch

rates under this situation are adequately represented by the catch rates used in the

estimation of the discrete choice NMNL model.

Termination of Plant Operation

This scenario2 is designed to capture the change in fishing quality that would

occur if all fish mortalities associated with plant operations were eliminated, either

by fish protection measures or termination of plant operations. Catch rates under

this scenario are higher than in the base scenario for two reasons: sport fish killed

by the plant would remain in the stock, and, more importantly, forage fish killed by

the plant would be available to support additional stocks of sport fish. Forage is a

limiting factor in the current State program for stocking trout and salmon in the

Great Lakes.

2This Ludington pumped-storage plant biological scenario is provided by Douglas B. Jester of
the Michigan Department of Natural Resources Fisheries Division.
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Salmon and trout catch rates throughout Lake Michigan would be affected since

migration of the salmonid species and the forage fish would rapidly diffuse the effects

of a change in mortalities at the Ludington-Pumped Storage plant.3 Catch rates in

anadromous fisheries for trout and salmon upstream from Lake Michigan would also

be affected in the same Lake Michigan counties and in some inland counties. 4

According to the MDNR scenario: the termination of plant operations would im-

prove both Great Lakes and anadromous fisheries for trout and salmon in and along

Lake Michigan at the following rate:

Product Lines Species Increase in Catch Rate
GLcd, Anad Chinook Salmon 10.0%

Coho Salmon 3.3%
Lake Trout 13.7%

Rainbow Trout 8.6%

Catch rates of other species are unlikely to change outside the immediate plant

area of Mason (53) and Oceana (64) counties. Among the warmwater species killed

by the plant, yellow perch is the only recreational species killed in significant numbers

and included in the MNL model specifications. For these two counties, the scenario

specifies that yellow perch catch rates would increase by approximately 7% if yellow

perch were not killed by operations of the plant. All of the above catch rate changes

are predicted to occur across all months of the year. The 22 Michigan counties affected

by the operation of the Ludington plant are shown in map IX.1.

3Lake Michigan counties affected include: Allegan (3), Antrim (5), Benzie (10), Berrien (11),
Charlevoix (15), Emmet (24), Grand Traverse (28), Leelanau (45), Mackinac (49), Manistee (51),
Mason (53), Muskegon (61), Oceana (64), Ottawa (70), Schoolcraft (77), and Van Buren (80). Two
Green Bay counties, Delta (21) and Menominee (55), are the only exceptions.

4These inland counties are Eaton (23), Ingham (33), Ionia (34), Kent (41), Lake (43), and
Newaygo (62).
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Consumer Surplus Calculation

To estimate people’s willingness-to-pay (WTP) for the termination of Luding-

ton plant operations, we first calculate the seasonal compensating variation for the

analysis sample according to formula V.28 in chapter V:

where

i indexes individuals in the sample of our consumer surplus analysis.

m indexes months (April — October) in an open-water season.

d indexes types of trips (= Day, Wkn, Vat).

0 refers to the “with plant operations” case.

1 refers to the “no plant operations” case,

~~ is the weighted (across product lines) MUI per $100 for trip duration type d.

T is the predicted number of total trips in a season.

~ is the pseudo-IV variable defined in chapter III.

The multiplication by 100 is to correct for the fact that the unit of the marginal

utility of income parameter (~d) is utility-per-$100 because the distance cost variable

is divided by 100. Table IX.1 presents, separately for each duration group, the com-

pensating variation per trip (~~d – ~~~)  x 10@/’ijd in 1984 dollars (averaged over the

seven open-water fishing months) associated with the fishkill caused by the Luding-

ton operations, conditional on the trip type being chosen. The expected increase in

value per trip is small since only a few product lines and sites are affected. Table

IX.2 reports the predicted number of season trips T0 with the plant operating. Since

the exponential model is not rejected when tested by estimating the Weibull model,

we use the exponential estimates in the calculation. Tables IX.3 and IX.4 report the

predicted change in total trips (7’~J – T~d) and the total compensating variation (Wd)
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in 1984 dollars for one open-water season if the operation of Ludington plant were ter-

minated. We predict fewer vacation trips from the termination of the plant because

the IV parameter estimate of the participation model is negative for the vacation

trip. Therefore, higher IV will lead to a reduction in the vacation trips. The total

seasonal compensating variation for the sample is thus calculated to be W = $1939. 71

(in 1984$) from the subtotals in table IX.4.

We then extrapolate the sample CV to the population as

= $766,219.03

where P = 1, 414, 914 is the total population of licensed anglers in 1984, N = 10,948

is the sample size of the MDNR data, and S = 4824 is the number of people in our

consumer surplus analysis. N/S is the factor for extrapolating from the consumer

surplus sample to the MDNR sample. P/N is the factor for extrapolating from the

MDNR sample to the total population of licensed anglers. Because the trip choices

and associated expenditures were incurred in 1983 and 1984, the measure is in 1983

or 1984 dollars until corrected with a current price index.5

Therefore,

anglers yields

the final extrapolation from the sample to the population of licensed

an annual damage estimates of $0.77 million (in 1991$) from the op-

eration of the Ludington Pumped-Storage plant.

5The current consumer price index 1.348 we use here is the 1991 (February) price relative to the
base years 1982-84. This information is obtained from the “Consumer Price Index for All Urban
Consumer (CPI-U)" table in the Summary Data from the Consumer Price Index News Release
February 1991, published by the Bureau of labor statistics, US Department of Labor.
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Comparison With Other Estimates

Previous recreation demand studies have generated consumer surplus measures

corresponding to various site condition changes. For example, Bockstael et al. (1988)

estimate that the consumer surplus per choice occasion associated with a 20% increase

in the game fish catch rates ranges from $.32 to $1.56, depending on species affected,

in their Florida (Atlantic coast) sport fishery study. For a 25% increase in fish catch

rates on Aibemarle and Pamlico Estuaries, the nested logit estimation of Smith and

Palmquist (1988) yields an angler welfare change of $2.43 per trip when all sites

are affected, or $ .60 when only the closest four sites are affected. To calculate. a

consumer surplus per choice occasion from the Michigan recreational fishing study

that is comparable in definition to other estimates, we proceed as follows. 6

First, under the competing risks framework, an angler has a certain probability

of taking a trip of each type on any choice occasion. The compensating variations

reported in table IX.1 are conditional compensating variations per choice occasion

(CCOCVd), for specific trip types d being chosen, (conditional upon participation).

To calculate the average conditional compensating variation per trip (CCOCV), we

have to weight each CCOCVd by its corresponding probability. Here we use the angler

distribution in the sample of the participants (N=4824) as an approximation of the

probabilities.

6We cannot compare seasonal consumer surplus because people living in different geographical
locations are likely to have different participation rates due to different fishing opportunities. There-
fore, consumer surplus per choice occasion, conditional upon participation, is the only measure
that we can reasonably compare across studies. We expect this measure to vary across contexts,
because it is influenced by the distance between the population of anglers and the fishing sites in
consideration and by quality levels.
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Trip Type Probability C C O C Vd Prob x C C O C Vd

Day 2463/4824=51% .04 .02
Wkn 1159/4824=24% .17 .04
Vac 1202/4824=25% .24 .06
Sum .12

The probability that an individual will choose GLcd or Anad, the two product

lines most affected by the Ludington scenario, is approximated by dividing the number

of anglers in GLcd (N=769) and Anad (N=299) samples by the number of total

participants (N=4824). The compensating variation per choice occasion of an angler

targeting GLcd or Anad is, therefore.

Since only half of the 41 Great

$1.084 (in 1984$) as the projected

Lakes counties are affected, we have $.542 x 2 =

average CCOCV of a GLcd or Anad angler if all

Great Lakes sites were affected. This is the CCOCV corresponding to a roughly 10%

increase in all salmonid catch rates (10% for Chinook, 3.3% for Coho, 13.7% for Lake

Trout, and 8.6% for Rainbow). The CCOCV for a 20% catch rate increase in 1991$

will thus be about

This estimate is of the same order of magnitude as those obtained by other researchers.
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Map IX.1: Michigan counties affected by the Ludington scenario
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Table IX.1: Ludington: Mean compensating variation per trip in
1984 dollars

N Day Trip Wkn Trip Vac Trip

Day Sample 2463 0.0418 0.1657 0.2417
Wkn Sample 1159 0.0359 0.1666 0.2437

Vac Sample 1202 0.0306 0.1707 0.2427

Table IX.2: Ludington: Total trips per person with plant operation

N Day Trip Wkn Trip Vac Trip

Day Sample 2463 1.2513 0.5502 0.4423
Wkn Sample 1159 1.1506 0.5675 0.5171
Vac Sample 1202 0.9044 0.4960 0.6831
Total 4824 5502.47 2609.01 2509.78

Table IX.3 Ludington:  Mean change in season trips

N Day Trip Wkn Trip Vac Trip

Day Sample 2463 0.0074 0.0013 -0.0014
Wkn Sample 1159 0.0067 0.0013 -0.0017

Vac Sample 1202 0.0053 0.0012 -0.0024

Total 4824 32.34 6.10 –8.39

Table IX.4: Ludington: Mean season compensating variation in 1984
dollars

N Day Trip Wkn Trip Vac Trip

Day Sample 2463 0.1771 0.1407 0.1062
Wkn Sample 1159 0.1328 0.1402 0.1251
Vac Sample 1202 0.0857 0.1150 0.1603

Total 4824 693.179 647.25 599.28



CHAPTER X

POLICY APPLICATION: KALAMAZOO RIVER CONTAMINATION

Biological Scenarios

The Kalamazoo river, located in the southwestern portion of the lower Peninsula

of Michigan, flows in a westerly direction and discharges into Lake Michigan. High

levels of PCBs contaminate approximately 80 miles of the river upstream from Lake

Michigan, affecting the biota (particularly fish),water and sediment.1   The site, listed

on the Superfund National Priorities List, is identified as the third worst contami-

nation site in Michigan. Evidence suggests that contaminated sediments in natural

depositional areas and behind both drawn-down and operating hydroelectric dams2

are continuing sources of PCBs to the water column and to fish.  A fish consumption

advisory is in place for the stretch of the river with upstream mobility. The Inter-

national Joint Commission has identified the Kalamazoo rive: as one of 14 Areas of

Concern in Michigan.

The Michigan Department of Natural Resources has proposed a multi-action man-

agement plan for the Kalamazoo River. This plan includes passing anadromous fish

1 The description of AOC below is based on the 1989 Report on Great Lakes Water Quality,
Appendix A, by the Great Lakes Quality Board of the International Joint Commission.

2 An estimated 104,000 kg of PCBs reside in the sediments.
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over several dams, rehabilitating the resident fish community in a large reach of the

river, and reducing problems of chemical contamination (mostly PCB's) in the River.

Because the fishery management actions will take place if and only if the PCB cleanup

occurs, the benefits of the plan should be evaluated as a single policy option.

The baseline

data with which

Baseline:

for the policy scenario is the current situation, defined by the base

the discrete choice model is estimated.

Scenario: PCB Cleanup

The scenario is designed to capture the expected results from implementation of

the Kalamazoo River Remedial Action plan.

Contamination:

Cleanup of the PCB contaminated sediments in the river will eliminate the des-

ignated Areas Of Concern in Allegan (3) and Kalamazoo (39) counties. In addition,

fish contamination advisories can be eliminated on warmwater river fisheries in both

of these counties. Fish contamination advisories are expected to remain in effect on

Great Lakes and anadromous fisheries in these counties since the contaminants in

these fish are accumulated during life in Lake Michigan. Containment of contamin-

ants in the Kalamazoo River will reduce discharge of these contaminants into Lake

Michigan but the reduction will be only a marginal change in total loading on Lake

Michigan.

3 This will potentially affect all product lines.
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Product Line County Variable [Baseline] [Policy]
All Allegan AOC 1 0

Kalamazoo AOC 1 0
ISww Allegan CntmSW 55 0

Kalamazoo CntmSW 15 0
ILww Allegan CntmLW 1200 0

Anadromous Product

Containment of contaminated sediments

Line: Catch Rates

will permit removal of three state-owned

dams from the Kalamazoo River. Construction of fish ladders on remaining dams

would open 44 miles of river to anadromous trout and salmon fishing, with 18 miles in

Allegan county and 26 miles in Kalamazoo county. Reservoirs in both counties would

support inland lake fishing for anadromous trout and salmon. Catch of anadromous

trout and salmon rates in Allegan county should increase modestly, perhaps 20% for

each species. Catch rates of anadromous fish in Kalamazoo county (currently non-

existent) should compare to these increased catch rates in Allegan county as follows:

Product Line County Species Month CR = Allegan CR x
Anad Kalamazoo Chinook

Chinook
Coho
Coho
Rainbow
Rainbow
Rainbow
Rainbow

September
October
September
October
April
May
September
October

0.25

0.90

1.00
1.00
2.00
1.50
1.50
2.00

Other Product Lines: Quantity of Fishing Resources

Rehabilitation of the warmwater fish community in the Kalamazoo River, com-

bined with PCB containment and dam removal should convert 34 miles of second
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quality, mainstream, warmwater river to top quality, mainstream, warmwater river.

Of these 34 miles, 18 miles are in Allegan county and 16 miles are in Kalamazoo

county. In addition, 10 miles of a second quality, warmwater tributary in Allegan

county would be converted to a second quality trout tributary.

The product lines and variable affected are shown below:

Product Line County Variable Change in value

ISww Allegan ISww1main +18

ISww Allegan ISww2main –18

ISww Kalamazoo ISww1main +16

ISww Kalamazoo ISww2main –16

ISww Allegan ISww2trib –10

IScd Allegan IScd2trib +10

The two Michigan counties affected by the Kalamazoo river cleanup plan are

shown in map X.1.

Consumer Surplus Calculation

In this section, we carry out similar calculations as we do for the Ludington

case to estimate people’s willingness-to-pay for the cleanup plan of the Kalamazoo

river contamination. The compensating variation for the open-water fishing season

according to formula V.28 in chapter V is still computed as

where

i indexes individuals in the sample of our consumer surplus analysis.

m indexes months (April — October) in an open-water season,

d indexes trip

0 refers to the

1 refers to the

durations (= Day, Wkn,

“before cleanup” case.

“after cleanup” case.

Vac).
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~~ is the weighted MUI per $100, for trip duration type d.

T is the number of total trips in the season.

~ is the pseudo-IV defined in chapter III.

Table X.1 presents the conditional compensating variation per trip (~~~  – ~~~) x 100/~~

in 1984 dollars (averaged over the seven open-water fishing months) associated with

the Kalamazoo river cleanup. The expected increase in value per trip is larger than

that of the Ludington case. Table X.2 reports the predicted number of season trips T0

without the cleanup using the exponential model estimates. Tables X.3 and X.4 report

the predicted change in total trips (T~u — T~’) and the total compensating variation

in 1984 dollars for one open-water season if the cleanup plan is implemented.

Again, we predict that more day and weekend trips and fewer vacation trips will be

taken as a result of the cleanup. The total seasonal compensating variation for the

sample is calculated to be W = $2920.63 (in 1984$) from the subtotals in table X.4.

We then extrapolate the sample CV to the population similarly as

= $1,153,699.41

where P = 1,414,914 is the total population of licensed anglers in 1984. N = 10,948

is the sample size

consumer surplus

surplus sample to

MDNR sample to

Therefore, the

of the MDNR data, and S = 4824 is the number of people in our

sample. N/S is the factor for extrapolating from the consumer

the MDNR sample. P/N is the factor for extrapolating from the

the total population of licensed anglers.

final extrapolation from the sample to the population of licensed

anglers yields an annual consumer surplus of $1.15 million (in 1991$) from the imple-

mentation of the Kalamazoo river PCB cleanup plan. Because no other studies have
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been conducted for site quality changes of this nature in the past, we have no out-

side estimates against which to compare these numbers.
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Map X.1: Michigan counties affected by the Kalamazoo scenario
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Table X.1: Kalamazoo: Mean compensating variation per trip in
1984 dollars

N Day Trip Wkn Trip Vac Trip
Day Sample 2463 0.1048 0.3093 0.1999
Wkn Sample 1159 0.1058 0.3245 0.2103
Vac Sample 1202 0.1115 0.3680 0.2270

Table X.2: Kalamazoo: Total trips per person before PCB cleanup

N Day Trip Wkn Trip Vac Trip

Day Sample 2463 1.2513 0.5502 0.4423
Wkn Sample 1159 1.1506 0.5675 0.5171
Vac Sample 1202 0.9044 0.4960 0.6831
Total 4824 5502.47 2609.01 2509.78

Table X.3: Kalamazoo: Mean change in season trips

N Day Trip Wkn Trip Vac Trip
Day Sample 2463 0.0118 0.0023 –0.0029
Wkn Sample 1159 0.0112 0.0024 –0.0037
Vac Sample 1202 0.0100 0.0024 –0.0054

Total 4824 54.10 11.34 –17.94

Table X.4: Kalamazoo: Mean season compensating variation in 1984
dollars

N Day Trip Wkn Trip Vac Trip

Day Sample 2463 0.2924 0.2436 0.0942
Wkn Sample 1159 0.2310 0.2523 0.1172
Vac Sample 1202 0.1705 0.2272 0.1615

Total 4824  1192.99 1165.58 562.06



APPENDIX

Sensitivity Analysis of Trip Time Costs

We perform a sensitivity analysis to the alternative treatments of travel time

discussed above in Chapter III for the Great Lakes coldwater product line. To make

the estimates comparable, we have to restrict the sample sizes to be the same across

runs. The number of anglers in the samples are the same, though the choice sets

for each of the anglers are different under each hypothesis. Therefore, the difference

in the estimates will come from the different definitions of the choice set and the

different definitions of the travel cost to a site.

We estimate the three models derived in Chapter III. The sample without missing

data for the exogenous trip days model is larger than for the other two models, because

it does not require use of the variable measuring trip hours, which has numerous

missing values. To separate out the effect of the different samples, we estimate that

model twice: once for the restricted sample used for the other two models and once

for its full sample.

1. The exogenous on-site time model (SiteTime).

2. The exogenous trip time model (TrpTime).

3. The exogenous trip duration in days, using a sample defined by the above models

(TrpDays-Subset).

158
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4. The exogenous trip duration in days, using the sample defined by its own time

constraints (TrpDays-Full).

The estimates for the three trip durations are presented in the tables in this

Appendix. The travel time cost variable is only included in the site choice portion of

the NMNL model for the SiteTime model. For the other treatments of travel time,

the travel time cost becomes part of the total cost of choosing a trip duration, and is

included (along with on-site time costs ) in the WageCost variable in the Participation

model. Due to the correlation between the distance cost variable and the travel

time cost variable, the estimated marginal utility of income, (the parameter of the

distance cost variable), is much smaller for the SiteTime version than for the other

three models.

The parameter estimates are, in general, quite different across the four models.

To compare across the specifications the contribution of each quality attribute to

angler value during the choice occasion, we translate the effects into monetary terms

by dividing by the MUI. See the bottom of these tables for the calculations. The

contributions of most quality attributes increase in monetary terms as the trip length

increases. The exogenous SiteTime model predicts higher (in absolute value terms)

contributions from the quality attributes than the other models. partly because its

MUI is smaller.

Since the exogenous on-site time hypothesis is theoretically flawed and the trip

days model may have substantial measurement error, we use the exogenous Trip Time

model for our NMNL analysis.
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Table A.1 MNL estimates for the GLcd-Day sample

Variable SiteTime TrpTime TrpDays TrpDays
(Subset) (Full)

Dist$/100

Time$/100

AOC

%Forest

Feature

Chinook Salmon

Coho Salmon

Lake Trout

Rainbow Trout

Log Likelihood

%Choices Right

#People
#Choices

-14.51
(-12.04)

-2.33
(-3.77)

-1.58
(-8.82)

2.87
(4.89)

0.09
(0.41)

9.10
(4.17)

4.07
(1.96)

3.70
(1.81)

1.75
(0.35)

 -509.1

943.7
50.6

336
7012

-0.11
0.20

0.01
0.63
0.28
0.26

-17.27

(-16.42)
N.A.

-1.53
(-8.53)

2.34
(4.12)

0.08
(0.39)

8.36
(3.88)

3.87
(1.86)

3.32
(1.67)

2.19
(0.42)

-518.5
727.3

50.6

336
5565

-0.09
0.14
0.01
0.48
0.22

0.19

-18.28

(-17.76)
N.A.

-1.55

(-8.61)
2.22

(3.93)
0.08

(0.38)
8.80

(4.20)
4.08

(2.00)
3.48

(1.77)
1.80

(0.36)

-528.9
1263.8

50.3

336
10743

-0.09
0.12
0.00
0.48
0.22
0.19
0.10

-16.01
(-19.11)

N.A.

-1.53
(-9.35)

1.69
(3.42)

0.26

(1.39)
10.59

(5.74)
3.41

(1.90)
4.28

(2.47)
1.83

(0.41)

-657.2
1355.9

51.2

387
12326

0.12 0.13
Note: Numbers in parentheses are t- statistics.

-0.10
0.11
0.02
0.66

0.21
0.27

0.11
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Table A.2 MNL estimates for the GLcd-Wkn sample

Variable SiteTime TrpTime TrpDays TrpDays
(Subset) (Full)

Dist$/100 -4.20 -4.27 -4.51

Time$/100

AOC

%Forest

Feature

Chinook Salmon

Coho Salmon

Lake Trout

Rainbow Trout

Log Likelihood

%Choices Right

#People
#Choices

262
10690

0.98

-2.64
(-5.33)

-0.75
(-2.93)

-1.67
(-7.76)

1.80
(4.34)

0.51
(3.10)

9.09
(5.49)

6.33
(3.60)

0.33
(0.12)

2.59
(0.73)

-740.9
229.1

16.4

262

7638

-0.63
0.68
0.19

3.44
2.40
0.13

(-10.77)
N.A.

-1.75
(-8.07)

1.23
(3.14)

0.51
(3.15)

8.93
(5.66)

5.37
(3.34)
-1.27

(-0.49)
2.47

(0.70)

-795.7
321.3

15.3

262

10201

-0.42
0.29
0.12
2.13
1.28

-0.30

0.59

(-10.95)
N.A.

-1.76
(-8.11)

1.19
(3.04)

0.51

(3.18)
8.99

(5.71)
5.24

(3.27)
-1.58

(-0.61)
2.06

(0.58)

-800.8
341.5

14.5

-0.41
0.28
0.12

2.11
1.23

-0.37
0.48

(-11.88)
N.A.

-1.70
(-8.34)

1.24
(3.30)

0.57
(3.71)
10.02

(6.75)
5.99

(3.98)
-0.86

(-0.35)
4.22

(1.34)

-878.6
393.4

15.5

290
11828

-0.38
0.28
0.13
2.22
1.33

-0.19
0.94

Note: Numbers in parentheses are t- statistics.
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Table A.3: MNL estimates for the GLcd-Vac sample

Variable SiteTime TrpTime TrpDays TrpDays
(Subset) (Full)

Dist$/100

Time$/100

AOC

%Forest

Feature

Chinook Salmon

Coho Salmon

Lake Trout

Rainbow Trout

-1.61

(-4.17)
0.21

(0.93)
-0.86

(-3.72)
2.33

(4.79)
0.63

(4.79)
8.87

(5.12)
5.39

(3.19)
4.84

(3.84)
2.09

(0.52)

Log Likelihood -589.7
153.7

%Choices Right 14.5

#People 200
#Choices 5935

-0.53
1.45
0.39
5.51
3.35
3.01
1.30

Note: Numbers in parentheses are t- statistics.

-2.41
(-8.67)

N.A.

-1.03
(-4.48)

2.22
(4.73)

0.62
(3.79)

9.73
(5.69)

4.50
(2.77)

4.00
(3.50)

2.77

(0.71)

-640.8
203.0

14.0

200
8185

-0.43
0.92
0.26
4.04
1.87
1.66
1.15

-2.41
(-8.67)

N.A.

-1.03
(-4.48)

2.22

(4.73)
0.62

(3.79)
9.73

(5.69)
4.50

(2.77)
4.00

(3.50)
2.77

(0.71)

-640.8
203.0

14.0

200
8185

-0.43
0.92

0.267
4.04
1.87
1.66
1.15

-2.41
(-9.30)

N.A.

-1.05
(-4.94)

2.05
(4.78)

0.73
(4.89)

9.83 
(6.16)

4.52

(2.98)
3.68

(3.37)
2.01

(0.52)

-748.1
240.8

14.5

234

9574

-0.44
0.85
0.30
4.08
1.88
1.53
0.83
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MDNR ANGLER SURVEY QUESTIONNAIRE

1983 and 1984



MICHIGAN SPORT FISHING SURVEY
Dear Angler:

Each year the Department of Natural Resources (DNR) must gather information on recreational fishing in Michigan.
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One of the best methods is to obtain information directly from the angler. This information will be used to improve
fishing opportunities and document the importance of fishing to the state’s economy.

Your name has been selected at random from fishing license records. Would you please take a few minutes to
answer all the questions. A prompt return of your questionnaire in the postpaid return envelope will be appreciated.

Questionnaires are being sent to a number of anglers but there can be no substitute for the information you, yourself,
provide. Your response is needed even if you did not fish or did not catch anything. Be assured that your reply is
confidential and will be used only for better management of Michigan’s fish resources.

Thank you for your cooperation.
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