CHAPTER 4

Ecotoxicology and Benefit-Cost Anal ysis:

T™e Role of Error Propagation

[ ntroduction

An understandabl e desire exists on the part of policy makers to devise a
set of procedures! an analytical approach, that can be used to guide policy.
Such an approach woul d obviate the need for trusting to historical practice,
or to the intuition of wise but inevitably fallible and probably biased
I ndividuals, or to the awkward and time-consum ng process of making every
decision by plebiscite. It would “rationalize”policy making and, if the
procedure were appropriately chosen, optimze the well-being of the affected
sector of the public. Pol lution abatement policy is a prime exanple, for
it is here that a vigorous effort is underway to promote benefit-cost analysis
as the appropriate analytical approach for determ ning proper emssion |evels
(see U S. Executive Oder 12291).

Despite the advantages in efficiency of decision making, and possibly in
enhancenment of societal welfare, that may accrue to a society that enploys the
benefit-cost approach to set pollution emssion |evels, there are major
pitfalls lurking that need to be identified and discussed. These pitfalls
fall into two categories: limtations in the ability of ecologists to describe
precisely the ecol ogi cal consequences of pollutant enmission rates, and
limtations in the ability of economsts to describe precisely the econonic
consequences of ecol ogical changes.

Quite generally, the econom ¢ and ecol ogical analyses that are required to
characterize and quantify costs and benefits of particular pollutant abatenent
strategi es consist of a sequence of steps. Table 1 shows what a typical

sequence of steps would have to look like for a believable benefit-cost



Change in a polluting activity
(e.g., placenment of scrubbers
in power plants)

1' ‘l, (conbustion science)

Change in emssion levels
(e.g. reduction in S0, gutput)
2 'L (atnospheric sciences)

Change in primary. stress on
ecosystem (e.g., increase in pH

ofprecipitation at a particular
wat er shed)

3 l (biogeochemistry)
|

Change in secondary stresses (which |
act directly on biological populations

and processes) (e.g., increase in pH
of surface waters and soils)

4 l (bi ol ogi cal toxicol ogy)

Direct biological effects of changes
in secondary stresses (e.g., increase
in popul ations of acid-sensitive
plankton)

T T

5. ,L (ecol ogy)

Indirect ecological changes
stinmulated by the direct biological
effects (e.g., inprovement in

fish productivity)

(environnmental sciences,
l sociology, . ..)

ﬁ Change in indirect ecological benefits to
. hydrologic integrity of

society (e.g.,

Change in pattern of direct use of ecosystem
(e.g., fishermen flock to site)

wat ershed is enhanced,
in fluctuations of water supplies to people)

- ——————— &

[—

Direct market value of
changed use patterns and
of indirect benefits (e.g.
val ue of user-day fees and
additional water supply);
val ue of other benefits
(e.g., feelings of civic
acconpl i shment, spiritua
satisfaction)

(economcs and the
political process)

| eading to reduction

Table 1. The stages of ecosystem impact assessment



analysis, with the exanple of acid rain used to provide specificity. The
information that nust be used to quantify any given step in the sequence must
come fromanalysis at the preceding stage. Thus the possibility exists that
error may propagate through the sequence to the point where the final output--
for exanple, the economc benefit of a particular |level of pollution
abatement--is so uncertain as to be of little or no use in a benefit-cost
anal ysis or related procedure.

Whet her or not this occurs will depend in part on the degree to which
ecol ogi sts and other environnental scientists can characterize the uncertainty
in a manner that can be used by econom sts. To take a sinple exanple,
consider the statement that the decrease in fish nmortality follow ng pollution
abatenent in a particular lake is uncertain. This statement nmay nean that
the decrease in nortality cannot be predicted accurately but that the odds of
any specified degree of decrease in nortality are known (from some conbination
of measurenent and nodeling). O it may nean that only the range of
uncertainty is known but that the probabilities of any particular value of
mortality within that range are not known. In the former case, econom sts
may be able to estimate an expected value of benefit of any particul ar degree
of abatement (using methods such as those described elsewhere in this report)
whereas in the latter case the opportunity to characterize the benefit of any
particular degree of abatement is considerably nore limted

In the remainder of this chapter we discuss in a systematic and genera
manner the subject of error propagation in environnental inpact assessnent,
W th an enphasis on inpacts involving ecosystens. W deduce sone genera
results about error propagation that are |Independent of the nethod of
anal ysi s. One key result is that error tends to "biomagnify" i n ecol ogi cal
food chains, so that a small degree of uncertainty about the effect of a

pol lutant on the |owest trophic level is likely to translate into nuch nore



substantial uncertainty about the effects on higher trophic |evels, in which
we are often more interested. We al so explore the origin of some of the
most refractory types of error in inpact assessnent. To relate the anal ysis
to the specific concerns of practitioners of econom c eval uation we al so show
how the relevant issue is not nmerely one of the magnitude of the range of
uncertainty but also of the type of uncertainty; this is because economc
anal ysis, which must begin where ecological analysis |leaves off, can cope wth
some kinds of uncertainties better than others. O particular concern in the
context of benefit-cost analysis is the degree to which sources of ecol ogica

uncertainties can be characterized in ways that will be of use to econonmi sts.
The overall dimensions and a few critical elenents of this problem are
di scussed here, but it will be shown that considerable work on the part of
ecol ogi sts will be necessary to bridge the gap between what is now known and
what needs to be known to provide a plausible underpinning for the successfu

application of benefit-cost nethods of decision-naking

Uncertainty in Inpact Assessnent: an Exanple

Exanpl es of error propagation in environmental science abound. Consi der
the acid rain exanple from Table 1. Anal ysts have attenpted to establish the
exi stence and valuse of a threshold |evel of precipitation pH bel ow which
| akes woul d becone acidic and above which the natural restorative capacity of
| akes and surrounding soils would afford protection. The existence of such a
threshold woul d make the task of setting standards easier because such a
threshold would provide a natural level to aim for--tightening the standard
beyond the threshold would lead to dimnishing returns

However, uncertainties in inpact assessnent render the threshold notion a

hi ghly dubi ous one in this context. It is likely, in fact, that one's




perception of the location of the threshold for a particular class of |akes
depends on how long one has been observing those |akes under various |evels of
exposire; whereas precipitation with a pH of, say, 45 might acidify the |akes
in 10 years, precipitation with a higher pH of, say, 4.9 mght acidify the
| akes in 30 years, a period longer than anyone has had the opportunity to
observe. Thus the threshold concept Is tine-dependent and intrinsic
uncertainty characterizes its eval uation

The threshol d value for one class of |akes mght not be of nuch use for
ot hers. For exanple, in eastern North Anerica it has been pointed out that
over several decades, the period over which observations have been nmade, |akes
receiving precipitation wwth a pH of |ess than about 4.7 have had their
chemstry altered by the precipitation. Even if we accept this relatively
short tinme-frame for that particular group of |akes, there is still
uncertainty as to the value of this “threshold” in other areas. In the
mount ai ns of the western United States, for examnple, the susceptibility of
| akes to acidification appears to be greater than in watersheds of the
northeastern U S. (Roth et al, 1985). A nore conpl ete discussion of
uncertainties plaguing the use of the threshold concept in ecotoxicology isS
found in Cairns and Harte (1985).

Even if we had confidence in the location of a pH threshold, we would stil
not know exactly what the effect on precipitation pH would be for any
specified em ssions reduction plan. Here the uncertainty stenms fromthe
conplexity of the source-receptor relation.

The uncertainty in deducing the effect of a particular |evel of enissions
reduction on precipitation pH nust be conbined with the further uncertainty in
deducing the effect of a reduction in precipitation pH on surface water
acidity. By conbining these two uncertainties, the overall uncertainty in

steps 2 to 4 of Table 1 can be determ ned. At the other stages in the inpact




assessment further opportunity for error arises. The conbined error is
almost invariably sufficiently large to make it difficult to obtain a precise
characterization of the ecological benefits froma particul ar emissions-
reduction plan.

The fact that one cannot precisely characterize the benefits of a
pol | uti on-abatenent policy should not he taken to mean that the policy is
unwar r ant ed. Even though an econom c analysis mght not produce a reliable
cost-benefit ratio, it can lead to a range of uncertainty in that ratio,
whi ch can then be evaluated through the political process to determ ne what
policy action is warranted. The first step, however, mnmust be to have a
systematic approach to the analysis of uncertainty; this is discussed in the

fol l owi ng section.

A Framework for Analysis

The sequence of steps in an environnental inpact assessment as shown on the
| eft hand side of Table 1 provides a convenient framework for analysing the
propagation of error in such assessnents. Cenerally, the relation between
the ith and the i+1st stage in the sequence is |ikely to ook |ike one of the
three graphs shown in figure 1. In each of the graphs, the horizontal axis
represents the variable describing the ith stage and the vertical axis
represents the subsequent one down the chain. The first of these three
graphs illustrates a linear relation, in which the response, or output, at the
subsequent stage is proportional to the input fromthe one before, as, for
exanple, if the loss of organisms is proportional to the concentration of a
pol | utant. The second one illustrates a threshold process, in which an
output is only weakly dependent on an input for small values of the input, but

when the Input exceeds a critical value, then the output rises sharply. The



Xi+1 Xi+1

Xi X1

Xi+1

i

C.
Figure 1

Illustration of a linear (a), a threshold (b), and a saturation (c) process
relating variables describing successive stages in the assessment chain.



third graph in Figure 1 illustrates a saturation process, in which an output
ceases ‘to be strongly dependent on input once the input exceeds a critica
val ue.

These three basic types of relations between sequential stages in the
i mpact chain can be nodified or conbined to describe, generically, nost
real processes. For exanple, the graphs can be turned upside down to
descri be processes in which an output is a decreasing function of input. O
graphs |-b and I-c can be conbined to describe a process with a threshold at a
relatively low value of the input and a saturation effect at a higher one

If know edge of the functional relation between two sequential stages in
the chain were conplete, and the Input data were known with perfect precision
and accuracy* then a graph of the function describing the relation mght,
i ndeed, |ook something |ike one of the plots in Figure 1, But, in reality,
there is always uncertainty in both know edge of functional relations and in
the data needed to substitute into those functions. These uncertainties wl |
propagate down the inpact chain, sometines leading to a surprisingly high
| evel of uncertainty at the end.

Two types of uncertainty were alluded to above. one results frompoor
know edge of the dynam cs of the processes--i.e. uncertainty in our
understanding of the formof the relation between variables--and one results
from incertain nunerical values for data. For exanple, suppose that we are
interested in estimating the uncertainty in our know edge of the |essening of
damage to plankton populations due to an expected decline in the rate of input

of a pollutant to a |ake. Because it is difficult to predict with high

* Precision'refers to the detail with which a number is expressed--the number

of significant figures. “Accuracy'refers to how close the nunber is to the
true, or real, value. Thus if | state my height is 3.47258 neters, | am
being precise but inaccurate. Otentimes authors will substitute precision

for accuracy, providing nmore significant figures than the data deserve and
giving the illusion that they are highly accurate




accuracy how the concentration of a pollutant in a lake will respond to a
change in the input rate, there will be uncertainty in our know edge of what
the concentration of pollutant in the |akewater will be. On top of that we
wi |l have, at best, only partial know edge of how the plankton population will
respond to any precisely stated change in the pollutant concentration. In
ot her words, even with perfectly accurate data describing the pollutant, our
knowl edge of the functional form of the relation between poll utant
concentration and plankton survivability is uncertain.

Because of the uncertainty in our know edge of functional relations, the
graphs shown in Figure 1 nust be nodified as in Figure 2. Furt hernore,
because the input data (the horizontal axis variable) are likely to be
uncertain, the output (the vertical axis variable) is also going to have an
uncertainty that reflects the fuzziness of the input data. At each stage in
the chain, the uncertainty may be anplified or danped as uncertainty in the
output from one stage beconmes uncertainty in the input to the next. Figure 3
provides a generic illustration of how the error will propagate down the
chain. The range of uncertainty is shown to broaden in the figure, a result
ofthe width and steepness of the functional fornms assuned. | f probability
distributions characterizing the |ikelihood ofthe parameters taking on
particular values within the range of uncertainty are known, then a nore
sophi sticated analysis can be carried out; shown here is the sinpler case in
which only the propagation of the range of uncertainty is described.

A useful analysis of the consequences for policy makers of this sort of
error propagation is given in Reckhow (1984). In the followi ng section, we
di scuss some general results about uncertainty that can be deduced from the

above considerations.
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Examples of error bands in the curves shown in Figure 1.
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Figure 3

Illustration of the propagation of error along the as e ment chain. In each graph, the uncertainty
in X, is "passed along" to X;,; in the manner shown.




Ceneral Results: The ‘Fallacy of_the Mean” and ‘ Error Biomagnification”

Quantities such as fish productivity or water clarity, indeed any paraneter
to which a nunerical range can be ascribed, can be characterized by a nean
value and a range of uncertainty about that mean. Because it 1is much sinpler
to focus on a mean value, which is a single nunber, rather than on the range
of uncertainty, which is at the very least a range of nunbers (often with a
conplicated interpretation attached explaining what that range really refers
to) it is not uncommon for analysts to be asked questions suchas ‘if | take
the mean value of the pollutant concentration and substitute that into the
formula relating concentration to plankton survivability, then what nean val ue
will | obtain for plankton survivability?” This question reflects a
fundamental confusion: a function evaluated at the nean value of its
i ndependent variable is generally not equal to the mean value of the function.
I ndeed, as shown below, considerable error can result if mean values are
estimated by commiting this ‘fallacy ofthe nmean”.

How will the general shape of the graph (as is Figure 1) of the relation
bet ween two successive stages in inpact assessnent influence the error
commtted by assuming that a function of the nean equals the nean of the
function? Figure 4 Illustrates the answer to this question. Inthis
figure, the paraneter, a, hasan equal probability of |ying anywhere in the
range fromB to C and its nean is mdway between at E. At the upper end of
this range, x(a) takes on the value Dwhile at the |ower end it takes on the
value A. As the figure shows, if the relation between an independent
variable, a, and a dependent variable, x, is linear, then despite uncertainty
in our know edge of a, the nean value of X, denoted by X 1Is equal to x(a)
eval uated at g, the nean value of a. In equation form x = x(g). For the
case of a threshold-type relation, this figure shows why X > x(a), while for a

saturation process, % < x(a).
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Figure 4

The relation between the mean value of X and the value of X evaluated at the
mean value of the parameter, a, upon which it depends, is shown for the

three cases of a linear (a), upward curving (b), and downward curving (c)
relation between X and a.
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This can be very inportant in practice; for relations characterized by very
steeply curved functions the use of the mean value of the independent
variable for evaluating the mean value of the dependent one can lead to a
gross under- Or over-estimation, depending on the type of curvature in the
functional relation. To illustrate this, we present the follow ng exanple.

The attenuation of light with depth in arelatively transparent |ake obeys
a sinple formila: I(d) =1, exp(-vd), where I(d) is the intensity at depth d,
lo‘s the intensity of light at the surface, and v Is a constant
characterizing the transparency of the water. The nore opaque the water, the
| arger the value of v . Primary productivity of aquatic plants at any
particular depth will be roughly proportional to the value of I at that depth,
although it also depends, of course, on concentrations of essential nutrients
such as nitrate and phosphate. Suppose siltation results in a |arge val ue of
V. We Wi || assune that the nean value of vis 0.3/ nmeter and that the range
of uncertainty is + 0.02/neter. Ve will interpret this range to mean (for
the sake of sinmplicity) that the actual value of v is equally 1likely to lie
anywhere in the range from 0.28 to 0.32/neter. Suppose erosion control is
expected to reduce the value of v to 0.17 + 0.09, wth the range of
uncertainty increased because it is not known how effective the control
program wi || be. At a depth of, say, 20 neters, the mean value of | prior to
the erosion control that would be calculated (incorrectly) by substituting the
mean value of v into the formula for 1(d) is 1,exp(-6.0) or 0.0025 Io°
After the control is impl emented, the simlarly incorrect value 1is
|'. exp(-3.4) = 0.0331.3 an increase Of | by a factor of about 12.  However,
if the actual mean value of | is calculated properly, not by substituting Into
exp(- vd) the nean value of v but rather averaging over the ‘ange ‘f
uncertainty in v , then we find that erosion control results, on the average,

in twice as great an increase in mean light intensity at 20 neters. Leavi ng
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aside subtleties such as whether plants respond to the average light intensity
they receive or to sone nore conplicated value that depends on the
fluctuations, there is clearly a large potential for error in naively
estimating mean values by being oblivious to the uncertainties.

W& enphasi ze that the propagation of error by this neans can result either
froma situation where one knows what the uncertainties are but uses the
incorrect formula relating mean values, or froma situation where one sinply
under- Or overestimates the magnitudes of the uncertainties but uses a correct
averaging procedure for estimting nean val ues.

In the nodul ar approach to error propagation discussed in the previous
section, there is an opportunity for errors of this type to either be
reinforced or to cancel. If a sequence of relations between the variables
describing the successive stages in the inpact chain are al | of, say, the
threshold type, or nore generally, of any simlar curvature, then the error
propagation that results fromignorance of the true range of uncertainty will
be reinforcing, leading to greater and greater erroras one noves along the
chain. In contrast, if curves of types 1.b and 1.c from Figure 1 are equally
represented in the chain, then the tendency will be for the errors of that
type to cancel

Next, we turn to the topic of ‘error biomagnification". Error, |ike many
a toxic substance, will frequently increase as one probes higher up the food
chain (not to be confused with the inpact assessment chain in Fig. 1),
al t hough the nechanismthat accounts for error biomagnification is quite
different fromthat for toxic substance biomagnification. To see how error
biomagnification arises, consider the following relatively sinple nodel for a
food chain. Figure 5 illustrates the nodel, showing the inflows and outflows

of biomass fromeach link in the chain. The links can be thought of as
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A trophic chain and the rates of biomass input and output from each link in
the chain as described by a simple Lotka-Volterra model.
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species (for exanple, grass, which is eaten by rabbits, which are eaten by
lynx, etc.) or as functional groupings of species (for exanple, primry
producers, herbivores, first carnivores, . . . and on up to top carnivores).

In equation form the nodel reads as follows:

dX,
Ta1X1 - Y1X12 - Byaxix2
dt
dx, 5
o T Biabraxaxz - Saxe - Yoxa® - B23%2x3
dX3
L 23%23X2X3 - %3x3 - ¥3%32 " B34x3%y
dXy
dt =EN-1,NBN-1,NXN-1XN - ONXN - YNXNZ-

In these equations, the Xi are the biomasses of the conponents; the
coefficients 814 are ‘ate constants describing the predation of species }J
upon species i; the coefficients Eyy describe the efficiency of incorporation
of prey biomass by the predator; and the coefficients ajy and yi are 8rowth and
death rates for the individual species. The presence of the Y4 terms
represents a negative feedback nechani sminduced by the finite carrying
capacity of any realistic environment. They result in steady-state solutions
that are stable against perturbations such as the renoval of sone percentage
of the biomass of the system I ndeed, the only solution to these equations
is one in which all the xi approach tine-independent values. Although rea
popul ations are not found in steady-state (that is, the nunbers of
i ndividuals in real popul ations general |y exibit both cyclic and randomtinme

dependence), nodels wth steady-state solutions are often used to study the
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ti me-averaged behavior of such populations. A though sinple nodels of this
sort are generally unreliable for making detailed predictions of the values of

the variables, Xi(t), they are useful for exploring the qualitative features

of ecosystens.

Suppose that the growh rate of the primary producers is affected by a
pollutant, but that there is some uncertainty about the magnitude of the

effect, In other words, suppose that the value of @,isknown only to be in

the range between G4 +c and &4 -o where g4 is the nmean value and © is a

neasure of the uncertainty in the nean. How wi || the uncertainty In affect

the uncertainty in the steady-state values of the Individual variables, Xi?

A sinple two-level nodel illustrates the general idea:
ax 4 9
=== =z a1X1 - Y1X1° - Bi2Xix2
dt
dX, 5
" “Eq2Bi2x1x2 - %2X2 - Yox2°-

For this case the steady-state solutions for the X; ape:

a2B812 + aqyY2
L S AR EEEEEE and
E128122 + Y1Y2

a1E12B12 - 2 2Y1
Xo - T T :

$12$12% + Y1Y2
A neasure of the relative uncertainty in the xi caused by the uncertainty in

%1 s (0/X9)(3X4/3x). Thus the ratio of the relative uncertainty inXqto

that in X2, which we denote by Ri2sis

(07%4 )(3%1 /809)

(a/X5 )(3Xp/304)

Thi's can be shown to equal (ypXp)/{p + yoX3), which i s less than unity. In
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other words, the relati ve errOr in X, induced by the uncertainty in ajgis
necessarily greater than that for xq+ For this two-level nodel, if the
uncertainty lies in our know edge of a2, the paraneter characterizing the
death rate of the predator rather than the growth rate of the prey, then the
result is anbiguous; the value O R,will depend on the relative magnitude of

% and Yyxq+ In particular, if the latter termlIs not small conpared to the

former, then again Ry,willbelessthan unity. Thus in this two-1evel
model, if the uncertainty lies in our characterization of the base of the food
chain, then uncertainty "iomagnifies" up the chain, whereas if it lies at the
top of the chain, then it may or may not magnify down the chain.

Results from three-level and four-level nodels are shown in Figure 6, both
for the case in which the original uncertainty lies at the base of the food
chain and the error propagates up to higher trophic |evels and for the case in
which the original uncertainty lies at the top of the food chain and the error
“bounces off" the base and propagates back up. Note how a relatively smal
initial error in either the phytoplankton growth rate or the fish death rate
results in progressively larger uncertainty as one progresses up the food
chain.

It would be of considerable interest to characterize the system properties
that determine the degree to which error "biomagnifiecation™ occurs. It is
likely that properties of the food chain such as the ratios of biomasses or
popul ation densities at successive levels and the ratio of predation rates to
other death rates will be inportant factors in nore conplex situations than in
the grossly over-sinplified nodels treated here.

The inplications of this for ecological inpact assessment can be of great
| nport ance. The interest of the public is usually in the higher |evels of

the food chain--be it fish for recreation and food orexotic wildlife for
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The response of the popul ations in a three-tiered aquatic
ecosystem (nmeasured in biomass per unit area, initial biomass
rati os: 50 phytoplankton: 10 zooplankton : 1 small fish) to -1%
-2%, and -3% changes 1in the phytoplankton growth rate. Sol Id,
dotted, and (partially) dashed 1ines give the paths for
phytoplankton, zoopl ankton , and smal| fish, respectively. Thi s
figure corresponds to a situation in which the degree of
perturbation in the growh rate, caused, for exanple by pollution,
is uncertain, but is known to lie within some range. The effect
of this uncertainty on the relative magnitudes of popul ation
changes in the three trophic | evel s i S shown.
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The response of the populations im a three-tiered aquatic
ecosystem (nmeasured in biomass per unit area, initial bionass
rati os: 50 phytoplankton: 10 zoopl ankton : 1 small fish) to +2%,
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phytoplankton, zoopl ankton , and small fish, respectively.  This
figure corresponds to a situation In whiech the degree of
perturbation in the die-off rate is uncertain, but is known to lie
wi thin some range. The effect of this uncertainty on the
rel ative nagnitudes of popul ation changes in the three trophic

| evel s is shown.
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The response of the populations in a four-tiered aquatic ecosystem
(measured in biomass per unit area, initial biomass ratios: 500
phytoplankton: 100 zoopl ankton : 10 small fish: 1 larger fish) to
-1%, -2% and -3% changes In the phytoplankton growth rate. The
paths for the responses of the phytoplankton, zoopl ankton, snal
fish, and larger fish populations are given by the upper solid
curve, the dotted curve, and partially dashed curve, and the |ower
solid curve, respectively. This figure corresponds to a situation
in which the degree of perturbation in the growth rate, caused,
for exanple by pollution, is uncertain, but is known to lie within
some range. The effect of this uncertainty on the relative
magni t udes of population changes in the four trophie levels is
shown .
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nature study (or the public itself, which occupies the top carnivore spot in
the gl obal ecosystem!). The increase in error as it propagates up the chain
will tend to render difficult the prediction of the magnitude of precisely
those effects that the public is most concerned about. Wi | e an enor nous
effort is sonetimes expended trying to determne precisely the environmenta
concentration of a pollutant, the effort may be misplaced if error propagation
leads to |large uncertainties higher up in the food chain where the public
welfare is nore directly and obviously Involved.

Li ke toxic substance biomagnification, this magnification of error is
unavoi dabl e. It is a consequence of the fundanental ecol ogical dynamcs of a
food chain and can not be circunvented. Li ke toxic substance
biomagnification, Whose effects at the higher trophiec |levels can be mnimzed
by keeping the level of the toxicant in the environment to a minimm the
effect of error propagation up a food chain can be nininized by keeping to a
mninum the initial error in our know edge of the effect of the toxicant on
the growth of the primry producers.

We have not discussed here the question raised in the Introduction
concerning the probability distribution of the quantity of interest within its
range of uncertainty. As nentioned previously, when a parameter such as a
fish population is uncertain, but a probability distribution for it is
cal culable, then econonmic valuation is easier than when such a probability
di stribution is unknown. Consider an uncertainty in the effect of a toxicant
on the growth rate of a species of phytoplankton, as in our sinple food chain
model , that has the characteristic that the error in our know edge of it is
gaussian-distributed. \Wat will the distribution of biomagnified error be in
the fish population?  Unfortunately, no general statement that is model-
| ndependent can be nade about this at present. The particul ar, unabashedly

unrealistic, nodel used to notivate the existence of the phenonenon of error
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biomagnification provi des a precise answer to this question, but other nodels
will generally provide other answers. Because we |ack confidence in any
particul ar nodel or class of nodels for the analysis of conplex ecosystens,
fgrther work is clearly needed here.

Since our ability to characterize ecological uncertainty with probability
distributions is presently limted, it mght seemlike a sensible strategy for
ecol ogi sts to place nore enphasis on reducing the range of uncertainty. As
weshow in the followng Section, that approach, too, has its |imts and
i ndeed, they are even nore stubborn than are the problens discussed

her et of ore

Refractory Error _in_Ecolory

Some types of uncertainty in inpact assessnent are easily renedied. If a
few nore observers spend a little nore time gathering data or inproving their
nmodel s, a noticeable inprovenent will result and these renediable types of
errors wll be elimnated or at least greatly reduced in magnitude. A nore
interesting class of errors can not be pushed to zero, however, or even
significantly reduced in magnitude regardl ess of how much effort is expended
to do SO These are the refractory or intrinsic uncertainties whose origin
we now discuss. In a general sense, they stem from two sources: uniqueness
and sensitivity to initial conditions. We explain these in turn

The uni queness of individual ecosystenms and of the planetary environnment in
its entirety renders it inpossible to achieve the sina qua non of the
classical scientific experinental approach--replication of the system under
I nvestigation. Wthout the benefit of replicable systems, a statistically
meani ngf ul anal ysis of the effect of a toxin on an ecosystem is unattainable.
The reason is that in any dose-response study, be it atthe |level of an

i ndi vidual organismor at the ecosystemlevel, one’s interest is always in the
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difference between a treatment and a control system [ nherently, this
requires at least two initially identical systens. If replication of the
treatment and control systens is also desired so that a neasure of the
statistical significance of the dose-response relarion can be derived, then
even nore identical systems are required. Ecosystens, unfortunately, are not
so obliging. Two nearby |akes, two forests in the same region, and even two
pat ches of meadow cl ose by one another differ in myraid ways; ecol ogists
will never be aware of all of them let alone be able to quantify them

To attenpt a resolution of this dilemma, interest in ecological microcosms
has recently accel erated. M crocosns are segnents of natural ecosystens of a
size convenient for laboratory replication and anal ysis. Lake m crocosns,
for exanple, consist of containers filled with [ake water and possibly |ake
sediments taken froma real |ake. If appropriate precautions are taken
in the design, initiation, and operation of these systens, they can be
replicated adequately for periods of up to several months and used for
t oxi col ogi cal testing. Because they can be put together in such a way that a
large fraction of the natural ecological diversity in the parent systemis
present in the mcrocosns, they offer a partial solution to the problem of
uni queness. Val uabl e as the mcrocosm approach is for ecotoxicological
testing, problens of size or scale inherently limt its usefulness. Most
inportantly, it is not feasible to place large plants an animals in them to
do so would result in wildly unrealistic behavior, both with respect to
chem cal concentrations and popul ation densities in the mcrocosns.
Therefore, the very types of organisns of greatest interest to the public can
not be studied in such systens. In addition, long-term m crocosm
investigations (usually of more than a few nonths duration) are not possible
wi thout jeopardizing the ecological realism (that is, the degree of simlarity

bet ween the control mcrocosns and the parent ecosystem from which the
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m crocosns were derived) of the mcrocosns.

Which brings us to the second refractory source of uncertainty--
sensitivity to initial conditions. Ecosystens, |ike the global climte
system, are conplex at many spatial and tenporal dimensions. That is, within
such systems microscopic behavi or and macroscopi ¢ behavior are present and are
strongly coupl ed. For exanple, the popul ation dynam cs of microbes can
affect the health of fish in a lake, and at a nolecular level, the diffusion
of nutrients and the turbulence of the water can affect the m crobe
popul ati ons. In the global climte system atmospheric turbul ence influences
climate on a macroscopic scale. In systens where such different dinensions
are coupled and chaotic or turbulent behavior is inportant, the ability to
predict the future consequences of the systemis severly |imted. In a
profound analysis of the effect of turbulence on climate prediction, Lorenz
(1969) showed that microscopic turbulence introduces an intrinsic source of
error in the prediction process. In particular, it renders the future
behavior of the climate incredibly sensitive to initial conditions. The
amount of detailed initial conditions one needs to measure in order to predict
future climate with any specified degree of accuracy increases faster than
exponentially with the period of time into the future one wants to predict the
climte. Long term prediction with the sane detail and accuracy as we now
can achieve for one or two day predictions thus beconmes intrinsically
I npossible for a practical reason: we cannot gather sufficiently detailed
measurements on today's clinate.

The deep reason for this phenonenon is the extrene sensitivity of conplex
systens possessing many scales of motion, such as systems with turbulence, to
smal | changes in initial conditions. Platt et al. (1977) investigated marine
ecosystens and found a simlar sensitivity to initial conditions. It is

likely, in fact, that ecosystems, generally, are characterized by such a
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sensitivity, although this has not been investigated yet.

Concl usi on

The major advances in environmental |y relevant ecol ogical research In the
past decade have not been in the direction of devel opi ng nodel s that can
pfedict with greater accuracy the future state of a disturbed ecosystemor the
distribution of values of sone uncertain parameter within its range of
uncertainty. Rather the direction of progress has been in characterizing the
features of ecosystems that render them either vulnerable or susceptible to
change when subjected to stress and in Identifying the major sources of
uncertainty. Rat her than making substantial progress in the devel opnment of
one “correct“mat hematical nodel for predicting the future behavior of an
ecosystem the effort has been to search for relatively model-independent
truths. Val uable as this information 1s, it does not necessarily provide the
type ofInformation econom sts need if they are to apply valuation procedures
to realistic situations. Error propagation and the existence of refractory
sources of uncertainty in ecology nust be taken into account if realistic
goals for benefit-cost analysis in environmental policy are to be set. Perhaps
nost inportantly, uncertainty about uncertainty--that is, uncertainty about
the probability distribution of ecological variables within their range of
uncertainty-- limits progress toward nore rational decision making. Per haps
error distributions canbe better characterized and refractory uncertainties
can be reduced by nore intensive analysis of ensenbles of nodels In
conjunction with properly designed |aboratory and field studies. In any
event, progress toward the goal of nore rational decision making will
requirethat econoni sts and ecol ogi sts working at the interface of these two
di sciplines are aware of the internal constraints of each others' field,

while at the sane time they sharpen their tools within their own.
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