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some fraction of the popul ation remains after the stress {s renoved

Figure 12 illustrates that assunptions as to the shape of the *bionass
pyramid"--that is, the ratios Oof biomass-per-unit-area present for each
trophic | evel --canhavea profound effect on the nmagnitude of the
magnification of perturbations down the food chain from producer to carnivore.
Here we show that the effect ofa -1% change in the growth rate of
phytoplankton is greater on the fish population in a food chain with bionmass
ratios of 100 : 10 : 1 (phytoplankton : zooplankton : fish) than for food
chains in which the trophic level ratios are smaller. It should be
renenbered that we_know only that this result pertains to the sinple predator-
prey nmodel we have been studying: the effect of the shape of biomass pyram ds
on responses to stress has yet to be investigated for other types of nodels.

Figure 13 presents the response of the populations in a four-tiered food-
chain nodel to a -2% perturbation in the growh rate of the phytoplankton.
Note that, as in the three-tiered case (figure 6) the relative magnitude of
changes inthe popul ations of the various trophie |evels increase as the
organisms get larger. Another simlarity is that the lag In response to
the perturbation is | onger for higher trophie | evels. The four-level node
does, however, appear to be nore stable: a -2% perturbation in r, results in
only a 10% decrease in the steady-state value of the larger fish popul ation,
while the highest trophic level in the three-tiered case is decreased 30% in
popul ati on. In the four-tiered nodel all four populations oscillate in a
danped fashion toward a steady state val ue. This is the sort of behavior
that one mght expect froma real ecosystem It is also gratifying to note
that the oscillations in the populations of each predator-prey pair are out of
phase with each other. Thi s makes ecol ogical as wel|l as nathematical sense
As the popul ation ofl arger fish, for exanple, declines, grazing pressure on

smal | fish decreases, allowing that population to expand.  This increase in
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The response of the populations tnafour-tiered aquatic
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ratios: 500 phytoplankton: 100 zoopl ankton : 10 small fish:
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dashed curve, and the lower solid curve, respectively.
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smal | fish creates favorable conditions for the larger fish, which multiply
until the small fish have been overgrazed. At this point the popul ation of
larger fish starts to decline, the small fish start to increase, and the cycle
starts agai n.

Figures 14 and 15 show the response of the four-tiered ecosystemto a -2%
changes in re and chart recovery paths for cases in which the perturbation is
renoved after 2000 and 4000 days, respectively.  These two figures illustrate
how i nportant the timing of the renoval of a stress can be, When the stress
Is removed after 2000 days there is a pronounced lag in the return path of the
larger fish population.  After 2000 days of recovery that population is still
less than its pre-perturbation |evel. If the stress is renoved after 4000
days, the population of larger fish returns to its original level after 2000
days, and is actually 10% above its original |evel after 4000 days of
recovery. This does not inply, certainly, that it would be prudent to delay
the clean-up of apolluted aquatic ecosystemin the hopes that recovery wll
be faster If one waits longer; it merely Illustrates that the recovery of a

perturbed ecosystem nay not bea sinple nonotonic function of the lengthof
time over which it hasbeen pol | uted.

Qur mathematical nodels tend to validate both the ideal and non-ideal
theoretical hysteresis nodels. Lower trophie |levels tend to return to their
original levels after arelatively short recoverytine, and thus show ideal
hyst eresi s. For hi gher trophic levels (and especially with oore severe
stresses) the non-ideal hysteresis nodel domnates: |arger organisns respond
to a stress more slowy and recover nore slowy, and frequently fail to return
to their initial positions within a tine-franme relevant to policy decisions,
W% shoul d note, however, that by the nature of the mathematics used all of the
popul ations we have modelled Will|l eventually return to their original |evels,

given a sufficiently long recovery period.
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Calculated time paths for the response and recovery of the
popul ations ina four-tiered aquatic ecosystem (measured in
bi omass per unit area, initial biomass ratios: 500
phyt opl ankton: 100 zooplankton : 10 smal| fisn: 1 larger fish)
to a -2% perturbation in the phytoplankton growth rate applied
at time zero and renoved after 2000 days. ‘Response” paths
are indicated by right-pointing arrows, and ‘recovery* paths
are marked with left-pointing arrows. The paths for the
responses Of the phytoplankton, zooplankton, snmall fish, and

| arger fish populations are given by the upper solid curves,
the dotted curves, the partially dashed curves, and the |ower
(nmore highly arched) solid curves, respectively. Not e that

the population of larger fisn falls to return to its original
position after 2000 days of recovery.
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Cal cul ated time paths for the response and recovery of the
popul ations ina four-tiered aquatic ecosystem (nmeasured in
biomass per unit area, initial viomass ratios: 500
phytoplankton: 100 zoopl ankton : 10 small fish: 1 [arger fish)
to a -2 perturbation in the phytoplankton growth rate applied
at time zero and renoved after 4ooo days. "Response” paths
are indicated by right-pointing arrows, and ‘recovery"paths
are marked with left-pointing arrows. The paths for the
responses Of the phytoplankton, zooplankton, smal | fish, and

| arger fish populations are given by the upper solid curves,

the dotted curves, the partially dashed curves, and the |ower
(nore highly arched) soltd curves, respectively. Not e that
the population of larger tish returns to its original position
after 2000 days of recovery and actually overshoots its
| evel by 4000 days after the perturbation is removed.
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We expect that the addition of higher trophie levels including |arger,
| onger-lived organisms Wi ||l show the non-ideal hysteresis nodel to be nore

useful for population changes oceuring withinatime-frame relevant to policy-

maki ng.

Di scussi on

Mathematical npdel s of ecosystem perturbations are often used in ecol ogy
(Patten, 1975; 0O'Weill, 1976) and aquatic ecol ogy (0'Melia, 1972; Bierman et
al, 1980; Inoue et al, 1981). The drawbacks of such nodels are now
sufficiently well understood as to allow for their restricted use.

Qur mathenatically-derived curves for the pollution and recovery ofan
aquatic ecosystem denmonstrate a hysteresis effect. These curves agree
closely with the ideal and non-ideal conceptual hysteresis nodels described
above. W can use the information in our mathematically-derived curves to
choose which of the conceptual nodels is nore realistie.

The non-ideal conceptual mode sel ected by this process is of great
interest since it forecasts that the nost economcally valuable species, such
as commercial and sports fish, will not directly and reversibly return to
their original |evels. This is due to the time l[ags that conme about in part
because organi sms in higher trophic levels are slower to multiply and in part
because increases in these levels nust follow recovery of their prey
popul ati ons. This type of sustained hysteresis effect is apparently inherent
in ecosystems including |inked trophic |evels.

Qur nodel differs from many perturbation models (e.g. 0'Neill, 1976) in
that we have assumed that the disturbance caused by pollution is small but
conti nuous. This kind of small change is to be expected from ‘nodern”
pol lution, where sophisticated treatment of waste is mandated and disposal of

the end product of the treatment process cannot be postponed or diverted.
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Sewageand | ndustrial-waste effluents from |arge eities or conpanies are
exanpl es of such waste streans. Simlarly, it is unlikely that total
restoration of a grossly polluted ecosystem would be considered. Rat her, a
small upgradi ng (e.g. through control of point-sources of toxic netals, a
decrease in suspended solids, or a reduction in chlorine loading) of a
partially restored or partially damaged system is envi saged, as opposed to a
massive ecol ogi cal change. This sort of approach 4s typical of pollution-
control strategies currently used in the U S.

There are, however, two potential drawbacks to our sinple mathematical
model. First, pollution-induced changes in real aquatic ecosystems are
unlikely to be quite as steady and continuous as we have nodel ed them  For
exanpl e, many fish scarcely feed over the winter, and are thus unaffected by
decreases in algae or zooplankton popul ations over that time period. Second,
our model predicts that small fish will rather quickly be forced nearly to
extinction If larger (e.g. 2S% continuous depressions of primry production
are used. This is probably unrealistic due to the patchy nature of the
seasonal and spatial distribution of food for higher-trophic-level Or gani Sns.
We expect that sone clarification of these drawbacks will result from our
future conparisons of the sinple Trophic-Link Model (three trophic and four
levels) with a five-level version, and the conparison of both of these with
real data (yet to be assenbled).

Qur determnistic TLM may al so be insensitive to other |ikely ecosystem
stresses that are stochastic in nature. A cool spring and summer may, for
example, result in the year’s juvenile fish crop being undersized at the end
of the growth season, |eaving themnore vulnerable to cannibalism overw nter
(Kipling, 1976). How woul d such arandom event affect the hysteresis loops

we have nodel ed, especially in the recovery phase? 1In progressing froma

32



deterministic to a Stochastic nodel 1ing approach, the major difference we
woul d anticipate would be that the position of the system would be described
in probabilistic terns. For exanple, with respect to the -25$% perturbation
shown in figure 11, instead of the small fish population beconming critically
1'ow after 3000 days with a probability of one, it mght do so with a
probability of 0.9, and have an additional probability of 0.1 of becom ng
critical at sone other tine. Ginzburg et al (1982) present a nethodol ogy for
obt ai ni ng such extinction probabilities within the framework of a stochastic
singl e-speci es popul ation nodel. W intend to consider whether a sinilar
approach is feasible for a multi-species nodel with realistic paranmeters.

We realize that the results of the HTLM are dependent on the form of the
different differential equations used, the values chosenfor the parameters,
the method ofsolution of the equations, and the functional conponents ofthe
ecosystem that the nodel descri bes. W intend, in fact to exam ne how
changes in the formand paraneters of HTLM's affect the results of such
model s. Wil e no one trophie |ink nodel can predict the behavior of a
variety of ecosystens or even one specific ecosystem wth great certainty,
we hope that advanced forns of the HTLM can be devel oped that ecan, when

properly specified and calibrated with field data from a specific ecosystem,

yi el d nmeaningful insights into the future behavior of that ecosystem in
response to pollutant stresses. This does not mean that we believe any such
nmodel can be used to definitively predict that reducing the annual |oading of
conpound X by 100 tons per year will result in a 5.5% increase in the number
of game fish. The appropriate use for a properly calibrated Dodel would be
asan aid in making the type of yes/no choices that regulators often face.
Suppose, for exanple, that a regulator wshed to know whether or not to order
the clean-up of a specific |ake. If a carefully constructed and calibrated

HTLM indicated that a substantial fraction of the population of an inportant
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ganme fish would be likely to be lost if clean-up were del ayed, the regulator
might, after weighing the evidence, decide to proceed with pollution
abat enent . In such a case it would not matter if the nodel predicted a 403,
60%, 80% or 100% reduction in fish: the conclusion drawn bythe regulator
woul d be the same.

Ve feel that the sinplicity of the BTLM framework will make it possible to
easily calibrate nodels for specific situations. These nodel s could then be
run to yield qualitative information that, because of the sinplicity of the

model s, can be traced back to allow a better understanding of the ecol ogy

behind the result.

summar

Qur initial results suggest that the hysteresis effect may be one reason
why sone val uabl e fisheries resources (e.g. the Geat Lakes, where sports
fisheries have failed t 0 re-establish thensel ves fol |l owing pollution control
efforts) thave failed to respond to reduction in pollution.  An understanding
of hysteresis phenonena may al so make it possible to predict (in an
approximate way) how long it will take to see a recovery of a fish resource.
An equal 'y inportant application of the concept is to use it to gain a
qualitative feeling for why sone conponents of ecosystens and not others fail
to show ideal hysteresis behavior and consequently becomelocally extinct.
Further calculations using more trophiec levels, different values for key
paranmeters, and generation times derived from data on natural ecosystenms, may
show how useful the hysteresis concept can be foreconom ¢ eval uation of

pol lution-control benefits that may be |ong del ayed by ecosystem hysteresis.
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APPENDIX : DETAILS OF MATHEMATICS




DETAILS OF MATHEMATICS

ASSUMPTIONS FOR THREE- LEVEL MODEL:

dX/dt = reXx(1 . X/Rg) = By, XY -byX

dY/dt

ExyBxyX¥  BypYZ - b,
EyzByzTZ - 3,

dZ/4t

X = Phytoplankton, Y = Zooplankton, Z = Small Fish;

St eady- State Popul ations: x* =50, Y* =10, Z* = 1;

Exy = 0.1, E,= 0.1, Ry = 1005

Generation TiNMes: T, = 3 days, T, = 20 days, T,= 360 days.

=1 -
Ty =P » Ty = (Exyaxyx.)-1' T.= (EyszzY.) 1

SO0. ..

cy s (T)TY: (32 1/3,

Byy - VTyExyX' =(20 x 0.1 x 50)-" = 1072,

By = 1/T4Ey,Y" =(360 x 0.1 X 10)=1 = 1/ 360.
At Steady-State:
reX (1 - XHKX) - BeyX T -bx" = 0

ExyBeyX I - BT 2" - b,t" .0

y
ByszzY'z" sz‘ = O

SOeee
b, = (1/3)(1 - 1/2) - (10"2 X10) =1/6 - 0.1 = .0666667
by = (0.1 X 107 X 50) - (1/360) = 0.05 - 1/360 = 0.04722
b, (0.1 X 1/360 X 10) = 1/360.




ASSUMPTI ONS FOR FOUR- LEVEL MODEL:

dX/dt =ryX(1 = X/ K) . ByyXY -byX

dY/dt = E. B XY -5 yz _
yoxy® " Byg by ¥
dz/dt

EyzByYZ - BypZF - b,2

dF/dt = E,¢B,eZF- D F;

X = Phytoplankten, Y = Zoopl ankton, Z = Small Fish, F = Larger Fish;
Steady- State Popul ations: x* = 500, ¥* =100, z* = 10, F* = 1;

Exy = 0.1, E, = 0.1, By = 0.1, Ky= 1000;

CGeneration Times:T,= 3days, T, = 20days, T,= 360days, Tf = 1080days.

T, =rg s Ty 2 (EgyByyX' )™y T.= (EyyByp¥ )"y and T,= (EppByez)”!

SO...

x = (T~ = (3 = 1/3,
Byy = 1/TyExyX" = (20 x 0.1 x 500)-" = 1073,
By = 1/T4Ey,Y = (360X 0.1 x 100)=! = 1/3600, and

Byp = ”Tf‘Ezt‘z. = (1080x0.1 x10)'= 1/1080.

At  Steady-State:

reX (1 = XV/K) - BX'Y' -bX+ = O
EyyBeyX ¥ - By f'2" - byt = O
ByyByzT 2' - B,ez'F' - b2" = O and
EgeBypl T - BF' = O
50. ..
by = (1/3)(1 - 172) . (1073x100) = 1/6 - 0.1 = .0666667
by - (01x10°x500) - (1/3600 X 10) = 0.05 - 1/360 = 0.04722
b,(0.1x1/3600 x 100) - (1/1080) = 1/360 - 1/1080 = 1/540, and

b(0.1x 171080 x 10) = 1/1080.
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LISTING OF COMPUTER PROGRAM USED TO CALCULATE TIME PATHS FOR

THREE-LEVEL AQUATIC BCOSYSTEM MODEL

Thisprogram which incorporates the NAG subroutine do2ebt, can
be usedto solve three coupled differential equations.
.scalars 1N CcomMmDN
inplicit double precision (a-h, o-z)
doubl e precision H, xend
integer 1

..local scalars..

double precision tol, X

integer Ifail, IR, IW, roped, nout
..local array s..

double precision ¥(3,21), Y(3)
..subroutine references.,
d02ebf

external fen, out, pederv

common xend, H, |

open(8, file= ’output’)

opens file, named “output”, in which results are to be placed
data nout /$/

write (nout,99996)

write (8,99996)

write {nout,99994)

write (8,99994)

N=3

W=21

MPED = 0O

IR=2

tol = 10.0d0**(-5)

write {nout,99999) tol

write (nout,99998)

write (8,99999) tol

write (8,99998)

x=0

xend = 1.0d4

Program is now set to calculate a “response” path. To calculate a
“return” path one would substitute post-perturbation values for

y(1-3) bel ow
y(1) = 50.0d0
y(2) = 10.0d0
y(3) = 1.0d0

H = (xend-x)/50

Prints out solution at 49 evenly spaced points between x(0) and xend

1=49
Mail = 1
cal | D02EBF(x, xend, N, y, tol, IR, fen, roped, pederv,

-out, W IV, Ifail)

write {nout,99997) lfail
write (8,99997) Ifail
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()

subroutine pederv(x, y, PW -
.scalar arguments. .
doubl e precision x
.array argunents..
doubl e precision P¥(3.3), y(3)

PW(1, i) =-1.00 d0*2.0d0%(1.0d0/( 3.0d40°100.0d0)} -y(|) +
+ + 1.00d0%(1.0d0/3 .0d0) - 0.06668666668666667d0

+ - (1. 0d0/100.040)*y(2)

PW(1,2) = (1. 0d0/100.0d0)*y(1)

PW(1,3) = 0.0d0

PW(2,1) = (1.0d0/100.0d1) *y(2)

P¥W(2,2) = - (1. 0d0/36.0d1)*y(3) - (4.72222222222d-2) +
+ (. 0d0/100.0d1)°y(1)

PW(2,3) = - (1. 0d0/38.0d1)*y(2)
PW(3,1) = 0.0d0
PW(3,2) = (1.040/36.0d2)*y(3)

PW(3,3) = (1. 0d0/38.0d2)*y(2) - 1.0000 d0*(1.040/3.6d2)
return
end
subroutine out(x, Y)

.scalar arguments. .
doubl e precision x, u

..array arguments. .
doubl e precision y(3
doubl e precision z(3
uallows time to be counted “backwards” (for return paths), while z(3)
is aset of variables that allow the popul ations, ygt), to be normalized
with respect toone another. The equations for 2(1-3) bel ow express
each y(tf as a percentage of the initial popul ation in that trophic | evel

.scalars i N conmmon. .
doubl e precision H xend
i nteger-|

~ .Jocal scalars. .
integer J, nout

common xend, H, |

data nout /8/

z(1) = y(1)/0.540

2(2) = y(2)* 10.0d0

z(3) ='y(3)* 1.0d2
u=10d4-x

write (nout,99999) x, (z{J).J= 1,3)
write (8,99999) X, (z(J), J=1,3)
x = xend - dble(l)*H

1= 1-1

return

99999 format (1H , F8.2,3E13.5)

end
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It (tollt.o) wite (nout,89995)
if (tollt.0) write (8,99995) .

20 continue
roped = 1
c roped = 1 indicates that routine is using supplied Jacsz:===x {in PEDERV)
C rather than calculating it internally (which happens wrn==r=nped = O

Wite (nout,99993)
wite (8,99993)

tol = 10.040*%(-5)
Wwite (nout,89999) tol
wite (8,99999) tol
wite (8,99998)

Wite (nout989398)

X=0

xend = 1.0d4
y(1) = 50.0d0
y(2) = 10.00d0
y(3) = t.0do

H = (xend-x)/50
1=49

Ifail=1

call DO2EBF(x, xend, N, vy, tol, IR, fen, roped, pederv,
. out, W, 1w, Ifail)
write (nout,99997) Ifail
If (tol.lt.o) write (nout,99995)
write (8,99997) Ifail
If (tol.lt.o) write (8,99995)
40 continue

sto
99999 form%t (22hOCALCULATION WITH TOL=, €8. 1)
99998 format (40h T AND SOLUTION AT EQUALLY SPACED POINT=T
99997 format (Bhlfail= 11)
99996 format (4(1x/), 31hDO2EBF EXAMPLE PROGRAM RESUL™<. .. =Xx)
99995 format (24h RANGE TOO SHORT FOR TOL)
99994 format (32h0CALCULATING JACOBIAN INTERNALLY)
99993 forrgat (31hoCALCULATING JACOBIAN BY PEDERV)
en
subroutine fen(T,y, F)
C ..scalar arguments..
double precision T
o ..array arguments..
double precision F(3), y(3)

FQ1) = 1.00d0*(1.0d40/3.0d0)*y(1)*(1.0d0-(y (1)/100.0dC - -

+ (1. 0d0/100.0d40)*y(1)*y(2)

+ - 0.066666666666667 d0*y(1)

F(2) = (1.0d0/100.0d41) *V(|) *y(2) - ((1.0d0/36.0d1)*y(2; > > 2})-
+ (472222222222 d-2)*y(2)

F(3) = (1.0d0/36.0d2)*y( 2)*y(3) - 1.00d0*(1.0d0,/3.6d2) =+ ="
program IS now set at steady state. To model a pertur=ar....——n
in the phytoplakton growth rate, replace "1.00d0” in the~m~———oression
for F(1) (and aso inthe expression for PW(1, 1), below)

with, for example, "0.98d0" (for a 2% decrease)

return

end

o000
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C

LISTING OF COMPUTER PROGRAM USED TO CALCULATE TIME PATHS FOR

FOUR-LEVEL. AQUATIC BCOSYSTEM MODEL

.. Scalars w comon
inplicit double precision (a-h, 0-2)
doubl e precision H xend
integer |

.local scalars..

double precision tol, x

integer Ifail, IR, IW, roped, nout
..local array s.

double precision W(4.22), y(4)
..subroutine references. .
d02ebf

external fen, out, pederv
conmon xend, H 1

open(8, file="output’)
Places the output of this program into a file nanmed “output”
data nout /8/

wite (nout,99996)

wite (8,99996)

Wite {nout,99994)

wite (8,99994)

N=4

w=22

MPED = O

IR=2

tol = 10. 0d0**(-5)

Wite (nout,99999) tol
wite (nout,99998)

write (8,99999) tol

wite (8,99998)

X=0

Programis now Set to calculate time paths starting with steadP/-state
conditions. To calculate “return” paths, replace the values o
y(1-3) bel ow with post-perturbation val ues

xend = 2.0d4

y(1) = 500.0d0

y(2) = 100.0d0

y(3) = 10.0d0

y(4) = 1.0d0

H = (xend-x)/50

1=49

ltail = 1

cal | DO2EBF(x, xend, N, Yy, tol, IR, fen, roped, pederv,
out, W IW, Ifail)

Wite (nout,99997) Ifail

wite (8,99997) Ifail

[f (tollt.o) Wite (nout,99895)

It (tollt.o) wite (8,99995)

20 continue

This section. which is optional, calculates time points hased on val ues
of t(?e Jacobi an matrix of the system supplied I n "PEDERV", bel ow
roped = 1

wite (nout,99993)

write (8, 99993) A6



tol = 10. 0d0**(-5)

write (nout,99999) tol

write (8,99999) tol

write (8,99998)

write (nout,99998)

x=0

xend = 2.0d4

y(1) = 500.0d0

y(2) = 100.0d0

y(3) = 10.0d0

y(4) =1.040

H =(xend-x)/50

1=49

fail=1

call DO2EBF(x, xend, N, y, tol, IR, fen, roped, pederv,

. out, W, IW, Ifail)

write (nout,99997) Ifail

If (tol.lt.0) write (nout,99995)

write (8,99997) Ifail

If (tol.lt.0) write (8,99995)

40 continue

stop
99999 format (22hCALCULATION WITH TOL=,e8.1)
99998 format (40h T AND SOLUTION AT EQUALLY SPACED POINTS)
99997 format (8hlfail= 11)
99996 format (4(1x/), 31h DOREBF EXAMPLE PROGRAM RESULTS/IX)
99995 format (24h RANGE TOO SHORT FOR TOL)
99994 format (32hCALCULATING JACOBIAN INTERNALLY)
99993 format {31hCALCULATING JACOBIAN BY PEDERYV)

end
subroutine fen(T,y, F)
c ..scalar arguments..
double precision T
c ..array arguments..

double precision F(4), y(4)

To calculate response to a perturbation in the phytoplankton growth rate,
replace ""1.00d0"in F(1), and PW(1, 1) below with, for example "0.9840"
(for a -2% perturbation

F(1) = 1.00d0*(1.0d40/3.0d0)*y(1)*(1.0d0-(y(1)/100.0d1)) -

+ (1. 0d0/100.0d 1)*y(1)*y(2)

+ - 0.066666666666667 d0*y(1)

F(2) = (1. 0d0/100.0d2)*y(1)*y(2) - ((1. 040/36.0d2)*y(2)*y(3)) -

+ (4.72222222222 d-2)*y(2)

F@3) = (L 0d0/38.0d3)*y(2)*y(3)-((1.0d40,/1080.0d0)*y(3)*y(4)) -

+ 1.00d0%(1.040/5.4 d2)*y(3)

F(4) = (1.0d0/1080.0d1) *y(3)*y(4) - (1. 0d0/1080.0d0)*y(4))

return

end

OO0
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subroutine pederv(x,y, PW)

c ..scalar arguments..
double precision x
c ..array arguments..

double precision PW(4.4), y(4)

PW(1,1) = -1,00 d0*2.0d0°(1.0d0/(3.040°100.1d0)) *y(1) +
+ +1.00d0°*(1.0d0/3.0d0) - 0.06666666688668887d0
+ - (1. 040/100.0d1)*y(2)
PW(1,2) = (1. 040/100.0d1)*y(1)
P¥(1,3) = 0.0d0
P¥W(1,4) = 0.0d0
PW(2,1) = (1. 0d0/100.0d42)*y(2)
PW(2,2) = -(1. 0d40/36.0d2)*y(3) - (4.72222222222d-2) +
+ (1. 0d0/100.0d2)*y(1)
PW(2,3) = -(1. 040/36.0d2)*y(2)
P¥(2.4) = 0.0d0
PW(3.1) = 0.0d0
PW(3.2) =(1.0d0/36.0d3)*y (3)
PW(3,3) = (1. 0d0/36.0d3)*y(2) - 1.0040*(1.0d0/5 .4d2) -
+ (1.040/1080.0d0) *y(4)
PW(3,4) = (1. 040/1080.0d0)*y(3)
PW(4,1) = 0.0d0
PW(4,2) = 0.0d0
PW(4,3) = (1. 040/1080.0d1)*y(4)
PW(4,4)=(1.0d0/1080.0d1)*y(3) - (1. 0d0/1080.0d0)
return
end
subroutine out(x, y)
c ..scalar arguments..
double precision x, u
c ..array arguments..
double precision y(4)
double precision z(4)
“u” alows time to be counted "backwards” for return time paths: 2(1-4)
is a set of variables that allow the time points for y(1-4) to be
expressed as percentages of the initial populations in each trophic
level

oo oo o0

..scalars in common..
double precision H, xend
integer |

O O

:.Ilocal scalars..
integer J, nout

common xend, H, |
data nout /8/
z(1) = y(1)/0.5d1
z(2) = y(2)
2(3) = y(3)* 1.0d1
z(4) =y(4)* 1.0d2
U=2.0d3- X
write (nout,99999) u, (z(J), J=1,4)
write (8,99999) u, (z(J).J=1,4)
x = xend - dble(l)*H
=1-1
return
99999 format (1H , F8.2,4E13.5)
end
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