I11. ECONOMETRIC ESTIMATION OF PESTICIDE PRODUCTIVITY

A. INTRODUCTION

Econometric estimates of pesticide productivity can be of
tremendous importance in regulatory decision-making. The
estimates of aggregate pesticide productivity obtained by
Headley, Campbell, Carlson and others showing values of marginal
pesticide productivity several times greater than marginal cost
have been used many times to underscore the importance of
pesticides to the U.S. agricultural economy. Estimates of
county- or state-level patterns of substitution among pesticides
and pest management strategies and of the productivity effects of
these substitutions can be helpful in giving regulators a good
sense of the likely effects of alternative regulatory actions.
While such econometric estimates are likely to be less accurate
than simulation-derived estimates regarding any specific
pesticide, they are also likely to be more robust and
transferable regarding broad classes of pesticides and are thus
especially useful as a tool for giving regulators a "first-cut"”
sense of the likely effects of regulation in a relatively rapid,
cheap manner.

Econometric methods have not been used to obtain these kinds
of estimates despite these advantages. Problems of data
availability are one reason for this failure to use econometric
methods. Another reason, though, may be the counterintuitive,
counterfactual results obtained by the econometric investigations
performed to date. As we mentioned above, these studies have

consistently found average values o f marginal pesticide
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productivity several times greater than marginal cost, suggesting
that pesticides are underutilized in U.S. agriculture. Most
biologists, economists and regulators believe the opposite to be
true and may be disinclined to use econometric methods on these
grounds. During budget period 1, we investigated the conceptual
foundations of these econometric studies and found that the
standard production function specifications used by Headley and
others produce estimates of pesticide productivity which are
biased upwards, that is, overestimate pesticide productivity. We
pointed out that pesticides play a different role in production
than normal inputs such as water, fertilizer, etc., in that they
do not augment crop growth. Rather, pesticides are damage
control inputs, whose use prevents crop loss. As a result,
pesticide productivity should not be modeled in the same way as
normal inputs. We developed a production function specification
which incorporates damage control explicitly; a number of
examples used entomologically-derived pesticide "kill" functions
were developed and their estimation discussed.

During budget period 2 on work in this area proceeded along
two lines. First, we revised our original paper for publication

in the American Journal of Agricultural Economics, where it will

appear in May 1986. The revised paper is presented in Section B.
Second, we applied the production function specification we
developed to data on cotton production in the San Joaquin Valley,
California. The results of these efforts are presented in
Section C. Section D considers some possible further research

along these lines.
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B. THE ECONOMETRICS OF DAMAGE CONTROL:

WHY SPECIFICATION MATTERSL
One of the most important classes of factors of production is that consisting
of damage-control agents. Unlike standard factors of production (land, labor,
and capital), these inputs do not increase (they may, in fact, decrease)
potential output. Instead, their distinctive contribution lies in their
ability to increase the share of potential output that producers realize by
reducing damage due to both natural and human causes. Many of the innovations
in agriculture over the past few decades have involved the introduction of
damage-control agents, e.g., pesticides, windbreaks, sprinklers for frost pro-
tection, immunizations and antibiotics in feedlot operations, etc. Advances
in storage technology (for instance, the fumigation of stored grains) have
hinged on improvements in damage-control agents. Other important examples of
damage-control agents include the use of smoke alarms and sprinkler systems to
reduce fire damage, antitheft/antivandalism measures (in fact, the prevention
of crimes against property is essentially an exercise in damage control), etc.

The use of damage-control agents also tends to subject producers to cer-
tain difficulties which do not arise in connection with the use of standard
inputs. The most important problem is that, in many cases, the damaging
agents involved (be they human, insect, or weed) adapt to the damage-control
measures taken as time passes, rendering the latter increasingly ineffective,
This problem of growing resistance to damage control has important economic
ramifications.

In many situations, notably those involving natural systems (e.g., pest

control, immunization, etc.), the ability of simulation methods to deal with

76



multiple dynamic processes makes them better suited for exploring the details
of optimal damage-control strategies. In positive studies, however, where the
aim is to explain observed behavior and to estimate behavioral or physical
parameters, econometric methods are generally required. The computational
complexities and data requirements of econometric methods restrict them to
specifications that are simpler and less detailed than the ones used for simu-
lations. Thus, econometric methods are inevitably confined to a lower level
of precision than simulation models. The key to maximizing the accuracy and
information content of econometric models lies in incorporating as much as
possible the critical elements of the available scientific knowledge without
fatally compromising their generality and estimatability.

To date, econometric investigations of damage control have tended to rely
on generic econometric models rather than to draw on knowledge about the
actual physical or biological processes involved to specify the relevant func-
tional forms. Specification errors arising in this way may generate biases of
considerable size in estimates of productivity and, hence, faulty conclusions
about efficient input usage.

Economic analysis of agricultural pesticide use is a prime example of this
phenomenon. Theoretical (Feder and Regev; Regev, Shalit, and Gutierrez) and
normative empirical (Shoemaker; Regev, Gutierrez, and Feder; Talpaz and
Borosh; Regev, Shalit, and Gutierrez) models of pest management at the farm or
regional level have incorporated the available entomological knowledge in
their model specifications and have derived optimal management patterns and
policy recommendations on this basis. By contrast, econometric measurements
of pesticide productivity have been derived from standard production theory
models, notably using Cobb-Douglas specifications. It will be shown that
productivity estimates are flawed conceptually and, as a result, contain sig-
nificant statistical biases.
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Presented first is a general discussion of the role of damage abatement in
the production process. It is argued that damage-control inputs should be in-
corporated into production analysis in a different manner than regular inputs;
in fact, models of biological and physical processes are tapped to obtain
specifications of production processes with damage control inputs. These
specifications are especially appropriate for production analysis at the
microlevel, i.e., the individual firm, the farm, or even the field.
Heterogeneity among producers and variation in environmental conditions may
mean that proper aggregation procedures should be incorporated to derive
specifications appropriate for microlevel regional analysis (Zilberman).

This approach to the specification of the role of damage-control agents in
production has two important implications for theoretical and, especially,
empirical work. First, it is shown that the types of production function
specifications used most commonly to estimate factor productivity overestimate
the productivity of damage-control inputs even in large samples. The source
of this upward bias is a misspecification of the shape of the marginal factor
productivity curve of damage-control inputs which decrease more rapidly in the
economic range than standard specifications impose.

The kind of specification proposed for incorporating damage-control agents
into production analysis produces empirical models in which factor produc-
tivity can be estimated easily from existing data in a number of important
instances. Specifications will be derived and estimation procedures will be
discussed for several cases of special interest with respect to pesticides.

The second important characteristic of this specification is the way it
handles changes in damage-control agent productivity over time. In the case

of pesticides, for example, the spread of resistance through a pest population

is an important problem. Treating a damage-control agent, such as a
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pesticide, in the same way as an ordinary factor of production has led econo-
mists to predict behavior contrary to observed fact. In a standard production
function, decreasing factor effectiveness is reflected in decreasing marginal
factor productivity and, thus, in reduced levels of factor use. In the
specification, decreasing effectiveness may increase factor demand; this is

precisely the phenomenon observed in pesticide use trends.

A Model of Damage Control

Damage-control agents do not enhance productivity directly as do the standard
types of production factors. To the contrary, they may even impede produc-
tivity somewhat: The application of a pesticide, for example, may be harmful
to crop plants to a certain extent. Their contribution to production may be
understood best if one conceives of actual (realized) output as a combination
of two components: potential output (the maximum quantity of product obtain-
able from any given combination of inputs) and losses caused by damaging
agents (insects, weeds, bacteria, fire, floods, and vandals) present in the
environment. These losses, in turn, are a function of the environmental
conditions determining the destructive capacity of the relevant damaging
agents and of the action of damage-control agents on that destructive capacity
through the damage-abatement efforts undertaken. Thus, the productivity of
damage-control agents should be defined in terms of their contributions to
damage-abatement services, that is, the abatement effort (hereafter referred
to simply as abatement). It should be clear that damage and, hence, abatement
are necessarily limited by two factors: potential output and the destructive
capacity of the damaging agents. Damage can be at most equal to potential

output and no smaller than zero, and abatement can be at most equal to total
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destructive capacity (implying that production will equal some minimum value)
and no smaller than zero (implying that production will equal potential out-
put). This suggests that abatement should be defined in terms of its impact
on the destructive capacity of the relevant damaging agents since it affects
damage and production via that impact. For example, pest management efforts
aim to limit crop losses by reducing the sizes of pest populations at critical
times of the year; vaccination programs reduce susceptibility to infection;
fire safety efforts,(installation of sprinkler systems and fire escapes and
use of fire-retardant materials) reduce the damages sustained from any given
type of fire, etc.

These restrictions on abatement can be captured with no loss of generality
by defining an abatement function G(X) as the proportion of the destructive
capacity of the damaging agent eliminated by the application of a level of
control agent X. For the case of pest managment, for example, this means that
abatement will be measured by the proportion of the target pest population
killed by the application of a given amount of pesticide, that is, by what is
commonly called the pesticide effectiveness or kill function. This definition
suggests that the abatement function will possess the properties of a cumula-
tive probability distribution: It will be defined on the (0, 1) interval with
G = 1 denoting complete eradication of the destructive capacity and G = 0
denoting zero elimination, i.e., maximum destructive capacity; it will be
monotonically increasing; and it will approach a value of unity as damage-
control agent use increases, i.e., G(X)+1 as X»». The derivative of G

with respect to X, GX(X) = g(X), represents marginal damage-control agent

effectiveness or marginal productivity; it is simply the density of G(X).
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In this paper, X will be treated as a simple input for the sake of sim-
plicity; however, it should be noted that X will often be a vector of inputs
defined by time of application. In many situations, there are multiple damag-
ing agents and a variety of damage-control inputs to use; moreover, timing of
intervention will affect damage-control effectiveness. In econometric work,
of course, the dimensionality of X will be limited by the data available. It
should also be noted that G will generally be a function of variables other
than damage-control inputs, for example, state variables which indicate exoge-
nous factors such as pest prevalence, fire danger, weather conditions, etc.
However, damage-control variables are the only controllable factors affecting
abatement effort. For this reason, the analysis will concentrate on their
role and will ignore.the exogenous fac:'cors.2 Similarly, the analysis will
examine the case of a single destructive agent (single abatement effort) where
G has scalar values. In many situations, a firm may have to deal with several
sources of damage each of which requires some abatement. Analysis of the more
general case is beyond the scope of this paper; however, most of the results
obtained here carry over to the more general case. One interesting aspect of
the general case is that some damage-control agents may enter into several
types of abatement.

It follows from the characterization of actual output as a combination of
potential output and losses that production, Q, can be characterized as a

function of directly productive inputs, Z, and damage abatement G(X):

(1) Q = F[Z, G(X)].

81



The production function F{*)will be assumed to possess the standard proper-
ties of production functions, notably concavity in (Z, G). When the destruc-
tive capacity of damaging agents is completely eliminated, losses will be zero
and actual output will equal potential output, that is, potential output can
be expressed as F(Z, 1). When G = 0, F(Z, 0) denotes the output obtainable
under maximum destructive capacity, i.e., the minimum actual output.

The generality of F(*)allows damage abatement to affect actual output
in a variety of ways. For example, a general linear form, Q = Fl(Z) +
FZ(Z) G(X) may be reasonable in a variety of situations. The function Fl(Z)
represents minimum output in this case, while FI(Z) + FZ(_Z) represents
potential output. This general linear form encompasses some commonly used
specifications as subcases: Setting Fl(Z) = 0 implies that actual output is
proportional to abatement; setting FZ(Z) equal to a constant implies addi-
tive separability of potential output and losses. However, output may also be
nonlinear in abatement. In pest management, for instance, one would expect to
find decreasing marginal productivity of abatement since further reductions in
damages tend to decline as pest populations get smaller.

There are two ways of determining the optimal level of damage-control
agent use: (1) one can solve for the profit-maximizing choice of X directly
or (2) one can employ a two-step procedure involving, first, the profit-
maximizing choice of abatement, G, and, second, the choice of X to attain this
optimal level of abatement at least cost. Analyzing the choice of optimal
abatement is of interest in its own right. Moreover, because the choices of
abatement and damage-control agent use are often confused, it is instructive

to examine the differences and relationships between the two.
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Consider first the optimal choice of abatement, G. One can view this
choice as the intermediate step in the two-step procedure discussed above, or
as the purchase of abatement services as a marketed commodity which is not
unusual in pest control, property protection, and other stiuations. Let s
denote the price of a unit of abatement; p denote the price of the product, Q;
and r denote the price of the normal input, Z.

The relevant maximization problem is

(2) max Il = pF(Z, G) - rZ - sG.
7,G

Assuming an interior maximum and denoting derivates with subscripts, the nec-

essary conditions for maximization are given by

(3) pFZ = r, pF = S.

Sufficiency is assured by the negative semidefiniteness of the Hessian matrix
2
. . . r L .
which implies PZZ <0, FGG <0, and FZZLGG FGZ > 0. The elasticity
of demand for damage abatement, G, found by differentiation of (3) with

respect to s, is

(4) ) Fod® (F;) )




Now consider the optimal choice of damage-control agent use. Letting w
denote the price of the damage-control agent, the relevant profit-maximization
problem is

(5) max 1T = pF[Z, G(X)] - wX - rZ
7,X

and the necessary conditions are
(6) pFZ =T, pFG g = w.

Sufficiency is ensured by the negative semidefiniteness of the Hessian matrix
. S e 2L T e ot 2

which implies F,, < 0, Fgg » g°+ Fg * g' <0, and FZZ(FGG ~g" + Fg o

g') - FZG | gz > 0; both the marginal productivity of damage abatement,

FG’ and the marginal effectiveness of the damage-control input, g, must be

declining to ensure that a maximum has been attained. The elasticity of

demand for the damage-control input is

(1) S S e

where ng = gX/G is the elasticity of abatement andcn = gXX/g (the elasticity
g

of the marginal effectiveness of the damage-control input) measures the curva-

ture of the damage abatement function.

Evaluation of the expression on the right-hand side of (7) allows one to
draw several conclusions about the qualitative characteristics of demand for
damage-control agents and its relationship to the demand for abatement.

First, because g(X) has the properties of a probability density, it is

reasonable to assume that Ingl > 1, that is, that the marginal
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effectiveness curve is always elastic. The existence of a finite abatement
function (probability distribution), G(X), defined on 0 < X < = js

assured if the marginal effectiveness curve (density function), g(X), is
declining faster than 1/X (since J'l/X = 1n X, which does not converge as X
+ ®) which implies that gx(x) X/g(X) < -1/g(X) < -1, a property which is
easily verified for any of the commonly used distributions (normal, gamma,
etc.). As a result of this property of g(X), it is obvious from (7) that

]exl <1; i.e., the demand for damage-control inputs is everywhere

inelastic in all practical instances.

Second, it is evident from (7) that the demand for abatement (represented
by its elasticity EG) influences the demand for damage-control inputs.
However, the extent of this influence varies considerably. Consider first the
case where €z = 0, that is, where the demand for damage abatement is
perfectly inelastic. Rearrangement of (7) produces the relation €y =
e:G/(nG + Ny EG), from which it is evident that ey = 0 whenever g; = 0; that
is, that the demand for damage-control agents is perfectly inelastic whenever

the demand for abatement is perfectly inelastic. Whenever the demand for abate-

ment is perfectly inelastic, then the demand for damage-control agents will be

dominated by the demand for abatement.

One situation where this may occur is when the relevant production func-
tion exhibits fixed proportions with respect to abatement. Another is the
case where abatement exhibits threshold effects such as where some positive
proportion of damage is equivalent to total loss of the crop. For example,
U. S. Food and Drug Administration regulations prohibit the sale of shipments
of apples in which more than 3 percent have been found to be wormy; here

abatement of 96 percent is equivalent to none, while 97 percent passes
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muster. (Similar regulations govern the sale of most produce.) In this case,
all that matters to the grower is that worm infestations affect no more than
3 percent of the crop; hence, the demand for pesticides to control this prob-
lem will be perfectly inelastic at the 5 percent abatement level.

In the case where the demand for abatement is not perfectly inelastic--

. . 2
where [e.| > O-it is easy to verify that 3ey/3e; = n/(ng + ng ec)

>0, i .e, that the elasticity of the demand for abatement has a positive
effect on the elasticity of demand for damage-control inputs. Therefore, the

more elastic the demand for abatement is, the more elastic the demand for

damage-control inputs will be.

As the level of damage-control agent use rises, however, g declines
(since anG/ X=11- ng t ng] nG/X) and, hence, the influence of the demand
for abatement, €g» ON the demand for damage-control inputs, x> tends
to diminish. In fact, as X gets sufficiently large that G(X) approaches 1,
G tends to vanish; as a result, €y approaches l/ng. Since in most observed

cases damage-control agents tend to be used at close to full effectiveness,

one can conclude that, whenever leG] > 0, the elasticity of demand for

damage-control inputs is the reciprocal of the elasticity of the marginal

effectiveness curve.

Econometric Implications of the Specification

What happens when a standard production function specification, such as a
Cobb-Douglas, is used to estimate the marginal productivity of damage con-
trol? The result of such a misspecification can be seen in figure 1 which
compares a standard Cobb-Douglas marginal productivity curve with one derived

from the damage-control specification proposed above. It is easily seen that
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any specification which restricts the rate at which the marginal effectiveness
curve declines will tend to produce overestimates of the marginal productivity
of damage-control agents and, at the same time, to produce underestimates of
the productivity of natural factors. Moreover, these biases will occur even
when the specification used is a good approximation of the true model in every
respect but the incorporation of the damage-control input.

More formally, assume that the output elasticities of abatement, G, and of
all other inputs, Z, are constant and that the elasticities of substitution
differ only negligibly from one over the relevant range; then the Cobb-Douglas

specification,
(8) 0 = %Z8[6(x)1Y &Y,

represents the underlying production function and the random error associated
with it.” It will be convenient to use the logarithmic form of the model.
Letting the lower case letters, q, z, and x, represent the natural logarithms

of Q, Z, and X, respectively, the model can be rewritten:
(9) q=a-+ 28 +vy1lnG(X) + u.

Now suppose that, instead of the model given by (8) and (9), a Cobb-
Douglas specification using the damage-control agent, X, instead of abatement,

G(X), is used to estimate this; that is, that the estimating model used is

(10) q=oa+ 28 + yx + v,

As we show formally in the Appendix, the ordinary least-squares (OLS)
estimation of " q, &converges in probability to a number less than ;

specifically,
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(11) plima = a + y [In 6(eX) - nG(ex) x] < a,
e

where X is the mean value of 1n(X). At the same time, the OLS estimation of

Y, Y, converges in probability to a number which is greater than the measure

of damage-control agent productivity at mean usage level )—(, rt;()_() Y:

(12) plim ; = nG(eE) y > ng(X) v.

)
The implication of these findings is that the use of a standard Cobb-Douglas
specification to estimate damage-control agent (pesticide) productivity leads
to overestimation of the marginal productivity of the damage-control agent and
underestimation of the marginal productivity of natural and omitted factors
even when the Cobb-Douglas specification is good for abatement.

The intuition behind these results can be grasped easily upon examination
of figure 1. The specification of damage-control agent productivity proposed
here suggests that the marginal product (marginal effectiveness) curves of the
damage-control agent will decline at an increasing rate in the economic
region. The reason for this increasingly rapid decline lies in the specifica-
tion of marginal effectiveness as a probability density: To converge, g(X)
must decline faster than 1/X and, hence, must decrease more rapidly as X gets
larger. As a result, the elasticity of the marginal effectiveness curve also
grows as X increases. A specification like the Cobb-Douglas cannot match this
behavior. Instead, a standard Cobb-Douglas specification will produce a
marginal effectiveness curve whose elasticity is constant and, hence, which

declines more slowy than the true marginal effectiveness curve. The

89



implications of this fact can be seen easily in figure 1. The standard Cobb-
Douglas specification will produce consistent estimates of the damage-control
agent productivity parameter ngY at a point ex which necessarily lies
to the left of the average level of damage-control agent use )—( Since the
true parameter tends to decline quite rapidly, the estimated marginal product
curve will lie above the true curve for levels of control agent use greater
than ei. At average use levels then, the estimated value of marginal
damage-control agent productivity (VMPE) will be greater (conceivably sub-
stantially greater) than the true value of marginal damage-control agent
productivity (VMPA) and will appear to be greater than marginal control
agent cost (MC).AL

This result explains one of the most perplexing findings of the econome-
tric literature on pesticide use: that marginal pesticide productivity has
been well above marginal application cost. Perhaps the clearest example is
the work of Campbell, who applied a Cobb-Douglas production function to data
on output, pesticide use, and other factors in Canadian apple orchards and
found marginal pesticide productivities that were about 12 times marginal
cost. The implication, of course, is that pesticides are greatly under-
utilized. In light of the biological and behavioral literature on pesticide
use, such a conclusion is astounding, to say the least. The overwhelming con-
sensus opinion of the theoretical, normative empirical, and casual empirical
studies performed concerning pesticide use is that pesticides are overused
rather than underutilized as the econometric literature suggests. Considera-
tion of such factors as the potential growth of resistance, common stock
externalities, informational and human capital problems, and the like suggests

that marginal pesticide productivity lies below marginal cost at common usage

levels.
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The analysis of econometric method presented above indicates that the
source of this contradiction is the incorrect methodology employed in these
studies. Estimation of the production function using the damage-control agent
(pesticide) instead of an abatement effectiveness (kill) function produces an
upward bias in the estimates of damage-control agent (pesticide) which, in

turn, implies the productivity underutilization of the damage-control agent.

Estimating Damage Control: Some Sample Specifications

Because the abatement function can be represented quite naturally by a cumula-
tive distribution, it is not difficult to specify empirical models for esti-
mating the productivity of damage-control agents. In this section we give
some examples of possible specifications derived from distributions that have
been used in the pest management literature. It turns out that, in a number
of important cases, estimation of the parameters of these models is remarkably
simple so that use of abatement functions in empirical work entails little or
no additional cost.

Since the Cobb-Douglas specification is used so commonly, assume that the
modified Cobb-Douglas form given by (8) represents the production function
well. Under this assumption and the assumption of a specific form for the
abatement function G(X), it becomes possible to derive production function and
damage-control agent demand function specifications for use in econometric
work. Table 1 shows the production functions (in log form) and damage-control
agent demand functions implied by four specifications of G(X): the Pareto
distribution, the exponential distribution, the logistic distribution, and the
Weibull distribution. The latter three specifications are of particular

interest because of their use in this capacity in normative empirical models
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Table-1. Alternative Econometric specifications

Damage control

Distribution G(X) Production function agent demand
Pareto - x7A q=a+28 +yinll- K X KM XN [woe oy pQX L] = w
Exponential 1 - e'AX q=a+ 28 + vy 1In [1 - e—)\X] X = %_ 1n [1 + AX.QP.Q.]

- - 1 1
Logistic +e><p{u-oX}]1 q=a+28-yln[1+exp{u~0X}]1 X=%+—61n['\%9_?5]

Weibull 1 - exp (X} qg=a+ 28 +vy In [1 - exp {-X°}] X = % ln(cY 1 %9 + 1}




of pest management. The Pareto, on the other hand, is of interest primarily
because of its econometric implications.

Consider first the case of the Pareto abatement function. In the form
given in table 1, both the production function and damage-control agent demand
relation are quite intractable for linear estimation and must be approached by
nonlinear means. But in the special case where y = 1, that is, abatement is
proportional to potential output, it can be shown that the supply function can

be expressed as

[ 20 A :3/(1+A) AKA]l/[1+A-B(2+K)];

where ay = ay = (1 + g2+ 01/[1+ -

(2 + N ]; a, = -[1 = 8(2+ N)]/[1+ A -8(2+ 2A)]; and ag = -1/[1 + X -

g(2 + A)]. Similarly, demand for the damage-control agent can be expressed
as:

a, a, a; a

1 .72 3 .4
(14) X = aZp W Q

L1007
where a, = [xe® K>‘j" (’ﬂ),

a; = (1 + 8)Y/(1 + A, a, = -g/(1 + A),

ag = -1/(1 + x), anc a, = B/(1 + X). In short, a Pareto damage abatement
function, together with the assumption of abatement proportional to potential
output, yields standard Cobb-Douglas specifications for the supply function
and for damage-control agent demand. It turns out that this result arises
from the fact that the Pareto distribution, like the Cobb-Douglas, possesses a

marginal curve (density) elasticity which is constant. For the form of the

Pareto distribution given here, for instance, it is readily apparent that the
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marginal effectiveness curve, g(X) = KX} X_(X+l) has an elasticity of

-{x + 1) for X. The Pareto distribution is exceptional in this regard: The
density elasticities of most distributions increase relatively rapidly. In
fact, the Pareto distribution can be considered a limiting case for probabil-
ity distributions in this respect.

While this demonstration shows that the standard Cobb-Douglas specifica-
tion may be valid for examining the role of damage-control agents in produc-
tion under some conditions, it turns out that these conditions are so
restrictive as to be unimportant practically. The validity of a standard
Cobb-Douglas specification depends on two conditions: (1) that abatement be
proportional to potential output and (2) that abatement be well represented by
a Pareto distribution. Condition (1) is certainly a good description of
abatement in many situations; it should be recognized, however, that there are
also many situations where it does not characterize the role of abatement
well. Condition (2) may also hold in some cases. But, by and large, Pareto
distributions have not been found to characterize abatement very well pre-
cisely because of their slow rates of change. (The distributions used for
pesticide effectiveness, for example, are discussed in detail below.)

Now consider the case where the abatement function is assumed to be
exponential. (In the pesticide literature, this specification was used by
Regev, Gutierrez, and Feder in their study of alfalfa weevil control.) The
production function is nonlinear in A. It can be estimated, of course, by
nonlinear methods or, since A should lie between zero and one, the parame-
ters of the model can be estimated by linear techniques combined with a grid

search for A.
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Alternatively, consider the demand for the damage-control agent. A slight

rearrangement of the relation given in table 1 yields a function of the form:

(15) ¢ - % * 31(%Q>’

where ay = 1+ el/l

and a; = AY. This relation is estimated easily using OLS
methods because the right-hand side is a simple linear function of revenue and
pesticide price, data for both of which, it is important to note, are gener-
ally available. The production function parameters of particular interest,
vy and A, are recovered easily from the estimated coefficients, 3 and
as.

Alternatively, assume that the abatement function can be represented by a
logistic distribution as was done by Shoemaker in her study of flour moth con-

trol. As is evident from table 1, the demand function for the damage-control

agent (pesticide) can be expressed as

(16) 1

- m
X = ag + a In o ol

1

where a; = u/o + 1/ « 1n yo and a, = 1/c. 1f 1/yo is sufficiently small,
1n [pQ/w] can be use as a proxy for 1n [pQ/w - 1/yg] at a cost of a negli-
gible reduction in efficiency. In this case, use of a logistic abatement
function implies that the proper specification of damage-control agent demand
is as a linear function of 1n [pQ/w].

This approximate demand relation can be estimated easily using OLS, and
the parameter ¢ can be recovered from the estimate of ay. In general, it

will not be possible to recover estimates of the two remaining parameters vy
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and uy. If, however, there is reason to believe that damage is strictly pro-
portional to potential output, i.e., we believe that v = 1, then estimation

of both of the parameters of the abatement function can be estimated using the
damage-control agent demand function.

As a final example, consider the case where the abatement function can be
represented by a Weibull distribution as Talpaz and Borosh assume in their
study of pest control in cotton. The demand of the damage-control agent is
shown in table 1. In general, cy X1 (pQ/w) ~will be large enough to be a

very close approximation to cCy XC-1 (pQ/w) + 1 so that the relation

1 c-1
(17) X=211n LCY X (;ﬂ)J

will be a good approximation to the demand function given in table 1. The

relation in (17) can be rearranged to yield the demand function,

(18) X+C;}1nx=a0+a11n<§—Q>,

where_ 3y = (1In cy)/c and a; = 1/c. By and large, then, a Weibull damage
abatement function implies that demand should be specified as the function
in (18).

This demand relation is nonlinear in the parameters; hence, the parameters
cannot be estimated by straightforward linear regression. It does seem, how-
ever, that a fairly simple iterative procedure could be used. The first stage
of such a procedure would involve an OLS regression of X + 1n X on a constant
and 1n [pQ/w]; for reasonable values of ¢, (¢ - 1)/c will be quite close to
one so that X + In X will be a good approximation for the left-hand side

of (18). Estimates of ¢ and y can be derived easily from the estimates of
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ao and al. The approximation error can be reduced by using the estimate
of ¢ obtained from such a regression to recalculate the left-hand side and
redoing the OLS regression using the recalculated value of the dependent

variable, a step which can be repeated as many times as may seem desirable.
Changes in Damage-Control Agent Productivity

In many cases, damage abatement functions are dynamic; in particular, there is
a tendency for the efficacy of damage-control measures to decline over time.
For example, bacteria populations typically develop resistance to antibiotics,
necessitating the use of larger doses to achieve satisfactory control of in-
fections. Dams and other flood control devices are subjected to water ero-
sion, gradually weakening their ability to prevent floods and necessitating
additional investment: in repair and renovation. Criminals tend to find ways
of coping with each improvement in prevention technology making further
improvements a continual necessity. In short, because damage abatement
typically involves natural systems in which damaging agents tend to adapt to
abatement efforts, declines in damage-control agent productivity tend to be
the rule rather than the exception.

Producers, however, tend to exclude this factor from their production
decisions. They do so, in part, because these declines in productivity are
extremely difficult to anticipate so that there is generally very little
reliable information on future trends available to incorporate into current
production plans. In addition, these declines in productivity typically
possess a very large public good component because they are caused by the
combined actions of all producers (see, for instance, Regev, Shalit, and

Gutierrez). As a result, individual producers perceive their own actions to
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have negligible effects on damage-control productivity and thus tend to
operate within a myopic optimizing framework.S

Such environmentally induced changes in productivity have a different
impact on the use of damage-control agents than do normal inputs. Consider
what happens to demand for a normal factor of production when its productivity
decreases because of some change in the productive environment. Decreased
factor productivity means that total output will be less than it was previ-
ously for every level of input use. If the production function is a standard
neoclassical one (specifically, if output is zero when use of any input is
zero, if the marginal productivity of any factor is quite large at a zero
level of utilization, and if marginal productivity is monotonically decreasing
in factor use, i.e., the production function is concave), then this decline in
factor productivity means that the marginal productivity of the factor will
decrease at every level of factor use so that the level of utilization of that
factor will also decline. In short, an environmentally induced decrease in
productivity of a factor will decrease demand for it.

This line of argument was put forward for the case of pesticides by
Carlson in his empirical study of the impact of resistance on pesticide use.
Carlson argued that the development of resistance implied decreasing marginal
pesticide productivity over time and, thus, that the demand should fall for
pesticides to which resistance was developing. The standard characterization
of this phenomenon, however, is that farmers’ typical short-run response to
the development of resistance to some pesticides is to increase usage levels
as compensation for the decrease in pesticide productivity. Use of the
affected pesticide decreases only when productivity is so low that alternative

pesticides become more efficient. This pattern has been observed in every
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case in which resistance has eroded pesticide productivity over time. In
fact, it is further borne out by the results of Carlson’s study. In his
investigation of pesticide demand, he found that resistance measures were
positively correlated with demand for organophosphates (to which resistance
had emerged only recently) while they were negatively correlated with demand
for DDT--a chemical to which resistance was quite extensive.

Treating damage-control agents as normal inputs implies that farmers,
medical practitioners, crime prevention experts, and others respond irration-
ally to environmentally induced changes in damage-control agent productivity.
By contrast, analyzing damage-control agents in the context of an abatement
function supports fully the rationality of their behavior in such situations.
The optimality of increased damage-control agent usage is shown easily under
short-run profit maximization using the model of damage abatement introduced
above.

The types of changes discussed above have the effect of reducing the
effectiveness of any given level of damage-control agent applied. Any given
amount of damage-control agent will thus eliminate a smaller proportion of
destructive capacity than before; in other words, more damage control agent is
required to achieve any given reduction in destructive capacity.

To capture this effect, we redefine the abatement function, G.), as a
function of the amount of damage-control agent applied, X, and the level of
< R, and for all X; in

0 1
other words, GR_< 0 for all X. In fact, we will define R such that the

resistance, R, where: G(X, Rl) < G(X, RO) for R

strict inequality holds everywhere but at the minimal and maximal levels where

increases in resistance may have no effect.
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For ease of analysis, we will impose two additional restrictions. First,
we will consider the effect of resistance only for the case of unimodal damage
abatement functions which are the only ones used for empirical purposes.
Second, we assume that the curves representing marginal effectiveness for two
different levels of resistance cross only once; in essence, this assumption
merely says that increased levels of resistance do not distort the shape of
the marginal effectiveness function too much. Together, these imply that
GXR > 0--that increased resistance increases the marginal effectiveness
of the damage-control agent--in the economic region. The reason for this is
simple. For small values of X, increased resistance implies that marginal
effectiveness must decrease. As shown in figure 2, only when GX(XO, Rl) <
GX(XO, RO) will G[XO,Rl), the area under the new marginal e)f(fectiveness
curve, be less than G(X, RO). Formally, f§0 GX(X, Rl) dX < J'OO GX(X,

RO) dX implies that G.‘{R < 0 for small values of X. Since the two functions
must both attain a value of 1 at the maximal dose level, however , GXR must
be positive for at least some X; the single crossing assumption ensures that
this condition will not be reversed once it is attained.

The impact of increased resistance on damage-control agent demand can be
analyzed formally via total differentiation of the first-order conditions
given by (3), amended to include the shifter R in the abatement function.

Rearrangement of the resulting equation yields

X . %6, , 5%
(19) R™TT TR T |-

The expression on the right-hand side of (19) is positive whenever G, > O;

XR

for the cases we are considering, the latter is true everywhere in the
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economic region and, thus, 3X/8R > 0 for all the relevant application
levels.

Why this is so can be seen easily in figure 2. The condition GXR >0
means that the economic region of the marginal effectiveness curve shifts to
the right for all X's (as does the marginal value product curve) as shown by
the change from G(X:,L RO) to G(Xl Rl). For any given level of marginal
cost, the new level of demand, X', is then necessarily greater than the old
level X.

Under the most commonly encountered conditions, then, an environmentally
induced reduction in damage-control agent productivity has effects on a
damage-control agent that are completely the opposite of the effect it would
have on a normal input. Increased resistance increases marginal effectiveness
and, hence, marginal productivity. The optimal profit-maximizing response,
obviously, is to increase damage-control agent use precisely as has been

observed in such situations.
Conclusions

This paper demonstrates the importance of incorporating correct specification
of damage abatement processes in the estimation of production functions and
input productivity. First, it shows that the use of traditional specifica-
tions (e.g., the Cobb-Douglas) leads to overestimation of the productivity of
damage-control inputs and underestimation of the productivity of other in-
puts. When and if such estimates are used in policy determination, the re-
sulting errors can be quite serious. |n the case of pesticides, for instance,
a policymaker guided by the econometric studies available would be led to
encourage more extensive and intensive use of pesticides--at a time when

pesticides were extremely overutilized.
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The paper also shows that traditional specifications produce misleading
predictions when damage-control agent productivity is changing over time.
Traditional specifications suggest that the spread of resistance will lead to
the reductions in the use of a damage-control agent. |In contrast, the
specification proposed here captures the phenomenon that actually occurs,
namely, that the use of a damage-control agent will increase in response to
resistance and that it will decrease only when resistance is so widespread
that alternative measures are more cost effective.

Finally, the paper shows that a more sophisticated approach to damage
abatement in production (like the one proposed here) can be incorporated into
econometric work at little or no extra computational cost. Many of the
distributions especially relevant in this context yield easily estimated
damage-control agent demand relations from which most or all of the structural
parameters can be recovered. The general availability of nonlinear estimation
packages removes much, if not all, of the remaining difficulties associated
with direct estimation of production. In sum, the specification of damage
abatement proposed here adds considerable sophistication and accuracy to the
analysis of the role of damage-control agents in production without making
estimation any more difficult. It should thus prove to be quite useful for
improving quantitative decision-making in all areas in which damage abatement

is an important factor.

103



APPENDIX
Proof of the Upward Bias in Cobb-Douglas
Estimates of Damage Control Agent Productivity
To investigate the impact of using the standard Cobb-Douglas form (10) in
place of the true model given in (9), consider the standard Cobb-Douglas form
as an approximation to the true model. Specifically, consider the Taylor

series expansion of 1n G(X) around §, the mean value of 1n X. Then, X becomes

a function of x: X(x) = €* since X = elnx; we thus have 3X/8x = BZX/BXZ =
X
e” = x

The approximation is

In G(X) = 1n G(e) + ny(e") (x - X)
(A1)
X
n~(e”) = =
2
s B T (€9 - (9] (x - D v L.
el

The approximated model is

(A2) q=a+ 28 +y1ln G(eX) + ynG(eX) (x -x) +v

where v, as we see from (11), is the sum of the higher order terms of the
Taylor expansion and of the white-noise random variable u. The model given by

(A2) is more conveniently written

~ ~

(A3) Q=0+ 2B + Xy +V
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where a = a + y[1n G(e*) - nG(eX) x] and vy = v nG(ex)- Since the error term v

contains terms in (x - )_()2, (x - ;()3, and so on, which are undoubtedly

~ A
correlated with x and may well be correlated with z, the OLS estimators a, B,

N A ~
and vy will give biased estimates of «, 8, and Y. Assuming, however, that the
coefficients of these terms are suitably small, it is easy to show that the
OLS estimators will be consistent for «, B, and Y.6

~

Letting ¥ = [1z]land s = {;} rewrite the model as

(A4) q =ys + Xy + V.

LetM, =T - X(x'x)’1 x' and My =1- y(y’y)-l y'. Then the OLS estimators,

§ and v, are

Sos e |ry () (2 T (e ] Ty ) (xx) v
n n n/f n n n n kn

xx _(xy) (yv) T (e T e (xy) () R uj
n n / n j n’/ n n n n :

/

(A5)

>

<2
]
<t
+
i

As long as (x'x)/n, (y'y)/n, and (X'Y)/n converge to finite numbers as the
sample size gets large and as long as the coefficients of the terms in v are

of order smaller than the sample size, the estimators § and y will converge to

§ and y, respectively, as the sample size gets large.

However, a and vy are biased measures of a (the productivity of natural
factors and omitted variables) and Y (the productivity of the damage control
agent), respectively.

~

Consider first the case of «. As we saw above,

(AB) = a+ vy [In G(e;) - nG(ef) x].
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The term in the square brackets is negative since 1n G(e)—() < 0 and nG(ex)
X > 0. As a result, ; < a: The OLS estimator from the standard Cobb-Douglas
specification underestimates the productivity of natural factors and omitted
variables.

The bias in :{‘ is more subtle. The measure of marginal factor produc-
tivity generally derived from econometric studies is the marginal productivity
of a factor evaluated at the mean levels of output and all the relevant
inputs; this, for instance, is the measure used in the pesticide studies

conducted by Headley; Campbell; and Carlson. For the case of the damage

control agent X, this is

Y Q ng(X)

(AT)

2>

X
The estimate derived from the standard specification is

T T

X

Wl
NS

(A8)

Now, 1n X is a concave function of X; hence, by Jensen’s inequality, E 1n X <
- T _ _ _ o X InX _ 3

1In EX, ie, X < 1n X. Since eX is monotonically increasing in X, ¢ <e = X.

Next, consider the behavior of ng in the economic region. It is straight-

forward to show that
s _ g
3X X

(A9) 1 +n

g M6i-
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Since A n.<-1 because g(X) is a probability density and since ng > 0 for

g
the same reason, it is evident from (A9) that BnG/SX <0, i.e., nG(X) is
monotonically decreasing in the range of economic use. This fact implies that
nG(ei) > nG()—() and, hence, that the estimate of marginal productivity derived
from the standard specification is biased upward.

Moreover, as X gets larger, the rate of decrease of G increases and,
therefore, the difference between nG(ex) and nG(X) increases also. Since
damage-control agents tend to be used at close to maximum effectiveness, i.e.,

X tends to be quite large, this bias will also tend to be quite substantial in

practical examples.

107



FOOTNOTES

This paper was written by Erik Lichtenberg and David Zilberman.

*Giannini Foundation Paper No. 758.

lAlthough the information described in this article has been funded
wholly or in part by the U. S. Environmental Protection Agency under assist-
ance agreement CR811200-02 to the Western Consortium for the Health Profes-
sions, it has not been subjected to the Agency’s required peer and administra-
tive review. Therefore, it does not necessarily reflect the views of the
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Headley, and an anonymous reviewer for their comments and suggestions.

In many situations, G may be a function of state variables which are
changing over time, that is, damage abatement may be dynamic as in the case of
pesticide resistance discussed below. For reasons mentioned below, the
decision-making framework is myopic and ignores these dynamic considerations.

3Note that G(0) may well be positive since natural factors, such as

weather, natural predators, etc., may eliminate some of the pest's destructive
capacity. As a result, output may be positive in the absence of damage-
control-measures. This fact points up the difference between damage-control
agents and directly productive inputs: Production may be impossible without a
full set of the latter, but losses without damage control may well he limited
to less than 100 percent of output. In fact, under many environmental condi-
tions (low pest infestations and lack of vandals in an area), damage may be

guite small under any level of damage-control agent use.
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Misspecification of the production relationship is only one of the
potential sources of bias in this situation. Others include omission of pest
population levels or other environmental factors (see, for instance, Carlson),
the use of damage-control agent cost instead of the total cost of abatement,
etc.

SWhen producers are able to take these productivity dynamics into account
in their decisions, the relevant future impacts of current actions should be
included in the analysis along the lines suggested by Regev, Shalit, and
Gutierrez among others.

6Br‘lefly the specific condition for the consistency of the OLS estima-
tors is that the coefficients of the higher order terms of the Taylor expan-

sion of 1n G(X) be of an order of magnitude smaller than n, the number of

observations in the sample.
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C. AN EMPIRICAL APPLICATION: THE PRODUCTIVITY OF INSECTICIDES
IN COTTON PRODUCTION IN CALIFORNIA

This section presents an application of the framework
presented in the proceeding section to data obtained from cotton
growers in the Central Valley. We begin with a brief discussion
of the data available and the relationships to be estimated. We
then examine estimates of insecticide productivity parameters -
one based on an exponential kill function associated with the
insecticide use and the other based on a generic Cobb Douglas
technology-obtained by direct estimation of the production
function and by estimating the (first order) optimality condition
determining pesticide use. The first specification performs
better in the production function estimation; both seem to
perform equally well in the =estimates of the optimality
condition. Finally, we examine the insecticide productivity
parameters of the exponential kill function obtained by
simultaneous estimation of the production function and the
optimality condition.

Variables and Data

The empirical study used data obtained by a survey from 42
cotton farmers in the San Joaquin Valley of California. For a
detailed description of the data set, see Farnsworth (1980). The

variables used and their units of measurement are as follows:

Q = Output of cotton lint (pounds per acre)
Z1 = Labor input (dollars per acre)

22: Fertilizer input (dollars per acre)

23 = Machinery input (dollars per acre)
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X = Insecticide (pounds per acre)

El = Education (years of schooling)

E2 = Experience (years of farming)

P = Output price (dollars per pound)

W = Insecticide price (dollars per pound)
D = IPM Dummy: D=1 if grower is using IPM.

D=0 otherwise.

The sample consisted of 42 cotton growers in the San Joaquin
Valley. Pesticide wuse patterns at 26 of the farms were
determined by independent pesticide consultants who tend to rely
on Integration Pest Management (1PM) in setting their
recommendations (Willey). The other 16 farms did not hire the
independent consultants; their pesticide use patterns tended to
be stem from the conventional Chemical Pest Management (CPM)
approach, mostly advocated by sales personnel of a grochemical
firms.

Empirical Model

Several assumptions were wused to obtain the production

function specification for the empirical application:

(1) The production function has constant returns to scale so
that it suffices to consider the behavior of output per
acre.

(2) The contribution to production of physical inputs other
than pesticides follows the Cobb Douglas form.

(3) Education and Experience are exponential shifters of the
production function.

(4) OQutput is proportional to damage abatement.
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(5) Damage abatement is a result of an exponential kill
function associated with pesticide use.

(6) The kill function parameter may be different for IPM and
CPM.

These assumptions result in the following specifications

c,E,c,E a a +g0(l—D))X)

®  a=ae1%1%%2 z,%12 %22.%3 1-e” (910

where A is a scale parameter, cland c, are the education and

experience shifters, ayr ass and ay are the output elasticities

of labor, fertilizer and machinery and gland ggare the
exponentional kill parameters associated with insecticide use
under IPM and CPM respectively. These kill parameters reflect

the effectiveness of insecticides in damage control.

A more "generic approach to modeling insecticide
contribution to thee production process will treat it like any

other physical output and result in the following specification:
+(l—D)a40

(2) 0 = ae€1E1%C)E; zlalzzazz3a3xDa4l
where a41and aypare output elasticities of the insecticides
under IPM and CPM respectively.

The first order optimality condition to determine insecticide
use associated with the production function in (1) is

(3) X = 1n{ 1+ [ng+g0(l-D)] PO/W} / {ng+gO(1—Dq
and the optimality condition (s) is

(4) X = [ayPra ,(1-0)] po/w

Single Equation Production Function Estimates

Following the procedures introduced in the previous section
we estimated two specification of the production functions

corresponding to equations (1) and (2). Each specification was
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estimated under two assumptions: one was that insecticides have
different impacts under IPM and CPM and the other was that
insecticides have the same impact under IPM and CPM. The results
of the estimation appear in Table 1.

The assumption that pesticides contribute to productivity in
a Cobb Douglas way leads to output elasticities of pesticides
that are not significantly different than zero and do not differ
much between IPM and CPM. On the other hand, the assumption of
exponential kill function leads to pesticides input parameters
that are different than zero at the 95% level of statistical
significance. Moreover, it suggests that pesticide effectiveness
is vastly different under IPM and CPM. The insecticide kill
parameter is more than 4 times bigger under IPM than CPM (1.31 vs
.31). This suggests that 4 pounds of insecticides under CPM has
the same marginal impact as 1 pound used with IPM and thus that
adoption of IPM can lead to increased productivity and protection
while reducing pesticide use.

The gains associated with the modeling of pesticides as a
damage <control agent operating through a Kkill function are
obvious when one compares the R2 of the different equation. The
model based on equation (1) with different IPM and CPM parameters
has an R2which is about 50% higher than the rest of the modelsz.

Single Equation Estimation of the Optimality Condition

The optimality conditions (3) and (4) provide alternative
means to estimate the insecticide productivity parameters of both
production function specifications. Both were estimated under

the two alternative assumptions regarding insecticide
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Table 1:

Model
Parameter

Scale parameter
h A

Education shifter Cl

Experience shifter

Labor elasticity ay

Fertilizer
Elasticity a,

Machinery
Elasticity ag

Insecticides

Elasticity IPM a

41

Insecticides

Elasticity CPMa40

Insecticides Kkill
parameter IPMg1
Insecticides kill
parameter CPM g,

R2

* The expressions

2

Production Function

Generic
input

IPM#ACPM

5.23*
(8.7)

228
(1-6)

027
(.32)

.10
(1.32)

.02
(1.3)

.04
(.75)

042
(.81)

049
(.96)

NA

NA

.2198

Pesticides
(B (2))

IPM=CPM

5.25
(9.03)

224
(1.62)

027
(.28)

.10
(1.35)

.02
(.88)

.05
(.81)

.045
(.97)

.045
(.97)

NA

NA

. 219
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Estimates

Expontential kill
function (E_ (1))
g

IPM#CPM IPM=CPM
5.51 5.36
(9.9) (9.45)
2923 .231
(1.676) (1.65)
.017 .019
(.73) (.24)
10 111
(1.53) (1.49)

.02 .032
(.741) (1.03)
.03 .04
(.50) (.5)
NA NA
NA NA
1.31 1.14
(1.63) (1.92)
.31 1.14
(2.97) (1.92)
. 307 219

in parenthesis are the t-statistics of the
estimated parameter



productivity under IPM vs. CPM. The estimation results appear in
Table 2.

All the estimates of the insecticide productivity parameters
derived from the optimality conditions have positive values with
very high degrees of statistical significance. Under both
production function specifications, the insecticide productivity
parameter is slightly larger when IPM is used, but one can not
reject the hypothese that IPM and CPM have the same insecticide
productivity parameters with higher degree of statistical
significance.

The optimality conditions obtained under the two alternative
production function specifications perform equally well in
explaining variations in observed levels of insecticide use (and
expenditures), since all the models presented in Table 2 have
R2 around .7. Thus, unlike the results shown in Table 1, the
results shown in Table 2 do not demonstrate the superiority of
either the kill function or the generic production function
specification in modeling pesticides productivity.

Comparing the results of tables 1 and 2, note that the
insecticide productivity parameters obtained from direct
estimation of the production function are different from the ones
obtained by estimation of the first order optimality conditions.
This may be because growers do not pursue profit maximizing
strategies in their pesticide decision making, so that the
optimality conditions in (3) and (4) do not represent their
behavior. If this is so, the results in Table 2 are not very

useful. It is beyond the scope of this study to evaluate
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TABLE 2: INSECTICIDE PRODUCTIVITY PARAMETERS DERIVED FROM

Model

Parameters

Pesticide Elasticity

IPM a4

Pesticide Elasticity

CPM a40

Pesticide kill
Parameter IPM 9,

Pesticide kill
Parameter CPM Sg

R2

117

OPTIMALITY CONDITION

Generic Pesticide
input

IPMACPM IPM=CPM

.033 .032

(.808) (10.48)

.031 .032

(6.4) (2.4)

NA NA

NA NA

. 726 .726

Exponential kill

IPMFCPM

NA
NA
32

(5.05)

.34
(6.06)

. 729

IPM=CPM

NA

NA

336
(8.6)

.336
(8.6)

724



empirically the profit maximization hypothesis in the context of
pesticide decision making; however, research that will derive and
estimate conditions corresponding to behavioral modes other than
profit maximization (e.g. expected utility maximization) seems
very worthwhile. Another explanation for the divergence of the
estimated parameters presented in Table 1 and Table 2 is more
pedestrian but equally reasonable. Estimates are random
variables and as such they assume values that are quite different
than their means. This logic suggests that better utilization of
both data and theory will occur when the production function and
optimality conditions are estimated simultaneously.

Simultanous Equation Estimation of the Non-generic Specification

To obtain better estimates of the kill function parameters
assuming profit maximizing behavior, we estimated equations (1)
and (3) simultaneously using the nonlinear 3SLS procedure of
Troll. The results of this procedure appear in Table 3. They
suggest that the kill function parameter with IPM is
substantially larger than of CPM; thus IPM utilizes insecticides
more effectively. Specifically, 1 unit of insecticides applied
under IPM has about the same effectiveness as 1.5 units of

insecticides applied under CPM (since gl/g0=l.5). The model

suggests that if a farmer applies 10 pounds of insecticides
annually using CPM, he will obtain 92.2% of the potential yield
(since .922 = l-exp {10.2554 b. The same amount of output will

be obtained by a farmer applying 6.98 pounds of insecticides

using IPM (since 6.98=(10)(252)/(.365).
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TABLE 3: SIMULTANEOUS EQUATION ESTIMATES OF THE PARAMETER OF THE
EXPONENTIAL KILL FUNCTION SPECIFICATION

Model
IPMACPM IPM=CPM
Parameter
Scale Parameter 3.45631 3.12268
h A (3.35217) (3.0)
Education shifter Sy 479616 .52
(2.918009) (3.15)
Experience shifter c, .167125 .18
(1.70) (1.86)
Labor elasticity aj .182 .196
(2.12187) (2.18)
Fertilizer elasticity a, .10222 . 114
(2.70459) (3.08)
Machinery elasticity ag .074 .086
(1.15) (1.33)
Insecticide Kkill .356 .32
parameter - IPM g1 (5.56) (7.2)
Insecticide Kkill .255 .32
parameter - CPM 99 (5.00) (7.2)
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The results also suggest that an additional year of education
has a much larger contribution to productivity than additional
year of experience, and that labor and fertilizer have positive
output elasticities which the output elasticity of machinery is
not different than zero with high degree of statistical
significance.

Conclusions

The empirical application reported here demonstrates the
feasibility of estimation economic relationships derived from
production function specifications that incorporate a biological
kill function of pesticides. This specification was found to
have more explanatory power than a generic Cobb Douglas
specification in a equation estimation of cotton production
function. When profit maximization is assumed, this new
specification yield a simultaneous equation system that was
estimated and demonstrated that insecticide <effectiveness in
cotton is almost 1.5 times higher if IPM rather than CPM is used.

Obviously, these are only exploratory results. Better and
more-data were needed to better value the usefulness of the
specifications suggested here. This study, however, serves as an

encouraging first step.
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Footnotes
1This paper was writtin by Erik Lichtenberg, Yacov Bur and David

Zilberman.

2Moreover, the F-statistics of the models based on equation (1)
with different coefficients for IPM and CPM is statistically
different than zero with much higher level of significance than

the F-levels of the other models.
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D. AVENUES OF FURTHER RESEARCH
The work presented in the preceding two sections suggests
that the use of our econometric approach to estimating pesticide
productivity is appealing on empirical as well as theoretrical
grounds. Despite the shortcomings of the California cotton data,
the results do indicate that our methodology can yield more
accurate, believable estimates of pesticide productivity than the
generic approach at no significant additional cost in terms of
complexity or expense of computation. Thus, it appears that
further work along would be well justified. It would be
especially interesting to apply the methodology to more
disaggregated data on the use of specific pesticides (or classes
of pesticides) on a crop with the aims of distinguishing the
productivities of specific pesticides and, possibly, patterns of
substitutions among pesticides. (The latter task, clearly, would
require extension of the model to a multidimensional case, i.e.,
some further methodological work.) During 1985, we conducted a
brief investigation into potential data sources for such a
endeavor. Two sources seemed particularly interesting:
(1) The USDA recently completed a rather thorough survey on
pesticide use on corn and soybeans in the Midwest.
This data set contains very detailed information on the
amounts of each chemical used, other inputs, etc. and
could thus be used to examine substitution patterns
among pesticides. Its chief drawback is that no
information on yields was collected, which makes it

difficult to use for estimating productivity. Yield
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estimates could be constructed, at the expense of some
precision, of course; however, doing so would require a
significant investment of time and effort.

(2) John Allison of the University of Georgia has collected
data on pesticide use in Georgia pecan production which
is quite complete. It would make an excellent data
base for further empirical work. We have discussed
using it with Professor Allison and believe we can get
access to it, if funded to do S0. From the EPA's
perspective, the chief drawback to this data is the
nature of the crop; since pecan production tends to be
localized, the estimates obtained would have only
limited national significance.

Other data sources we have heard of but have not
investigated more thoroughly include information on pesticide use
in apple production in Virginia collected at VPI and data on
pesticide use on corn and soybeans in Illinois collected by Earl
Swanson. In sum, there is adequate data available for research
along these lines should EPA find it desirable to pursue it. It
also seems that both the EPA and the USDA should have a common
interest in this area of research, since pesticide productivity
is of concern to both agencies. Thus, one possibility might be

an effort sponsored jointly by these two agencies.
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V. THE ECONOMICS OF RE-ENTRY REGULATION

One of the most common measures used to protect farmworkers
and other rural inhabitants from the health hazards posed by
applied pesticides is to forbid entry into treated fields for a
specified period of time during which pesticide residue levels
(and hence health risks) are thought to be excessive. (Similar
regulations aim to protecting consumers by forbidding harvest for
a specified interval after application of pesticides.) Often,
these re-entry regulations lead to reductions in growers' incomes
by preventing optimal scheduling of harvest or of intraseasonal
activities like pruning or irrigation and thereby causing
decreases in yield, quality or price received for the crop.
Thus, whether the decision maker is an agency charged with
protecting farmworkers (like the EPA) or a farmer deciding
whether to work in his/her own field, the determination of an
appropriate re-entry interval hinges on the choice of a tradeoff
between risks to human health and safety, on the one hand, and
the economic losses induced by regulation on the other.

This paper develops a methodology for deriving the set of
these tradeoffs implicit in alternative re-entry intervals. The

paper begins with a model describing the impact of re-entry

regulation on farmers' use of pesticides and on the value of the

harvest. Interestingly, the imposition of re-entry regulation

may make it optimal for farmers to switch to prophylactic
treatment of pests, a practice which has been widely criticized

as inefficient in the literature on pesticide use. The paper
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then develops a model of the risk of acute poisoning from
exposure to pesticide residues under different re-entry
intervals. Finally, the production and health risk models are
combined to derive an overall grower revenue/health tradeoff
curve for the apple production case.

While the specifics of the framework developed here apply to
pesticide-related problems, its more fundamental elements apply
to a broad variety of regulations aimed at enhancing health and
safety by restricting proximity to hazards either in time or over
space, such as problems relating to industrial safety, the
location of hazardous industries, the size of dams for flood
protection, etc. The implications of the analysis thus carry
beyond the pesticide case.

A Model for Production Under Re-Entry Regulation

For the sake of simplicity, we will concentrate on the
problem of re-entry regulations affecting an individual farmer's
harvest of a pesticide crop (fruits, vegetables), the kind of
crop to which this form of regulation is applied most often.
Assume that these is a time tO S representing the earliest date at
which the crop can be harvested; prior to tO,the crop will be
immature and hence not harvestable. Assume also that after tO'
the value of the crop declines because of decreased quality or
because of price decreases due to seasonal increases in aggregate
production, so that the farmer's revenue is maximized by
harvesting at tO.FormaIIy, this implies a revenue function R(t)
such that R(t0)=max{R(t)} , and, letting subscripts denote
derivatives, Rt<0 and Rttf_Ofor t >t,. Production costs will

0

be assumed to be constant and will thus be ignored.
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Now assume that a pest appears at a time tashortly prior to
the optical harvest time to. If left untreated, the pest will
damage a proportion of the crop which will then be unsalable.
The larger the pest population is, the greater the level of
damage will be. This damage can be avoided by treating the crop
with a pesticide. To simplify matters, assume that only a single
standard treatment is available at a negligible cost. If the
farmer treats the crop immediately upon arrival of the pest, i.e.
chooses a treatment time ts=ta, the pest will be effectively
eradicated and damage will be essentially reduced to zero. If,
on the other hand, the farmer treats the crop before the pest
arrives (ts<ta),the pesticide will decay; it effectiveness will
be reduced by the time the pest arrives and the farmer will
sustain some crop losses. The longer is the interval between
treatment and the arrival of the pest, the greater will be the
decay of the pesticide and the damage caused by the pest.

These characteristics can be represented formally by letting
the proportion of the crop damaged by a pest population of size k
be a function g(k,ta—ts),where ta—tS represents the time elapsed
between treatment and the arrival of the pest. The preceding
discussion suggests that gk>0, gt>0 and g{(k,0)=0.Pesticide
decay curves are typically convex, so that one would expect
gtti()as well.

If the farmer is a profit-maximizer, she/he will always find
it optimal to adopt a reactive pest management strategy (that is,

to treat the crop upon the arrival of the pest) whenever

feasible, which implies an optimal choice of tS=tawhenever
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T <t —ta. If the re-entry period T is sufficiently long, however

0
(specifically T >t0—ta), following the reactive treatment plan
may force the farmer to delay the harvest and thereby lose
revenue. In this case the farmer faces a tradeoff between lost
revenues from crop damage and lost revenues from harvesting
delays. Under some conditions, it may become optimal for the
farmer to treat in anticipation of a pest problem, that is, to
adopt a prophylactic treatment strategy. This practice has been
much maligned in the pest management literature; however, it will
be efficient under certain conditions described at greater length
below.

It should be clear in addition that the farmer will never
treat any earlier than needed to be able to harvest at time tO’
i.e., that tS ZtO_T7 treating any earlier than tO—TwouId imply
accepting greater damage in return for no gain in revenue and is
thus less profitable than treating at tO—T.

Finally, it should be evident that the farmer will always

harvest the crop as soon as possible, that is, at least as soon

as the re-entry period has ended. if the re-entry constraint is
non-binding, then the harvest time will be tO. If the re-entry
constraint is binding, then the harvest will occur T periods

after the treatment time; normalized (without loss of generality)
to fit the revenue curve R this can be written tS+T-tU.

The pesticide use patterns adopted and revenues earned by
the farmer thus depend critically on whether or not the re-entry

interval constitutes a binding constraint. If it does not, then

a reactive treatment strategy is always optimal, ts=ta,the crop
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will be harvested at t,and revenue will be R(t0)=R*.If it

0
does, the the farmer will face a tradeoff between crop damage and
decreased revenue. The optimal pest management strategy will be

determined by the choice of a treatment time tswhich maximizes
realized revenue, given by:
(1) [1 = gkt —t JIR(t _+T-t,)

subject to the constraint:

Because the convexity of the pesticide decay function makes
the damage function g(k,ta—ts) convex, the realized revenue
function (1) will be convex unless R( ) is quite strongly
concave. Thus, the optimal treatment plan must be analyzed

according to two cases.

Case 1: (1) convex. The most likely case is that realized
revenue (1) will be convex, so that the optimal treatment time
will be either the maximum or minimum possible time, that is,

either taor tO—T.In essence, of course, this constitutes a

choice between reactive (ts=ta)and prophylactic (tS=tO~T)

treatments. The farmer will choose the one which gives the

greatest profit. If ts=ta,there will be no damage (g=0) but the

farmer will have to wait until tS+T-t0to harvest and will thus

realize a revenue of R{(t +T-t. ). I f t =t -T,there will be
a 0 s 0

damage g(k,ta+T—t0);the farmer will harvest at tO and thus

realize a revenue [l—g(k,ta+T—tO)]R*. If the difference between

these two realized revenues,

(3) (ta+T~tO)—[1—g(k,ta+T—tO)]R*
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is positive, the farmer will adopt the reactive strategy and

treat at ta . If it is negative, the farmer will adopt the
prophylactic strategy and treat at tO—T.An increase in the size
of the pest population k will increase V and thereby make the
farmer more likely to adopt a reactive strategy. An increase in
the re-entry interval T, though, will increase V only if the
marginal increase in the proportion of the crop damaged by

treating earlier (gt)is less than the marginal increase in the
proportion of revenue lost by treating later (Rt/R*). Thus, if
gt>Rt/R*’ an increase in T will make the farmer more likely to
adopt a prophylactic strategy. An increase in the interval
between the arrival of the pest and the optimal harvest data,
that is, in tO—ta,Will, of course, have precisely the opposite
effect of an increase in the re-entry interval T.

Case 2: (1) concave. If the revenue function R( ) is

sufficiently concave to make realized revenue (1) concave, the

profit-maximization problem will have an interior solution
defined by:
(4) gy R+ (1-g)R.=0

with sufficiency assured by:

(5) ngttR+(l—g)RttiO
which holds by assumption. It is readily apparent that an
increase in the re-entry interval will lead the farmer to treat
earlier (dts/d’l’: -[Rtgt+(1—g)Rtt]/Q< 0), thereby accentuating
the tendency toward prophylactic treatment. If, as one would
expect, the increase in damage from treating earlier is greater

for larger pest populations than for smaller ones (i.e., Itk _>_O),
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an increase in the pest population size will induce the farmer to
= - - > i

treat later (dts/dk [gth gth]/Q 0), thereby reducing the

tendency toward prophylactic treatment. As before, an increase

in tO—tawiII have the opposite effect of a increase in T.

Pesticide Use in Apple Production

Consider the case of re-entry regulation of organophosphate
insecticides wused to protect apple crops from infestations of
coddling moth larvae from moth flights shortly prior to harvest.
The yield and quality of the apples is assumed to increase up

until the maturity data t which is the earliest date at which

0’
the crop may be harvested. After tO' yield and quality will
remain constant for a considerable length of time. However, the
price the farmer receives for the crop will decline as time
passes because the aggregate supply of apples will increase as
producers in other regions harvest and market their crops. This
price decline will continue until the price of apples for fresh

consumption equals the price for processing uses, at which point
the price will remain constant. An analysis of the intraseasonal
trends in farm-level apple prices in the three major producing

states (Washington, Michigan, California) indicated that this

price decline is convex and could be represented well by an
exponential curve. Thus, the price received by a grower
harvesting a full crop at time t>t0 is R*e_a(t-to).

The threat posed by a late-season flights of coddling moth

consist of an infestation of larvae in the fruit, i.e., of wormy
apples. This threat can be alleviated by using organophosphates
to kill the moths before they lay eggs. Standard doses of these
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pesticides are typically applied; without loss of generality,
normalize this standard dose to unity. Pesticide decay rates are
typically modeled as exponential curves, so that the proportion

of the pest population killed by a treatment applied at tsis

e—b(ta~ts) and the proportion surviving is 1-e—b(ta—ts). Assume
that all infested fruit is unsalable and that the proportion of
the crop damaged is proportional to survivorship. Letting k

represent the proportion of the crop damaged by a moth population

of standard size, the damage function g(k,ta—ts)will be in this
case k[1-e P{ta7tg),
The realized revenue function (1) in this case will thus be:
(6) v=Rr*e 2 (EgtT-Eq) {1-k[1-e P{E57E5)

which is obviously convex. The difference in profit between
treating at taand treating at t.is thus

0
malE *Totg) R [ 1ok [1-e P (E4TTEg)

(7) V=R*e 131 .
which will be positive whenever

k >[1l-exp {—a(ta+T—tO) }1/[1-exp {—b(ta+T—tO) } 1=k and negative

c
whenever k kc. The optimal treatment strategy is thus:
ta k>k

c

s tgmts k> kg

The comparative static results from the general case clearly hold
here as well. In addition, it is straightforward to show that
the faster the price declines over the season, the more likely
the farmer is to adopt a prophylactic strategy (dV/da < 0) and
that the faster the pesticide decays, the more likely the farmer

is to adopt a reactive strategy (dV/db> 0).
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To provide a empirical mechanism for evaluating the impact
of re-entry regulation of pre-harvest use of parathion on apples
in the three main U.S. producing states (Washington, California,
Michigan), the model was parameterized as follows. A regression
analysis of weekly data on farm-level prices received in
Washington, California and Michigan over the period 1971-1980 on
a time trend and dummies to control for differences among years
and states yielded an estimate of the revenue decay parameter a =
0.0024. According to Johannes Joost, California extension
specialist on apples, the maximum price received in 1984 was
about $300/ton. At an average yield of 10 tons/acre, this
suggests a maximum revenue of $150,000 for a 50-acre block. the
regression analysis suggested that price levels in Michigan and
Washington were about 17% and 32% above that of California;
however, because Michigan harvests about 4 weeks after California
and Washington, 2 weeks, the maximum price in these states should
be 9.8% and 28.2% higher than California, respectively, giving
estimates of about $165,000 per 50-acre block in Michigan and
$192,000 per 50-acre block in Washington. An estimate of the
parathion decay parameter b = 0.07 was taken from Spear et al.'s
(1975a) study of parathion decay in California citrus orchards:
examination of parathion decay data on Washington apples (Staiff
et al. (1975)) indicated that the decay patterns in the two cases
were essentially identical. Conversations with farm advisors
indicated that, if left untreated, a coddling moth infestation
caused by a population of normal size would damage about 10% of

the crop; thus, k was given a value of 0.10. Calculation of the
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damage threshhold for prophylactic spraying over the range of
reasonable re-entry periods, kC, resulted in values ranging from
.035 to .062, all well below k; thus, it appears that reactive
treatment will always be optimal. In fact, apple prices would
have to fall at about 5% per week before prophlactic treatment
would become desirable.

Residue Poisoning From Parathion Exposure Among Apple Harvesters

This section develops a model for calculating the
probability of clinical illness in workers as a result of
exposure to residues of parathion applied to apples at various
locations. The overall scheme is as laid out by Popendorf and
Leffingwell (1982). In essence, the pesticide is applied, a
decay process takes place in which some of the parathion is
converted to the oxygen analog, paraoxon, and exposure takes
place days or weeks later when crews enter the field to harvest
the crop. If clinical illness results it is due to a dermally
absorbed dose of paraoxon. There is considerable information
available to quantify the various exposure-related steps in this
process but very limited data on the geographic or climatological
effects on the decay process itself. Hence, various assumptions
are made in order to allow risk calculations to be carried out
and these will now be detailed.

The characterization of the residue decay process will be
based on the work of Spear et.al.(1975a) and Popendorf and
Leffingwell (1978). In both cases a set of linear ordinary
differential equations was fit to field data on the dislodgeable

foliar residues of parathion and paraoxon on citrus foliage.
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Data on other crops suggests a qualitatively similar decay
pattern as will be discussed below. The form of the equations

used by Popendorf and Leffingwell was:

(9) dx/dt = -a X
dy/dt = ‘bly
dr/dt = a,x + b2y - cyr

where the observable residue of parathion (ng/cmz)is the sum of
the "short-term" parathion, x, and the "long-term" parathion, vy,
and r is the paraoxon residue. Both the data of Popendorf and
Leffingwell on California citrus and Staiff et.al. (1975) on
Washington apples suggests that the long-term decay rate of
parathion equals that of paraoxon in the absence of rainfall,
i.e. b1 = Cl' In addition, it is clear that almost all the
paraoxon is produced within the first few days after application
when the total residue of parathion are high, i.e. the paraoxon
production term b2yis generally negligible. Hence a simplified

decay model is:

dy/dt = -b.y

o}
)
~
o}
t
i
o))

A further simplification occurs insofar as it has been shown that
after the first few days the hazard to workers is almost totally
determined by the paraoxon residue (Spear et al. (1975h). Hence,
if we constrain the period of interest to the that following the
first several days post-application, which is the practical case,
then the vy component of the residue is of no interest, except

insofar as it may aid in the estimation of bl,and the decay

modeled further simplifies to:
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(11) dx/dt -a X

dr/dt a,x = b.,r

2 1

The solution to this set of equations is:
(12) x(t) = xgexp(-ajt)

r(t) = (a2x0/alb2)[exp(-—blt)— exp(—alt)]

There are, then, four parameters required to solve for r(t),
the paraoxon residue, al,az, bl' and the initial condition x,,
The first three parameters are weather dependent whereas the last
depends on the application rates and the pre-existing levels of
foliar dust of the trees. Regrettably there appears to be very
meager published data on parathion residue levels on apples
around the country. However, the Washington apple data (Staiff,
et.al., 1975) suggest a decay pattern quite similar to that
observed in California citrus. Nigg et al. (1978, 1980) have
studied the effect of weather variables on the parathion decay
process and has concluded that rainfall and leaf wetness from

other sources are principal determinants of the rate of residue

disappearance. Hence, climatological variability in this
investigation will be handled by assuming that the decay
parameters, al,azand bl’ will be the same for all three regions
but that the frequency of summer rainfall will diminish the

expected residue of paraoxon in a discontinuous fashion.
After the initial period of paraoxon production the decay of

both parathion and parzoxon is essentially first order with decay

constant bl' That is, we consider the period where
exp(-ajt) < < exp(-bytland r (t) = rgexp(-byjt)w h ere ry =
a2x0/a1+bl° As mentioned above, Nigg (1975) developed an
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expression relating the influence of rainfall, leaf wetness,
temperature and solar radiation on parathion residues. He stated
that rainfall is a more important relative predictor of paraoxon
residues than of parathion although he did not present a
guantitative relation in the case of paraoxon. We will assume
that rainfall and time are the principal determinants of paraoxon
residue and use Nigg's rainfall adjustment factor for parathion
since e it should lead to conservative results, i.e. somewhat
higher paraoxon residue predictions than may actually be the
case. Under these assumptions the paraoxon residue at the entry
time T is given by:

r(T) = r exp(—.29lCR)exp(—blT)

0
where CR is the cumulative rainfall during the interval (O, T). A
one inch rainfall leads to a diminution of the residue by 25% and
a two inch rainfall a 44% decline. These predictions are more or
less consistent with the data presented by Gunther et.al. (1977)
who report reductions in paraoxon residues on the order of 3 to 5
for rainfall amounts over 2.5 inches and little decay for
rainfall under one inch.

Estimates of the parameters al,azand blare available from
Popendorf and Leffingwell (1978). Also, the initial condition
Xq was estimated from their data by regressing their parameter
ag against the applied amount. The regression expression is:

Xg = 1690(aza) 3087 ng/cm2
and the values used for the other three parameters are a; = 0.8,

bl ‘=#O.O8,a2=0 .05 . Hence, for any application amount, entry

time and cumulative rainfall amount the paraoxon residue can be
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determined. It is now possible to relate this residue to the
dermal dose and then the predicted red cell cholinesterase
depression.

Popendorf and Leffingwell (1982) relate the foliar residue
to the dermal dose deposited on the worker by the expression

kdr(t)te where D is in mg/kg, te is the exposure time and k_an

d
empirically determined constant. Their Table X gives observed
kd values for various crops and pesticides. For paraoxon on
apples we will assume a kd value of 9.0 as was observed in citrus
crops. The exposure time will be assumed to be eight hours.

For a single organophosphate the relation proposed by
Popendorf and Leffingwell between dermal dose and the fractional
inhibition of RBC cholinesterase is given by:

RBCD = l—exp(—keD/LDSO)

where, for paraoxon, the dermal LDSOiS 1.0 and keis set equal
to 6.0 midway in the reported range of 4.7 to 7.3. While it is
reasonable to assume that the entire crew is exposed to the same
residue environment, personal factors enter into the relationship
between residue and dermal dose and between dermal dose and
cholinesterase response. However, there is no data to allow the
modeling of these effects so we will assume that all workers
experience the same cholinesterase response and confine the
variability across the population to the dose-response curve.

For present purposes the relation between cholinesterase
depression and the development of clinical signs and symptoms is

shown in Figure 1 Milby, (1985). They are approximations based

on clinical experience and values reported in the medical



literature. The probability of clinical illness relates to each
of the members of the crew at the end of one eight-hour day and
not to the situation where the RBC cholinessterase depression is
the result of several exposure episodes extending over multiple
days. In order to predict the number of cases of illnesses the
probability from Figure 1 is used, together with the crew size,
to form the parameter of a binomial distribution which then
allows the calculation of the probability that 0, 1, 2, ..N
workers will become ill.

Economics and Health Impacts of Re-Entry Regulation

The models presented in the two preceding sections can be
used to evaluate the impact of re-entry regulations on apple
growers' revenues and apple harvesters' safety. The analysis
will be conducted under the assumptions that a flight of coddling
moths arrives four days before the optimal harvest date to (i.e.,

to—ta=4), that parathion is applied at a rate of 2.0 pounds per

acre AIA, and that, as is typical, the crop produced on a 50-acre
block will be harvested in one day by a crew of 10. Losses in
growers' revenues will be compared to the probability that at
least one worker will develop mild symptoms of parathion
poisoning for rainfall levels of 0, 1, and 2 inches during the

re-entry period as a means of taking into account the differences
in weather conditions encountered in the different regions under
investigation: California receives virtually no rainfall during
the harvest period, Washington receives 0-1 inch and Michigan

receives 1-2 inches under normal conditions.
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The results of these calculations are shown in Table 1. On
the health side, it is immediately apparent that the re-entry
times issued by EPA (24 hours after application) provide
virtually no protection to farmworkers under California
conditions and very limited protection under Washington or
Michigan conditions: at best, there is a 40% chance that at
least one worker will become mildly ill. California standards
(14 days) provide much better protection. Interestingly, though,
the chance that at least one worker will fall ill are still as
high as 10%. The results also indicate more stringent re-entry
regulation might well be warranted in Washington and Michigan,
which have no standards other than the EPA's.

It is important to realize that this analysis deals with the
incidence of mild, not severe, poisoning episodes; positive
probabilities of severe symptoms showed up in our model only at
parathion rates far above normal usage levels on apples.
However, this result holds only when the unit of analysis is a
single 50-acre block. When the entire apply industry is
considered, it is certain that at least one worker will develop
mild symptoms and there will be a non-negligible probability of
severe poisoning incidents.

On the economic side, it is easily seen that even moderate
re-entry regulation imposes non-negligible costs on growers in
terms of lost revenue. A re-entry time of 5 days, for example,
results in a loss of 0.2% of total revenue, equivalent to
absolute amounts of $300 per 50-acre block in California, $385 in

Washington and $330 in Michigan. According to the Washington
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Agricultural Statistics, the total harvest labor cost for a 50-
acre block ran about $425, not much greater than these losses.
Longer re-entry times produce losses on the order of 1-2%; if
profit margins amount to about 10%, then losses on this scale
would constitute 10-20% of the farmers' net earnings, a not
inconsiderable chunk.

The extent of the tradeoffs between farmworker safety and
grower revenue arising from different re-entry periods can
perhaps be grasped best by examining the marginal cost of risk
reduction under different re-entry times and the minimum value of
illness avoidance they imply. Calculations of these values based
on averaged risk values for Washington and Michigan are presented
in Table 2. The estimates of the marginal cost of risk reduction
obtained seem for the most part quite reasonable, the sole
exception being very lengthy re-entry periods in Michigan, where
the risks are quite low and hence can be decreased very little.
The figures for Michigan show decreasing returns throughout.
Washington, interestingly, shows increasing returns for moderate
re-entry intervals and decreasing returns only for re-entry
periods of 10 days or more the marginal cost of risk reduction
behaves rather erratically, suggesting that risk declines rather
slowly at high (4-5 days) and low (10 days) levels and more
guietly for moderate levels. With the exception of very long re-
entry periods in Washington and Michigan, the estimates of
illness avoidance are comparable to those obtained by Maureen
Cropper in her study of sick time behavior among factory workers.
This suggests that re-entry regulation is a not unreasonable

mechanism for improving farmworker safety.
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It should be noted that these results apply for a single

farm. For the industry as a whole, the marginal cost of risk
reduction and value of illness avoidance are likely to be even
lower, since the risks will probably rise faster than growers'

losses. Thus, the present analysis probably understates the

attractiveness of re-entry regulation.

TABLE 1

IMPACT OF RE-ENTRY TIMES ON HEALTH RISKS AND GROWERS' REVENUES

Re-Entry Period Probability of at Least One Proportion of
Poisoning with Rainfall of Revenue Lost
0~ 1" 27

0-4 93 .72 40 0

5 . 84 . 69 . 26 .002

8 .69 . 34 0 .010

10 . 47 .10 0 .014

14 .10 0 0 .024
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Re-Entry
Peri od

10

TABLE 2

COST/ Rl SK TRADECFFS | N RE- ENTRY REGULATI ON OF APPLES

Mar gi nal

California

$3, 333
$8, 000
$2, 727
$4, 054

Cost

Washi ngt on

$6, 400
$6, 144
$3, 340
$8, 170

of a 1%
Reduction in Risk

M chi gan

$ 3,883
$ 4,328
$ 5,500
$33, 000

Inmplicit

California

$3, 584
$9, 524
$3, 952
$8, 626

Washi ngt on

$ 7,758
$ 8,031
$ 6,484
$28, 666

Val ue of Poi soning
Avoi dance

M chi gan

$ 6,933
$ 9 111
$ 32,353
$660, 000




Final Remarks

The preceding analysis was based on a number of
simplifications regarding both the production process and the
health hazards posed by organophosphate use and should thus be
viewed as illustrative rather than as an accurate depiction.

On the production side, the most notable of these
simplifications were:

(1) Application of the pesticide was assured to be
costless. Incorporation of a treatment cost might
introduce an additional option for the grower, that of
not treating the crop, which would be considered
explicitly in a more realistic analysis.

(2) The size and time of arrival of the pest population

were assumed to be known. In reality, both are
stochastic. These uncertainties might alter the
farmer's optimal behavior. For example, under

uncertainty it might become optimal with larger than
average populations or later than normal arrival times
to treat twice, once prophylactically and a second time
reactively; under the opposite kinds of circumstances,
it might become optimal not to treat with pesticides at
all. A more realistic analysis would incorporate these
considerations.

(3) Attention was paid only to the immediate pre-harvest
period. A more realistic analysis would examine the
impact of re-entry regulation on the intraseasonal use

of organophosphates, including the tradeoffs the grower
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(4)

faces between increased damage from pest infestations
and reduced yields from suboptimal scheduling of
production activities.

Every piece of fruit infested by larvae was assured to
be usable (or, equivalently, salable only for
processing uses). In reality, problems arise only when
inspection reveals that the proportion of infested
fruit from an orchard exceeds an EPA standard, at which
point the crop must be sorted and the bad apples
called. A more realistic analysis would incorporate
this damage threshold. This phenomenon also raises two
points of interest for further research: (a) the
interrelations between FDA regulation of produce
guality and EPA regulation of pesticide use and (b) the
role of inspection effort and enforcement of FDA

regulations in pesticide use.

On the health side, the most notable simplifications were:

(1)

(2)

Parathion application rates, harvest crew sizes and
harvest time required were all assumed to be uniform
across and within states. A more realistic analysis
would consider variations in these factors, looking
especially at their distribution in different areas.

The decay rates of parathion and paraoxon were assumed
to be constant. In reality, the dynamics of these
substances are different for the first 1-3 days after
application, a complication that must be taken into

account in examining re-entry periods of one or two
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days. Moreover, the longer term decay rates are
influenced by environmental conditions, notably
rainfall. This latter consideration suggests that re-
entry periods could be shortened under some
environmental conditions and lengthened under others
(i.e., that re-entry regulation could be made state-
dependent) with no increase in actual risk to
farmworkers. If the savings to growers from such
conditional regulation at least matched the cost of
monitoring residue levels, society could be made better
off by switching to it. This question, too, then, is

an important one for future research.
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V. PROPOSALS FOR FUTURE WORK

A. Introduction

The following is a proposal for work to be carried out under
the "Framework/Case Study Design for a Risk-Benefit Analysis of
Pesticides" cooperative agreement (CR811200) during 1986.

During 1985, we focused on three major areas: (1)
developing a welfare framework incorporating regional
heterogeneity and Federal farm policy for estimating the benefits
of pesticide use: (2) measuring pesticide productivity; and (3)
developing a framework for estimating the impacts of farmworker
safety regulations. The first area was addressed by two
empirical studies of the impact of regulation on agricultural
markets, one focusing on the role of agricultural policy in five
major crops and the other focusing on regional heterogeneity in
thee U.S. cotton market. The conceptual framework for the former

was delivered to EPA in the paper by Lichtenberg and Zilberman,

"The Welfare Economics of Regulation in Revenue - Supported
Industries"; this framework was used to construct a computer
algorithum and interactive IBM PC compatible software also
delivered to EPA. In addition, we developed a regionalized

empirical model of the U.S. cotton industry for use in analyzing
the regional welfare impacts of pesticide regulation. The second
area was addressed by an application of the pesticide production
function formulation previously developed (Lichtenberg and

Zilberman "The Econometrics of Damage Control", American Journal

of Agricultural Economics, May 1986) to data on cotton production
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in California. The third area was addressed by a study of the
impact of re-entry regulation on apple growers' revenues in
California, Washington and Michigan, the chief U.S. apple-growing
regions.

During 1986, we propose to intensify our efforts relating to
estimating the benefits of pesticide use and to direct them
toward problems of immediate concern to EPA Thus, our work will
be more issue-oriented and will require closer collaboration with
EPA staff than in the past. Specifically, we propose to channel
our efforts in two main directions. First, we propose to refine
our previous work both conceptually and operationally and to make
it directly usable by EPA. Second, we propose to address a set
of issues relating more closely to the current activity of the
EPA, specifically, assessing the benefits of the use of
fungicides as a class on tree crops. In particular, we hope to
contribute in this way to the effort to assess the benefits of
pesticide use overall described in Al McGartland's paper on "The
Use of Pesticides in U.S. Agriculture: A Comprehensive Analysis
of Benefits and Costs".

The specific work envisioned for these two areas in

described in greater detail in what follows.

B. A Unified Framework for Assessing the Welfare Impacts of

Pesticide Regulation

As part of our work under this cooperative agreement, we

have developed and applied two frameworks for assessing the
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welfare impacts of pesticide regulation. One which allows
disaggregation of the regional effects of regulation and another
which incorporates agricultural policy. During 1986 we propose
to extend this work by (2) refining the framework for
incorporating agricultural policy by including additional
features of these policies, notably acreage set asides; and (2)
combining both approaches into a single, unified framework for
assessing the product market welfare impacts of pesticide
regulation.

U.S. agricultural policy has two principal components: an
income support provision (currently deficiency payments) and a
supply control mechanism (currently acreage set asides). During
1985, we developed a welfare framework which incorporated price
support programs. However, the welfare implications of supply
control mechanisms have yet to be addressed in any practical
fashion.

Supply control features such as set asides have proven
extremely difficult to model because their effects on farmers'
decisions, and hence supply, are quite complex. To be eligible
for deficiency payments, farmers must comply with set aside
requirements. Thus, they must decide whether or not to
participate in the farm program at the same time that they choose
how much to produce, so that the supply decision becomes, in
effect, a simultaneous discrete/continuous choice problem whose
optimal solution depends on factors like land quality and capital
constraints as well as relative prices. Data on these factors

are usually unobtainable, as are data on participation rates
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(especially at the state and local levels). Moreover, because of
slippage set asides typically affect supply in a complex, non-

proportional fashion since farmers idle lower quality land to

satisfy set aside requirements, increase the intensity of input
use, including pesticide use, etc.
During 1986, we will develop a practical method for

incorporating set asides into estimates of the welfare impacts of
pesticide regulation. We will then revise the framework
presented in "The Welfare Economics of Regulation in Revenue -
Supported Industries” to include set asides and update the
accompanying interactive software package for calculating these
welfare effects accordingly.

Once this work has been accomplished, we will combine it
with our method for regional disaggregation to create a unified
framework for assessing the welfare impacts of pesticide
regulation. This will be done in the context of an empirical
model of the U.S. cotton market. Specifically, we propose to
estimate (1) supply functions for the major U.S. cotton producing
regions which take into account price supports, set asides and
other relevant agricultural policies in an appropriate manner and
(2) the welfare impacts of pesticide regulations. This work will
then be used to develop interactive IBM PC compatible software
which will permit EPA to estimate the welfare effects of proposed

regulations affecting pesticide use on cotton.
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C. A Comprehensive Analysis of the Benefits and costs of

Fungicide Use in U.S. Agriculture.

The aim of EPA's regulation of pesticides under the Federal
Insecticide, Fungicide and Rodenticide Act is to prevent and/or
curtail excessive risks of adverse effects on human health and
environmental quality from pesticide use. In many cases, this
aim cannot be furthered appreciably through the chemical-by-
chemical review process currently used by EPA; all too often,
cancellation of one pesticide's registration means only that

other, no less detrimental, chemicals are substituted for the

canceled substance, with the net result that risks fall only
slightly, if at all, while costs of production can be expected to
rise. In such cases, the narrowness of scope of the regulatory

review produces a policy that is undesirable from any vantage
point.

An alternative approach would involve a comprehensive review
of chemicals on the basis of function, e.g., herbicides on
corn/soybeans, fungicides on tree crops, insecticides on cotton,
etc. As McGartland has argued recently, such an approach may
well make it possible to reduce overall pesticide use
significantly and thereby make notable improvements in
environmental protection.

One class of pesticides of particular interest is that of
fungicides, especially those used on tree crops. Fungicides tend
to be quite toxic and hence to pose substantial risks to the

health of applicators, fieldworkers and so on. In addition,
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there is increasing evidence environmental contamination with
these chemicals is much broader than had been supposed. Finally,
the study of fungicides is quite timely, since several major
chemicals in this class (captan, etc.) are scheduled for review
in the near future.

Regulating this class of chemicals also poses some difficult
conceptual problems for policymakers. A substantial proportion
of fungicide use is directed at enhancing product quality rather
than increasing the quality of output harvested, so that the
benefits of fungicide use consist to a large extent of the value
consumers place on such features as fewer blemishes, fewer
insects or insect parts in fruit or vegetables, etc. which are
not readily observable. This situation is complicated by the
fact that marketing boards often use these indicators of product
quality as a means of rationing the quantities of produce
entering the market for fresh produce, that is, as a means of
raising the average revenue received by growers in the industry.
Thus, a certain proportion of the benefits of fungicide use
represent growers' gains from the revenue-support mechanisms of
marketing orders rather than the social willingness to pay for
enhanced quality and estimates of those benefits must therefore
be adjusted to reflect that fact (for a general approach, see
Lichtenberg and Zilberman, "The Welfare Economics of Regulation
in a Revenue-Supported Industry").

In its initial stages, then, this project will require two
parallel, but complementary efforts. On the conceptual side we

will identify the elements of product quality consumers are
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willing to pay for, investigate further the use of product
guality indicators as rationing devices under marketing orders
and, on the basis of these two strands, build a conceptual
framework for examining the welfare impacts of reductions in
fungicide use. On the empirical side, we will investigate actual
uses of fungicides in terms of the major strategies in use, the
range of alternatives available, methods of application,
advantages and disadvantages, likely substitution patterns under
alternative forms of regulation (especially across-the-board
cutbacks on all fungicides applied), yield and quality effects,
etc. We will then continue the conceptual and empirical
investigations of the first stage in an empirical study of the
welfare impacts of reductions in fungicide use on a crop of
national importance; possibilities in this regard include apples,
oranges and grapes.

It should be noted that, because of its direct policy
relevance, this project will require very close cooperation with
EPA. We thus expect to be carrying on much more frequent

consultation with EPA than we have in the past.

D. Economic Analyses of Special Review Chemicals for the Office

of Pesticide Programs

Economic analyses pertaining to the regulation of pesticides
are utilized by the Administrator of EPA for various purposes,
primarily to comply with the requirements of the Federal

Insecticide, Fungicide and Rodenticide Act (FIFRA) and Executive
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Order 12291. Under both FIFRA and E.O. 12291, analyses are
needed for review of existing regulations, or development of
rulemaking, policies, guidance and statutory amendments for
pesticide regulatory programs. Under FIFRA, the Administrator is
required to consider risks and benefits when making registration
decisions on a pesticide. In order to assess the benefits, data
on the impacts of alternative regulatory actions on specific
pesticides are needed.

These same analyses are of interest to the members of the
Western Consortium for use in their own state regulatory agencies
and other needs. Further, state universities and agencies are
prime sources of information on which analyses are based. It is
of mutual benefit for EPA and the Western Consortium to cooperate
in the development of analyses related to pesticide policies,
strategies, legislation, rules and regulation of specific
chemicals.

Accordingly, it will be required under this agreement that
economic analyses of joint interest be conducted, as specified by
the EPA Project Officer and Western Consortium Project Manager.
This will include analyses of actions on specific problem
pesticides (Special Reviews) as well as analyses of regulations,
rulemaking policies, strategies and guidance.

Analyses of regulation and policies may address many issues
including direct economic cost effects and changes in welfare.
Analyses generally consider effects on production costs,
commodity pricing, and distributional effects as well as societal

gains and losses. Analyses of Special Review Chemicals typically
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will concentrate on use sites in the Western US. region.
Typically, economic impacts of shifting from use of a Special
Review Chemical to other chemicals or non-chemical alternatives
(including integrated pest management/biological controls) are
the focus of such analyses. To the extent possible, analyses of
rules, regulations, policies, etc., consider individual producer
unit effects as well as net welfare changes from the proposed
regulation.

Analyses may be undertaken independently by the Western

Consortium or in cooperation with teams of experts (e.g.

universities, pesticide user groups). Also, in order to perform
the analyses, considerable information gathering will be
necessary. Accordingly, the Western Consortium will undertake

such travel and incur other expenses including those relating to
the organization and <coordination of meetings and symposia,
obtaining peer review and other information gathering activities,
as may be required. The results of such efforts will be

incorporated into the appropriate analyses.

E. Other Projects

In addition to the two main efforts described above, we will
continue to study the possibilities for applying our approach to
econometric estimation of pesticide productivity (Lichtenberg and
Zilberman, "The Econometrics of Damage Control", AJAE, May 1986)
to USDA data on pesticide use in U.S. agriculture or to data on

pesticide use in Georgia pecan production.
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F. Deliverables

The outcomes of the studies undertaken will be presented to
EPA in the form of a final report, to be delivered at the end of
the budget period. In addition, we will deliver IBM PC
compatible software allowing EPA to calculate the welfare effects
of pesticide regulation on the cotton market as described in

Section 1I1.
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