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Abstract  
 
In this paper, we examine the large and expanding area of Environmental Justice (EJ). 
The research in this area has developed from examining relatively simple comparisons of 
current demographic characteristics near environmental nuisances to performing multiple 
regression analysis and considering demographics at the time of siting. One area that has 
received considerably less attention is the identification of potential mechanisms that 
could be driving observed EJ correlations. We extend the current literature by examining 
one possible mechanism:  the intensity of regulatory enforcement activity.  If regulators 
pay less attention to the environmental performance of plants located near poor and 
minority areas, those plants might feel less pressure to pursue pollution abatement 
projects, increasing environmental hazards in those areas.  We perform our analysis on a 
sample of manufacturing plants located near four large U.S. cities: Los Angeles, Boston, 
Columbus, and Houston. Our analysis of regulatory activity found little evidence that 
demographic variables have a significant impact on the allocation of regulatory activity. 
In particular, regulatory activity does not seem to be less intense in plants located near 
particular demographic groups. It is true that plants located in minority neighborhoods 
are inspected less often and face fewer enforcement actions, but these effects are nearly 
always small and insignificant, and plants located in lower-income areas seem to face 
(surprisingly) more regulatory activity.  In a separate analysis, we also find very little 
evidence that demographic variables significantly influence pollution emissions. .  In 
summary, the results presented here do not show much evidence to support EJ concerns 
about either regulatory activity or pollution emissions, at least within the set of plants, 
pollutants, and time periods covered in our analysis.    
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INTRODUCTION  
 
During the 1980s the concept of “Environmental Justice” (EJ) gained prominence in the 
United States with the publication of studies by the General Accounting Office (1983) 
and the United Church of Christ (1987), suggesting that predominantly minority and low-
income communities were being exposed to disproportionately higher levels of 
environmental hazards.1

 

  Since that time the literature has evolved from examining 
simple correlations between community characteristics and exposure to environmental 
harm to relatively sophisticated analyses that seek to control for other factors that may 
affect exposure to environmental hazards.   The range of environmental hazards being 
considered has also expanded.  Finally, the possibility of reverse causation has been 
explored, with the presence of environmental hazards leading to a possible influx of 
lower-income residents.  We provide some discussion of the development of the EJ 
literature in the early parts of this chapter. 

One area that has received less attention is the identification of potential mechanisms that 
could be driving observed EJ correlations.  We extend the current literature by examining 
one possible mechanism for observed correlations between the demographic 
characteristics of the community and higher levels of pollution:  regulatory enforcement 
activity.  Regulators have some degree of discretion in the way they set permitted 
pollution levels, inspect plants for potential violations, and/or enforce regulations across 
facilities. Economic theory suggests that it would be rational for a social planner to direct 
more of its resources towards enforcing regulations where the potential benefits of 
abatement are greater (or alternatively, where the costs are lower).  However, it is 
possible that regulators are also susceptible to political pressure.  In this case, regulators 
would direct greater resources towards more politically active communities since they 
may complain, sue, or make life difficult for the regulator absent action.  In other words, 
the costs of ignoring neighborhood sentiments are arguably greater in some places than 
they are in others.  The level of political and community activism is, in turn, often 
correlated with socioeconomic factors such as race and poverty, which could lead to 
potential environmental inequities across neighborhoods. 
 
We perform our regulatory activity analysis on a sample of manufacturing plants located 
near four large U.S. cities: Los Angeles, Boston, Columbus, and Houston. Our dataset 
combines EPA data on facility-level enforcement and emissions, Census of 
Manufacturers data on characteristics including facility age and size, county-level voting 
data, and 1970-2000 Census of Population data on local community characteristics. We 
examine two sets of demographic variables: one representing groups expected to have 
relatively high sensitivity to air pollution (children and elders), and the other representing 
disadvantaged groups (poor and minorities). We do find significant effects of many plant 
characteristics on regulatory activity, with larger, fuel-intensive plants and plants in 
single-plant firms facing greater activity.  Plants with past violations and plants in 

                                                 
1 According to the Office of Environmental Justice at EPA, environmental justice exists when “no group of 
people, including racial, ethnic, or socioeconomic group, … bear[s] a disproportionate share of the negative 
environmental consequences resulting from industrial, municipal, and commercial operations.” 
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counties with higher voter turnout also face greater activity.  These results are consistent 
with prior research, and are consistent with our expectations. 
 
In contrast, the demographic measures, including the EJ variables, tend to have 
insignificant and unexpected effects.  In particular, we find little evidence that regulatory 
activity is less intense in plants located near disadvantaged demographic groups. 
However, plants located in minority neighborhoods, as expected, are inspected less often 
and face fewer enforcement actions, but these effects are nearly always insignificant, and 
plants located in lower-income areas seem to face (surprisingly) more regulatory activity.  
Thus we find little or no evidence for an EJ effect on the regulatory activity related to air 
pollution, as directed towards these plants.  
 
We also conducted a more traditional EJ analysis, examining air pollution emissions and 
toxic releases from these plants, to see whether we observe higher emissions from plants 
located near disadvantaged groups.  As part of this analysis we attempt to control for 
endogeneity between facility emissions behavior and household location decisions by 
examining community characteristics prior to the emissions decision.  Given the 
possibility for strong correlation between emissions today and emissions in prior periods, 
we examine whether selecting community characteristics further back in time affects the 
results.  In general, we failed to find much evidence that emissions are correlated with 
community socioeconomic factors.  While this offers no support for EJ effects it is 
important to note that our regressions also did not find many significant effects for the 
plant characteristics or political variables. 
 
The remainder of the paper is organized as follows. Section 2 briefly reviews the 
literature.  Section 3 outlines a simple model of how decisions by regulators and firms 
might be affected by neighborhood characteristics. In section 4 we present a description 
of our data and our empirical methodology. Section 5 contains our results and finally we 
present some concluding remarks and possible extensions in section 6. 
 

1. LITERATURE REVIEW 
 
This paper draws from two distinct literatures.  The first is what we term the 
Environmental Justice literature.  Traditionally, researchers in this area have largely 
focused on examining waste facility or landfill locations and determining whether they 
are positively correlated with community characteristics such as percent minority or poor.  
As the literature has expanded, researchers have looked more broadly at other types of 
plants and a broader set of environmental indicators including emissions and enforcement 
measures.  Empirical techniques have also grown more sophisticated, for instance 
considering the effect of endogeneity between plant location and/or emission decisions 
and household decisions on where to live on regression results.  Since part of this paper 
focuses on how regulatory activity relates to community characteristics, we also draw on 
the lessons learned from the enforcement and compliance literature.  This literature 
typically seeks to explain how the allocation of regulatory activity and the particular 
characteristics of a plant affect compliance with existing environmental regulations.  
Only rarely does this literature consider whether community characteristics have any 
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direct bearing on either the way in which the regulatory entity enforces regulation or how 
plants comply with them. We briefly discuss the few papers that tie these two literatures 
together. 
 
The question of whether poor or minority communities face disproportionate impacts 
from emissions – also referred to as “Environmental Justice” concerns - first came into 
the national spotlight in 1982.   A protest of a landfill siting in North Carolina that year 
caught both the media and governments’ attention and resulted in a number of studies 
related to the issue.  The GAO (1983) published a study of four hazardous waste landfills, 
pointing out that these sites are surrounded by predominantly poor and minority 
communities.  Likewise, the United Church of Christ (1987) studied the connection 
between where waste facilities are sited and the socioeconomic characteristics of their 
neighboring communities and found evidence of a disproportionate location pattern.  
These studies, and many that followed, paint a mixed picture with regard to the 
correlation between waste facility location and poor and minority communities.  For 
instance, Zimmerman (1993) finds evidence that more minorities live in neighborhoods 
with inactive hazardous waste sites, but that the poor do not. Likewise, Boer et al. (1997) 
find that hazardous waste sites are positively correlated with race but that the relationship 
is more complicated with regard to income. Sadd et al (1999) and Baden et al. (2007) find 
that whether race and ethnicity are correlated with waste site location depends on factors 
such as geographic scale and the way in which the surrounding community is defined, 
though Sadd et al. (1999) find that income remains significant across specifications.2

 
  

While the location of a polluting plant or site obviously has an impact on the surrounding 
community, what is arguably of greater concern to residents living in the vicinity of a 
polluting plant is the hazard associated with such emissions. This may manifest itself 
through the plant’s emissions behavior as well as how well existing regulations are 
complied with or enforced by regulators.  Hamilton (1995) is one of the first empirical 
papers in the economic literature to implicitly examine the role of community 
characteristics in decisions of how much to emit. He does this by examining the capacity 
expansion decisions of hazardous waste treatment, disposal, and storage facilities 
(TSDFs).  He finds that race is not a significant determinant of site expansion but that 
income is positively related to site expansion. Furthermore Hamilton finds that voter 
turnout is negatively related to site expansion.  Gray and Shadbegian (2004) examine 
inspection and enforcement actions and levels of air and water emissions at pulp and 
paper mills and find that communities with more minorities appear to emit less pollution, 
though poorer neighborhoods face greater levels of pollution.  
 
Several other studies find evidence of significant positive correlation between race or 
poverty and emissions.  For instance, Rinquist (1997) finds that both race and income are 
significant determinants of the level of TRI emissions in a neighborhood, but they are not 
the most important variables.  Kriesel et al. (1996) also find that race is significant and 
positively related to TRI emissions, though this result is not robust to the addition of 
other socioeconomic characteristics such as education and property values. Percent in 
                                                 
2 See Shadbegian and Wolverton (2010) for a more detailed survey of these and other plant location 
studies. 
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poverty is positively related to emissions in all specifications.3   Brooks and Sethi (1997) 
examine the relationship between the level of TRI air pollution and community 
characteristics, weighting by the relative toxicity of each pollutant.  They find that race is 
significant and positively related to air emissions.  All other socioeconomic variables - 
such as income, education, property values, and voter participation - are also significant.  
Shadbegian, Gray, and Morgan (2007) compare the overall net health benefits that were 
achieved under Title IV of the 1990 Clean Air Act Amendments to test whether there 
were unforeseen consequences of the regulatory change in terms of adverse impacts on 
particular socio-economic groups, but they find very few Environmental Justice 
concerns.4

 

 Finally, Jenkins, Maguire, and Morgan (2004) find that communities with 
relatively more minorities receive lower ‘host’ fees for the siting of landfills, while richer 
communities receive higher ‘host’ fees.  

Most of these studies do not take a very sophisticated approach to mapping emissions 
across geographic space to more accurately identify potentially affected communities, 
instead relying on Census based definitions or concentric circles to define neighborhoods 
and assuming all households within a given area are exposed to the same amount of 
pollution. Nor do these studies account for potential spatial correlation across 
neighborhoods.  Both are areas that would benefit from future research.  
 
To date, there have been only a few studies that examine the relationship between 
regulatory activity and the characteristics of the surrounding community. Shadbegian and 
Gray (2004, 2009) find little evidence that plants located in poor and minority areas face 
less regulatory stringency. On the other hand, Earnhart (2004) finds that per capita 
income is positively correlated with the likelihood of an inspection at municipal 
wastewater treatment facilities in Kansas. Two other studies examine different types of 
regulatory activity and find important connections with community characteristics. 
Viscusi and Hamilton (1999) conclude that Superfund sites situated in areas that are more 
pro-environment and more politically active also have more stringent environmental clean up 
targets for reducing cancer risk. Sigman (2001) looks at the speed with which EPA processes 
contaminated Superfund sites, and finds that the sites appear on its National Priority List for 
cleanup more quickly if the site is located in a community with more political activity and 
higher median income.5

 
  

ENDOGENEITY 
 

                                                 
3 Pargal and Wheeler (1996) also examine how water pollution varies with community characteristics in 
Indonesia.   
4 Shadbegian, Gray and Morgan (2007) also examine the spatial distribution of Title IV net benefits across 
regions. 
5 It is also worth noting several related papers that look at how regulatory stringency varies with distance to 
the border of a neighboring state or country.  Traub and Sigman (2007) find that pro-environment states are 
also those with the most stringent state regulations for water quality and hazardous waste. Sigman (2005) 
finds that plants located near jurisdictional borders face less regulatory oversight than other plants in the 
state. Helland and Whitford (2003) and Gray and Shadbegian (2004) find that plants near state borders emit 
more pollution.   
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A common criticism of papers that examine the relationship between neighborhood 
composition and emissions or enforcement activity is that they do not adequately control 
for endogeneity. In other words, just as plants may take neighborhood characteristics into 
account when deciding on how much to pollute, households may take pollution levels 
into account when deciding where to live.  We would expect households to prefer living 
in relatively less polluted communities, all else equal.  This should result in lower 
property values and lower rental prices in more polluted areas, which may make those 
areas relatively more attractive to income-constrained households, depending on their 
“willingness to pay” for environmental quality.  Thus we could observe a positive 
correlation between poverty and environmental risk which would appear to support EJ 
concerns, but which reflects the opposite direction of causation – the poor “moving 
towards” higher-pollution (and low-rent) neighborhoods.     
 
Studies that are concerned about endogeneity between plant location and household 
location decisions often use socioeconomic characteristics that correspond to the time at 
which the facility siting decision was made in their regressions. These studies find mixed 
results with regard to the sign and significance of race and poverty variables.  Been 
(1994) finds that one dataset shows evidence of disproportionate siting in minority 
communities at the time of siting, while a second dataset demonstrates that the correlation 
between location and percent minority developed after siting. Similarly, Been and Gupta 
(1997) find that, while waste disposal sites were correlated with race and income 
variables in 1990, this relationship did not hold for percent poor or percent African-
American at the time of siting (though it continues to be significant for percent Hispanic). 
On the other hand, Pastor et al. (2001) find evidence that hazardous waste sites in Los 
Angeles are positively correlated with race and ethnicity of the neighboring community at 
the time that the location decision is made. Baden and Coursey (2002) find that 
Superfund sites in Chicago are positively correlated with poverty in the 1960s but that 
this relationship dissipates by the 1990s, while they find little evidence of such a 
correlation with race in either time period. Wolverton (2009) finds that race and ethnicity 
are not related to the location decisions of Texas manufacturing plants that report to the 
Toxic Release Inventory, while poverty appears to have the opposite sign from what is 
expected; it is negatively related to plant location.  
 
Finally, several studies examine how the socioeconomic characteristics of a 
neighborhood change after a polluting facility is located there.  For instance, Lambert and 
Boerner (1995) find that housing values grew less rapidly in locations where there was at 
least one waste site, and percent minority increased more rapidly in these locations than it 
did in other neighborhoods. Hersh (1995) finds evidence that both white and rich 
households tended to leave neighborhoods after the siting of a dirty plant, while 
minorities tended to move into these more polluted areas. However, Cameron and 
Crawford (2003) find little evidence that minorities move into neighborhoods with 
Superfund sites, though they do find that single-parent households tend to move closer to 
these sites due to lower housing prices. 
 
In the case of plant emissions behavior, using socioeconomic characteristics that are 
measured prior to the measurement of emissions may not be sufficient to control for 
endogeneity.  If a facility has been in place for many years, and has an established pattern 
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of emissions behavior from which it rarely deviates, then the neighborhood could have 
already adjusted to the emissions level many years before it is being measured in the data.  
Since there are likely to have been prior changes on the part of both the facility and the 
community in response to each others’ actions, both actual and expected, any observed 
relationship between community characteristics and pollution emissions may in fact be 
ad hoc. It is therefore important to establish a context within which the relationship 
between emissions and neighborhood composition can be meaningfully evaluated.  This 
issue can also arise for plant location decisions if the siting process takes many years, so 
that households have time to move before the final siting date.  In one example of this 
type of research, Arora and Cason (1999) attempt to control for endogeneity by matching 
TRI air emissions to community demographic characteristics that are measured several 
years prior to the date when emissions are measured.. They find that race has a significant 
positive effect on TRI emissions in non-urban areas of the south, but not elsewhere in the 
country. 
 
In this paper, we also attempt to control for potential endogeneity between both the 
regulators’ decisions of how much to inspect facilities and enforce existing regulation as 
well as plants’ decisions of how much to emit and households decisions of where to live.  
Using establishment-level Census data, we can distinguish between newly opened 
facilities, whose location decisions should depend on current values of community 
characteristics, and older facilities, whose location decisions should depend on 
community characteristics when the facility opened.  We explore whether relationships 
between facility emissions and community characteristics are affected by better 
accounting for the timing of facility siting.  An area open for future research is to take a 
more structural approach to modeling the interaction between household decisions of 
where to live and decisions by firms and regulators. 
 

2. A MODEL OF REGULATORY ACTIVITY AND EMISSIONS 
 
Why do profit-maximizing plants re-allocate their scarce resources away from production 
to pollution abatement?  Assuming pollution is a pure externality that only negatively 
affects people who live downwind or downstream of the polluter, we would not expect to 
observe any profit-maximizing plant abating any pollution.  Thus, firms must be facing 
some “external” pressure to internalize the externality, thereby providing an incentive for 
them to abate pollution.  Numerous sources of such external pressure exist.  For example, 
consumers may be willing to pay more for products produced with “green/clean” 
technologies, which allows firms doing more pollution abatement to enjoy increased 
demand for their products or charge higher prices.  On the other hand, the threat of civil 
law suits or the possibility of Coasian bargaining to recoup damages done by emissions 
could provide additional incentives to abate pollution.  Furthermore, if it is important for 
the firm’s management to be a ‘good corporate citizen’ (and if it has the flexibility to 
spend the firm’s funds on pollution abatement), then that could also motivate the firm to 
“internalize” the externality.  However, we believe that the principal incentive for abating 
emissions in the U.S. is governmental regulatory activity, particularly for the air 
pollutants we examine in this paper.  Therefore it is important to understand what 
determines the amount of regulatory pressure faced by a plant. A significant part of that 
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regulatory pressure comes from regular inspections to detect non-compliance, and from 
enforcement actions intended to bring non-compliant plants into compliance. The 
allocation of these inspections and enforcement actions is the focus of our analysis.     
  
In the United States, environmental policymaking occurs via a system of environmental 
federalism. At the federal level, the U.S. Environmental Protection Agency (EPA) 
promulgates national regulations and, for the most part, each individual state is 
responsible for implementing and enforcing those regulations.  The responsibility of the 
states to implement and enforce regulations provides them significant flexibility to 
allocate varying degrees of regulatory pressure on polluting plants, even though their 
activities are monitored by the EPA.  More specifically regarding air pollution, state 
regulators have the responsibility and authority to write the State Implementation Plans, 
which identify permitted air emissions at individual facilities, in order to meet ambient air 
quality requirements. Furthermore, the overwhelming majority of air pollution 
inspections and enforcement actions are executed by state, not federal, regulators.  The 
major role state-level decision-makers play in carrying out environmental policy makes it 
more likely that local political pressures could influence regulatory activity (relative to a 
centralized system). 
 
Optimal regulations would maximize social welfare by setting environmental standards 
so that the marginal benefit from pollution abatement equals the marginal cost of 
abatement.  In equation (1) below, optimal abatement values, *

iA , will be different for 
each plant due to factors that influence the marginal benefits and marginal costs of 
abatement.  The marginal benefits of pollution abatement vary across plants primarily 
due to the number (and characteristics) of the people who live near the plant and 
therefore are exposed to its emissions. On the other hand, the marginal costs of abatement 
vary across plants largely due to their production technology, size, and age.  If we make 
the standard assumption that marginal abatement costs increase with abatement intensity 
(or at least intersects the marginal benefits curve from below), plants with higher 
marginal benefits (or lower marginal costs) should perform more abatement.  If A* is the 
optimal abatement level, we have d *

iA /dPLANTi<0 for PLANT characteristics that 

increase marginal costs, and d *
iA /dPEOPLEi>0 for PEOPLE characteristics that increase 

marginal benefits. 

 

The focus of our study is on how the differences in the marginal benefits of pollution 
abatement (MBi) across plants affects regulatory activity, but we also control for plant 
characteristics affecting marginal abatement costs (e.g. size, fuel use etc).  We model the 
marginal benefit function by aggregating individual marginal benefits from pollution 
abatement for all people living around a plant, as shown in equation (2) below. The 
locations of the people are indexed by x and y.  The marginal benefits MBi from pollution 
abatement at a given plant are largely a function of the number of people in the area 

*)A ,MB(PEOPLE  *)A ,(PLANT MC  (1) iiii =
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(measured by ρxy, the population density at a given point)6 and the level of emissions to 
which they are exposed (Exy). We measure differences in how sensitive people’s health 
outcomes are to pollution exposure by Sxy.7

 

  Finally, we allow for the possibility that the 
benefits accruing to different population subgroups are given different weights, through 
the use of the αxy term.   

Where could these differences in αxy come from?  This depends critically on how the 
marginal benefits from abatement are assumed to motivate the decisions made by firms 
and regulators.  Suppose that decisions about pollution abatement are driven by the desire 
(on the part of regulators or the firm’s managers) to “do good” for the community, as 
measured in terms of the community’s willingness to pay for the pollution reduction. In 
this case, we might see more abatement in neighborhoods where residents have 
demonstrated that they value environmental quality highly.  If instead pollution 
abatement decisions are driven by threats of legal action or Coasian bargaining, then 
better connected or more powerful neighborhoods should receive more abatement.  It is 
important to note that the above discussion assumes that the affected neighborhoods 
receive the benefits from pollution abatement, but not the costs (so that more abatement 
is unambiguously better for them) -  if pollution abatement pressures are expected to 
cause plant closings or job losses, some communities might prefer to receive less 
pollution abatement. 

Note that variation in αxy across different subgroups (e.g. by race or socioeconomic 
status) could be connected with “Environmental Justice” concerns.  People with lower 
αxy receive less weight in the calculation of marginal benefits, so regulators are likely to 
direct less regulatory activity towards polluters on their behalf.  Since regulatory activity 
provides a major incentive to reduce pollution, communities of people with low αxy are 
likely to be exposed to higher pollution levels (technically, abating pollution affecting 
those groups would receive a “lower benefit” in the MB=MC calculation, resulting in less 
abatement if the marginal cost curve cuts the marginal benefit curve from below).   

In this paper we focus on the possibility that state regulators choose levels of regulatory 
stringency (especially the frequency of inspections and enforcement actions) to maximize 
net political support for their regulatory activities (see Stigler (1971), Peltzman (1976), 
and Deily and Gray(1991)).  If state regulators behave in this manner then this suggests 
that socio-economic groups with less political clout (e.g. poor or minorities) would be 

                                                 
6 Our only direct measure of the overall benefits from pollution abatement at a particular plant is population 
density.  This implicitly assumes equal exposures Exy for everyone included in equation 2, although we do 
test different-sized neighborhoods around the plants, which could allow for some diminution of impact with 
distance. 
7 Our interpretation focuses on health benefits from pollution abatement, but if people differ in the utility 
they assign to pollution reductions, those differences could also translate into different values of Sxy 

yx
xy

MB)2( ddES xyxyxyxy ρα  i ∫∫=
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given less weight (assigned a smaller value of αxy) in the agency’s regulatory calculus. In 
addition to socio-economic variables, measures of political activity and/or pro-
environmental support within a neighborhood, may apply additional pressure on 
regulators to raise the regulatory stringency for nearby plants, effectively giving those 
neighborhoods a larger weight in the agency’s regulatory decision-making.  On the other 
hand, a regulator who values equity highly might choose to provide more regulatory 
activity and more pollution abatement in more vulnerable neighborhoods, as a way of 
offsetting the other disadvantages that those neighborhoods face.   

In our empirical work, we also test for a relationship between pollution emissions and 
neighborhood characteristics.  The above discussion has primarily focused on a 
connection between the decision by regulators to allocate their inspection and 
enforcement activity across plants and the characteristics of the nearby population, with 
the possible outcome that plants located near poor and minority populations receive less 
regulatory activity.  A similar argument could be made regarding the pollution emissions 
from those plants, linked at least in part to the regulatory activity they face.  A major 
incentive for plants to reduce their pollution is the existence of regulators with the power 
to detect and punish regulatory violations.  Plants that face greater regulatory attention 
(more inspections to detect violations and/or more enforcement actions to punish 
violations) will tend to emit less pollution.  Thus EJ concerns, if they arise, would appear 
with opposite signs: less regulatory activity and more emissions near poor and minority 
populations. 

    
DATA AND EMPIRICAL METHODOLOGY 
 
We begin by assembling data for all manufacturing plants located within 50 miles of four 
major cities – Los Angeles, Boston, Columbus, and Houston - from various EPA 
databases.  Plant location information (latitude and longitude) come from EPA’s Facility 
Registry System database. We then combine these EPA data with confidential 
establishment-level Census data taken from the Longitudinal Business Database (LBD). 
The LBD contains annual information on individual manufacturing plants, including total 
value of shipments, labor productivity, capital stock, fuels, and age of the plant; we use 
data for 2002, originally collected in the 2002 Census of Manufactures. We required 
plants to have both EPA and Census data, which results in a final sample of 1616 plants 
for our analysis of regulatory activity; the sample sizes for our analysis of emissions vary 
by data source, with 926 plants having air emissions data and 569 plants having data on 
toxic releases.  
 
We measure the level of regulatory activity as the number of air pollution inspections and 
enforcement actions directed towards a particular plant from 2000-2002.  These data are 
taken from EPA’s Integrated Data for Enforcement Analysis (IDEA) database. We 
distinguish between two kinds of regulatory pressure faced by a plant – enforcement 
actions (ENFORCE) and ‘inspection-type’ actions (INSPECT). ENFORCE includes 
notices of violation, penalties, and follow-up phone calls, while INSPECT includes onsite 
inspections, emissions monitoring, and stack tests.  Based on discussions with regulators, 
we expect the number of enforcement actions to be associated more closely with 
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problems at the plant, while the number of inspections is more likely to be related to the 
size of the plant and the overall monitoring intensity level for that regulatory agency.   
 
In the majority of economic models of government regulation, a regulatory agency 
promulgates standards with which regulated firms are required to comply.  Compliance is 
generally achieved by having inspectors visit plants to discover violations and to impose 
penalties on violators.  Becker (1968) established that if both the probability of being 
caught and the penalty for violations are high (relative to the costs of compliance), then 
we expect profit-maximizing firms to optimally choose to comply with regulations. 
However, for numerous regulatory agencies, the actual number of inspections performed 
is small relative to their regulated population and penalties are infrequently imposed. 
Becker’s model seems to imply that there is a limited incentive for firm’s to comply with 
regulations - yet most firms still seem to comply. 
 
On the theoretical side, this conundrum of 'excessive' compliance has led to several 
strands of literature.  The non-economics literature has stressed the significance of social 
norms and a corporate culture that encourages compliance. Researchers in this literature 
have conducted interviews to identify how and to what extent corporate decisions are 
affected by pressures from both regulatory agencies and the general public.  In the 
economics literature, Harrington (1988) demonstrated that in a repeated game a regulator 
can raise the expected long-run penalty for non-compliance considerably by establishing 
two categories of regulated plants - cooperative and non-cooperative.  The cooperative 
plants are assumed to comply with regulations and are rarely inspected.  The non-
cooperative plants are assumed to resist regulation and therefore face much greater 
regulatory activity.8  To control for this “Harrington” effect we include a lagged measure 
of past violations of environmental regulations (VIOL_97), indicating if the plant was out 
of compliance at any point in 1997.9

 

 In our data we find that such violations are relatively 
rare, as expected. 

We also conduct an analysis of the emissions from these plants, using two distinct EPA 
datasets.  From the 2002 National Emissions Inventory, we collect annual emissions (in 
tons per year) in 2002 of four air pollutants: nitrogen oxide (NOx), particulates (PM10), 
sulfur dioxide (SO2), and volatile organic compounds (VOC), all expressed in log form.  
To make it easier to compare analyses across air pollutants, we limit the sample to plants 
which report emissions for all four pollutants.  From the 2002 Toxic Release Inventory 
we collect the annual releases in 2002 of all chemicals reported by each plant (in pounds 
per year), expressed in log form (TRI).  To allow for different toxicity across these 
chemicals, we calculate an alternative measure (TRI-TOX) consisting of the plant’s TRI 
releases multiplied by each chemical’s inhalation toxicity score, as used in the EPA’s 

                                                 
8 A number of studies examine the effectiveness of EPA enforcement in increasing compliance with air 
emission regulations.  For instance, Gray and Deily (1996) find increases in compliance at steel mills; 
Nadeau (1997) finds reductions in the length of spells of non-compliance at pulp and paper mills, and Gray 
and Shadbegian (2005) find increases in compliance at pulp and paper mills.  Henderson (1996) finds a 
significant impact of county non-attainment status on peak ambient concentrations of air pollutants. 
9 It would be interesting to know if these violations are related to paperwork violations or actual emissions 
violations, but unfortunately this information is not included in the air pollution compliance data used here.   
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Risk-Screening Environmental Indicators (RSEI) model, with the weighted sum 
expressed in log form.  The emissions models are similar to the regulatory activity 
models discussed above, except that they omit the “lagged violations” variable. 
 
We estimate equation (3) below for several dependent variables.  For regulatory activity, 
our dependent variables, INSPECT and ENFORCE, are often zero and are otherwise 
relatively small integers, leading us to use a Negative Binomial model to allow for the 
observed over-dispersion of the data.10

 

, We also estimate each model with OLS, to test 
the robustness of the coefficient results.  On the emissions side, we have 6 dependent 
variables, corresponding to the different pollutant measures.  Each dependent variable Yit 
is modeled as a function of PLANT and PEOPLE characteristics, as well as COUNTY 
(political) variables and CITY dummy variables: 

 
where Yit is one of the eight dependent variables in our analysis: INSPECT, ENFORCE,  
NOx, PM10, SO2, VOC, TRI, and TRI-TOX.  
    
Prior to discussing the expected effects of our neighborhood level socio-economic and 
demographic variables we first discuss the plant-, state-, and county-level control 
variables included in each model.  Our plant level control variables include plant size, 
capital stock, fuel use, productivity, plant age, and corporate structure from the Census 
Bureau’s confidential plant-level Longitudinal Business Database (LBD).  The LBD 
includes annual information on individual manufacturing plants, including total value of 
shipments, labor productivity, capital stock, fuels, and age of the plant.  These data are 
collected in the Census of Manufactures and Annual Survey of Manufacturers (for a more 
detailed description of the LBD data, see McGuckin and Pascoe (1988)).11

                                                 
10 The Poisson regression model is appropriate when the dependent variable is count data (e.g. number of 
inspections and enforcement actions). The 

  From the 
LBD we extract information for 2002, originally collected in the 2002 Census of 
Manufactures.  We use both the plant’s total value of shipments (SIZE) and capital stock 
(CAPITAL) in log form to measure the size of the plant.  To control for fuel use, 
expected to be positively correlated with air emissions, we use the log of the cost of 
purchased fuels. Our control for plant age (AGE) is based on the first year the plant 
appears in the LBD. We control for the plant's efficiency using labor productivity 
(LPROD) measured as real output per employee. Finally, we include a dummy variable 
(SINGLE), which indicates a single-plant firm (i.e., a firm which owns no other 
manufacturing plants), to control for corporate structure.  If single plants have less 
political power then we would expect them to receive more regulatory scrutiny – it is 

Poisson model (distribution) assumes that the dependent 
variable’s mean is equal to its variance, but in many cases the variance is greater than the mean with count 
data (e.g. over-dispersion). In these cases a model, such as the Negative Binomial model used here, that 
allows for over-dispersion is more appropriate (and our Negative Binomial results show significant over-
dispersion in our data).   
11 The establishment-level data in the LBD are collected and protected under Title 13 of the U.S. Code. 
Restricted access to these data can be arranged through the U.S. Census Bureau’s Center for Economic 
Studies (CES). See http://www.ces.census.gov/ for details.   

)F(Y iititit CITYCOUNTY PEOPLEPLANT  ,, ,    )3(  =it

http://en.wikipedia.org/wiki/Poisson_distribution�
http://en.wikipedia.org/wiki/Variance�
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possible that they might also be more likely to have paperwork violations, relative to 
larger firms which could benefit from regulatory compliance support from their corporate 
headquarters.  On the other hand, EPA and many state regulatory agencies provide 
compliance assistance targeted towards smaller firms, and some regulations have specific 
exemptions for small businesses, which could offset the disadvantages of being a smaller 
firm. 
 
We use voting information at the county level, taken from data compiled and published 
by the U.S. Census Bureau, to describe the political climate of the area near the plant.12, 13  
Olson (1965) describes the ability of voter activity to overcome negative externalities.  A 
positive influence on αxy is expected to come via greater voter activity, measured using 
county voter turnout in the 2000 presidential election (TURNOUT).  We also include 
DEMOCRAT, the percentage of voters in the county voting for the Democratic 
Presidential candidate in 2000, as an indication of voter support for more active 
regulatory interventions.  We expect both of these variables to increase regulatory 
activity at a plant, since they are associated with having more politically active people 
living near the plant.  They should also decrease emissions from the plant.14

 
 

We also include a set of variables to measure the marginal benefit of abatement 
associated with a given plant. As argued above, the marginal benefits MBi from pollution 
abatement at a given plant largely depends on the number of people in the area, the 
emissions that they are exposed to, and their health susceptibility to pollution exposure. 
The overall population being affected by emissions from the plant (ρxy) is measured by 
POPDEN, the population density around the plant, with higher POPDEN leading to 
greater MB.  Potential differences in health sensitivity by age group (Sxy in equation 2) 
are measured by CHILDREN (the percentage of the nearby population under the age of 
6) and ELDERS (the percentage of the nearby population over the age of 65).  Both 
groups are more sensitive to air pollutants, so we expect higher values of both 
CHILDREN and ELDERS to result in higher MB.  In our empirical results, we would 
expect to see positive coefficients on these three variables in the regulatory activity 
analysis, and negative coefficients in the emissions analysis.   
 
Finally, we turn to the variables that are most closely related to Environmental Justice 
concerns related to the racial, ethnic, or socioeconomic composition of the population 
living near the plant.  In our analyses the “potentially less valued” (low αxy) populations 
are poor and minorities.  We measure POOR as the percentage of the nearby population 
living below the poverty line; MINORITY is measured as the percentage of the nearby 
population which is not non-Hispanic whites.  If plants near POOR and MINORITY 
populations face less regulatory activity and/or are exposed to more emissions, this would 
raise potential Environmental Justice concerns.   
                                                 
12 The original source of these data is CQ Press, 2001, America Votes 1999-2000, Washington, DC. 
13 We would like to use voting data at finer levels of geographic detail (e.g. precinct-level data) however we 
cannot do so because they are not collected at similar levels of detail across these four states. 
14 Republicans who are more politically active could be expected to push for less regulatory activity on 
ideological grounds.  On the other hand, the political clout of Democrats could be expected to depend on 
the party affiliation of the state’s Governor. During our sample period only California had a Democratic 
governor, so we could not test that hypothesis.  
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We generate the above mentioned socio-economic and demographic variables from 
detailed geographic data (at the Census block group level) measuring population 
characteristics from the 1970-2000 U.S. Censuses of Population, as compiled in the 
Census-CD datasets prepared by Geolytics, Inc.  We do not know, a priori, the ‘optimal’ 
(or even most suitable) size of a neighborhood to study the effects of benefits and our 
socio-economic and demographic variables on regulatory activity. Therefore we take 
advantage of our ability to ‘create’ neighborhoods of different sizes to test how far the 
benefit and political effects extend. In particular, we ‘create’ two different-sized 
neighborhoods consisting of all block groups that fall within R miles of the plant, where 
R = 1 and 10. Distances are calculated between each plant and the centroid of each block 
group to determine which block groups fall within R mile(s) of the plant, and the block 
group values for each population characteristic are aggregated to get the overall value for 
each plant. As might be expected, we find somewhat similar, but not always perfectly 
consistent results across different neighborhood sizes (some demographic variables had 
stronger effects when measured in smaller neighborhoods; others were stronger when 
measured in larger neighborhoods).  
 
We mentioned earlier the distinction between current-year and siting-year measures of 
neighborhood characteristics in EJ analyses.  Our measures of regulatory activity come 
from 2000-20002, while our measures of emissions come from 2002, so our current-year 
neighborhood measures are taken from the 2000 Census.  To calculate the siting-year 
measures, we identified the first year of data for the plant in the LBD.  Those plants in the 
LBD before 1976 were assigned to the 1970 Census data, while plants that first appeared 
in the LRD in 1977-1986, 1987-1996, 1997-2002 were assigned, respectively, to the 
1980, 1990, 2000 Census data. Our earliest demographic data is from 1970, and roughly 
half of our plants are assigned the 1970 Census for their siting-year.  Only a very small 
fraction are assigned the 2000 Census for their siting-year, so the siting-year and current-
year values are usually from different years, but the siting-year and current-year values 
are still fairly highly correlated.  

 
3. RESULTS 

 
The summary statistics for our dataset are shown in Table 1.  In terms of regulatory 
activity, the average plant receives about twice as many inspections as it does 
enforcement actions, although both types of activity are relatively rare (fewer than half of 
our plants are inspected during the 2000-2002 period, while some plants receive multiple 
inspections; the distribution of enforcement actions is even more skewed).  This is 
primarily due to our sample data being drawn from all manufacturing plants, rather than 
being focused on large polluters.  This can also be seen in our measures of air pollution 
emissions and toxic releases, both of which are relatively small.   Of our plant 
characteristics, expenditures on fuels show considerable variation across plants.  Nearly 
half of our plants come from single-plant firms, while about two-thirds were in operation 
before 1978.  For the demographic variables, we see some increases in the percentages of 
poor and minority populations as we move from the siting-year to the year 2000, along 
with a shifting of the population towards older age groups.  We also see greater 
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variability for the 1-mile-circle variables than we do for the 10-mile-circles.  Because our 
data come from relatively densely populated areas near cities, we focus most of our 
attention on the 1-mile results, but we also present the 10-mile results as a sensitivity 
check.    
 
Table 2 presents the results of a basic model for regulatory activity, depending only on 
our measures of plant characteristics along with dummy controls for city and industry.  
We show the results for four regressions: two regressions examine how often a plant is 
inspected, while two regressions examine the enforcement actions taken against a plant. 
In each case, we run a basic ordinary least squares (OLS) and a negative binomial (NB) 
regression.   For the most part, the coefficients are significant, with signs consistent with 
our expectations.  Larger plants and plants with greater fuel expenditures (likely to be 
associated with higher air pollution emissions) receive greater regulatory attention.  
Labor productivity and capital intensity are not generally significant, although plants with 
higher labor productivity seem to receive somewhat less attention.  Plants with past 
violations also receive greater attention (though this effect is only significant for the OLS 
models).  The results for older plants are mixed, with a suggestion of more inspections 
but fewer enforcement actions, possibly connected to grandfathering.  Plants in single-
unit firms face significantly more regulatory activity, perhaps due to having lower 
political clout with regulators.  The basic model explains about 19-27 percent of the 
overall variation in regulatory activity.   
 
Tables 3 and 4 expand the basic model by adding the demographic variables that are at 
the heart of the EJ analysis, along with measures of political activity.  The tables differ in 
terms of the timing of the demographic variables – Table 4 includes current demographic 
measures from the year 2000, while Table 3 includes demographic measures from the 
time that the plant was sited (as noted earlier, our earliest demographic data is from 1970, 
so older plants are assigned 1970 values – very few plants are assigned 2000 as their 
siting-year).  We might expect the current demographics to be more relevant, since the 
regulator is making decisions about regulatory allocation currently, but siting-year 
demographics could affect the size and location of plants at the time of their initial 
construction, which could affect current emissions and thus the incentives for regulatory 
attention.  
 
First, note that the control variables from our basic model are essentially unaffected by 
the expansion of the model, either in terms of coefficient magnitude or significance.  The 
political measures, voter turnout and percent voting Democratic, have the expected 
positive signs.  Higher voter turnout is associated with significantly more inspections and 
more enforcement actions, while voting Democratic is only significant for enforcement 
actions.   
 
On the other hand, the demographic measures are insignificant for the most part, and 
often have unexpected signs.  Based on the benefits from pollution abatement discussed 
earlier, we would expect positive signs for population density, as well as the fraction of 
the population under 6 and over 65, while concerns about EJ suggest the possibility of 
finding negative coefficients on the fraction that is poor and minority.  The siting-year 
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coefficients on the under 6 and over 65 variables are both surprisingly negative (though 
insignificant), while the year-2000 coefficients tend to be positive, though not always 
significant.  The EJ variables are more consistent across the two tables, with higher 
minority populations receiving less attention, while poorer populations receive 
(surprisingly) more attention, although these effects are also only occasionally 
significant. The expanded model with both plant and community socioeconomic and 
demographic characteristics explains roughly the same degree of variation when 
compared to the basic model, about 19-27 percent of the overall variation in regulatory 
activity.   
 
Table 5 provides an alternative version of the full model, defining the demographic 
variables in terms of 10-mile circles around the plant, rather than 1-mile circles.  The 
results for both the siting-year and the year-2000 demographic measures are broadly 
similar to those in Tables 3 and 4.   Again, we do not see the expected positive 
coefficients on the measures of children and elderly in the population, although now the 
age-related demographic variables remain negative in the year-2000 results (where they 
had been positive in Table 4), and population density is more consistently (surprisingly) 
negative.  The EJ variables show the same results as before, with plants in high-minority 
areas facing less regulatory activity, while plants in high-poverty areas face more activity. 
Given that inspections and enforcement activities are relatively rare events, it is perhaps 
not surprising to see they have little relation to average community characteristics (e.g. 
are not significant), which may be a poor reflection of interim sorting behavior on the 
part of households. 
 
Now consider the magnitudes of these impacts, by examining the impact of a one 
standard deviation increase in each of the explanatory variables, using the results from 
Table 4, model M9 as illustrative.  Plant characteristics, such as size and fuel usage, are 
the most consistently significant, and they also have a relatively large impact: increasing 
log size by one standard deviation (1.8) is predicted to increase inspections by 0.25, while 
increasing log fuel usage by one standard deviation (2.4) is predicted to increase 
inspections by 0.34.  Increasing voter turnout has an impact similar in magnitude (0.31), 
while the impact of percent Democrat is considerably smaller (except for model M12, 
where enforcement actions are predicted to increase by 0.32).  The demographic variables 
show considerably smaller impacts, less than 0.1 in most cases, although the surprisingly 
positive effect of POOR in model M9 is 0.15. 
 
We now turn to measures of the pollution emissions from each plant, considering both 4 
major air pollutants and 2 measures of toxic releases, starting with a basic model in Table 
6.  Overall, the plant characteristics show less significance, as compared to the models of 
regulatory activity examined earlier.  Fuel usage continues to have large positive effects 
that are consistently significant, but it is the only variable that does so.  Plant size is 
nearly always positive, but is usually insignificant.  Productivity and capital intensity are 
generally insignificant, and vary in sign across pollutants.  For two important pollutants 
(PM10 and SO2), older plants have significantly higher emissions, but the effect of age on 
other pollutants is negative and insignificant.  The overall explanatory power of the 
models is relatively high, ranging from 32 to 70 percent, due to the significance of the 
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city and industry dummies. The model does a much better job of explaining variation in 
NOx, PM10, and VOC emissions than it does for SO2 and TRI emissions. 
 
Expanding the model, as shown in Tables 7 and 8, has little impact on the plant-level 
coefficients, either in terms of magnitude or significance.  We would generally expect to 
see opposite signs for the political and demographic variables here, as compared to the 
earlier models of regulatory activity: negative for population density, children and elders, 
positive for poor and minority.  Population density is consistently negative, and often 
significant, but children and elders often have positive signs, and are also sometimes 
significant (the only exception being negative coefficients in the TRI models using year-
2000 measures).  The political variables show little impact – never significant, with 
smaller coefficients than in the earlier models.  Finally, the EJ variables show little 
consistent effect, with few significant coefficients and different signs across different 
pollutants.  There is some tendency for the EJ coefficients in the year-2000 model to be 
more often positive than in the siting-year model, which is consistent with the expectation 
of sorting based on neighborhood quality, as described earlier.  Still, the coefficients are 
not often significant, and the patterns are not always consistent across pollutants, so these 
results should be considered suggestive. 
 
Table 9 presents results for demographic variables defined in terms of 10-mile circles.  
The siting-year age variables have the expected negative sign for the measures of air 
pollution emissions, unlike the corresponding 1-mile variables in Table 7 (though they 
are not statistically significant).  Population density also has the expected negative sign, 
and is often significant.  For the EJ variables, we see the expected positive coefficients 
more often than in Table 7.  Turning to the year-2000 results, the age-related variables 
(surprisingly) shift towards being more positive, while the EJ variables are a bit more 
negative.  This does not correspond to the results we saw for 1-mile circles in Table 8, 
where the EJ coefficients became more positive as we shifted to the current year. 
 
 

4. CONCLUSION  
 
In this paper, we examine the large and expanding topic of Environmental Justice.  The 
research in this area has developed from relatively simple comparisons of current 
demographic characteristics near environmental nuisances to multiple regressions and 
consideration of demographics at the time of siting.  The evidence for EJ concerns in the 
literature is mixed: there is a large body of studies that find correlations between 
population characteristics and environmental risks.  Many studies that include the use of 
siting-year demographics find that this reduces the magnitude and significance of any EJ 
effects, although other studies continue to find significant effects.  The types of pollutants 
being considered has also expanded, beginning with hazardous waste sites but being 
applied to more broadly distributed air and water pollutants, as in this study.  
 
In this paper, we add to the literature by exploring the relationship between regulatory 
activity and community characteristics, a relatively under-studied area in the literature. 
We also examine plant emissions behavior. These regressions focus on all manufacturing 
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facilities near four large U.S. cities.  We also separately considered the effect of matching 
plant and regulatory behavior to siting-year or current (year-2000) demographics in an 
attempt to control for the possible effects of endogeneity.   
 
In the analysis of regulatory activity, we found significant connections between plant 
characteristics and activity, with larger plants and heavy fuel-using plants facing more 
activity.  In addition, we found plants in areas with high voter turnout also faced more 
regulatory activity.  However, we did not find significant evidence that demographic 
variables have a large impact on the allocation of regulatory activity: plants in areas with 
large minority populations did have somewhat fewer actions, but these effects were small 
and generally insignificant; plants in high poverty areas seem to face (surprisingly) more 
enforcement actions, sometimes significantly more.  Our other demographic variables 
(population density and fractions of those under 6 and over 65) also tended to be 
insignificant, and often had unexpected signs.  On the whole, these results provide little 
evidence for EJ concerns in the allocation of regulatory activity among these plants.  
Expanding the range of the demographic variables from 1-mile-circles to 10-mile-circles 
did not have much effect on the results. In general, the variation we are able to explain in 
the regressions is almost entirely due to plant characteristics. 
 
The analysis of pollution emissions found fewer significant effects among the factors in 
the basic model.  Plants with greater fuel usage did emit significantly more air emissions 
(and also had higher toxic releases), but that was the only variable with significant effects 
on all pollutants.  Larger plants also tended to have more emissions, but not always 
significantly more; older plants had higher emissions of particulates and sulfur dioxide, 
but lower emissions of other pollutants.  Population density did have the expected 
negative sign (and occasional significance), but the political variables did not show 
significant effects on any pollutant.  The demographic variables did not show much 
significance, and often had unexpected signs.  For example, the poor and minority 
variables, measured in the siting year, were associated with lower emissions more often 
than not.  However, these signs did shift when we used year-2000 measures, which 
provides some (weak) evidence in support of the “moving to a nuisance” interpretation of 
EJ results in other studies, with a suggestion that plants with higher emissions levels may 
see shifts in their nearby demographic composition towards a higher poor and minority 
population.  The results using 10-mile-circles were not very different, although they did 
not show a consistent pattern between the siting-year and year-2000 results. 
 
The results presented here do not show much evidence to support EJ concerns, at least 
within the set of plants and pollutants covered in our analysis for the time period studied.  
The analysis of regulatory activity showed a number of significant impacts from plant 
characteristics and political activity with the expected signs, but the demographic 
variables were generally insignificant, had smaller effects than the other variables in the 
model, and often had unexpected signs.  Thus it does not appear that regulatory activity is 
disproportionately focused on plants in majority, high-income communities.  Our analysis 
of air pollution emissions and toxic releases also fails to find strong EJ effects: the signs 
on the EJ coefficients vary across different pollutants and across different EJ measures, 
and the EJ coefficients are usually insignificant.  The emission models as a whole show 



 19 

fewer significant coefficients than the regulatory activity models.  This may reflect our 
sample, including all plants from the manufacturing sector near four large cities: the 
variability in demographic characteristics may be less than would be found in a 
nationwide sample, while the production processes at our plants are more heterogeneous 
than earlier studies which examined plants from a single industry. 
 
Despite the considerable body of existing literature addressing EJ issues, there still 
remain important areas for future research.  As noted earlier, EJ studies have tended to 
focus on outcomes rather than the processes that determine those outcomes.  Our results 
here do not provide much evidence for EJ differences in enforcement activity, but it 
would be useful to examine the activities of regulatory agencies in other contexts (e.g. 
Sigman (2001) finds a faster processing of Superfund sites located in higher-income 
areas).  One challenge is that regulatory activity can be difficult to quantify: inspections 
and other enforcement actions are recorded for air pollution and water pollution, but the 
intensity of those inspections may differ in ways we do not measure.  Other potential 
mechanisms for EJ impacts include neighborhood environmental activism and 
differences in managerial attention, but those may be more difficult to measure. 
 
There is a broader issue related to the choice of pollutants being analyzed.  The early 
history of EJ concerns was focused on hazardous waste sites, and on local communities 
that faced a number of environmental hazards as well as other disadvantages.  The 
regulatory process surrounding those sites tends to be individually designed, and deals 
with very locally focused hazards.  In contrast, air pollution emissions can affect people 
hundreds of miles away, and these emissions are covered by federal regulations and 
incorporated into State Implementation Plans.  This may reduce the flexibility of 
regulators to respond to differences in population characteristics near the regulated plants. 
 
In a more narrowly focused sense, the analysis presented here could also be extended, to 
bring together the analysis of emissions and regulatory activity, perhaps in a Seemingly 
Unrelated Regression (SUR)-like analysis.  This could help us identify whether 
surprisingly high/low emissions at a plant result in surprisingly high/low regulatory 
activity at the plant – providing additional information about heterogeneity across plants 
not already captured by the violation measures.  The models of pollution emissions might 
also benefit from controls for differences in production processes and pollution 
abatement opportunities, beyond those already captured with the two-digit SIC industry 
dummies.  
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    Table 1 
      Summary Statistics 

       (N=1616 unless otherwise noted) 
 
Variable Mean (s.d.)  Description/Source 
 
 
 EPA Integrated Data for Enforcement Analysis (IDEA) and Envirofacts 
 
Inspect  0.503 (1.875)  Total air pollution inspections, 2000-2002 
Enforce 0.267 (1.054)  Total air pollution enforcement actions, 2000-2002 
Viol97  0.028 (0.165)  Dummy, plant had air pollution violation during 1997 
 
 
 Air Pollution Emissions - EPA 2002 National Emissions Inventory (N=926) 
 
NOx  1.141 (1.569)  Nitrogen oxides (log of tons emitted per year) 
PM10  0.641 (1.123)  PM10 (log of tons emitted per year) 
SO2  0.577 (1.381)  Sulfur dioxide (log of tons emitted per year) 
VOC  1.717 (1.497)  Volatile organic compounds (log of tons emitted per year) 
 
 
 Toxic Releases - EPA 2002 Toxic Release Inventory (N=569) 
 
TRI  6.323 (4.526)  Total releases (log of pounds released) 
TRI-TOX 9.178 (6.306)  Toxicity-adjusted releases (log of pounds released * toxicity) 
 
 
Plant-Level Data - Census Longitudinal Business Database (2002 Census of Manufactures) 
 
LTVS  9.482 (1.797)  Log(total value of real shipments in 2002) 
LP  5.617 (1.025)  Log(real output per worker hour in 2002)  
LCAP  8.191 (2.474)  Log(real book value of capital stock in 2002) 
LCF  3.908 (2.400)  Log(real expenditure on fuels in 2002) 
SU  0.418 (0.493)  Dummy, single-unit firm in 2002 
PRE1978 0.649 (0.477)  Dummy, plant existed in LBD before 1978 
 
 
 County-level Voting Data - 2000 Presidential election 
 
Dem  54.76 (9.92)  Percent voting for Democratic Presidential candidate  
Turnout 49.82 (8.46)  Percent of population aged 18 or over who voted 
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    Table 1 (cont) 

      Summary Statistics 
       (N=1616 unless otherwise noted) 

 
Variable Mean (s.d.)  Description/Source 
 
 
 Census Demographics – 1 mile circle, plant-siting year (1970-2000 Census) 
 
Poor1  0.107 (0.074)  Fraction of population below poverty line 
Nw1  0.113 (0.180)  Fraction of population minority (not non-Hispanic white) 
Kids1  0.104 (0.026)  Fraction of population under 6 years old 
Eld1  0.094 (0.042)  Fraction of population 65 years old and over 
Lpden1 7.186 (2.322)  Log(population density) 
 
 
 Census Demographics – 1 mile circle, 2000 Census of Population 
 
Poor1_2000 0.137 (0.096)  Fraction of population below poverty line 
Nw1_2000 0.265 (0.230)  Fraction of population minority (not non-Hispanic white) 
Kids1_2000 0.088 (0.024)  Fraction of population under 6 years old 
Eld1_2000 0.113 (0.046)  Fraction of population 65 years old and over 
Lpden1_2000 7.770 (1.448)  Log(population density) 
 
 
 Census Demographics – 10 mile circle, plant-siting year (1970-2000 Census) 
 
Poor10  0.099 (0.038)  Fraction of population below poverty line 
Nw10  0.119 (0.132)  Fraction of population minority (not non-Hispanic white) 
Kids10  0.099 (0.015)  Fraction of population under 6 years old 
Eld10  0.098 (0.027)  Fraction of population 65 years old and over 
Lpden10 7.175 (1.641)  Log(population density) 
 
 
 Census Demographics – 10 mile circle, 2000 Census of Population 
 
Poor10 _2000 0.123 (0.054)  Fraction of population below poverty line 
Nw10_2000 0.265 (0.181)  Fraction of population minority (not non-Hispanic white) 
Kids10_2000 0.087 (0.013)  Fraction of population under 6 years old 
Eld10_2000 0.112 (0.025)  Fraction of population 65 years old and over 
Lpden10_2000 7.538 (1.165)  Log(population density) 
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 Table 2 

   Determinants of Regulatory Activity 
Basic Model - Plant characteristics only 

    (N=1616; std. err.) 
 
MODEL OLS  N.B.  OLS  N.B. 
Dep. Var. INSPECT INSPECT ENFORCE ENFORCE 
  M1  M2  M3  M4 
 
LTVS  0.136*** 0.176*** 0.077*** 0.175** 
  (0.045)  (0.057)  (0.025)  (0.084) 
LP  -0.000  -0.154** 0.007  -0.079 
  (0.064)  (0.078)  (0.035)  (0.112) 
LCAP  0.013  -0.009  0.015  0.019 
  (0.023)  (0.025)  (0.013)  (0.038) 
LCF  0.148*** 0.200*** 0.077*** 0.192*** 
  (0.026)  (0.033)  (0.015)  (0.046) 
SU  0.351*** 0.281** 0.215*** 0.419** 
  (0.104)  (0.131)  (0.057)  (0.193) 
PRE1978 0.176** 0.106  0.011  -0.283* 
  (0.090)  (0.108)  (0.049)  (0.151) 
VIOL97 0.844*** 0.146  0.568*** 0.320 
  (0.255)  (0.213)  (0.141)  (0.325) 
 
Constant -2.269*** -2.938*** -1.442*** -7.000*** 
  (0.586)  (0.550)  (0.323)  (1.097) 
lnalpha    -0.482***   0.252 
    (0.178)    (0.199) 
R-squared 0.236  0.186  0.264 . 0.190 
 
* p<0.10, ** p<0.05, *** p<0.01  
All models include city dummies and 2-digit SIC industry dummies 
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Table 3 
    Determinants of Regulatory Activity 
Full Model – Plant-Siting-Year Demographics 

   (N=1616; std. err.) 
 
MODEL OLS  N.B.  OLS  N.B. 
Dep. Var. INSPECT INSPECT ENFORCE ENFORCE 
  M5  M6  M7  M8 
 
LTVS  0.138*** 0.180*** 0.080*** 0.186** 
  (0.045)  (0.056)  (0.025)  (0.084) 
LP  -0.002  -0.160** 0.006  -0.094 
  (0.064)  (0.078)  (0.035)  (0.113) 
LCAP  0.015  -0.013  0.015  0.017 
  (0.023)  (0.025)  (0.013)  (0.038) 
LCF  0.145*** 0.191*** 0.075*** 0.184*** 
  (0.027)  (0.034)  (0.015)  (0.047) 
SU  0.376*** 0.300** 0.225*** 0.459** 
  (0.104)  (0.131)  (0.057)  (0.194) 
PRE1978 0.205** 0.065  0.004  -0.398** 
  (0.100)  (0.119)  (0.055)  (0.168) 
VIOL97 0.783*** 0.130  0.543*** 0.298     
  (0.257)  (0.215)  (0.142)  (0.318)  
 
eld1  -0.631  -0.500  -0.468  -2.611 
  (1.477)  (1.741)  (0.816)  (2.452) 
kids1  -3.166  -1.316  -1.245  -1.229 
  (2.056)  (2.447)  (1.135)  (3.304)     
poor1  0.977  0.753  0.343  1.201     
  (0.853)  (1.024)  (0.471)  (1.304)     
nw1  -0.351  -1.028** -0.287  -0.882     
  (0.342)  (0.483)  (0.189)  (0.566)     
lpden1  -0.017  0.004  0.009  0.034     
  (0.022)  (0.021)  (0.012)  (0.034)     
 
dem  0.003  0.003  0.007*  0.034** 
  (0.008)  (0.011)  (0.004)  (0.014)     
turnout  0.027** 0.023*  0.014** 0.057*** 
  (0.012)  (0.013)  (0.006)  (0.021)     
 
lnalpha    -0.532***   0.199     
    (0.185)    (0.205)     
R-squared 0.241  .189  0.268  .197     
       
* p<0.10, ** p<0.05, *** p<0.01  
All models include city dummies and 2-digit SIC industry dummies 
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Table 4 
  Determinants of Regulatory Activity 
Full Model – Year 2000 Demographics 

   (N=1616; std. err.) 
 
MODEL OLS  N.B.  OLS  N.B. 
Dep. Var. INSPECT INSPECT ENFORCE ENFORCE 
  M9  M10  M11  M12 
 
LTVS  0.141*** 0.176*** 0.081*** 0.185** 
  (0.045)  (0.056)  (0.025)  (0.084) 
LP  -0.003  -0.155** 0.008  -0.076 
  (0.064)  (0.078)  (0.035)  (0.113) 
LCAP  0.013  -0.008  0.015  0.021 
  (0.023)  (0.025)  (0.013)  (0.038) 
LCF  0.142*** 0.195*** 0.074*** 0.184*** 
  (0.026)  (0.034)  (0.015)  (0.046) 
SU  0.387*** 0.296** 0.224*** 0.432** 
  (0.104)  (0.131)  (0.057)  (0.194) 
PRE1978 0.176*  0.110  0.005  -0.281* 
  (0.090)  (0.110)  (0.050)  (0.154) 
VIOL97 0.753*** 0.079  0.537*** 0.272 
  (0.256)  (0.218)  (0.142)  (0.322) 
 
 
eld1_2000 0.400  0.534  0.187  -0.545 
  (1.182)  (1.291)  (0.655)  (1.942) 
kids1_2000 -5.840*** 1.579  0.713  7.029** 
  (2.160)  (2.288)  (1.197)  (3.350) 
poor1_2000 1.540** 0.800  0.717** 0.414 
  (0.637)  (0.751)  (0.353)  (1.032) 
nw1_2000 -0.305  -0.565  -0.233  -0.587 
  (0.343)  (0.402)  (0.190)  (0.573) 
lpden1_2000 -0.062* -0.032  -0.011  -0.012 
  (0.036)  (0.035)  (0.020)  (0.047) 
 
dem  0.003  0.006  0.007*  0.038*** 
  (0.008)  (0.012)  (0.004)  (0.015) 
turnout  0.031*** 0.024*  0.016** 0.058*** 
  (0.012)  (0.013)  (0.006)  (0.021) 
 
lnalpha    -0.518***   0.193 
    (0.184)    (0.204) 
R-squared 0.247  0.188  0.268  0.199 
 
* p<0.10, ** p<0.05, *** p<0.01  
All models include city dummies and 2-digit SIC industry dummies 
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Table 5 
   Determinants of Regulatory Activity 
  Full Model – 10-mile Demographics 

    (N=1616; std. err.) 
 
MODEL OLS  N.B.  OLS  N.B. 
Dep. Var. INSPECT INSPECT ENFORCE ENFORCE 
  M13  M14  M15  M16 
eld10  -1.654  -2.407  -2.697  -9.380 
  (3.388)  (4.341)  (1.874)  (5.814) 
kids10  -8.333* -7.511  -4.854* -13.202 
  (4.531)  (5.503)  (2.507)  (8.144) 
poor10  0.852  1.581  2.364*  7.112* 
  (2.396)  (2.838)  (1.326)  (3.645) 
nw10  -1.144  -1.929** -0.391  -1.125 
  (0.752)  (0.955)  (0.416)  (1.257) 
lpden10 -0.060  -0.072* -0.029  -0.037 
  (0.038)  (0.042)  (0.021)  (0.077) 
R-squared 0.245  0.192  0.269  0.198     
        
MODEL OLS  N.B.  OLS  N.B. 
Dep. Var. INSPECT INSPECT ENFORCE ENFORCE 
  M17  M18  M19  M20 
eld10_2000 1.043  2.696  -1.025  -14.725* 
  (4.132)  (4.909)  (2.289)  (7.974) 
kids10_2000 -9.855  7.444  -3.983  -7.750 
  (7.592)  (8.825)  (4.207)  (13.710) 
poor10_2000 2.667  1.566  1.678  5.678 
  (2.090)  (2.750)  (1.158)  (3.820) 
nw10_2000 -1.774  -1.408  -0.389  -1.244 
  (1.136)  (1.334)  (0.629)  (1.954) 
lpden10_2000 -0.083  -0.151* -0.062  -0.159 
  (0.080)  (0.088)  (0.044)  (0.124)   
R-squared 0.247  0.193  0.269  0.199 
  
* p<0.10, ** p<0.05, *** p<0.01  
All models include city dummies and 2-digit SIC industry dummies, along with the full set of control 
variables from earlier models. 
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Table 6 

Determinants of Emissions 
Basic Model - Plant characteristics only 

(std. err.) 
 
Dep. Var. NOx  PM10  SO2  VOC  TRI  TRI-TOX 
  M21  M22  M23  M24  M25  M26 
 
LTVS  0.020  0.051*  0.025  0.215*** 0.142  -0.021 
  (0.032)  (0.028)  (0.041)  (0.040)  (0.184)  (0.272) 
LP  0.085*  -0.012  -0.024  -0.080  0.294  0.177 
  (0.046)  (0.040)  (0.058)  (0.057)  (0.263)  (0.388) 
LCAP  0.024  0.003  0.030  -0.009  0.063  0.226* 
  (0.016)  (0.014)  (0.021)  (0.020)  (0.088)  (0.131) 
LCF  0.303*** 0.142*** 0.158*** 0.087*** 0.349*** 0.472*** 
  (0.020)  (0.017)  (0.025)  (0.025)  (0.095)  (0.140) 
SU  -0.007  0.013  -0.059  0.001  0.241  -0.138 
  (0.075)  (0.064)  (0.095)  (0.092)  (0.428)  (0.632) 
PRE1978 -0.006  0.109** 0.266*** -0.081  -0.122  -0.302 
  (0.064)  (0.055)  (0.081)  (0.078)  (0.343)  (0.506) 
 
R-squared 0.696  0.561  0.368  0.495  0.390  0.315 
N  926  926  926  926  569  569 
 
* p<0.10, ** p<0.05, *** p<0.01  
All models include city dummies and 2-digit SIC industry dummies 
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Table 7 
Determinants of Emissions 

Full Model – Plant-Siting-Year Demographics 
(std. err.) 

 
 
Dep. Var. NOx  PM10  SO2  VOC  TRI  TRI-TOX 
  M27  M28  M29  M30  M31  M32 
 
LTVS  0.022  0.054*  0.027  0.213*** 0.138  0.004 
  (0.032)  (0.028)  (0.041)  (0.040)  (0.185)  (0.274) 
LP  0.085*  -0.008  -0.019  -0.077  0.318  0.190 
  (0.046)  (0.040)  (0.059)  (0.057)  (0.263)  (0.390) 
LCAP  0.021  0.001  0.030  -0.010  0.067  0.233* 
  (0.016)  (0.014)  (0.021)  (0.020)  (0.089)  (0.132) 
LCF  0.298*** 0.137*** 0.157*** 0.084*** 0.309*** 0.431*** 
  (0.020)  (0.017)  (0.026)  (0.025)  (0.097)  (0.144) 
SU  -0.014  0.007  -0.063  0.000  0.222  -0.122 
  (0.075)  (0.064)  (0.095)  (0.092)  (0.430)  (0.639) 
PRE1978 -0.046  0.080  0.289*** -0.136  -0.344  -0.333 
  (0.072)  (0.062)  (0.092)  (0.089)  (0.377)  (0.559) 
 
eld1  1.735*  2.252** 1.580  1.176  13.955** 15.025* 
  (1.038)  (0.891)  (1.322)  (1.279)  (5.664)  (8.413) 
kids1  2.536*  2.281*  0.735  2.282  16.130** 7.788 
  (1.498)  (1.286)  (1.908)  (1.846)  (7.785)  (11.564) 
poor1  0.529  0.433  0.766  -1.350* -2.764  -2.391 
  (0.627)  (0.538)  (0.798)  (0.772)  (3.193)  (4.742) 
nw1  -0.290  -0.261  0.123  -0.125  -1.631  -0.763 
  (0.294)  (0.252)  (0.375)  (0.362)  (1.329)  (1.974) 
 
dem  0.001  0.006  0.005  0.005  -0.005  -0.024 
  (0.006)  (0.005)  (0.008)  (0.007)  (0.030)  (0.044) 
turnout  0.000  0.010  0.009  0.005  0.028  -0.004 
  (0.008)  (0.007)  (0.010)  (0.010)  (0.046)  (0.069) 
lpden1  -0.048*** -0.032** -0.032  -0.017  -0.094  -0.168 
  (0.016)  (0.014)  (0.021)  (0.020)  (0.070)  (0.104) 
 
R-squared 0.700  0.568  0.372  0.500  0.406  0.325 
N  926  926  926  926  569  569 
* p<0.10, ** p<0.05, *** p<0.01  
All models include city dummies and 2-digit SIC industry dummies 



 32 

Table 8 
Determinants of Emissions 

Full Model – Year 2000 Demographics 
(std. err.) 

 
Dep. Var. NOx  PM10  SO2  VOC  TRI  TRI-TOX 
  M33  M34  M35  M36  M37  M38 
 
LTVS  0.021  0.053*  0.032  0.215*** 0.151  -0.044 
  (0.032)  (0.028)  (0.041)  (0.040)  (0.186)  (0.274) 
LP  0.092** -0.006  -0.013  -0.078  0.285  0.151 
  (0.046)  (0.040)  (0.058)  (0.057)  (0.264)  (0.391) 
LCAP  0.020  0.001  0.025  -0.011  0.070  0.226* 
  (0.016)  (0.014)  (0.021)  (0.020)  (0.090)  (0.132) 
LCF  0.302*** 0.142*** 0.157*** 0.090*** 0.337*** 0.476*** 
  (0.020)  (0.017)  (0.025)  (0.025)  (0.096)  (0.142) 
SU  -0.011  0.014  -0.056  0.008  0.330  -0.141 
  (0.074)  (0.064)  (0.094)  (0.092)  (0.433)  (0.640) 
PRE1978 0.016  0.115** 0.276*** -0.073  -0.107  -0.262 
  (0.064)  (0.055)  (0.081)  (0.079)  (0.345)  (0.510) 
 
eld1_2000 1.535*  1.328*  2.658** 2.597** -0.811  -1.010 
  (0.859)  (0.741)  (1.090)  (1.059)  (4.307)  (6.362) 
kids1_2000 3.766** 1.993  4.696** 1.030  -6.542  -7.298 
  (1.601)  (1.380)  (2.031)  (1.972)  (7.622)  (11.257) 
poor1_2000 0.420  0.470  1.351** -1.223** 2.055  -0.495 
  (0.483)  (0.416)  (0.613)  (0.595)  (2.395)  (3.538) 
nw1_2000 0.268  0.302  0.074  0.437  -1.295  1.785 
  (0.282)  (0.243)  (0.358)  (0.348)  (1.295)  (1.913) 
 
dem  -0.003  0.001  0.004  0.001  -0.017  -0.046 
  (0.006)  (0.005)  (0.007)  (0.007)  (0.030)  (0.044) 
turnout  -0.005  0.006  0.006  0.001  0.025  -0.016 
  (0.008)  (0.007)  (0.010)  (0.010)  (0.047)  (0.069) 
lpden1_2000 -0.096*** -0.057** -0.069** -0.024  -0.092  -0.269 
  (0.026)  (0.022)  (0.033)  (0.032)  (0.114)  (0.168) 
 
R-squared 0.702  0.567  0.380  0.503  0.397  0.322 
N  926  926  926  926  569  569 
 
* p<0.10, ** p<0.05, *** p<0.01  
All models include city dummies and 2-digit SIC industry dummies 
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Table 9 
Determinants of Emissions 

Full Model – 10-mile Demographics 
(std. err.) 

    
Dep. Var. NOx  PM10  SO2  VOC  TRI  TRI-TOX 
  M39  M40  M41  M42  M43  M44 
 
eld10  -0.529  -0.065  1.913  -3.057  5.124  13.625 
  (2.492)  (2.140)  (3.164)  (3.092)  (12.930) (19.128) 
kids10  -1.181  -1.394  -2.411  -2.012  15.700  0.985 
  (3.045)  (2.614)  (3.865)  (3.777)  (18.482) (27.339) 
poor10  2.103  2.193  1.171  -1.236  11.677  10.308 
  (1.687)  (1.448)  (2.141)  (2.092)  (8.608)  (12.734) 
nw10  0.514  0.429  1.310*  -0.017  -4.500* -2.244 
  (0.586)  (0.503)  (0.744)  (0.727)  (2.678)  (3.961) 
lpden10 -0.133*** -0.107*** -0.146*** -0.010  -0.258* -0.426*
  (0.032)  (0.028)  (0.041)  (0.040)  (0.123)  (0.182) 
   
R-squared 0.703  0.573  0.382  0.498  0.405  0.329  
N  926  926  926  926  569  569 
  
        
Dep. Var. NOx  PM10  SO2  VOC  TRI  TRI-TOX 
  M45  M46  M47  M48  M49  M50  
 
eld10_2000 4.674  2.709  9.083*  -0.594  -5.789  6.776  
  (3.057)  (2.641)  (3.874)  (3.801)  (15.419) (22.858) 
kids10_2000 1.974  0.157  1.039  -0.851  -5.527  14.047  
  (5.180)  (4.475)  (6.564)  (6.441)  (29.257) (43.372) 
poor10_2000 -0.177  -0.989  2.692  -2.565  9.127  7.381  
  (1.573)  (1.359)  (1.993)  (1.956)  (8.319)  (12.332) 
nw10_2000 1.649*  1.988** 0.820  -0.065  -2.214  -0.903  
  (0.860)  (0.743)  (1.090)  (1.070)  (4.065)  (6.027)  
lpden10_2000 -0.258*** -0.195*** -0.217** 0.029  -0.503* -0.544  
  (0.057)  (0.049)  (0.072)  (0.070)  (0.270)  (0.401)  
 
R-squared 0.705  0.570  0.388  0.499  0.402  0.323 N
  926  926  926  926  569  569 
   
* p<0.10, ** p<0.05, *** p<0.01  
All models include city dummies and 2-digit SIC industry dummies, along with the full set of control 
variables from earlier models. 
 
  
 


	We estimate equation (3) below for several dependent variables.  For regulatory activity, our dependent variables, INSPECT and ENFORCE, are often zero and are otherwise relatively small integers, leading us to use a Negative Binomial model to allow fo...

