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Optimal Experimental Design for Binary Choice Experiments
Abstract
This paper derives D-optimal designs for binary choice experiments with multiple attributes using the attribute levels as design parameters.  The optimal solutions are shown to closely resemble traditional 2m fractional factorial arrays with all but one attribute being placed at their extreme points and the final attribute being used to balance the response probabilities.

1. Introduction

To assess the values of market or nonmarket goods, or specific attributes of those goods, researchers often apply experimental choice techniques that allow them to explore preferences for real or hypothetical goods or services (Carson et al. 1994).  In a choice experiment, consumers are presented with a set of scenarios that differ by the levels of a series of attributes, including price, and are asked to rank the alternative scenarios, or choose their most preferred.  Researchers can use the consumers’ responses to estimate a model of choice behavior that allows estimation of separate marginal values for each attribute, or total values for any particular scenarios or goods as described by a specific set of attribute levels.  Researchers can also estimate the marginal rates of substitution or trade-offs respondents are willing to make between any two attributes.


Compared to most approaches for collecting microeconomic data, a unique feature of the experimental choice process is that researchers have the opportunity to specifically design part of their data by choosing the attributes and attribute levels to be included in the choice sets.  Traditionally, attribute levels are specified in advance of the design stage, based on the researcher’s best judgment or project specifications, and choice sets are designed using randomized, cyclical or foldover procedures, based on the full or fractional factorial designs generated by the array of specified attribute levels (Louviere 1988).

A number of recent papers have searched for, or derived, efficient experimental choice designs (Bunch, Louviere and Anderson 1994, Kuhfeld, Tobias and Garratt 1994, Lazari and Anderson 1994, Huber and Zwerina 1996), that is designs that increase the data’s statistical information in a sense defined by a design criterion.  The most commonly used design criterion has been D-optimality, or the maximization of the determinant of the Fisher information matrix.  Generally, however, these papers have failed to obtain fully optimal designs because of restrictions, consistent with the traditional experimental choice design literature, placed on the number of attribute levels and/or the attribute levels themselves prior to the design process.  To obtain full design optimality, these two factors must be design parameters, free to optimize the design criterion.

In this paper, D-optimal designs will be derived for binary choice experiments.  An important feature of the approach taken here is that all attributes are assumed, a priori, to be continuous variables that can be bounded from above and below.  By solving for the optimal designs over a continuous domain, the number of attribute levels and the levels themselves become design parameters.  This approach is consistent with the optimal design literature for dose-response models (Abdelbasit and Plackett 1980, Minkin 1987, Wu 1988) and the more recent literature on optimal design for contingent valuation experiments (Alberini 1995, Alberini and Carson 1993, Kanninen 1993a and 1993b).

It turns out that the D-optimal solutions require continuity of only one attribute.  All other attributes are optimized by allocating their levels according to a 2m main effects factorial design with the two levels being set at their upper and lower bounds.  Even under restrictive circumstances where attribute levels are fixed in advance of the design stage, the requirement that one attribute be continuous can be easily satisfied through the price attribute which should be able to take any value that some portion of the experimental respondents might consider reasonable for a particular choice being offered.

It also turns out that two features of the efficient design literature mentioned above are features of the optimal designs: 1) “utility balance” where choice sets are generated so that the average consumer is indifferent among the choices (Huber and Zwerina 1996), and 2) placement of the design points at “the corners of the design space” consistent with optimal design for the linear model (Kuhfeld et al. 1994).  The specific solutions depend on the number of attributes in the problem, with the influence of utility balance increasing as the number of attributes increase.  Interestingly, utility balance provides a complete solution for the special (but impractical) case where the number of attributes in the model is infinite.

This paper is organized as follows: first, the model and traditional experimental design methodology for binary choice experiments are discussed.  Then a progression of optimal design solutions are presented beginning with the one variable linear model and moving to the multivariate linear model, one variable binary choice model and multivariate binary choice model.  This progression is presented to clarify where and how the particular elements of the optimal design solutions for binary choice experiments emerge.  The paper concludes with final comments and suggestions for further research.

2. The Logit Model for Binary Choice Experiments

The utility-theoretic approach to modeling discrete choices was developed by McFadden (1974) and is discussed in detail by Ben-Akiva and Lerman (1985).  When offered a choice between two scenarios or goods, j={0,1}, that differ only by a particular set of  m attributes, designated xij = {x1ij , x2ij , ..., xmij }, a consumer, i, will choose the good that offers him or her the greatest utility.  Specifying utility to be linear with a fixed component (j+(xi j and an additive random component (ij  that follows an extreme value distribution, the probability that consumer i prefers choice 1 to choice 0 is:
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where:
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and ( = (1-(0. It should be noted that this model is a “main effects” model; that is, it assumes that the interactive effects among the various combinations of attributes are negligible. 

Letting yi equal 1 when consumer i prefers choice 1 and 0 when he or she prefers choice 0, the log-likelihood function is:
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(3)
An important aspect of the design problem is that the log-likelihood function is a function only of the difference between the two attribute level vectors, xi1 -  xi0 .  This simplifies the design problem as it is only this difference that must be specified for each attribute (Bunch et al., 1994).  For notational convenience, in the remainder of the paper, let xi = xi1 -  xi0.  Further, let xi be continuous and bounded: xi ( [-1, 1,].  These bounds are chosen, without loss of generality, to allow x to correspond with the {-1,1} notation often used in the experimental design literature.


Once maximum likelihood estimation is performed on the above model, a number of analyses may be performed, for example, willingness to pay (WTP) for
 choice 1 may be estimated as:
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(4)
where (1 is arbitrarily chosen to be the coefficient on the price attribute.  Further, the marginal rate of substitution of attribute k for l may be estimated as:
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The special case of a binary choice model with one attribute has been extensively considered in the literature on discrete response contingent valuation (CV). 
  With discrete response CV, there is a choice between a status quo situation and a single scenario with fixed attribute levels offered at a particular price.  Respondents are asked whether or not they would be willing to pay the offered price for the described scenario.  This approach allows the researcher to estimate willingness to pay for the alternative scenario but not for the individual attributes associated with that scenario, as they do not vary over the sample set.  For this case, (i is equal to (+(xi where xi is the offered price.


CV experiments are performed principally to estimate willingness to pay.
  Making no further assumptions on the model,
 mean or median WTP can be estimated as:
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3. Design of Binary Choice Experiments


Louviere (1988) and Louviere and Woodworth (1983) summarize experimental design issues for choice experiments.
  The principal consideration in these discussions has been model identification.  The approach assumes the researcher has specified the attribute levels to be used in the choice experiments in advance of the design stage.  For fully specified models, i.e. those that include all secondary and higher order interactive effects, design involves the generation of a “full factorial design” or one that includes all permutations of the specified attribute levels.  The full factorial design for the case of three attributes that each take two levels, for example, includes 23, or 8, different observations.  As the number of attributes or levels increase, the full factorial increases exponentially and can quickly deplete budgetary resources.


Table 1 shows a main effects design for the case of three attributes that each take two levels.  Because this is a reduced design compared to the full factorial, it is referred to as a “fractional factorial design.”  The limitations to using such a design are shown in Table 1: each of the two-way interactive effects are confounded with a main effect (e.g. the occurrences of x1x2 are equivalent to the occurrences of x3) and the three-way effect does not vary.  Under the assumption that these effects are negligible though, the main effects model is identifiable.

The important distinction between the traditional approach to experimental design and the one taken in this paper is that in the traditional literature, the attribute levels are specified in advance, presumably based on background research or pretest procedures (Louviere 1988).  By starting under this premise, approaches to improving the efficiency of designs are limited to search procedures that start with a factorial design and make marginal changes to one or more choice sets.  The approach taken here does not specify the attribute levels upfront but instead allows the optimality criteria to determine the optimal levels, within reasonability bounds that are imposed a priori.  The approach also does not require model identification as an a priori condition, but the solution does turn out to have that property.

Because only attribute level differences matter in the choice model, optimal design of choice sets for binary choice experiments is straightforward once design solutions are available: the optimal attribute difference dictates the alternative attribute level once the base attribute level is specified.

4. Optimal Design of Choice Experiments

In this section, D-optimal designs will be derived for linear and binary choice experiments.  By general consensus in the experimental choice literature, D-optimality appears to be the preferred optimal design criterion (Carson et al. 1994).  D-optimality refers to the maximization of the determinant of the Fisher information matrix, which is equivalent to the minimization of the generalized variance of the parameters, or the minimization of the joint confidence sphere surrounding the parameter estimates.  It is, in a sense, a criterion that seeks statistical efficiency for the overall model.

A progession of optimal design problems will be addressed, beginning with the one variable and multivariate linear models, then moving to one-variable and multivariate binary choice models.  This progression allows a systematic demonstration of the emergence of the two influences on D-optimal designs for binary choice models: utility balance and placement of the design solutions at the corners of the design space.

D-optimality for Ordinary Least Squares

Case 1: One independent variable

Consider the one variable linear model where consumers provide utility scores or rankings, yi, for each choice: 
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for i = {1,...,n}.  The one independent variable, price for example, is assumed to be continuous and bounded: xi ( [-1, 1].  The Fisher information matrix is:
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and the determinant is:
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(9)
The principle behind D-optimality for the linear model is easily understood from equation (9): the determinant is a linear function of the squared differences of all pairs of the x variable.  First, it can be seen that the maximum of the determinant can be solved for an arbitrary pair (i, j) of the x variable; this means that the optimal design solution is a two-point design that places half of the observations at the solution for xi and half at the solution for xj.  Second, the pair {xi, xj}should differ from each other as much as possible; in other words, one variable (let it be xi) should be placed at the maximum possible value for x (+1, by assumption) and the other (xj) should be placed at the minimum value (-1, by assumption).


The optimal solution is intuitive in that it takes only two different design points to draw a regression line and, given that those two points will be observed with error, the regression line will most closely approximate the true relationship between the regressor and independent variable if the two design points are positioned as far apart as possible.  No other point along the domain of x is necessary for model identification or statistically more informative from a D-optimal perspective.

Case 2: Multiple independent variables


For the general case of m variables:
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(10)
the (m+1) x (m+1)  Fisher information matrix is:
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and the determinant is:
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where X is a (n x m+1) matrix containing all vectors, x1 ... xm plus a vector of ones.  Maximizing Det(I) is equivalent to maximizing the determinant of X’X.


To understand the properties of the design solution, it is useful here to consider the geometric properties of a determinant.  In the case of a matrix consisting of two, two-element vectors, the determinant is equivalent to the area that results from completing the vectors into a parallelogram.  In the case of a multi-dimensional matrix, the same act of completing the vectors results in a multi-dimensional “parallelogram.”  If the matrix were nonorthogonal, the dimension of the parallelogram would be less than the dimension of the matrix and completion of the vectors would result in a partially collapsed cube.  Further, the area of the cube is maximized by maximizing the length of  each vector.

Two conclusions can be drawn from this: first that, to the extent possible, the D-optimal solution will be orthogonal and second that the design points will be at their extreme values – on the endpoints of the domain of x.  Overall, the design solution will contain points that are as far apart from each other as possible.  For a main effects model, any orthogonal main effects array that can be drawn from the full factorial is optimal.  Assuming the bounds of [-1,1] for all variables, one optimal design solution for three continuous variables is exactly the design presented in Table 1.  In general, when an orthogonal design exists for a particular number of attributes, the optimal design will be that orthogonal design, modified to reflect the assumed upper and lower bounds on the attribute levels.  In a sense, the optimal solution reduces x1 ... xm to a series of two-level attributes with the two levels being the upper and lower bounds of each attribute.

D-optimality for binary choice experiments

Case 1: One attribute:

The log-likelihood for the binary logit model is presented in equation (3).  The Fisher information matrix (dropping the ( term for simplicity) is:
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and the determinant of this matrix is:
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As in the linear model with one parameter, this determinant is a function of two design points and is therefore maximized with a two-point design.  The expression for this determinant is similar to that in equation (9), except that this expression is weighted by the products Pi(1-Pi) and Pj(1-Pj).  Taken alone, these weights would be maximized at Pi  = Pj  = .50.
  This illustrates the influence of “utility balance” (Huber and Zwerina, 1996) in optimal design for binary response models.  With probabilities of .50, consumers are, on average, perfectly indifferent between the two choices offered.  On the other hand, the squared difference term would be maximized by design points placed at their extreme limits: where Pi  and Pj are closer to 0 or 1.  This influence is just the opposite of utility balance: with probabilities of 0 or 1, consumers prefer one choice over the other100% of the time.  The optimal solution can be derived numerically and is a compromise between these two influences: {(i* , (j*} = {-1.5434, +1.5434}, a symmetric design at the 18th and 82nd percentiles of the underlying response function.


To generate the price offers associated with this design solution, the researcher can solve for xi = ((i*,- ()/( and xj = ((j* - ()/(, or, more directly, determine the levels of xi and xj that would give P((i) = .18 and P((j) = .82.  To implement this design solution, the research must therefore know, or be able to approximate, the underlying model.  In practice, researchers generally have some knowledge of the underlying model, based on focus group or pretest information, before conducting their final version of the survey.  Kanninen (1993b) has shown that a sequential approach to conducting CV surveys can substantially improve the information available to the researcher and the efficiency of the ultimate estimates obtained.

Case 2: Multiple attributes

The Fisher information matrix for the case of multiple attributes is:
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where wi = Pi(1-Pi).  The determinant (see Appendix) is:
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(16)
where the sum is over all permutations (labeled i, j,... k) of the n observations taken m+1 at a time and X*i,j,...k is an (m+1) x (m+1) matrix composed only of those observations.

To maximize equation (16) it is useful to construct a reparameterization of the problem.  Without loss of generality, let (1 = (+(1x1+(2x2+...+(mxm and (j = (jxj  for j = {2,...,m}.  It can be shown (see Appendix) that equation (16) can be expressed as:
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Where, again, the sum is over all permutations (i, j,... k) of the n observations taken m+1 at a time and (*i,j,...k is an (m+1) x (m+1) matrix composed only of those same observations on the (’s.  Note that, once again, because the determinant is a sum of functionally equivalent terms, the optimal solution can be derived for one set of m observations, arbitrarily labeled, i, j,..., k.


What is convenient about this formulation is that (2 through (m appear only in the determinant.  The expressions wi, wj, ..., wk are functions only of (1.  With this separation, the maximization problem can be solved in two stages: first, maximizing equation (17) with respect to (2 through (m for an arbitrary (1;  then plugging these solutions into equation (17) and maximizing with respect to (1.


The first stage of the problem, maximizing with respect to (2 through (m, returns us to the same problem found in case 2 of the linear model.  To maximize the determinant, (2 ... (m (and x2 ... xm) should be orthogonal and contain values as large in absolute value terms as possible.  The solution for the design of these m-1 attribute vectors is therefore to set them to their extreme limits according to m-1 arbitrarily chosen lines of the familiar, 2m orthogonal main effects design.


Recall that under a choice framework, x2 ... xm refers to attribute level differences.  To maximize these differences, not only is an attribute level placed at one of its extreme points but the level of the same attribute in the alternative choice is placed at its opposite extreme.  When the design calls for the level of one attribute in the base choice to be +1, the level of the same attribute in the alternative choice should be placed at –1, and vice versa.


An example solution for the case of three attributes can be drawn from Table 1.  Under the assumption that attributes 2 and 3 are bounded by –1 below and +1 above, the optimal solutions for these two attributes are any two columns of the main effects design.


Once the solutions for m-1 attributes have been established, the second stage of the maximization problem, maximizing with respect to (1, is qualitatively similar to the problem of optimal design for a binary choice model with one variable.  The solution must balance the two competing forces: the determinant alone would be maximized by setting the design points at their extremes, where probabilities go to 0 or 1; and the Pi(1-Pi) are maximized in the middle range, where Pi = .50.


Taking the first order conditions for an arbitrary design point, (1j, gives:
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where (1j+ represents the (1,j) cofactor of (.  The optimal solutions for (j can be derived numerically.
  Table 2 displays the D-optimal results for three, seven and fifteen attributes in addition to the one attribute case discussed above.  Note that the constant term has essentially been transformed for each element of (1.  Taking the first two columns of the main effects design in Table 1 as the solution for attributes 1 and 2 in a three-attribute design problem, the constant terms for (1 are: {( -(1 - (2, ( -(1 + (2, ( +(1 - (2, ( +(1 + (2}.


The designs are symmetrical, two-point designs with half the observations placed at a single percentile point on each side of the distribution.  More importantly, the designs follow the course of the standard, orthogonal main effects design, placing (1 on the lower part of the distribution when the standard main effects design calls for a –1, and vice versa when the design calls for a +1.  This feature of the solution guarantees that all main effects parameters will be identifiable.


What is particularly pleasing about these design solutions is how closely they resemble standard 2m fractional factorial designs.  The optimal solutions for all attributes but one follow the 2m main effects orthogonal design exactly, modified to accommodate the assumed upper and lower bounds of the attribute levels.  The final attribute, (1, is used to balance choice sets to achieve certain response rates, depending on the number of attributes in the experiment.


Again, to use the optimal design results in practice, researchers must know or guess the underlying model.  It is important to point out, however, that it is not necessary to know or guess the exact values of all parameters.  Instead, once the first m-1 attributes are specified from the factorial array, researchers must be have a sense of how to set the final attribute so that the appropriate response rates will be obtained.

5. Optimal Design for an Infinite Number of Attributes

It is interesting to note that the placement of the design point solutions for (1 in the previous section appear to converge slowly toward the center of the distribution as the number of attributes increase.  Although researchers would be unlikely to increase the number of attributes to this extent, it is of intellectual interest to investigate the path that the design solutions follow as the number of attributes increase toward infinity.


First, note that for any m, the solutions for (2 ... (m follow the same pattern as above, being drawn from the main effects factorial design.  Summing the first order conditions (equation 18) over all design points (1j and multiplying each side by (1j gives:
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The sum on the right hand side is equal to 1. The left hand side of this condition is symmetric and peaks at zero.  Using the fact that the absolute values of the (j’s are equal, we can re-write equation (19) as:
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and as m goes toward infinity, the design solution, (j, tends toward zero.  Since P(0) = .5, the solution as the number of attributes increases tends toward a solution of complete utility balance.


This result helps clarify the workings of the optimal design problem.  As the number of optimally placed attributes increases, the determinant in equation (16) increases exponentially.  The w’s in the expression then begin to take on more importance for overall maximization.

6. Concluding Comments

This paper has derived D-optimal designs for binary choice experiments with multiple attributes and demonstrated the continuance of certain optimal design principles across the spectrum of linear and binary choice models.  With the linear model, D-optimality calls for placement of the design points at the extreme corners of the design space.  With binary choice, the concept of utility balance appears as a competing force and begins to dominate the optimal design solutions as the number of attributes increase.  In the limit, where the number of attributes is infinite, the D-optimal solution dictates complete utility balance.


What is most interesting about the design results presented here is how closely they resemble traditional experimental designs.  The optimal solutions for all attributes but one follow the 2m main effects orthogonal design exactly, modified only to accommodate the assumed upper and lower bounds of the attribute levels.  The optimal solutions for these attributes basically transform them into two-level attributes.  The final attribute, arbitrarily chosen but recommended here to be price, is used to balance choice sets to achieve certain response rates.  The use of this final attribute to balance response probabilities is the primary innovation of this paper.


There are a number of possible directions for future research in the area of optimal design for experimental choice.  First, the results presented here should be extended to the cases of larger choice sets and the presence of higher order, or cross-effects.  Both extensions introduce levels of complexity to the information matrix that appear to make optimization extremely cumbersome.

Second, the results should be compared to alternative optimal design criteria, such as C-, A- or E-optimality.  D-optimality seems to be favored as an optimization criterion because it is nonspecific; that is, it addresses the overall model rather than any particular parameters or aspects of the model.  Researchers, however, generally have specific goals when conducting experiments and optimality criteria can be developed that more directly target these specific goals.

Appendix
To demonstrate the equivalence of equations (16) and (17), two properties of determinants are used:

1) The determinant of a matrix is linear in each row, implying:

i) 
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2) Adding a multiple of one row to another row leaves the determinant unchanged:
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Let:
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where wi = Pi(1-Pi)

Show:
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Using property 1i), Det(I) can be separated, one row at a time, into parts as follows:
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Taking the first determinant in the equation above and separating the second row into parts gives:
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Note that the first term on the right hand side is equal to zero since the second row, divided by x11, is equal to the first row, rendering the determinant to be of less than full rank.  So the separating process produces nonzero determinants only when each row is drawn from a unique observation .  Continuing the process until all rows are fully separated gives a set of 
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! unique, nonzero determinants:
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This sum contains 
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! different combinations of observations (with each combination appearing m! times).  For any combination, the m! determinants can be combined by summing within and across determinants as follows.  For every determinant, divide the second row by x1j and add to the first row; divide the third row by x2k and add to the first row, continuing until the first row is summed over all observations contained in the matrix.  Now for every determinant, there is exactly one other determinant that is identical except for the second row, and each of these pairs can be combined linearly.  The second row can now be completed by adding a linear combination of the remaining rows as described for the first row.  After the second rows are completed, each remaining determinant has exactly two others that are identical except for the third row.  The process continues until there is a unique determinant representing each of the 
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! combinations of the observations.  Noting that each of the rows is multiplied by a constant, wi and using property 1ii), gives:
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Noting that, because Xi,j,...k* is a square matrix: |Xi,j,...k*’ Xi,j,...k*| = |Xi,j,...k*|2.  It is straightforward to convert |Xi,j,...k*| to [1/((1... (m)] |(i,j,...k*| by multiplying each row of Xi,j,...k* by the appropriate component of the ( vector to convert to the (j (j=2,...,m) notation, and multiplying the first row by ( and adding the subsequent rows to it to convert that row to (1=(+(1x1 + ... + (mxm.  Because the matrix, (i,j,...k*, is square,  |(i,j,...k*|2 = |(i,j,...k*’ (i,j,...k*| and equation (17) is achieved.

Table 1: Fractional Factorial (Main Effects) Design for Three Two-Level Attributes
Main Effects
Two-way Interactions
Three-way Interactions

x1
x2
x3
x1 x2
x1 x3
x2 x3
x1 x2 x3

-1
-1
+1
+1
-1
-1
+1

-1
+1
-1
-1
+1
-1
+1

+1
-1
-1
-1
-1
+1
+1

+1
+1
+1
+1
+1
+1
+1

Table 2: D-Optimal Design for Binary Choice Experiment with Three Attributes

(1
X1
x2
X3
P(()
1-P(()

+1.04
(+1.04-(+(2+(3)/ (1
-1
-1
.74
.26

-1.04
(-1.04-(+(2+(3)/ (1
+1
-1
.26
.74

-1.04
(-1.04-(+(2+(3)/ (1
-1
+1
.26
.74

+1.04
(+1.04-(+(2+(3)/ (1
+1
+1
.74
.26

Table 3: D-optimal Designs for (1
Number of Attributes
Total Number of Design points 
n/2 points at (1 = *
P(()
n/2 points at (1 =
P(()

1
2
1.54
.18
-1.54
.82

3
4
1.04
.26
-1.04
.74

7
8
0.72
.33
-0.72
.67

15
16
0.51
.38
-0.51
.62

(

0
.5
0
.5

* These results must be placed into the appropriate choices along with optimally placed (2 ... (m, according to the main effects orthogonal design.
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� Anderson and Wiley (1992) and Lazari and Anderson (1994) discuss optimal design when cross-effects are present.





� Obviously, for some attributes these bounds are inappropriate: price, for example, cannot be negative.  The specific bounds chosen do not, however, affect the results that follow.





� See Mitchell and Carson (1989) for a summary of the CV method and Hanemann and Kanninen (1998) for a discussion of statistical issues and estimators.





� In many cases with CV, the status quo scenario describes a public good that is provided freely.  Of course, if both scenarios involve a price, then xi represents the price difference.





� Hanemann (1984) developed a utility-theoretic framework for analyzing CV data with binary responses.  Cameron (1988) developed a competing approach that bypasses the utility function and models WTP directly.  For linear specifications, the two approaches are observationally equivalent.





� See Hanemann and Kanninen (1998) for a wide range of models and assumptions that can be made on the WTP distribution.





� The statistical underpinnings of experimental design are summarized thoroughly in Winer et al. (1991).





� Not all optimal design solutions allow model identification.  The C-optimal design that minimizes the asymptotic variance of the median of a logit or probit model, for example, is a one-point design that does not allow identification of the two model parameters (Wu, 1988).  The D-optimal criterion generally produces an information matrix that has full rank and so allows model identification.


� Placing all design points at the median value (where P=.50) is the optimal design solution when the criterion is to minimize the asymptotic variance of the .5 percentile, or median (Wu, 1988).





� This solution, first derived by Abdelbasit and Plackett (1980) and Minkin (1987), is correct only for the case of an even number of observations.  Minkin (1987) discusses the case of an odd number of observations.  In practice, with a large number of observations, the difference between the performance of the two types of solutions should be negligible.





� Kanninen (1993a) recommends conducting at least three, equal-sized waves of the experiment.





� The author minimized the negative of equation (17) using the “FindMinimum” command in Mathematica 3.0 (1996).
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