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ABSTRACT / This paper assesses the changing role of dy-
namic modeling for understanding and managing complex
ecological economic systems. It discusses new modeling

tools for problem scoping and consensus building among a
broad range of stakeholders and describes four case stud-
ies in which dynamic modeling has been used to collect and
organize data, synthesize knowledge, and build consensus
about the management of complex systems. The case stud-
ies range from industrial systems (mining, smelting, and re-
fining of iron and steel in the United States) to ecosystems
(Louisiana coastal wetlands, and Fynbos ecosystems in
South Africa) to linked ecological economic systems (Mary-
land’s Patuxent River basin in the United States). They illus-
trate uses of dynamic modeling to include stakeholders in all
stages of consensus building, ranging from initial problem
scoping to model development. The resultant models are the
first stage in a three-stage modeling process that includes
research and management models as the later stages.

Types and Uses of Models

In environmental systems, nonlinearities and spatial
and temporal lags prevail. However, all too often these
system features are moved to the sidelines of scientific
investigations. As a consequence, the presence of nonlin-
earities and spatial and temporal lags significantly
reduces the ability of these investigations to provide
insights that are necessary to make proper decisions
about the management of complex ecological–eco-
nomic systems. New modeling approaches are required
to effectively identify, collect, and relate the informa-
tion that is relevant for understanding those systems, to
make consensus building an integral part of the model-
ing process, and to guide management decisions.

Model building is an essential prerequisite for com-
prehension and for choosing among alternative actions.
Humans build mental models in virtually all decision
situations, by abstracting from observations that are
deemed irrelevant for understanding that situation and
by relating the relevant parts with each other. Language
itself is an expression of mental modeling, and one
could argue that without modeling there could be no

rational thought at all. For many everyday decisions,
mental models are sufficiently detailed and accurate to
be reliably used. Our experiences with these models are
passed on to others through verbal and written accounts
that frequently generate a common group understand-
ing of the workings of a system.

In building mental models, humans typically simplify
systems in particular ways. We base most of our mental
modeling on qualitative rather than quantitative relation-
ships, we linearize the relationships among system
components, disregard temporal and spatial lags, treat
systems as isolated from their surroundings or limit our
investigations to the system’s equilibrium domain. When
problems become more complex, and when quantita-
tive relationships, nonlinearities, and time and space
lags are important, we encounter limits to our ability to
properly anticipate system change. In such cases, our
mental models need to be supplemented.

Statistical approaches based on historical or cross-
sectional data often are used to quantify the relation-
ships among system components. To be able to deal
with multiple feedbacks among system components and
with spatial and temporal lags requires the availability of
rich data sets and elaborate statistical models. Recent
advances in statistical methods have significantly im-
proved the ability to test for the goodness of fit of
alternative model specifications and have even at-
tempted to test for causality in statistical models
(Granger 1969, 1993). Typically, little attention is given
to first principles in attempts to use statistical models to

KEY WORDS: Dynamic modeling; Scoping; Consensus building; En-
vironmental management; Ecosystem management;
Policy making; Graphical programming languages

*Author to whom correspondence should be addressed.

Environmental Management Vol. 22, No. 2, pp. 183–195 r 1998 Springer-Verlag New York Inc.



arrive at a better understanding of the cause-effect
relationships that lead to system change. Model results
are driven by data, the convenience of estimation
techniques, and statistical criteria—none of which en-
sure that the fundamental drivers for system change are
satisfactorily identified (Leontief 1982, Leamer 1983).
By the same token, a statistical modeling exercise can
only provide insight into the empirical relationships
over a system’s history or at a point in time, but it is of
limited use for analyses of a system’s future develop-
ment path under alternative management schemes
(Allen 1988). In many cases, those alternative manage-
ment schemes include decisions that have not been
chosen in the past, and their effects are therefore not
captured in the data of the system’s history or present
state.

Dynamic modeling is distinct from statistical model-
ing by building into the representation of a phenom-
enon those aspects of a system that we know actually
exist—such as the physical laws of material and energy
conservation that describe input–output relationships
in industrial and biological processes (Hannon and
Ruth 1994, 1997). Dynamic modeling therefore starts
with an advantage over the purely statistical or empirical
modeling schema. It does not rely on historic or
cross-sectional data to reveal those relationships. This
advantage also allows dynamic models to be used in
more related applications than empirical models—
dynamic models are more transferable to new applica-
tions because the fundamental concepts on which they
are built are present in many other systems.

Computers have come to play a large role in develop-
ing dynamic models for decision-making support in
complex systems. Their ability to numerically solve for
complex nonlinear relationships among system compo-
nents and to deal with time and space lags and disequi-
librium conditions make obsolete the use of linear
functional relationships or restriction of the analysis to
equilibrium points.

It is inappropriate to think of models as anything but
crude—yet in many cases absolutely essential—abstract
representations of complex interrelationships among
system components (Levins 1966, Robinson 1991, Ruth
and Cleveland 1996). Their usefulness can be judged by
their ability to help solve decision problems as the
dynamics of the real system unfold (Ruth and Hannon
1997). The dynamic models presented in this paper are
designed with that criterion in mind. They are interac-
tive tools that reflect the processes that determine
system change and respond to the choices made by a
decision maker.

Models are essential for policy evaluation, but, unfor-
tunately, they can also be misused since there is ‘‘. . . the

tendency to use such models as a means of legitimizing
rather than informing policy decisions. By cloaking a
policy decision in the ostensibly neutral aura of scien-
tific forecasting, policy-makers can deflect attention
from the normative nature of that decision . . .’’ (Robin-
son 1993). The misguided quest for objective model
building highlights the need to recognize, and more
effectively deal with, the inherent subjectivity of the
model development process. In this paper we wish to
put computer modeling in its proper perspective: as an
inherently subjective but absolutely essential tool useful
in supplementing our existing mental modeling capabili-
ties in order to make more informed decisions, both
individually and in groups.

In the case of modeling ecological and economic
systems, purposes can range from developing simple
conceptual models, in order to provide a general
understanding of system behavior, to detailed realistic
applications aimed at evaluating specific policy propos-
als. It is inappropriate to judge this whole range of
models by the same criteria. At minimum, the three
criteria of realism (simulating system behavior in a
qualitatively realistic way), precision (simulating behav-
ior in a quantitatively precise way), and generality
(representing a broad range of systems’ behaviors with
the same model) are necessary (Holling 1964, Levins
1966). No single model can maximize all three of these
goals, and the choice of which objectives to pursue
depends on the fundamental purposes of the model.

In this paper we propose a three-step process for
developing computer models of a situation that begins
with an initial scoping and consensus-building stage
aimed at producing simplified, high generality models,
and then moving to a more realistic research modeling
stage, and only then coming to a high precision manage-
ment model stage. We elaborate this process further on.

Using Models to Build Consensus

Models of complex system behavior are frequently
used to support decisions on environmental invest-
ments and problems. To effectively use those models,
i.e., to foster consensus about the appropriateness of
their assumptions and results and thus to promote a
high degree of compliance with the policies derived
from the models, it is not enough for groups of
academic experts to build integrated dynamic com-
puter models. What is required is a new role for
modeling as a tool in building a broad consensus not
only across academic disciplines, but also between
science and policy (Yankelovich 1991, Weisbord 1992,
Weisbord and Janoff 1995). More broadly, involving a
wide range of parties interested in or affected by
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decisions on environmental investments and problems
is key to achieving fairness and sustainability (Rawls
1971, 1987).

Integrated modeling of large systems, from indi-
vidual companies to industries to entire economies or
from watersheds to continental-scale systems and ulti-
mately to the global scale, requires input from a very
broad range of people. We need to see the modeling
process as one that involves not only the technical
aspects, but also the sociological aspects involved with
using the process to help build consensus about the way
the system works and which management options are
most effective. This consensus needs to extend both
across the gulf separating the relevant academic disci-
plines and across the even broader gulf separating the
science and policy communities, and the public. Appro-
priately designed and appropriately used modeling
exercises can help us bridge these gulfs.

The process of modeling can (and must) serve this
consensus building function. It can help to build
mutual understanding, solicit input from a broad range
of stakeholder groups, and maintain a substantive
dialog between members of these groups. Modeling
and consensus building are essential components in the
process of adaptive management (Gunderson and oth-
ers 1995).

Modeling Tools for Scoping
and Consensus Building

Various forms of computer models for scoping and
consensus building have been developed for business
management applications (Roberts 1978, Lyneis 1980,
Westenholme 1990, 1994, Morecroft and others 1991,
Vennix and Gubbels 1994, Morecroft and van der
Heijden 1994, Senge and Sterman 1994). While previ-
ous emphasis was placed on the provision of computer
hardware and software to support group communica-
tion (Kraemer and King 1988), recent trends are to
facilitate problem structuring methods and group deci-
sion support (Checkland 1989, Rosenhead 1989, Phill-
ips 1990). The use of computers to structure problems
and provide group decision support has been spurred
by the recognition that in complex decision settings
bounds on human rationality can create persistent
judgment biases and systematic errors (Simon 1956,
1979, Kahnemann and Tversky 1974, Kahnemann and
others 1982, Hogarth 1987). To identify relevant infor-
mation sources, assess relationships among decisions,
actions and results, and hence to facilitate learning
requires that cause and effect are closely related in
space and time. Dynamic modeling is one such tool that

helps us close spatial and temporal gaps between
decisions, actions, and results.

Dynamic modeling has increasingly become a part of
executive debate and dialog to help avoid judgment
biases and systematic errors in business management
decision making (Senge 1990, Morecroft 1994). It has
also penetrated, albeit to a lesser extent, the assessment
of environmental investments and problems (Ruth
1993). Both areas of application of dynamic modeling
have significantly benefited from the use of graphical
programming languages. One of the main strengths of
these programming languages is to enable scientists and
decision makers to focus and clarify the mental model
they have of a particular phenomenon, to augment this
model, elaborate it, and then to do something they
cannot otherwise do: run the model and let it yield the
inevitable dynamic consequences hidden in their as-
sumptions and their understanding of a system. With
their relative ease of use, these graphical programming
languages offer powerful tools for intellectual inquiry
into the workings of complex ecological–economic
systems (Hannon and Ruth 1994, 1997).

To model and better understand nonlinear dynamic
systems requires that we describe the main system
components and their interactions. System components
can be described by a set of state variables—or stocks—
such as the capital stock in an economy or the amount
of sediment accumulated on a landscape. These state
variables are influenced by controls—or flows—such as
annual investment in new capital or seasonal sediment
fluxes. The extent of the controls—the size of the
flows—in turn may depend on the stocks themselves
and other parameters of the system.

There are various graphical programming languages
available that are specifically designed to facilitate
modeling of nonlinear, dynamic systems. Among the
most versatile of these languages is the graphical pro-
gramming language STELLA (Costanza 1987, Rich-
mond and Peterson 1994, Hannon and Ruth 1994).
STELLA runs in the Macintosh and Windows environ-
ments. A STELLA dynamic systems model consists of
three communicating layers that contain progressively
more detailed information on the structure and func-
tioning of the model (Figure 1). The high-level map-
ping and input-output layer provides tools to lay out the
structure of the model and to enable non-modelers to
easily grasp that structure, to interactively run the
model and to view and interpret its results. The ease of
use of the model at this aggregate level of detail thus
enables individuals to become intellectually and emo-
tionally involved with the model (Peterson 1994).

Models are constructed in the next lower layer. Here,
the symbols for stocks, flows and parameters are chosen
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and connected with each other. STELLA represents
stocks, flows and parameters, respectively, with the
following three symbols:

Icons can be selected and placed on the computer
screen to define the main building blocks of the
computer model. The structure of the model is estab-
lished by connecting these symbols through ‘‘informa-
tion arrows’’

Once the structure of the model is laid out on the
screen, initial conditions, parameter values, and func-
tional relationships can be specified by simply clicking
on the respective icons. Dialog boxes appear that ask for
the input of data or the specification of graphically or
mathematically defined functions.

Equally easy is the generation of model output in
tabular or graphical form through the choice of icons.
With the use of sliders, a user can also immediately
respond to the model output by choosing alternative
parameter values as the model runs. Subsequent runs
under alternative parameter settings and with different
responses to model output can be plotted in the same
graph or table to investigate the implications of alterna-
tive assumptions. Thus, the modeling approach is not
only dynamic with respect to the behavior of the system
itself but also with respect to the learning process that is
initiated among decision makers as they observe the
system’s dynamics unfold. The process of learning by
doing experiments on the computer rather than in the
real world gives model users the opportunity to investi-
gate the implications of their assumptions for the

system’s dynamics and to assess their ability to make the
right decision under alternative assumptions.

The lowest layer of the STELLA modeling environ-
ment contains a listing of the graphically or algebra-
ically defined relationships among the system compo-
nents together with initial conditions and parameter
values. These equations are solved in STELLA with
numerical techniques. The equations, initial condi-
tions, and parameter values can also be exported and
compiled to conduct sophisticated statistical analyses
and parameter tests (Oster 1996) and to run the model
on various computing platforms (Costanza and others
1990, Costanza and Maxwell 1993).

A Three-Step Modeling Process

To support decisions on environmental investments
and problems, we advocate the use of a three-step
modeling process. The first stage is to develop a
high-generality, low-resolution scoping and consensus
building model involving broad representation of stake-
holder groups affected by the problem. STELLA and
similar software make it feasible to involve a group of
relative modeling novices in the construction of rela-
tively complex models, with a few people competent in
modeling acting as facilitators. Using STELLA, and
projecting the computer screen onto the wall or sharing
a model via the internet, the process of model construc-
tion can be transparent to a group of diverse stakehold-
ers. Participants can follow the model construction
process and contribute their knowledge to the process.

After the basic model structure is developed, the
program requires more detailed decisions about the
functional connections between variables. This process
is also transparent to the group, using well-designed
dialog boxes and the potential for graphic and alge-
braic input. The models that result from this process are
designed to capture as much realism as possible and to
answer preliminary questions about system dynamics,
especially its main areas of sensitivity and uncertainty,
and thus to guide the research agenda in the following
modeling stage.

The second-stage research models are more detailed
and realistic attempts to replicate the dynamics of the
particular system of interest. This stage involves collect-
ing large amounts of historical data for calibration and
testing and a detailed analysis of the areas of uncertainty
in the model. It may involve traditional ‘‘experts’’ and is
more concerned with analyzing the details of the
historical development of a particular system with an
eye toward developing specific scenarios or policy op-
tions in the next stage. It is still critical to maintain
stakeholder involvement and interaction in this stage

Figure 1. STELLA II modeling environment.
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through the exchange of models and with regular
workshops and meetings to discuss model progress and
results.

While integrated models aimed at realism and preci-
sion are large, complex, and loaded with uncertainties
of various kinds (Costanza and others 1990, Groffman
and Likens 1994, Bockstael and others 1995), our
abilities to understand, communicate, and deal with
these uncertainties are rapidly improving. It is also
important to remember that while increasing the resolu-
tion and complexity of models increases the amount we
can say about a system, it also limits how accurately we
can say it. Model predictability tends to fall with increas-
ing resolution due to compounding uncertainties (Cos-
tanza and Maxwell 1993). What we are after are models
that optimize their effectiveness (Costanza and Sklar
1985) by choosing an intermediate resolution where
the product of predictability and resolution (effective-
ness) is maximized. As a consequence, resolution of the
research models is medium to high, depending on the
results of the scoping model.

The third stage of management models is focused on
producing scenarios and management options in this
context of adaptive feedback and monitoring and is
based on the earlier scoping and research models. It is
also necessary to place the modeling process within the
larger framework of adaptive management (Holling
1978) if management is to be effective. Adaptive manage-
ment views regional development policy and manage-
ment as experiments, where interventions at several
scales are made to achieve understanding and to iden-
tify and test policy options (Holling 1978, Walters 1986,
Lee 1993, Gunderson and others 1995). This means
that models and policies based on them are not taken as
the ultimate answers, but rather as guiding an adaptive
experimentation process with the regional system. Em-
phasis is placed on monitoring and feedback to check
and improve models, rather than using models to
obfuscate and defend a policy that is not corresponding
to reality. Continuing stakeholder involvement is essen-
tial in adaptive management.

Each of these stages in the modeling process has
useful products, but the process is most beneficial and
effective if followed in the order described. Too often
we jump to the research or management stage of the
process without first building adequate consensus about
the nature of the problem and without involving the
appropriate stakeholder groups. What we save in time
and effort by jumping ahead is easily lost later on in
attempts to forge agreement about results and generate
compliance with the policies derived from the model.

Case Studies

In this section we briefly describe a set of case studies
that embody some or all of the characteristics of the
three-stage modeling process outlined above. The pur-
pose of this section is to illustrate the wide range of
environmental issues to which scoping and consensus
building modeling has been applied and to indicate the
various degrees to which stakeholder involvement has
been achieved in model development. We begin with
case studies that solicited from stakeholders specific
information to be included in the models and that
shared throughout the modeling process the models
with the contributors through a series of conversations,
mailings and presentations. We also present examples
of cases in which workshop meetings for scoping and
consensus building have been conducted and a group
of stakeholders convened to collectively develop models
for scoping and consensus building purposes. Some of
the models presented here have been followed up with
more detailed research and management models.

US Iron and Steel Production

The iron and steel industry is the single largest
energy consumer in the industrial sector of the US
economy and is characterized by large-scale operations
that require significant capital investment to change
their structure and functioning. The high degree of
interconnectedness among the various production stages
often requires technological adjustments at one stage in
response to change elsewhere in the industry. For
example, many vertically integrated steel plants have
been retiring their coke ovens, replacing them with
imported coke, and decreasing the production of pig
iron, in which coke is used to reduce iron ores. The
decline in pig iron production from blast furnaces is
accompanied by a shift in raw steel production technolo-
gies away from those that use pig iron as their main
input if overall raw steel output is to be maintained
(Sparrow 1983, Ross 1987, Ruth 1995). This typically
means movement towards electric arc furnaces, whose
main energy input is electricity.

One consequence of the changes in technologies at
the various production stages is a significant change in
the industry’s energy-use profile. By-products such as
coke oven gas and blast furnace gas have traditionally
been used as energy sources in basic oxygen furnaces.
The reduced production of pig iron leads to an increase
in the fractions of energy purchased elsewhere rather
than produced by the industry itself. The latter affects
the industry’s influence on its supply and cost of energy
and has ramifications for its emissions profile.

The large investments that are required for the
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implementation of new technologies and the many
interdependencies among the various production stages
make it necessary for decision makers to anticipate
long-term trends in demand for the industry’s products
and supply of raw materials and energy. By the same
token, to move towards sustainable industry practices
requires managers and policy decision makers to ex-
plore the implications for the industry’s material and
energy-use profiles under a wide range of scenarios
about changes in demand and the speed at which
technologies can be adapted (Ruth and Harrington
1997).

Using STELLA software, a model has been devel-
oped of iron ore mining, processing, and raw steel
production for the aggregate US iron and steel industry
with the goal to identify the industry’s future likely
profiles of material and energy use. The goal of the
scoping and consensus building modeling of US iron
and steel industries was to capture the feedbacks among
various production stages in the industry in terms of
material and energy use. Particular attention was given
to changes in material and energy flows in response to
changes in input materials, technical change at the
various production stages, and changes in demand for
raw steel (Weston and Ruth 1997). A series of informal,
iterative interviews with industry experts, members of
industry associations, and consultants was carried out to
arrive at a model structure that is sufficiently detailed to
capture the various feedbacks and sufficiently simple to
be easily communicated to nonexpert modelers. Signifi-
cant agreement was already present at the outset of the
model development process on the system boundaries
that define the respective production stages and on the
key material and energy types to be included in the
model. Based on this consensus, the model captures
mining, pig iron and raw steel production, and modules
for electricity generation and coke production
(Figure 2).

To generate consensus on the specification of mate-
rial and energy use at the various production stages and
the feedback processes that occur among them, engi-
neering information from various sources was used and
supplemented with time series data derived from pub-
lished sources. These quantifications provided a bench-
mark for model runs. To explore industry’s profiles of
material and energy use under alternative assumptions,
the model was set up to be run in an interactive
modeling mode that enables decision makers to choose
different parameter settings based on their understand-
ing of the industry. Additionally, the model was de-
signed to investigate the implications that various rates
of change in demand for the industry’s products and in
technologies may have on material and energy use at

individual production stages and by the industry as a
whole.

The discussions with industry experts prior to setting
up the model and running it indicated a prevailing
assumption that even though crude ore reserves are
finite, absolute amounts are large and ore grades
sufficiently high to not pose a constraint on industry in
the long run. Various model runs refuted this view of
the industry. The model indicates over a wide range of
reasonable assumptions that, although there is no
shortage of iron ore in the United States, declines in ore
grade lead to increases in total energy consumption per
ton of raw steel output that is unlikely to be compen-
sated for by improvements in technology—even in the
presence of further increased recycling rates and only
moderate demand increases. Valuable insight was gener-
ated with regard to changes in the industry’s energy
mix, technology mix, and the time frames in which
these changes are likely to occur.

Subsequently, the model has been significantly ex-
tended from the model designed for scoping and
consensus building to include indirect energy require-
ments by the iron and steel industry and direct and
indirect carbon emissions (Ruth 1995). Efforts are
under way to work with managers in industry to guide
investment decisions at the level of the firm and provide
management support. Similar applications of dynamic
modeling to industrial processes have been conducted
for several other metals industries (Ruth 1997), US pulp
and paper production (Ruth and Harrington 1997),

Figure 2. Structure of the US iron and steel model.
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and US glass production for containers, flat glass, and
fiberglass (Ruth and Dell’Anno 1997).

Louisiana Coastal Wetlands

Applications of dynamic modeling to scoping and
consensus building in industrial systems have concen-
trated on material and energy flows within these systems
and between these systems and their environment. In
contrast, the Louisiana coastal wetlands project traces
the distribution of water and sediment through a
landscapes.

The changing historical sequence of Mississippi River
main distributaries have deposited sediments to form
the current Mississippi deltaic plain marshes. This delta
switching cycle lasts on average 1500 years and sets the
historical context of this landscape. At present, the river
is in the process of changing from the current channel
to the much shorter Atchafalaya River. The US Army
Corps of Engineers maintains a control structure at Old
River to control the percentage of Mississippi River flow
going down the Atchafalaya. Since about 1950 this
percentage has been set at approximately 30%. Atchafa-
laya River-borne sediment first filled in open water areas
in the upper Atchafalaya basin, and more recently has
begun to build a delta in Atchafalaya Bay (Roberts and
others 1980, Van Heerden and Roberts 1980a,b). Dur-
ing the next few decades, a new delta is projected to
form at the mouth of the river, and plant community
succession will occur on the recently formed delta and
in the existing marshes. At the same time, the overall
Louisiana coastal zone is projected to have a net loss of
approximately 100 km2/yr due to sediment starvation
and salt water intrusion (Gagliano and others 1981).

The leveeing of the Mississippi and Atchafalaya
rivers, along with the damming of distributaries, has
virtually eliminated riverine sediment input to most
Louisiana coastal marshes. This change has broken the
deltaic cycle and greatly accelerated land loss. Only in
the area of the Atchafalaya delta is sediment-laden water
flowing into wetland areas and land gain occurring
(Roberts and others 1980, Van Heerden and Roberts
1980a,b).

Primary human activities that potentially contribute
to wetland loss are flood control, canals, spoil banks,
land reclamation, fluids withdrawal, and highway con-
struction. There is evidence that canals and levees are
an important factor in wetland loss in coastal Louisiana,
but there is much disagreement about the magnitude of
the indirect loss caused by them (Craig and others 1979,
Cleveland and others 1981, Scaife and others 1983,
Deegan and others 1984, Leibowitz 1989). Natural
channels are generally not deep enough for the needs
of oil recovery, navigation, pipelines, and drainage, so a

vast network of canals has been built. In the deltaic
plain of Louisiana, canals and their associated spoil
banks of dredged material currently comprise 8% of the
total marsh area compared to 2% in 1955. The construc-
tion of canals leads to direct loss of marsh by dredging
and spoil deposition and indirect loss by changing
hydrology, sedimentation, and productivity. Canals are
thought to lead to more rapid salinity intrusion, causing
the death of freshwater vegetation. Canal spoil banks
also limit water exchange with wetlands, thereby decreas-
ing deposition of suspended sediments.

Proposed human activities can have a dramatic
impact on the distribution of water and sediments from
the Atchafalaya River and consequently on the develop-
ment of the Atchafalaya landscape. For example, the
Corps of Engineers was considering extending a levee
along the east bank of the Atchafalaya that would
restrict water and sediment flow into the Terrebonne
marshes.

This situation represented both a unique opportu-
nity to study landscape dynamics and a unique opportu-
nity to build consensus about how the system works and
how to manage it. The Atchafalaya landscape is chang-
ing rapidly enough to provide time-series observations
that can be used to test basic hypotheses about how
coastal landscapes develop. In addition to short-term
observations, there is a uniquely long and detailed
history of field and remotely sensed data available on
the study area (Bahr and others 1983, Costanza and
others 1983). Solutions to the land loss problem in
Louisiana all have far-reaching implications. They de-
pend on which combination of solutions are under-
taken and when and where they are undertaken. Out-
side forces (such as rates of sea level rise) also influence
the effectiveness of any proposed solution. In the past,
suggested solutions have been evaluated independently
of each other, in an ad hoc manner, and without
adequate dialog and consensus among affected parties.

In order to address this problem in a more compre-
hensive way, a project was started in 1986 to apply the
three-stage modeling approach described above. The
first stage of scoping and consensus building involved
mainly representatives of the Corps of Engineers, the
US Fish and Wildlife service, local landowners and
environmentalists, and several disciplines within the
academic community. This stage involved a series of
workshops aimed at developing a unit model, using
STELLA, of the basic processes occurring at any point
in the landscape, and at coming to agreement about
how to model the entire landscape in the later stages.
This stage took about a year.

In the second (research) stage an integrated spatial
simulation modeling approach was developed (Cos-
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tanza and others 1988, 1990, Sklar and others 1985,
1989) that replicated the unit model developed in stage
1 over the coastal landscape and added horizontal flows
of water, nutrients, and sediments, along with succes-
sional algorithms to model changes in the distribution
pattern of habitats on the landscape. Using this ap-
proach, the ability was demonstrated to simulate the
past behavior of the system in a fairly realistic way
(Costanza and others 1990). This part of the process
took about three years.

In the third (management) stage of the dynamic
modeling process, a range of projected future condi-
tions was laid out as a function of various management
alternatives and natural changes, both individually and
in various combinations. The research and manage-
ment model simulates both the dynamic and spatial
behavior of the system, and it keeps track of several of
the important landscape-level variables in the system,
such as ecosystem type, water level and flow, sediment
levels and sedimentation, subsidence, salinity, primary
production, nutrient levels, and elevation.

The research and management model was called the
Coastal Ecological Landscape Spatial Simulation
(CELSS) model. It consists of 2479 spatial cells of 1-km2

to simulate a rapidly changing section of the Louisiana
coast and predict long-term (50- to 100-year) spatially
articulated changes in this landscape as a function of
various management alternatives and natural and hu-
man-influenced climate variations.

The model was run on a Cray supercomputer from
initial conditions in 1956 through 1978 and 1983 (years
for which additional data were available for calibration
and validation) and on to the year 2033 with a maxi-
mum of weekly time steps. It accounted for 89.6% of the
spatial variation in the 1978 calibration data and 79% of
the variation in the 1983 verification data. Various
future and past scenarios were analyzed with the model,
including the future impacts of various Atchafalaya
River levee extension proposals, freshwater diversion
plans, marsh damage mitigation plans, future global
sea-level rise, and the historical impacts of past human
activities and past climate patterns.

The model results were used by the Corps of Engi-
neers and the Fish and Wildlife Service in making
decisions about these management options. Because
they were involved directly as participants in the process
through all three stages, the model results were much
easier to communicate and implement. The partici-
pants also had a much more sophisticated understand-
ing of the underlying assumptions, uncertainties, and
limitations of the model, along with its strengths, and
could use it effectively as a management tool.

South African Fynbos Ecosystems

While the Louisiana wetlands project concentrated
on aspects of the physical landscape, a scoping and
consensus-building project was initiated to address is-
sues of species diversity. The area of study is the Cape
Floristic Region—one of the world’s smallest and, for its
size, richest floral kingdoms. This tiny area, occupying a
mere 90,000 km2, supports 8500 plant species of which
68% are endemic, 193 endemic genera, and six en-
demic families (Bond and Goldblatt 1984). Because of
the many threats to this region’s spectacular flora, it has
earned the distinction of being the world’s hottest
hot-spot of biodiversity (Myers 1990).

The predominant vegetation in the Cape Floristic
Region is fynbos, a hard-leafed and fire-prone shrub-
land that grows on the highly infertile soils associated
with the ancient, quartzitic mountains (mountain fyn-
bos) and the wind-blown sands of the coastal margin
(lowland fynbos) (Cowling 1992). Owing to the preva-
lent climate of cool, wet winters and warm, dry sum-
mers, fynbos is superficially similar to California chapar-
ral and other Mediterranean climate shrublands of the
world (Hobbs and others 1995). Fynbos landscapes are
extremely rich in plant species (the Cape Peninsula has
2554 species in 470 km2) and narrow endemism ranks
among the highest in the world (Cowling and others
1992).

In order to adequately manage these ecosystems
several questions had to be answered, including, what
services do these species-rich fynbos ecosystems provide
and what is their value to society? A two-week workshop
was held at the University of Cape Town (UCT) with
faculty and students from different disciplines along
with parks managers, business people, and environmen-
talists. The primary goal of the workshop was to pro-
duce a series of consensus-based research papers that
critically assessed the practical and theoretical issues
surrounding ecosystem valuation as well as assessing the
value of services derived by local and regional communi-
ties from fynbos systems.

To achieve the goals, an atelier approach was used to
form multidisciplinary, multicultural teams, breaking
down the traditional hierarchical approach to problem-
solving. Open space (Rao 1994) techniques were used
to identify critical questions and allow participants to
form working groups to tackle those questions. Open
space meetings are loosely organized affairs that give all
participants an opportunity to raise issues and partici-
pate in finding solutions.

The working groups of this workshop met several
times during the first week of the course and almost
continuously during the second week. The groups
convened periodically to hear updates of group projects
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and to offer feedback to other groups. Some group
members floated to other groups at times to offer
specific knowledge or technical advice.

Despite some initial misgivings on the part of the
group, the loose structure of the course was remarkably
successful, and by the end of the two weeks, seven
working groups had worked feverishly to draft papers.
One group focused on producing an initial scoping
model of the fynbos. This modeling group produced
perhaps the most developed and implementable prod-
uct from the workshop: a general dynamic model
integrating ecological and economic processes in fyn-
bos ecosystems (Higgins and others 1996). The model
was developed in STELLA and designed to assess
potential values of ecosystem services given ecosystem
controls, management options, and feedbacks within
and between the ecosystem and human sectors. The
model helps to address questions about how the ecosys-
tem services provided by the fynbos ecosystem at both a
local and international scale are influenced by alien
invasion and management strategies. The model com-
prises five interactive submodels, namely, hydrological,
fire, plant, management, and economic valuation. Pa-
rameter estimates for each submodel were either de-
rived from the published literature or established by
workshop participants and consultants (they are de-
scribed in detail in Higgins and others 1996). The plant
submodel included both native and alien plants. Simula-
tion provided a realistic description of alien plant
invasions and their impacts on river flow and runoff.

This model drew in part on the findings of the other
working groups and incorporates a broad range of
research by workshop participants. Benefits and costs of
management scenarios are addressed by estimating
values for harvested products, tourism, water yield, and
biodiversity. Costs include direct management costs and
indirect costs. The model shows that the ecosystem
services derived from the Western Cape mountains are
far more valuable when vegetated by fynbos than by
alien trees (a result consistent with other studies in
North America and the Canary Islands). The difference
in water production alone was sufficient to favor spend-
ing significant amounts of money to maintain fynbos in
mountain catchments.

The model is designed to be user-friendly and
interactive, allowing the user to set such features as area
of alien clearing, fire management strategy, levels of
wildflower harvesting, and park visitation rates. The
model should prove to be a valuable tool in demonstrat-
ing to decision makers the benefits of investing now in
tackling the alien plant problem, since delays have
serious cost implications. A research and management

modeling exercise may ultimately follow from this
initial phase.

Patuxent River Watershed, Maryland

The three case studies described above concentrate
on economic systems and aspects of the physical and
biological environment with little emphasis on the
feedback processes that relate economic and ecological
systems. In contrast, the following case study explicitly
addresses the combined ecological–economic system to
scope environmental problems and build consensus.

The Maryland Patuxent River Watershed, which
includes portions of Anne Arundel, Calvert, Charles,
Howard, Montgomery, Prince George’s, and St. Mary’s
counties, has been experiencing rapid urban develop-
ment and changes in agricultural practices, resulting in
adverse impacts on both terrestrial and aquatic ecosys-
tems. Significant water quality deterioration had begun
in the 1960s and concern peaked when the Patuxent
estuary began to experience rapid degradation of water
quality and disappearance of seagrass beds in the 1970s.
Since then the Patuxent has been a focus of scientific
study and political action in efforts to conserve environ-
mental resources. It is also a model of the larger
Chesapeake Bay watershed and serves as an example
and test bed for many ideas about managing the entire
bay watershed (Costanza and Greer 1995).

As part of this effort, a three-stage modeling project
was begun in 1992. This ongoing project is another
outgrowth of the initial work with the CELSS model in
Louisiana. It uses workshops involving the full range of
scientific, government, and citizen stakeholder groups
to develop initial scoping models, to communicate
results, and to refine and adapt the research agenda. It
also integrates ongoing and new scientific studies over a
range of scales from small microcosms to the Patuxent
watershed as a whole. The project is aimed at develop-
ing integrated knowledge and new tools to enhance
predictive understanding of watershed ecosystems (in-
cluding processes and mechanisms that govern the
interconnected dynamics of water, nutrients, toxins,
and biotic components) and their linkage to human
factors affecting water and watersheds. The goal is
effective sustainable ecosystem management at the
watershed scale. Major research questions include: (1)
What are the quantitative, spatially explicit and dynamic
linkages between land use and terrestrial and aquatic
ecosystem structure and function? (2) What are the
quantitative effects of various combinations of natural
and anthropogenic stressors on watershed ecosystems
and how do these effects change with scale? (3) What are
useful ways to measure changes in the total value of the
landscape including both marketed and nonmarketed
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(natural system) components, and how effective are
alternative mitigation approaches, management strate-
gies, and policy options toward increasing this value.

The overall model consists of interrelated ecological
and economic submodels that employ a landscape
perspective, for this perspective captures the spatial and
temporal distributions of the services and functions of
the natural system and human-related phenomena such
as surrounding land-use patterns and population distri-
butions (Bockstael and others 1995). Configuration
and reconfiguration of the landscape occurs as a result
of ecological and economic factors, and these factors
are closely intertwined.

The ecological part of the model is based on the
Patuxent Landscape Model (PLM), one of a series of
landscape-level spatial simulation models as discussed
above (Costanza and others 1995). The PLM is capable
of simulating the succession of complex ecological systems
using a landscape perspective. Economic submodels are
being developed to reflect human behavior and eco-
nomic influences. The effects of human intervention
result directly from the conversion of land from one use
to another (e.g., wetlands conversion, residential devel-
opment, power plant siting) or from changes in the
practices that take place within specific land uses (e.g.,
adoption of agricultural best management practices,
intensification of congestion and automobile emissions,
change in urban water and sewer use, and storm runoff).

Economic submodels will characterize land use and
agricultural decisions and capture the effects on these

decisions of institutional influences such as environmen-
tal, zoning, transportation, and agricultural policies.
The integration of the two models provides a frame-
work for regulatory analysis in the context of risk
assessment, nonpoint source pollution control, wet-
lands mitigation/restoration, etc. Figure 3 shows the
relationship of the various model components.

The integrated model will allow stakeholders to
evaluate the indirect effects over long time horizons of
current policy options. These effects are almost always
ignored in partial analyses, although they may be very
significant and may reverse many long-held assump-
tions and policy predictions. It will also allow us to
directly address the functional value of ecosystem ser-
vices by looking at the long-term, spatial, and dynamic
linkages between ecosystems and economic systems.

Conclusions

The complexities that surround environmental invest-
ments and problems require that nonlinearities and
spatial and temporal lags be reflected in models used
for decision support. Dynamic modeling is designed to
address these system features. It also lends itself as a
method to scope environmental problems and build
consensus and has been used in an array of case studies
ranging from industrial systems to ecosystems to linked
ecological–economic systems.

In each case study described above, the three-stage
modeling process enabled us to provide a set of detailed

Figure 3. Integrated ecological
economic modeling and valua-
tion framework (from Bockstael
et al 1995).
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conclusions regarding the management of the respec-
tive system. These conclusions were built on models that
embodied the input and expert judgment of a broad
range of stakeholders. The modeling process also of-
fered unique insight into our ability to anticipate a
system’s dynamics in light of nonlinearities and of
spatial and temporal lags. Our ability to anticipate those
dynamics on the basis of available data and knowledge
and to develop consensus about those dynamics is an
essential prerequisite for the successful management of
complex ecological-economic systems. We anticipate
that future modeling efforts will increasingly make use
of the software tools and the three-step modeling
process with stakeholder involvement described in this
paper.
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