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Overview Materials for EPA Science Advisory Board 
Exposure & Human Health Committee 

 
1. EPA’s Chemical Safety for Sustainability Research Program

2. 

: EPA’s Computational Toxicology 
Research (CompTox) efforts are part of the broader Chemical Safety for Sustainability (CSS) 
Research Program.  CompTox research falls into the Chemical Properties/Inherency, Systems 
Models and Dashboards Theme. Read the CSS Overview Fact Sheet to learn more about the 
themes.  
EPA’s Computational Toxicology Research:

• 

 Follow the links below to read materials summarizing 
CompTox research.   

EPA Computational Toxicology Research Overview Fact Sheet  
• Summary of EPA Plans to Use CompTox Research to Inform Chemicals Related Policy 

and Regulatory Decisions. 
• CompTox research falls into three CSS Themes 1) Chemical Properties/Inherency, 2) 

Systems Models and 3) Dashboards and overview materials are organized within these 
themes.  

3. Chemical Properties/Inherency Research: CSS Inherency research compiles and shares chemical 
property information which leads to a better understanding of the relationships between 
chemical properties and specific disease outcomes. Follow the links below to learn more about 
CompTox research related to Chemical Properties.  

• Distributed Structure-Searchable Toxicity Database provides a public forum for 
publishing downloadable, structure-searchable, standardized chemical structure files 
associated with toxicity data developed from available structure-viewing freeware and 
open-source programming tools. It is linked to the other Chemical Safety Research 
Databases.  

• Toxicity Data Landscape for Environmental Chemicals published manuscript (Richard et 
al, 2008) 

4. Systems Models: CSS Systems Models research investigates the entire process of how a 
chemical interacts with human and wildlife biological processes. Follow the links below to learn 
more about CompTox research related to Systems Models.  

• ToxCast Fact Sheets & Manuscripts 

http://epa.gov/comptox/download_files/factsheets/comptox_research_program.pdf�
http://actor.epa.gov/actor/faces/DSSTox/Home.jsp�
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o Fact Sheet: Toxicity Forecaster (ToxCast) Overview  
o Manuscript: In Vitro Screening of Environmental Chemicals-The ToxCast Project 

(Judson et al) 
o Manuscript: Activity Profiles of ToxCast Chemicals (Knudsen et al) 
o Fact Sheet: Using ToxCast™ to Predict Chemicals Potential for Developmental, 

Reproductive and Vascular Development Toxicity 
o Manuscript: Using ToxCast to Predict Chemicals Potential for Developmental 

Toxicity (Sipes et al) 
o Manuscript: Using ToxCast to Predict Chemicals Potential for Reproductive 

Toxicity (Martin et al) 
o Manuscript: Using ToxCast to Predict Chemicals Potential for Vascular Disruption 

(Kleinstreuer et al) 
o Manuscript: Using ToxCast to Predict Chemicals Potential for Carcinogenesis 

(Kleinstreuer et al)   
o Fact Sheet: Combining ToxCast, Dosimetry and Human Exposure 
o Manuscript: Combining ToxCast, Dosimetry and Exposure (Wetmore et al) 
o Fact Sheet: Validating ToxCast High-Throughput Screening 
o Manuscript: Perspectives on Validating ToxCast High-Throughput Screening 

(Judson et al) 
o Fact Sheet: High-Throughput Chemical Risk Assessment 
o Manuscript: Estimating Doses for High-Throughput Risk Assessment (Judson et 

al)  
o Fact Sheet: Using ToxCast for screening oil spill dispersants 
o Manuscript: Analysis of Oil Spill Dispersants Using ToxCast (Judson et al) 

• Virtual Tissues Fact Sheets & Manuscripts 
o Fact Sheet: Virtual Tissues: Embryo and Liver Overview 
o Manuscript-Virtual Liver: Simulating Quantitative Cellular Responses (Jack et al) 
o Manuscript-Virtual Liver: Simulating Microdosimetry in Virtual Hepatic Lobule 

(Wambaugh et al) 
o Manuscript-Virtual Embryo: Disruption of embryonic vascular development in 

predictive toxicology (Kleinstreuer et al) 
o Manuscript-Virtual Embryo: Developmental toxicity testing for safety 

assessment: new approaches and technologies (Knudsen et al) 
• ExpoCast-Exposure Science in the 21st Century Database & Manuscripts 

o ExpoCastDB: Consolidate observational human exposure data, improve access 
and provide links to health related data. 

o The Promise of Exposure Science (CohenHubal et al) 
o The Exposure Data Landscape for Manufactured Chemicals (Egeghy et al)  

 
5. Dashboards & Chemical Toxicity Databases

• Chemical Toxicity Databases Fact Sheet & Manuscripts 

: Using EPA’s web-based interactive Dashboards and 
databases, decision-makers will access summary information derived from chemical exposure, 
hazard data, decision-rules and predictive models. Dashboards will include information from 
these diverse sources in order to provide more integrative, holistic information for use in risk 
assessment and risk management decisions. The “Dashboard” will be customized based on the 
queries of the decision maker using the web-based tool. 

http://epa.gov/ncct/download_files/factsheets/Tox_Cast_Fact_Sheet.pdf�
http://epa.gov/comptox/download_files/factsheets/ToxCast%20Models%20Fact%20Sheet-Nov%2010%202011.pdf�
http://epa.gov/comptox/download_files/factsheets/ToxCast%20Models%20Fact%20Sheet-Nov%2010%202011.pdf�
http://epa.gov/comptox/download_files/factsheets/Toxcast-Dosimetry%20Fact%20Sheet--November_30_2011.pdf�
http://epa.gov/comptox/download_files/factsheets/High-Throughput%20Chemical%20Risk%20Assessment_Fact_Sheet_2-13-2011.pdf�
http://epa.gov/ncct/download_files/factsheets/Technical%20Fact%20Sheet%20EST%20paper%20In%20Vitro%20Tests%208%20Oil%20Dispersants%207-6-2010.pdf�
http://pubs.acs.org/doi/abs/10.1021/es102150z�
http://epa.gov/comptox/download_files/factsheets/virtual_tissues_research_project.pdf�
http://www.ncbi.nlm.nih.gov/pubmed/22271680�
http://www.ncbi.nlm.nih.gov/pubmed/22271680�
http://www.ncbi.nlm.nih.gov/pubmed/21770025�
http://www.ncbi.nlm.nih.gov/pubmed/21770025�
http://actor.epa.gov/actor/faces/ExpoCastDB/Home.jsp;jsessionid=091230AD2A4A6A2070423A48385C3233�
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• Fact Sheet: Chemical Toxicity Databases Overview  
• CompTox Chemical Databases 

o Aggregated Computational Toxicology Resources: Online warehouse of all 
publicly available chemical toxicity data and can be used to find all publicly 
available data about potential chemical risks to human health and the 
environment. ACToR aggregates data from over 1000 public sources on over 
500,000 environmental chemicals searchable by chemical name, other 
identifiers and by chemical structure. 

o Toxicity Reference Database: Captures thousands of in vivo animal toxicity 
studies on hundreds of chemicals. 

o Exposure Science in the 21st Century Database: Consolidates observational 
human exposure data, improve access and provide links to health related data. 

o ToxCast Database: Provides access to all ToxCast data. ToxCast uses advanced 
science tools to help efficiently understand biological processes impacted by 
chemicals that may lead to adverse health effects. It is screening 1,000 
chemicals in over 500 rapid tests (called high-throughput screening assays. 

o DSSTox: Public resource for high quality chemical structures and chemical 
annotation in association with toxicity data. 

• Endocrine Disruption Screening Program Dashboard (EDSP21 Dashboard): Working with 
EPA’s Office of Chemical Safety and Pollution Prevention, CompTox researchers are 
developing an interactive dashboard that can be used to help prioritize the order in 
which chemicals are queued for testing in the currently validated EDSP Tier 1 screening 
battery. The EDSP21 Dashboard will be used to inform the prioritization of the next 
group of chemicals to be nominated for screening through the Tier 1 battery. EPA ORD 
staff worked with OCSPP to develop the EDSP21 work plan that describes how ToxCast 
data will be used to help prioritize chemicals for EPA EDSP. Click here to read the EDSP 
21 Work Plan.  

• Toxic Substance Control Act Dashboard (TSCA 21) & Office of Water Dashboard for 
potential drinking water contaminants (OW21): EPA is working towards using CompTox 
research to inform requests for further testing data on High Production Volume 
industrial chemicals and to prioritize potential drinking water contaminants for the 
SDWA. A TSCA21 and OW21 Dashboard will be developed to help prioritize which these 
chemicals. ORD worked with OCSPP and Office of Water staff to develop a work plan 
titled 21st Century Tools for Chemical Programs: Implementing Computational 
Toxicology Tools for Priority Setting and Targeted Testing.  

• Manuscript: Public Databases Supporting Computational Toxicology (Judson et al) 
• Manuscript: Aggregating Data for Computational Toxicology Applications: EPA’s 

Aggregated Computational Toxicology Resource (Judson et al) 
• Manuscript: Profiling the Reproductive Toxicity of Chemicals from Multi-generation 

studies in the ToxRefDB (Martin et al) 
• Manuscript: Profiling the activity of chemicals in prenatal developmental toxicity studies 

using ToxRefDB (Knudsen et al) 
• Manuscript: Profiling Chemicals Based on Chronic Toxicity Results from US EPA ToxRefDB 

(Martin et al) 
• Manuscript: Economic Benefits of using adaptive predictive models of reproductive 

toxicity (Martin et al) 

http://epa.gov/ncct/download_files/factsheets/chemical_toxicity_databases.pdf�
http://actor.epa.gov/actor/faces/ACToRHome.jsp�
http://actor.epa.gov/toxrefdb/faces/Home.jsp�
http://actor.epa.gov/actor/faces/ExpoCastDB/Home.jsp�
http://actor.epa.gov/actor/faces/ToxCastDB/Home.jsp�
http://actor.epa.gov/actor/faces/DSSTox/Home.jsp�
http://www.epa.gov/endo/pubs/edsp21_work_plan_summary%20_overview_final.pdf�
http://www.ncbi.nlm.nih.gov/pubmed/22239076�
http://www.ncbi.nlm.nih.gov/pubmed/22239076�
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CHEMICAL SAFETY FOR SUSTAINABLITY RESEARCH 
 
Background 
Chemical safety is a major priority 
of research and decision making at 
EPA. EPA’s Chemical Safety for 
Sustainability (CSS) research 
program is:  
• Improving protection of human 

health and the environment by 
providing scientific approaches 
and information on chemical 
exposure, hazard and risk. 

• Evaluating chemicals for 
potential risks to human health 
and the environment. 

• Targeting nanomaterials and 
endocrine disrupting chemicals 
research.  

• Moving toward a more 
sustainable environment by 
producing new and existing 
chemicals in safer ways. 

 
Research Focus Areas 
CSS research includes eight research 
focus areas: 
 Inherency 

 

Inherency is the physico-chemical 
characteristics of a chemical that 
influences exposure and toxicity 
potential. Inherency research will 
compile and share chemical property 
information that will lead to a better 
understanding of the relationships 
between chemical properties and 
specific disease outcomes.  

Systems Models research 
investigates the entire process of 
how a chemical interacts with 
human and wildlife biological 
processes. The investigation starts 
with research on chemical 
exposures. It then follows the 
subsequent interactions between 
chemical exposures and resulting 

adverse effects to improve the 
understanding of environmentally 
caused diseases. Innovative 
chemical screening technologies, 
such as automated, rapid screening 
will be used to generate chemical 
data on the biological effects of 
large numbers of chemicals. 

Systems Models 

 

Biomarkers are biological responses 
that indicate exposure to a chemical, 
an effect from exposure to a 
chemical or susceptibility to adverse 
effects from a chemical. The 
research will use linkages to develop 
biomarker-based predictive tools to 
understand chemical exposure 
events and predict outcomes that 
may result.  

Biomarkers 

 
Cumulative Risk 

 

Real world chemical exposures are 
rarely due to a single chemical.  
Cumulative Risk research helps 
identify, predict, assess and 
prioritize chemical mixtures and the 
associated human and wildlife 
adverse outcomes in real-world 
settings.  The research will assess 
the potential human health and 
environmental outcomes that may 
occur due to multiple and continuous 
exposures to chemicals and 
mixtures, especially those found in 
consumer products.  

Life Cycle Considerations 

 

Green chemistry applies across all 
the life cycle considerations of a 
chemical product, including its 
design, manufacture, and use.  By 
examining the environmental 
exposures and human and ecological 
health impacts of a chemical, Life 
Cycle Considerations research will 
provide data to inform the design of 
more sustainable/greener chemicals.  

Extrapolation research aims to 
provide data-driven decisions and to 
develop consistent, appropriate 
methods for extrapolating measured 
data to respond to chemicals at other 
doses, in other species, etc. This 
research will use available data to 
develop approaches that extrapolate 
between test organisms and human 
or ecological responses, test and 
real-world exposure durations, and 
from laboratory to field conditions.  

Extrapolation 

 
Dashboards 

 

Using EPA’s web-based interactive 
Dashboard, decision-makers will 
access summary information derived 
from chemical exposure, hazard 
data, decision-rules and predictive 
models. Dashboards will include 
information from these diverse 
sources in order to provide more 
integrative, holistic information for 
use in risk assessment and risk 
management decisions.  The 
“Dashboard” will be customized 
based on the queries of the decision 
maker using the web-based tool.   

Evaluation 

 

Evaluation will develop the tools 
needed to evaluate and characterize 
the reliability and uncertainty of 
data, methods, and models that are 
developed in the other CSS research 
areas.   

Collaboration 
EPA Program Offices and Regions 
as well as external stakeholders have 
participated in the CSS research 
planning process since its inception. 
Collaboration is vital for the success 
of CSS. EPA will continue to seek 
input to continuously enhance CSS 
research.   

http://www.epa.gov/research�
mailto:Linnenbrink.monica@epa.gov�


EPA Computational Toxicology Research 
Using CompTox Research to Inform Chemicals Related Policy and Regulatory Decisions 
 
EPA’s Computational Toxicology Research Program (CompTox) is part of the broader Chemical 
Safety for Sustainability Research Program. CompTox is researching ways to address several 
longstanding difficulties with managing the safety of chemicals, particularly in assessing 
chemicals for potential risk to human health and the environment.  For example, there are over 
80,000 chemicals in the Toxic Substance Control Act (TSCA) Inventory and only a small 
number have extensive toxicity testing information. Traditional chemical toxicity testing is 
expensive, time consuming and uses a significant number of animals. CompTox research: 
• Is evaluating in vitro assays and modeling approaches that will inform the prioritization of 

chemical screening to determine which has the potential to disrupt the endocrine system in 
support of EPA’s Endocrine Disruptor Screening Program (EDSP). 

• Better prioritizes which chemicals need additional in-depth testing. 
• Reduces animal usage in testing by being able to target selection of toxicity tests used. 
• Reduces the cost of testing. 
• Provides public access to all chemical data generated by CompTox research through online, 

searchable databases.  
• Informs the development and use of more sustainable, green chemicals. 

 
EPA CompTox research combines expertise in high-throughput screening, bioinformatics, 
computational chemistry, green chemistry, engineering, systems biology, toxicology, exposure 
science and computer science to address the questions of “when and how” to test specific 
chemicals for hazard identification and to improve quantitative dose-response assessment.  It is 
designed to increase the capacity to prioritize, screen, and evaluate chemicals by enhancing 
EPA’s ability to predict chemicals’ toxicities.   
 
CompTox is currently working with EPA’s Office of Chemical Safety and Pollution Prevention 
(OCSPP) and the Office of Water (OW) to more effectively and efficiently prioritize which 
chemicals are in the most need of toxicity testing and to recommend the most appropriate types 
of toxicity testing. Three current applications are to work with the appropriate EPA Program 
Offices to use CompTox research to prioritize the order in which chemicals should be screened 
for: 1) The Endocrine Disruption Screening Program (EDSP), 2) New and existing industrial 
chemicals regulated under the Toxic Substance Control Act (TSCA) and 3) Potential drinking 
water contaminants list required by the Safe Drinking Water Act (SDWA).  
 
EPA’s Program Offices including OCSPP and OW need an efficient, science-based chemical 
prioritization approach to help implement numerous federal laws. These laws include TSCA, 
The Food Quality Protection Act (FQPA), Federal Food, Drug, and Cosmetic Act (FFDCA), the 
Safe Drinking Water Act (SDWA) and the Federal Insecticide, Fungicide and Rodenticide Act 
(FIFRA). Teams that plan and manage CompTox projects include ORD and Program Office 
staff. 
 
The application that is closest to being used is the EDSP application. The long term goal of this 
effort is to apply the research from the CompTox program to replace part or all of the current 
EDSP Tier 1 Screening Battery to increase speed and efficiency and reduce animal use. The 
shorter term goal is to use CompTox research to help prioritize the order in which chemicals are 
queued for testing in the currently validated EDSP Tier 1 screening battery. By March of 2012, 
two-thousand chemicals will be evaluated by approximately 80 endocrine related CompTox 
assays. These data, along with data from existing animal toxicity studies on EDSP chemicals, 



will be publically available through an online database. This database along with the 
Toxicological Profile prioritization tool will be used to inform the prioritization of the next group of 
chemicals to be nominated for screening through the Tier 1 battery.  
 
The second application is the use of CompTox to help with the prioritization of TSCA chemicals 
for further analysis. EPA is working towards using CompTox research to inform requests for 
further testing data on High Production Volume industrial chemicals. EPA is working towards 
having recommendations for using this application in the 2013-1014 timeline. 
 
The third application that will be ready for use is the potential drinking water contaminants 
prioritization tool for the SDWA. The application will help prioritize which chemicals should be on 
future drinking water contaminant lists, (Candidate Contaminant List or CCL), which chemicals 
on existing contaminant lists should be tested first and will recommend what types of toxicity 
testing should be done on these chemicals. By spring of 2012, EPA’s Office of Water will use 
CompTox research to prioritize the candidates on the drinking water contaminants list (CCL4).  
 
Benefits of CompTox Research:  
• EPA Work Plan for the EDSP21 Project - Endocrine Disruptor Screening Program  
• 21st

• 

 Century Tools for Chemical Programs: Implementing Computational Toxicology Tools 
for Priority Setting and Targeted Testing (industrial chemicals and water contaminants)  
House Appropriations Committee report for fiscal year 2012 spending bill that called for the 
evaluation of using EPA’s CompTox research in its EDSP  (p. 59)  

• New York Times reports on the benefits of CompTox research 
• Scientific American magazine article on the benefits of CompTox research 

http://www.epa.gov/endo/pubs/edsp21_work_plan_summary%20_overview_final.pdf�
http://www.gpo.gov/fdsys/pkg/CRPT-112hrpt151/pdf/CRPT-112hrpt151.pdf�
http://www.gpo.gov/fdsys/pkg/CRPT-112hrpt151/pdf/CRPT-112hrpt151.pdf�
http://www.nytimes.com/gwire/2011/05/13/13greenwire-agencies-hope-robot-can-speed-toxics-evaluatio-92625.html�
http://www.scientificamerican.com/article.cfm?id=robot-allows-high-speed-chemical-testing&WT.mc_id=SA_emailfriend�
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Review

The U.S. Environmental Protection Agency 
(EPA) has a significant interest in develop-
ing more efficient and informative toxicity 
determination approaches in part because 
of the large number of chemicals under its 
jurisdiction. Ultimately, it would be bene- 
ficial to characterize the toxicologic profiles 
of all chemicals in use in the United States. 
However, the size of this chemical universe 
[in excess of 75,000 chemicals, which is the 
estimated number in the Toxic Substances 
Control Act (TSCA 1976) inventory (U.S. 
EPA 2004b) makes this goal too difficult 
using current approaches to toxicity charac-
terization that rely on extensive animal test-
ing, cost millions of dollars, and can take 
2–3 years per chemical. The International Life 
Sciences Institute/Health and Environmental 
Sciences Institute (ILSI/HESI) recently 
released several reports describing a more 
focused, tier-based approach for toxicity test-
ing of agricultural chemicals, which would 
ultimately lead to the use of fewer animals 
(Barton et al. 2006; Carmichael et al. 2006). 
The National Research Council (NRC) 

recently released a report titled Toxicity 
Testing in the 21st Century: A Vision and a 
Strategy that outlines a much more ambi-
tious and long-term vision for developing 
novel in vitro approaches to chemical tox-
icity charac teri za tion and prediction (NRC 
2007) that would largely eliminate animal 
testing. The NRC report addresses several 
concerns about the current testing methods, 
specifically, the desire a) to reduce the num-
ber of animals used in testing, b) to reduce 
the overall cost and time required to charac-
terize each chemical, and c) to increase the 
level of mechanistic understanding of chemi-
cal toxicity. The U.S. EPA and the National 
Institutes of Health (NIH) are actively pursu-
ing approaches to implement ideas outlined 
in the NRC report (Collins et al. 2008).

Regardless of the level of quality of toxi-
cology data on environmental chemicals, 
many chemicals lack significant amounts 
of data. In the United States and Canada, 
an estimated 30,000 chemicals are in 
wide commercial use, based on U.S. EPA 
and Environment Canada data (Muir and 

Howard 2006). The European Union’s 
Registration, Evaluation, and Authorization 
of Chemicals (REACH) program has recently 
released its first set of registered substances, 
which contains > 140,000 entries (REACH 
2008). The exact number of chemicals in use 
is, in a sense, unknowable because it depends 
on where one sets the threshold of use and 
because use changes over time. The major 
point is that the number is relatively large 
and that only a relatively small subset of these 
chemicals have been sufficiently well charac-
terized for their potential to cause human or 
ecologic toxicity to support regulatory action. 
This “data gap” is well documented (Allanou 
et al. 1999; Applegate and Baer 2006; 
Birnbaum et al. 2003; Guth et al. 2005; NRC 
2007; U.S. EPA 1998).

The high cost and lengthy times associ-
ated with the use of animal testing to deter-
mine a chemical’s potential for toxicity make 
this strategy impractical for evaluating tens 
of thousands of chemicals, hence the large 
inventories of existing chemicals for which 
few or no test data are available. An alterna-
tive approach is to attempt to assess much 
larger numbers of chemicals by employing 
more efficient in vitro methods. One strategy 
applies a broad spectrum of relatively inex-
pensive and rapid high-throughput screening 
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Objective: Thousands of chemicals are in common use, but only a portion of them have undergone 
significant toxicologic evaluation, leading to the need to prioritize the remainder for targeted testing. 
To address this issue, the U.S. Environmental Protection Agency (EPA) and other organizations are 
developing chemical screening and prioritization programs. As part of these efforts, it is important 
to catalog, from widely dispersed sources, the toxicology information that is available. The main 
objective of this analysis is to define a list of environmental chemicals that are candidates for the 
U.S. EPA screening and prioritization process, and to catalog the available toxicology information.

Data sOurces: We are developing ACToR (Aggregated Computational Toxicology Resource), 
which combines information for hundreds of thousands of chemicals from > 200 public sources, 
including the U.S. EPA, National Institutes of Health, Food and Drug Administration, correspond-
ing agencies in Canada, Europe, and Japan, and academic sources.

Data extractiOn: ACToR contains chemical structure information; physical–chemical properties; 
in vitro assay data; tabular in vivo data; summary toxicology calls (e.g., a statement that a chemical 
is considered to be a human carcinogen); and links to online toxicology summaries. Here, we use 
data from ACToR to assess the toxicity data landscape for environmental chemicals.

Data synthesis: We show results for a set of 9,912 environmental chemicals being considered for 
analysis as part of the U.S. EPA ToxCast screening and prioritization program. These include high- 
and medium-production-volume chemicals, pesticide active and inert ingredients, and drinking 
water contaminants.

cOnclusiOns: Approximately two-thirds of these chemicals have at least limited toxicity sum-
maries available. About one-quarter have been assessed in at least one highly curated toxicology 
evaluation database such as the U.S. EPA Toxicology Reference Database, U.S. EPA Integrated 
Risk Information System, and the National Toxicology Program.

Key wOrDs: ACToR, carcinogenicity, database, developmental, hazard, HPV, MPV, pesticide, 
reproductive, toxicity. Environ Health Perspect 117:685–695 (2009). doi:10.1289/ehp.0800168 
available via http://dx.doi.org/  [Online 22 December 2008]
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(HTS) assays to a large set of chemicals, fol-
lowed by the use of these results to prioritize 
a much smaller subset of chemicals for more 
detailed analysis. The “prioritization score” 
for a chemical would be based on signatures, 
or patterns extracted from the HTS data, that 
are predictive of particular effects or modes 
of chemical toxicity. A comprehensive priori-
tization approach will also require the use of 
exposure and pharmacokinetic estimates, in 
addition to the intrinsic hazard information 
provided by in vitro assays. Chemicals of known  
toxicity make up the training and validation 
sets that are used to develop and validate these 
predictive signatures. HTS assays that yield 
data for the predictive signatures would then 
be run on chemicals of unknown toxicity (the 
test chemicals), and a prioritization score for 
those chemicals would be produced. The U.S. 
EPA has made a significant investment in this 
approach through the ToxCast research pro-
gram (Dix et al. 2007). ToxCast is currently 
screening hundreds, and eventually thousands, 
of environmental chemicals using hundreds of 
HTS assays with the goal to develop predictive 
toxicity signatures, and is using these signa-
tures to prioritize chemicals for further test-
ing. In this context, the term “environmental 
chemicals” refers primarily to pesticides and 
industrial chemicals that are used or produced 
in large enough quantities to pose potential for 
human or ecologic exposure [largely the high-
production-volume (HPV) and medium-pro-
duction-volume (MPV) chemicals described 
below]. However, a number of environmental 
chemicals that are captured in our analysis are 
food ingredients or naturally occurring human 
metabolites. We included many of the former 
because they are classified as inert ingredients 
in pesticide products.

In this article we address two key aspects 
of this chemical screening and prioritization 
process. The first is the definition of a set of 
chemicals of interest to a screening program, 
based on their widespread use or other poten-
tial for significant human exposure, or the 
current availability of toxicity information 
that can be used in building screening mod-
els. Some widely used but as yet uncharacter-
ized chemicals may not be good candidates 
for screening because their physical–chemical 
properties make them impractical to test in 
in vitro assays (e.g., insoluble or highly vola-
tile compounds), whereas other substances 
that we define as environmental chemicals are 
regarded to be safe under intended use situa-
tions and may not require further testing, but 
can serve as negative controls. For instance, a 
subset of pesticide inert ingredients are also 
on the U.S. Food and Drug Administration 
(FDA) Generally Recognized as Safe chemical 
list. As a further example, some “chemicals” 
that are listed as pesticide inert ingredients are 
common foods, such as milk. 

The second objective is the characterization 
of the sources and amount of reliable in vivo 
toxicology data that can be used for develop-
ing and validating screening models in pro-
grams such as ToxCast. A significant amount 
of high-quality toxicity data are needed to 
train and validate in vitro–based models for 
predicting chemical hazard. Equally important 
is the presence of both negative and positive 
examples for each toxicity end point to be 
modeled. In addition to the sets of environ-
mental chemicals described here, pharmaceuti-
cal compounds are another source of detailed 
animal and human toxicology data.

The sets of chemicals on which we have 
focused are the HPV and MPV chemicals 
from the TSCA inventory, pesticide and anti-
microbial active and inert ingredients, known 
drinking water contaminants, hazardous air 
pollutants (HAPs) and certain defined classes of 
chemicals of interest, including the U.S. EPA’s 
Toxics Release Inventory (TRI), Integrated Risk 
Information System (IRIS), and the first set of 
chemicals to be tested through the Endocrine 
Disruptor Screening Program (EDSP). The 
TRI, drinking water contaminant, and EDSP 
chemicals are largely included in the TSCA 
inventory and pesticide active and inert ingredi-
ent lists. By combining these sources, we define 
a set of 9,912 chemicals. Below we describe in 
detail the process we used to arrive at this num-
ber. At present, we have limited the scope of 
in vivo toxicology data to that which is relevant 
to human health, as opposed to ecotoxicity. An 
equivalent analysis for the ecotoxicity data land-
scape will be carried out in the future.

To support a data-intensive analysis 
of environmental chemicals, we have devel-
oped a system called ACToR (Aggregated 
Computational Toxicology Resource) (Judson 
et al. 2008; U.S. EPA 2008a), which is a data-
base holding essentially all publicly available 
information on chemical identity, structure, 
physical–chemical properties, in vitro assay 
results, and in vivo toxicology data. All of the 
data described in this article have been col-
lected in ACToR.

Target Chemicals for Analysis
The U.S. EPA has authority to review and/or 
regulate a large number of chemicals under 
a variety of statutes, including those govern-
ing the manufacture, import, sale, and use of 
pesticides and industrial chemicals. The large 
numbers of chemicals on various U.S. chemi-
cal inventories, and the limited toxicity infor-
mation for many of these, have already been 
stated as the driver for the need to set priorities 
for additional testing. Because this universe of 
chemicals is so large, it is even necessary to 
prioritize what goes into a science-based pri-
oritization approach such as ToxCast. In this 
article we focus on chemicals that are of inter-
est because a) they are known to be bioactive 

(e.g., pesticide active ingredients), b) they are 
manufactured or used in large quantities (HPV 
and MPV chemicals), or c) many people may 
be exposed to them on a routine basis (e.g., 
drinking water contaminants). We include 
both largely uncharacterized chemicals and 
chemicals for which significant toxicology 
information is already available (e.g., pesti-
cide active ingredients, IRIS chemicals, and 
chemicals on the TRI). The well-characterized 
chemical groups are important because these 
allow us to develop and validate predictive 
models for prioritization of the remaining, 
largely uncharacterized chemicals.

Based on these criteria, we focused on sets 
of chemicals that are defined in the remain-
der of this section. Some of these lists are not 
static, so we have chosen versions available 
as of a specific date. For each of the lists, we 
describe the rules for inclusion and provide 
the total number of chemicals used for the 
current evaluation. “Official” versions of these 
lists are updated and posted to the relevant 
U.S. EPA websites only every 2 or more years, 
so in several cases, we have extracted more 
current snapshots of the lists from internal 
U.S. EPA databases. Many of the chemicals 
we included in this analysis are complex mix-
tures. Additionally, these lists have significant 
overlap; for instance, some pesticide active 
ingredients are also HPV chemicals. Finally, to 
be included in the current ACToR inventory, 
a chemical must be identified by a Chemical 
Abstracts Service Registry Number (CASRN).

Possible later extensions of this analysis 
could consider chemicals with lower produc-
tion volumes or lower exposure potential 
than those considered presently. These would 
include the Canadian Domestic Substances 
List (DSL), which includes approximately 
30,000 chemicals, and the large collection of 
chemicals to be analyzed under the REACH 
program. REACH is still in the process 
of defining its target list, but an estimated 
30,000 chemicals will be included. Many of 
the Canadian DSL and REACH chemicals 
have U.S. use and/or production levels below 
the cutoffs used for the present analysis. Note, 
however, that the Canadian DSL and the 
chemicals we considered here significantly 
overlap. Additionally, pharmaceutical com-
pounds will be included in the future because 
of the corresponding wealth of both animal 
and human toxicology data.

The TSCA Inventory and Inventory Update 
Reporting (IUR). In 1977, the U.S. EPA pub-
lished a rule to assemble an inventory of chemi-
cal substances currently in commerce. This 
inventory, commonly referred to as the TSCA 
Inventory, is the basis for the U.S. EPA’s 
Existing Chemicals Program. Starting in 1986, 
the Inventory was periodically updated using 
the IUR regulation. The TSCA Inventory is 
composed of approximately 85,000 chemical 
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substances (U.S. EPA 2004b), including both 
substances that are nonconfidential and those 
claimed to be confidential business informa-
tion (CBI) under TSCA. Originally, the IUR 
was updated on a 4-year cycle, but starting 
with the 2006 IUR, it will be updated on a 
5-year cycle. The IUR reporting requirements 
depend on the volume of the chemical that is 
produced as well as certain exemptions. Hence, 
the IUR list is a subset of the larger TSCA 
inventory. Before 2006, the IUR contained 
organic chemicals manufactured or distributed 
in the United States in amounts ≥ 10,000 lb/
year. The 2006 IUR regulation requires manu-
facturers and importers of certain chemical 
substances to report site and manufacturing 
information for chemicals manufactured or 
imported in amounts of ≥ 25,000 lb at a single 
site. Additional information on domestic pro-
cessing and use must be reported for chemicals 
manufactured in amounts of ≥ 300,000 lb at a 
single site. The full inventory, including both 
confidential and nonconfidential substances, 
is maintained by U.S. EPA and Chemical 
Abstract Service and is not available to the 
public. The nonconfidential or “public” inven-
tory is published periodically, usually after each 
IUR cycle. We have included the 2002 version 
of the public TSCA inventory in our analy-
ses. This list is available from the U.S. EPA 
Substance Registry System (U.S. EPA 2008q). 
This list contains 65,513 chemicals indexed by 
CASRN. Note that this number differs from 
the 75,000 quoted elsewhere because this is the 
publicly released list and excludes chemicals 
added under the claim of CBI.

HPV chemicals. The U.S. HPV chemi-
cals are those manufactured in or imported 
into the United States in amounts ≥ 1 million  
lb/year. The U.S. EPA HPV list is fluid, 
changing to some degree with each IUR 
cycle. Our current list contains 2,539 chemi-
cals (U.S. EPA 1990). We also include two 
important subsets of the HPV list.

U.S. EPA HPV Challenge. The HPV 
Challenge Program chemical list consists of all 
the HPV chemicals reported during the 1990 
IUR reporting year. Inorganic chemicals and 
polymers, except in special circumstances, were 
not included in the HPV Challenge Program. 
Our version of the HPV Challenge list con-
tains 1,973 chemicals (U.S. EPA 1990).

U.S. EPA HPV information system. These 
are chemicals with data submitted under the 
HPV Challenge Program for which “Robust 
Summary” data have been entered into the 
U.S. EPA HPV information system (HPVIS; 
U.S. EPA 2008l). There are 991 chemicals 
from HPVIS with information in ACToR.

MPV chemicals. Another set of industrial 
chemicals of interest are the non-HPV chemi-
cals included in the TSCA IUR list. These are 
the chemicals exceeding a reporting threshold 
of 10,000 lb/year before 2006, and 25,000 lb in 

2006 and beyond, but < 1 million lb/year. The 
2002 IUR list contains 5,375 MPV chemi-
cals (U.S. EPA 2004a, 2004b). The updated, 
draft 2006 IUR list contains approximately 
3,668 MPV chemicals that are not CBI; the 
2006 IUR public list will be released by the 
U.S. EPA in 2009.

Pesticides and antimicrobials. This 
cate gory covers a wide range of substances. 
Chemicals regulated as part of the U.S. EPA 
pesticide program are generally classified as 
“active” or “inert.” The active ingredients 
are further classified by whether they are tar-
geted at microbes (antimicrobials) or complex 
organisms (pesticides). Additionally, all pesti-
cide compounds (conventional actives, anti-
microbials, and inert ingredients) are classi fied 
by whether or not they have food-use toler-
ances or tolerance exemptions. Finally, one 
can classify these chemicals by whether or not 
they are in use in significant quantities. Here 
we rely on the Office of Pesticide Products 
Information (OPPIN) system of the U.S. 
EPA to extract lists of chemicals. OPPIN is 
not publically accessible. From this, we have 
drawn the following subsets:
•	Conventional	 Pesticide	Actives: (EPA 

OPPIN pesticide active): active pesticide 
ingredients (834 chemicals)

•	Antimicrobial Actives (EPA OPPIN anti-
microbial active): active ingredients used 
against microbes (337 chemicals)

•	Pesticide inert ingredients: an inert ingre-
dient means any substance, other than 
an active ingredient, that is intentionally 
included in a pesticide product. Inert ingre-
dients have a number of uses, for instance, 
as a solvent, as an aid in increasing the pes-
ticide product’s shelf life, or as an agent 
to protect the pesticide from degradation 
due to exposure to sunlight. We used two 
sources: a) U.S. EPA OPPIN inert ingredi-
ents (the complete OPPIN list containing 
3,532 chemicals); and b) U.S. EPA inert 
nonfood ingredients [a list of inert pesticide 
ingredients classified by hazard potential, 
not approved for food contact use, avail-
able from the U.S. EPA’s Office of Pesticide 
Programs (OPP) website (3,492 chemicals) 
(U.S. EPA 2008n)]

•	Pesticide ingredients with food-use toler-
ances or tolerance exemptions (U.S. EPA 
OPPIN food use) (1,320 chemicals)

U.S. EPA TRI. The Emergency Planning 
and Community Right-to-Know Act of 1986 
(EPCRA 1986) requires businesses to report the 
locations and quantities of chemicals stored on-
site to state and local governments in order to 
help communities prepare to respond to chem-
ical spills and similar emergencies. EPCRA 
requires U.S. EPA and the states to annually 
collect data on releases and transfers of certain 
toxic chemicals from industrial facilities, and 
to make the data available to the public in the 

TRI. In 1990 Congress passed the Pollution 
Prevention Act of 1990 (Pollution Prevention 
Act 1990), which requires that additional data 
on waste management and source reduction 
activities be reported under the TRI. The U.S. 
EPA compiles the TRI data each year and 
makes these data available through several data 
access tools, including their website (U.S. EPA 
2008p). Our analysis includes 636 chemicals 
from TRI.

Drinking water contaminants. The U.S. 
EPA develops drinking water standards and 
identifies lists of potential drinking water con-
taminants because they are anticipated to occur 
in drinking water supplies and may have adverse 
health effects. The lists tracked in the present 
analysis are the U.S. EPA’s Drinking Water 
Standards and Health Advisory Chemicals 
(DWSHA; 200 chemicals) and the Candidate 
Chemical Lists [CCLs: U.S. EPA CCL1, U.S. 
EPA CCL2, and U.S. EPA draft CCL3, which 
include 47, 39, and 92 chemicals, respectively 
(U.S. EPA 2008e)]. We also included the 
Preliminary CCL (PCCL) listing of the 528 
chemicals that the U.S. EPA evaluated during 
the development of draft CCL3 (U.S. EPA 
2008d). The U.S. EPA PCCL was derived from 
a collection of approximately 6,000 chemicals 
analyzed by the U.S. EPA’s Office of Water, 
and the PCCL was selected from these 6,000 
chemicals based on available health effects and 
occurrence data (U.S. EPA 2008c).

U.S. EPA Great Lakes National Program 
Office. A set of 429 candidate persistent, bioac-
cumulative toxicants (PBTs) compiled by the 
U.S. EPA Great Lakes National Program Office 
(GLNPO) are included in the present analysis 
(Muir and Howard 2006). These are designated 
as U.S. EPA GLNPO PBT chemicals.

U.S. EPA HAPs. This is a list of chemi-
cals that are under review by the U.S. EPA 
specified in the Clean Air Act Amendments of 
1990. These chemicals include volatile organic 
chemicals, chemicals used as pesticides and 
herbicides, inorganic chemicals, and radionu-
clides. Many of these chemicals are used for a 
variety of purposes in the United States today. 
Other chemicals, although not in use today, 
were used extensively in the past and may still 
be found in the environment. We include a 
total of 185 chemicals from this source.

EDSP chemicals. A variety of chemicals 
have been found to disrupt the endocrine 
systems of animals in laboratory studies, and 
compelling evidence shows that endocrine 
systems of certain fish and wildlife have been 
affected by chemical contaminants, resulting 
in developmental and reproductive problems. 
Based on this and other evidence, Congress 
passed the Food Quality Protection Act of 
1996, which requires that the U.S. EPA test 
for the potential estrogenic effects in humans. 
Subsequently, a U.S. EPA advisory committee 
recommended that this be expanded to include 
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effects occurring via androgen and thyroid 
mechanisms and potential for effects on eco-
logic species. We have included the 73 chemi-
cals that were listed to be screened under Tier 1 
of the U.S. EPA EDSP (U.S. EPA 2007a).

ToxCast phase I chemicals. ToxCast is a 
U.S. EPA program designed to apply HTS, 
high-content screening and genomics tech-
niques to the screening and prioritization of 
environmental chemicals (Dix et al. 2007). 
Phase I of this program is screening 309 
unique chemicals, most of which are pesti-
cide active ingredients. (One of the ToxCast 
chemicals has no CASRN, so we do not 
include it in the analyses below.) This chemi-
cal listing is available for download from the 
ToxCast or U.S. EPA Distributed Structure-
Searchable Toxicity Data Network (DSSTox) 
websites (U.S. EPA 2008k, 2008o).

Toxicology Reference Database. This is 
a collection of summary in vivo toxicology 
data, currently focused on pesticide active 
ingredients. Data on pesticide actives is col-
lected and summarized from U.S. EPA OPP 
data evaluation records (DERs), which are 

summaries of guideline studies required 
before approval of new pesticide active ingre-
dients. The Toxicology Reference Database 
(ToxRefDB) provides the toxicology data 
required to link in vitro assays from ToxCast 
with in vivo toxicity end points (Martin et al. 
2008). ToxRefDB will eventually contain 
information on most of the pesticide active 
chemicals of ToxCast phase I and will later 
expand to include toxicity data on additional 
pesticide and nonpesticide chemicals. The 
current database contains information on 431 
chemicals. In addition to data derived from 
pesticide DERs, ToxRefDB will contain data 
from other primary in vivo toxicology sources.

U.S. EPA Integrated Risk Information 
System. The collection of chemicals subject to 
evaluation by the U.S. EPA Integrated Risk 
Information System (IRIS) program make up 
three major lists: the main U.S. EPA IRIS set 
(U.S. EPA 2008f), for which evaluations are 
currently available (535 chemicals); the U.S. 
EPA IRIS nominations (U.S. EPA 2008g; 
currently 20 chemicals nominated for inclu-
sion); and the U.S. EPA IRIS queue (U.S. 

EPA 2008h), which are chemicals in queue to 
have IRIS reports written (68 chemicals).

Target collection summary. The total 
number of chemicals (defined by unique 
CASRN) in this set of collections comes to 
9,912. Table 1 shows the overlap matrix 
between these target chemical lists. The sum 
of the number of chemicals in the individual 
lists is 23,985. This number drops to 9,912 
once we remove overlaps. For instance, 720 
chemicals are on the U.S. EPA HPV and on 
the U.S. EPA OPPIN inert ingredients lists. 
From the U.S. EPA CCL3 list, 29 of 92 are 
also HPV chemicals. Interestingly, in a few 
cases no overlap occurs between pairs of lists. 
Two instances are the lack of overlap between 
the U.S. EPA CCL1 and CCL2 lists and the 
U.S. EPA GLNPO PBT list.

Information Sources
The information that is available on the target 
chemicals can be divided into several assay 
categories. The sources for each of these types 
of data are available online at http://www.epa.
gov/ncct/toxcast/.

Table 1. Numbers of chemicals that overlap between the screening target chemical collections.
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 47 39 92 528 200 73 429 185 2,539 1,973 992 535 20 68 5,375 834 337 1,320 3,532 3,492 636 308 431

EPA CCL1 47 47 39 13 34 25 6 0 14 11 11 4 31 2 7 14 15 5 14 8 6 27 11 16

EPA CCL2 39 39 39 13 28 19 5 0 12 10 10 4 25 1 5 13 13 4 13 7 5 22 10 15

EPA draft CCL3 92 13 13 92 92 19 9 2 28 29 30 8 56 1 10 39 31 11 41 19 10 60 25 31

EPA PCCL 528 34 28 92 528 62 33 21 77 237 259 91 187 6 27 302 125 52 166 162 135 206 73 93

EPA DWSHA 200 25 19 19 62 200 29 4 69 61 60 26 176 6 40 77 63 23 69 55 33 130 43 59

EPA EDSP 73 73 6 5 9 33 29 73 1 12 8 11 6 57 1 3 12 64 15 66 15 12 44 56 66

EPA GLNPO PBT 429 0 0 2 21 4 1 429 8 109 75 37 22 2 4 194 3 2 12 43 39 20 4 7

EPA HAPs 185 14 12 28 77 69 12 8 185 92 101 27 144 3 36 122 24 15 43 68 43 173 15 21

EPA HPV 2,539 11 10 29 237 61 8 109 92 2,539 1,746 701 145 11 34 2,187 102 84 246 720 676 162 13 28

EPA HPV Challenge 1,973 11 10 30 259 60 11 75 101 1,746 1,973 703 147 10 37 1,759 77 60 212 612 567 166 11 25

EPA HPVIS 992 4 4 8 91 26 6 37 27 701 703 992 54 6 12 747 37 34 81 268 250 58 8 15

EPA IRIS 535 31 25 56 187 176 57 22 144 145 147 54 535 10 50 183 179 42 187 115 75 290 122 147

EPA IRIS nominations 20 2 1 1 6 6 1 2 3 11 10 6 10 20 0 13 2 2 4 6 5 9 1 2

EPA IRIS queue 68 7 5 10 27 40 3 4 36 34 37 12 50 0 68 46 8 8 10 31 18 46 2 4

EPA IUR (2002) 5,375 14 13 39 302 77 12 194 122 2,187 1,759 747 183 13 46 5,375 151 140 378 1,195 1,126 230 23 47

EPA OPPIN pesticide active 834 15 13 31 125 63 64 3 24 102 77 37 179 2 8 151 834 217 484 178 169 175 272 363

EPA OPPIN antimicrobial active 337 5 4 11 52 23 15 2 15 84 60 34 42 2 8 140 217 337 129 155 151 57 33 63

EPA OPPIN food use 1,320 14 13 41 166 69 66 12 43 246 212 81 187 4 10 378 484 129 1,320 744 724 169 239 300

EPA OPPIN inerts 3,532 8 7 19 162 55 15 43 68 720 612 268 115 6 31 1,195 178 155 744 3,532 3,183 136 22 35

EPA inerts nonfood 3,492 6 5 10 135 33 12 39 43 676 567 250 75 5 18 1,126 169 151 724 3,183 3,492 92 15 26

EPA TRI 636 27 22 60 206 130 44 20 173 162 166 58 290 9 46 230 175 57 169 136 92 636 112 144

ToxCast phase I 308 11 10 25 73 43 56 4 15 13 11 8 122 1 2 23 272 33 239 22 15 112 308 304

ToxRefDB 431 16 15 31 93 59 66 7 21 28 25 15 147 2 4 47 363 63 300 35 26 144 304 431
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Chemical structures. We have compiled 
structures for most of the defined compounds 
(as opposed to mixtures) in the target lists. 
For subsets of chemicals, structures have been 
hand curated and quality reviewed as part 
of the U.S. EPA DSSTox program (Richard 
et al. 2008). We took the remaining structures 
from a variety of sources, including PubChem 
[National  Center  for  Biotechnology 
Information (NCBI) 2008], the National 
Cancer Institute’s Chemical Structure Lookup 
Service (National Cancer Institute 2008), 
and the U.S. EPA Substance Registry System 
inventory. In many cases, structures were 
derived from Simplified Molecular Input Line 
Entry Specification (SMILES) codes (Daylight 
Chemical Information Systems, Inc. 2008). 
At present, we have chemical structures for 
7,099 of the 9,912 target chemicals. We lack 
structure information for many chemicals 
because many substances on these lists are 
mixtures, sometimes relatively simple ones 
for which representative structures could be 
designated (e.g., “sulfuric acid, mono-C14–18-
alkyl esters, sodium salts”), and sometimes 
very complex mixtures (agar, sesame oil).

Physical–chemical properties. We used 
U.S. EPA’s EPISuite (U.S. EPA 2007c) set 
of programs to calculate physical–chemical 
properties for a subset of chemicals. The 
input to EPISuite is a list of SMILES codes. 
Several EPISuite programs were used includ-
ing KOWWIN [estimates the logarithmic 
octanol–water partition coefficient (logP, 
also sometimes called log Kow) of organic 
compounds (Meylan and Howard 1995)], 
MPBPWIN [estimates the boiling point (at 
760 mm Hg), melting point, and vapor pres-
sure of organic compounds (Stein and Brown 
1994)], WATERNT (estimates the water solu-
bility of organic compounds at 25°C; Meylan 
and Howard 1995), and WSKOWWIN 
(estimates the water solubility of an organic 
compound using the compounds log octanol–
water partition coefficient; Meylan et al. 
1996). The properties we use are molecular 
weight (MW), logP, boiling point, melting 
point, vapor pressure, phase at 25°C, and 
molar water solubility. EPISuite reports (and 
we) use experimental values when available.

Biochemical (in vitro or cell-based) assay 
data. For a subset of the chemicals of inter-
est, in vitro (biochemical) or cell-based assay 
data are currently available. This can include 
receptor binding, enzyme inhibition, or 
cytotoxicity. The major sources of these data 
are PubChem and the National Institute of 
Mental Health’s Psychoactive Drug Screening 
Program Ki Database (Roth and Lopez 2008).

In vivo toxicology assay data (tabular). We 
derived these data from guideline (or equiva-
lent) toxicology studies from which the pri-
mary or secondary data are available. For our 
purposes, the main sources of this primary data 

are the National Toxicology Program (NTP), 
U.S. EPA OPP (through ToxRefDB; Martin 
et al. 2008), the U.S. EPA’s HPVIS, and the 
FDA. The FDA data we used here came from 
the following databases: a) FDA Generally 
Recognized as Safe list; b) FDA Cumulative 
Estimated Daily Intake/Acceptable Daily 
Intake Database; c) FDA Everything Added 
to Food in the United States database; and 
the d) FDA List of “Indirect” Additives Used 
in Food Contact Substances. We compiled 
our tabular primary data largely through the 
ToxRefDB database (Martin et al. 2008) and 
the DSSTox programs (Richard et al. 2006). 
HPVIS is a special case because it includes 
both primary and secondary data, often pro-
vided in summary by sponsors, with data 
derived either from the open literature or 
from sponsor-derived study reports. The data-
base captures so-called “Robust Summaries.” 
Examples of secondary tabular in vivo tox-
icity data are the Carcinogenic Potency 
Database (Gold et al. 2001), U.S. EPA IRIS 
reports, National Library of Medicine (NLM) 
TOXNET databases (Hazardous Substances 
Data Bank and Chemical Carcinogenesis 
Research Information System), and California 
EPA. Data from a number of these secondary 
sources have been tabulated and made avail-
able through the DSSTox program (Richard 
et al. 2007). Types of tabular information that 
are captured in the DSSTox program include 
high-level summary results such as food-use 
tolerances, LOAELs and NOAELs (lowest 
and no observed adverse effect levels), and 
reference doses, as well as highly detailed data 
such as the per-animal or group-level results of 
toxicology studies. Cell-based genotoxicity is 
currently captured under this category because 
it co-occurs with rodent carcinogenicity data 
in current ACToR data sources.

In vivo toxicology text reports via URL. 
Much of the publicly available in vivo toxi-
cology data are in the form of narrative 
reports from which detailed tabular data may 
or may not have been extracted. Examples 
are the original NTP, IRIS, and Screening 
Information Data Sets (SIDS) reports, the 
latter from the Organization for Economic 
Cooperation and Development (OECD) 
HPV Programme. We also included the 
International Agency for Research on Cancer 
(IARC) and Agency for Toxic Substances and 
Disease Registry (ATSDR) study reports in 
this set. These reports contain quantitative and 
categorical data, but for most of these sources, 
the data provided are not easily extractable. 
All of the studies we used here are accessible 
via the Web. Information can be extracted 
from these reports on a case-by-case basis.

In vivo toxicology summary calls. Several 
sources have made definitive calls concerning 
particular modes of toxicity, for instance, label-
ing chemicals as being human carcinogens or 

developmental toxicants. These calls are made 
by experts using data from the detailed toxicity 
reports described previously. Although the calls 
are subject to debate by experts, they provide 
a useful source of data for training prioritiza-
tion models. This information is typically cate-
gorical. Examples of summary calls are cancer 
potential determinations of the California EPA 
(2008), the NTP Report on Carcinogens (NTP 
2008b), NTP Center for the Evaluation of 
Risks to Human Reproduction (NTP 2008a), 
and the U.S. EPA OPP cancer classifications 
(U.S. EPA 2007b).

Regulatory listings. By law, the U.S. EPA 
and some state agencies maintain a number 
of lists of chemicals that are of toxicologic 
concern. The presence of a chemical on one of 
these lists indicates that toxicity data are avail-
able. For the present analysis, we derived these 
lists from the U.S. EPA Substance Registry 
System (U.S. EPA 2008j).

Phenotypes. Above we have described the 
information types of the data rather than the 
disease or toxicology categories. Where pos-
sible, assays or data sources have also been 
labeled by appropriate disease or toxicology 
categories, and we label these categories as 
“phenotypes.” The set of phenotypes imple-
mented in ACToR span traditional toxicology 
study areas. The subset of phenotypes we use 
here are general hazard, carcinogenicity, geno-
toxicity, developmental toxicity, reproductive 
toxicity, and chronic toxicity. Other toxic-
ity phenotypes are represented in ACToR, 
but for small numbers of chemicals. Many 
data sources, especially the toxicology sum-
mary reports, contain information on mul-
tiple types of toxicity or end points. In this 
category, we have included only IRIS, NTP, 
ToxRefDB, and U.S. EPA and OECD HPV 
SIDS reports because they can be assumed to 
have covered a defined standard set of areas 
of toxicity for most chemicals. “Hazard” is 
a very broad phenotype category that can 
include assays derived from acute and sub-
chronic rodent studies at one end or material 
safety data sheets at the other. We further 
track information on food safety assessments, 
as provided by the FDA (FDA 2006, 2007, 
2008). In addition, the U.S. EPA sets food-
use tolerances (or tolerance exemptions) for 
a subset of pesticide ingredients. There is a 
significant overlap between chemicals regu-
lated by the U.S. EPA and those analyzed by 
the FDA. It is obviously of great value to have 
both positive and negative toxicity informa-
tion for all of the phenotypes, and both types 
were captured where they were available.

Several reviews of the toxicology data land-
scape have described sources of data that are 
included in ACToR. Yang et al. (2006a, 2006b) 
have recently published two such reviews. In 
2001 and 2002, several review papers were 
published surveying the landscape of toxicity 
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data available on the Internet (Brinkhuis 2001; 
Felsot 2002; Junghans et al. 2002; Patterson 
et al. 2002; Polifka and Faustman 2002; Poore 
et al. 2001; Richard and Williams 2003; 
Russom 2002; Winter 2002; Wolfgang and 
Johnson 2002; Young 2002).

We provide a summary of the sources 
of toxicology data we used in this analysis, 
available online at http://www.epa.gov/ncct/
toxcast/. In the simplest case, each toxicology 
source is a single assay in the ACToR database. 
(There are multiple exceptions; e.g., DSSTox 
and NTP each contribute multiple assays.) For 
each assay, we list the short name, a descrip-
tion, the institutional source, the number of 
chemicals covered, the types of information 
provided, and a URL. There were 22 sources 
from which target screening chemicals were 
taken, 47 sources of toxicology data, and 
48 lists of chemicals covered by regulations.

Data Collection and 
Integration: ACToR
All of the data for this analysis are collected 
in the ACToR system (Judson et al. 2008; 
U.S. EPA 2008a). The organizing principles 
for the design of the chemical/assay system 
are largely derived from the PubChem proj-
ect, which captures chemical structure and 
HTS information on millions of chemicals 
in its role as the main data repository for the 
NIH Molecular Libraries Roadmap (Austin 
et al. 2004). PubChem characterizes data 
in terms of “substances” (the actual chemi-
cal on which one performs an experiment as 
defined by the data source), “compounds” 
(the idealized structures of chemicals), and 
assays (data generated on substances). ACToR 
collects these same three main types of data: 
substances, indexed by substance identifier 
(called the SID); compounds (i.e., chemi-
cal structures) indexed by compound iden-
tifier (called the CID); and assays, indexed 
by assay identifier (called the AID). A sub-
stance is a single chemical entity from one 
data source and often corresponds to the 

physical substance on which some experiment 
was performed. A compound is a chemical 
entity that corresponds to a unique chemical 
structure. Because a substance is defined as 
being specific to both data source and experi-
ment, many substances (SIDs) may map to a 
single compound (CID). An assay, indexed 
by AID, represents a specific type of test data 
associated with one or more substances. In 
ACToR, a substance is minimally charac-
terized by a data-collection–specific SID 
and a chemical name. Most often, the sub-
stance will also have synonyms, a CASRN, 
and several other parameters. A compound 
always has an associated chemical structure 
and a data-collection–specific CID, in addi-
tion to optional parameters derived directly 
from chemical structures, such as SMILES 
(Daylight Chemical Information Systems, Inc. 
2008) and International Chemical Identifier 
[International Union of Pure and Applied 
Chemistry (IUPAC) 2008)] linear chemi-
cal structure representations and MW. Note 
that because ACToR is in essence a “super-
aggregator,” pulling in large external data col-
lections, it also stores the source-labeled SIDs 
and CIDs from each independent collection 
(e.g., PubChem CID, DSSTox CID).

In ACToR, as in DSSTox, data on chemi-
cals across data collections are aggregated 
using the concept of a generic chemical. 
Because most environmental chemicals, along 
with their related toxicity data, are indexed by 
CASRN, which can be thought of as a source-
independent test SID, ACToR aggregates 
information based on this identifier. A generic 
chemical is defined by a CASRN, a preferred 
name (typically a common name rather than 
an IUPAC or other systematic name), and 
an optional ACToR CID. Some sources (in 
particular, the FDA and NTP) have provided 
CASRN-like identifiers for some compounds, 
and these are used in ACToR in place of the 
CASRN. All data on all substances sharing 
a particular CASRN are attached to the cor-
responding generic chemical. In particular, 

a generic chemical will inherit all names 
attached to substances with the corresponding 
CASRN as synonyms.

In ACToR, an assay is a generic collec-
tion of data values associated with a set of 
substances and (potentially) compounds (i.e., 
chemical structures). An assay has a unique 
AID, a name, an assay category, and, option-
ally, one or more “phenotypes.” Table 2 lists 
the assay categories (major types of assays). 
Assay phenotypes are linked to high-level 
classes of toxicity testing such as carcino-
genicity or reproductive or developmental 
toxicology. This allows quick searching of the 
database to find all assays that pertain to that 
high-level toxicology concept. The concept of 
an assay as implemented in ACToR is pur-
posely broad so as to capture any information 
potentially relevant to understanding toxicity 
and evaluating risk for environmental chemi-
cals. An assay can also have one or more com-
ponents, which are separate data fields that 
naturally fall together into an assay (e.g., the 
binding constant to a receptor at different 
concentrations). Each component is defined 
by an assay component identifier, the cor-
responding AID, a name, a description, units 
(when applicable), and a data type (float, inte-
ger, categorical, text, Boolean, URL). The 
actual data values are called assay results and 
are linked to the assay, the assay component, 
and the original data-collection–specific sub-
stance. All of the data for an assay can be rep-
resented as a table with one row per chemical 
and one column per assay component.

To be included in ACToR, a data source 
must meet several criteria: a) data must be 
publicly available; b) information sources 
must have a significant overlap with chemicals 
of interest; c) information must be indexed by 
chemical, that is, available on a chemical-by-
chemical basis; and d) information must be 
indexed by CASRN (although data are also 
included for substances having no assigned 
CASRN). We do not require that data be peer 
reviewed, although for the analysis we report 

Table 2. Categories of assays in ACToR that are described in this analysis.

Assay category Description Examples

Physical–chemical Physical and chemical properties (in vitro and/or in silico) MW
   LogP
  Boiling point
Biochemical Biochemical (non-cell-based) (in vitro and/or in silico) Enzyme inhibition constants
   Receptor binding constants
In vivo toxicology (tabular) Tabulated results from primary or secondary animal-based Clinical chemistry
  studies of chemical effect Histopathology
In vivo toxicology (study listing primary) Primary studies are available but have not been tabulated Clinical chemistry
  Histopathology
  Developmental and reproductive assays
In vivo toxicology (summary calls) Derived summary determinations of risk Chemicals determined to pose a 
   defined risk of human cancer
In vivo toxicology (summary report via URL) Links to text reports on the Web for which specific data values Reports from U.S. EPA IRIS or NTP
  are not directly accessible in tabular form
Regulatory Listings of chemicals that fall under specific environmental laws TSCA 
  or government mandates 
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here, most of the data sources either have been 
externally peer reviewed or, when from gov-
ernment agencies, have undergone extensive 
internal review. Data entered into ACToR 
undergo a limited quality control process. 
Data are preferably taken from sources of 
high-quality data, so our quality control is 
limited to checking that the data are correctly 
transferred from the source via a reformatting 
and loading process into the ACToR data-
base. No checks are made on the correctness 
of the data from the original source. Each data 
set is manually spot-checked for gross issues 
with reformatting. All CASRNs in the data-
base are checked to be sure that they have a 
proper checksum (Chemical Abstracts Service 
2008). (The checksum is the result of a par-
ticular formula performed on all but the final 
digit of the CASRN. This result must match 
the final digit.) All data-handling tasks are 
documented in standard operating procedures 
to ensure consistency.

The ACToR database is implemented using 
MySQL. Software to preprocess and load data 
is written in Perl, and the Web interfaces are 
written in Java. The use of 100% open-source 
software allows the entire system to be easily 
distributed to other interested groups. We used 
the ACToR database version 2008Q2d for 
all of the analyses in this article. Of the sub-
sets of data sources in ACToR, only the ones 
most relevant to toxicology are included in this 
analysis and publication. ACToR is available 
online (http://actor.epa.gov).

Results
In vivo toxicology data. This section describes 
the overlap between the target chemical set 
and the set of toxicity data sources. Table 3 
summarizes the overlap matrix. Each cell 
provides the number and the percentage of 
the 9,912 for the chemicals that have infor-
mation for a specific category of data (e.g., 
tabular) and a particular phenotype (e.g., 
carcinogenicity). The last column gives the 
number and percentage of chemicals for each 
phenotype, regardless of the information cate-
gory. Chemicals are only counted once in any 
cell, even if they have multiple data points or 
sources of data. Cells that list 0 indicate that 

there were no corresponding data from any 
source. The available toxicity data almost all 
derive from animal studies, because essentially 
no experimental human data are available. 
However, some of the data are in the form 
of human reference doses, or summary calls 
of the form “this chemical is considered to 
be a human carcinogen.” These data points 
were, of course, derived by extrapolating from 
primary data on animals. Chemical hazard 
has been evaluated for 5,810 (58.6%) of these 
chemicals. Carcinogenicity potential for 2,579 
(26%) of these chemicals has been evaluated 
by at least one source. The genotoxic poten-
tial of 2,724 (27.5%) of the chemicals has 
been evaluated. A total of 2,862 (28.9%) of 
the chemicals have their developmental toxic-
ity reported, and 1,081 (10.9%) have repro-
ductive toxicity data reported. Food safety 
information (from one of the sources men-
tioned above) is available for 2,258 (22.8%) 
of the chemicals. Chemicals count in this table 
whether they have positive or negative data for 
toxicity for a particular phenotype. To date, 
we have not systematically tabulated the rela-
tive number of toxic and nontoxic indications 
for all chemicals.

Table 4 provides overlaps of the chemicals 
of interest with more general information and 
biological assays of potential interest. One or 
more in vitro biochemical assays are available 
for 781 (7.9%) of the chemicals. Most of these 
are in vitro cytotoxicity assays in PubChem, 
but also include receptor binding and enzyme 
inhibition data. A small number of the target 
chemicals (234 or 2.4%) are naturally occur-
ring human metabolites, based on data from 
the Human Metabolome Database (Wishart 
et al. 2007).

The highest-quality toxicity assessments, 
based on guideline studies or on extensive 
review of the literature, are U.S. EPA OPP 
reviews (which are captured in the ToxRefDB 
database), U.S. EPA IRIS assessments, NTP 
studies, OECD SIDS guideline studies of HPV 
chemicals, studies in the U.S. EPA HPVIS, 
and assessments by the ATSDR and IARC. 
From the current list, there are 431 (4.3%), 
536 (5.4%), 1,168 (11.8%), 343 (3.5%), 
992 (10%), 216 (2.2%), and 537 (5.4%) 

chemicals in these respective sets (Table 4). 
Looking across all of these data sources, 2,767 
(27.9%) are covered by one or more of these 
high-quality toxicology sources. Finally, a total 
of 4,641 (46.8%) are currently subject to one 
or more U.S. EPA regulations. These regula-
tions are available online (http://www.epa.gov/
ncct/toxcast/).

Chemical categories. Both the U.S. HPV 
Challenge and the OECD HPV programs 
encourage the use of categories because of 
the large number of chemicals being assessed. 
Using a category approach, chemicals are evalu-
ated as a group, or category, rather than as indi-
vidual chemicals, and not every chemical needs 
to be tested for every end point. The category 
approach entails grouping chemicals with simi-
lar structures, physical–chemical properties, fate 
parameters, and toxicologic properties in order 
to extrapolate toxicologic information from 
tested chemicals and end points to untested 
chemicals and end points. For most categories, 
the number of chemicals with toxicology data 
that could be used for model building is much 
smaller than the total number of chemicals 
included within the category.

ACToR includes listings of chemical cat-
egories taken from the U.S. EPA HPVIS and 
from the OECD HPV Programme. From these 
lists, a total of 1,274 (12.9%) chemicals are in 
at least one category, and there are 256 unique 
categories that include at least one of the target 
chemicals. However, most of the categories in 
HPVIS represent “proposals,” which are cur-
rently under review by the U.S. EPA, such that 
the final number of categories and chemicals 
assigned to them is subject to change. In addi-
tion, the U.S. EPA is currently using chemical 
clustering techniques with the goal of creating 
chemical categories to facilitate hazard assess-
ment of MPV chemicals. The outcome of these 
efforts will be included in ACToR in the future. 
Information will also flow in the opposite direc-
tion; that is, the data and information included 
in ACToR will be useful in reviewing and refin-
ing the U.S. EPA’s HPV and MPV categories.

Production volumes. An important com-
ponent of any prioritization program will be 

Table 3. Summary of overlap between the target chemical list and the set of assay components.

  Primary  Summary
Assay Tabular study listing Summary calls report via URL Any

Hazard 4,454 (44.9) 0 255 (2.6) 4,767 (48.1) 5,810 (58.6)
Carcinogenicity 1,211 (12.2) 401 (4.0) 726 (7.3) 2,035 (23.3) 2,579 (26)
Genotoxicity 2,496 (25.2) 1,102 (11.1) 32 (0.3) 1,047 (10.6) 2,724 (27.5)
Developmental toxicity 755 (7.6) 37 (0.4) 125 (1.3) 2,324 (23.4) 2,862 (28.9)
Reproductive toxicity 734 (7.4) 0 31 (0.3) 396 (4) 1,081 (10.9)
Food safety 1,692 (17.1) 0 533 (5.4) 0 2,258 (22.8)

Each cell provides the number and the percentage of the 9,912 for the chemicals that have information for a specific 
category of data (e.g., tabular) and a particular phenotype (e.g., carcinogenicity). The last column gives the number and 
percentage of chemicals for each phenotype, regardless of the information category. Chemicals are only counted once in 
any cell, even if they have multiple data points or sources of data. Cells with 0 indicate that there were no corresponding 
data from any source.

Table 4. Coverage by specific data types and 
sources.

Name Total Percent coverage

Biochemical 781 7.9
Human-metabolite 234 2.4
ToxRefDB 431 4.3
IRIS 536 5.4
NTP 1,168 11.8
SIDS 343 3.5
HPVIS 992 10.0
ATSDR 216 2.2
IARC 537 5.4
ToxRefDB, IRIS, NTP,  2,767 27.9
 SIDS, ATSDR, 
 and/or IARC 
Regulation 4,641 46.8
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an assessment of potential for exposure. In 
the absence of specific information and for 
screening and prioritization purposes, produc-
tion volumes are often used as a surrogate for 
exposure potential. Table 5 lists counts for 
each of the production volume categories. A 
total of 5,939 (59.9%) of the target chemicals 
have production volume information in the 
2002 IUR.

Properties related to chemical structure. 
Physical–chemical properties were calculated 
using the EPISuite collection of programs, 
which use chemical structure (in the form of a 
SMILES string) as input. Of the 7,099 chemi-
cals for which structures and SMILES data 
were available, EPISuite was able to process 
5,857. The chemicals for which calculations 
could not be performed were mainly certain 
types of salts, inorganic compounds, organo-
metallics, or chemicals with nonstandard 
SMILES.

Several parameters will be useful for deter-
mining whether a compound can be bioavail-
able or whether it will be amenable to HTS 
assays: MW, logP, solubility, and vapor pres-
sure. Typical ranges for properties for chemi-
cals that can be tested using HTS methods are 
MW < 500 Da, logP between 0 and 6, and 
vapor pressure < 10 mm (not volatile at room 
temperature). Filtering the larger list against 
this set of criteria yields a set of 3,060 com-
pounds that are candidates for HTS testing. 
One could produce slightly different lists, of 
course, by altering these threshold values. The 
primary requirements for use in an HTS assay 
are that chemicals be soluble in dimethyl sul-
foxide or water, that they be nonvolatile, and 
that they be stable in solution.

Figures 1 and 2 show distributions of 
MW and logP for the complete set of chemi-
cals with structures and for four representative 
subsets of the larger data collection: HPV 
chemicals, pesticide inert ingredients, pesti-
cide active ingredients, and the ToxCast phase 
I collection. For MW, the main trend is that 
the HPV and pesticide inert collections con-
tain significantly larger fractions of low-MW 
chemicals (< 200 Da) than do the pesticide 
active ingredients and the ToxCast chemi-
cals. Given that most ToxCast phase I chemi-
cals are pesticide active ingredients and that 

this set was prefiltered for HTS suitability, 
it is not surprising that this set has a smaller 
fraction of high-MW chemicals (> 500 Da) 
than do the other collections. Distributions 
of logP are similar for all of the subsets except 
for ToxCast, which is more tightly clustered, 
with a peak between 0 and 2.

Discussion
In this article we describe and analyze a com-
pilation of chemical structures, physical–
chemical properties, in vitro biochemical assay 
data, and in vivo toxicology data on a large 
collection of chemicals of interest to the U.S. 
EPA. Most of these data are currently pub-
licly available but have not been organized 
previously in a unified manner that allows 
for the analysis of large trends and simplified 
review based on either chemical or assay axes. 
The data we describe here are a subset of those 
contained in the ACToR system being devel-
oped at the U.S. EPA to manage large collec-
tions of data on environmental chemicals.

We have used the ACToR database to 
characterize the state of toxicologic knowl-
edge on a subset of environmental chemicals 
that are on a variety of lists of interest to the 
U.S. EPA. This analysis is used to address the 
extent of the perceived data gap on potentially 
toxic chemicals. Although the picture is com-
plicated, some summary observations are pos-
sible. About two-thirds of the chemicals have 
some toxicology information. The unique set 
of chemicals in Table 3 is 6,551 of 9,912 
(66%). The alternative view is that many of 
these chemicals remain largely uncharacter-
ized—a total of 3,361 (34%) chemicals have 
no information in any of the data sources we 
used in this analysis. On the other hand, more 
than one-quarter (27.9%) have been analyzed 
in one or more high-quality and/or systematic 
evaluation programs (NTP, IRIS, ToxRefDB, 

U.S. EPA HPV, OECD SIDS, IARC, and/
or ATSDR). Of the individual types of toxic-
ity (or end points) that have been tabulated, 
carcino genicity, genotoxicity, and develop-
mental and reproductive toxicity have been 
most widely covered (26%, 27.5%, 28.9%, 
and 10.9%, respectively).

One immediate application of this analysis 
is to select compounds for further screening in 
programs such as ToxCast. ToxCast phase I 
is using a set of compounds (primarily pesti-
cide active ingredients) that are amenable to 
HTS and that have rich toxicologic data. The 
outcome of the phase I analyses will be a set of 
“signatures” that use in vitro screening data as 
inputs to predict in vivo toxicology phenotypes 
with high enough sensitivity and specificity to 
be useful for prioritization for more detailed 
testing. Phase II needs to include compounds 
that can be used to independently validate the 
phase I signatures. Therefore, the phase II set of 
chemicals should contain as many compounds 
as possible with high-quality in vivo toxicol-
ogy data, have physical–chemical properties 
that make them candidates for HTS, and be 
drawn from a more diverse collection than the 
phase I chemicals to help define the chemi-
cal domain of applicability of the signatures. 
We calculated the intersection of the set of 
2,767 chemicals that have data from one of 
the high-quality and/or systematic toxicol-
ogy data sources (NTP, IRIS, HPVIS, OPP/
ToxRefDB, OECD SIDS, IARC, ATSDR) 
with the set of 3,060 chemicals with reasonable 
physicochemical properties. This yields a list of 
1,308 candidate chemicals that have both high-
quality toxicity data and physicochemical prop-
erties very well suited for HTS. After removing 
the ToxCast phase I chemicals, we arrived at 
a list of 1,046 chemicals that are candidates 
for inclusion in ToxCast phase II for use in 
validating ToxCast phase I findings across a 

Table 5. Production volumes from the 2002 IUR.

Production volume (lb/year) Count Percent coverage

 < 10K 11 0.1
10K–500K 2,827 29.0
 > 500K–1M 485 4.9
 > 1M–10M 1,381 14.0
 > 10M–50M 512 5.0
 > 50M–100M 130 1.0
 > 100M–500M 246 2.0
 > 500M–1B 67 0.7
 > 1B 280 3.0
Total 5,939 60.0

Abbreviations: B, billion; K, thousand; M, million. Figure 1. Distribution of MW for representative chemical sets. The sum of fractions for each data set equals 1.
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variety of end points. Many of these chemicals 
are currently being analyzed in a series of HTS 
assays at the NIH Chemical Genomic Center 
(NCGC) as part of the Tox21 partnership 
between U.S. EPA, NCGC, and NTP. These 
Tox21 chemicals include an even broader 
range of physicochemical properties, with a 
MW range of 32 to 1,255 and a logP range 
of –13.2 to 13.2. An important analysis that 
is yet to be carried out is chemical structure 
characterization and clustering for the ToxCast 
phase I and II lists and the larger target list. 
This will be important to help understand our 
ability to extrapolate within and across chemical 
structural classes.

ACToR is not alone in its goal of aggregat-
ing large sets of chemical structure and assay 
data but is distinguished from other efforts 
by its focus on toxicology and environmen-
tal chemicals and its goal of facilitating com-
putational analysis. PubChem (NCBI 2008) 
is the largest effort currently available, with 
information on more than 10 million unique 
chemical compounds. ChemSpider (2008) is 
an even larger chemical aggregation project but 
does not house biological data or download-
able data sets. Another important compari-
son is with TOXNET, which is a collection of 
multiple data sources covering many aspects of 
chemical toxicity. TOXNET has a common 
search engine that allows the user to easily find 
data from multiple sources. However, it is a 
closed system that does not allow a user to pull 
together data sets that are useful for compu-
tational purposes. One unique aspect of the 
ACToR system is that it aggregates the data 
from PubChem (focused on chemical structure 
and HTS in vitro assay data) and TOXNET 
(NLM 2008) (focused on in vivo toxicology 
data) and combines it in a way that it can be 
used for computational analysis. eChemPortal 
(OECD 2008) is an OECD effort very similar 

to ACToR. It mainly aggregates information 
on HPV chemicals and pesticides. eChem 
Portal currently contains links to seven large 
database systems, some of which contain what 
in ACToR are multiple individual databases 
(e.g., INCHEM contains 11 individual data-
bases; International Programme on Chemical 
Safety 2008). Unlike eChemPortal, which pro-
vides links to Web pages for the component 
databases, ACToR extracts tabular data from 
a large number of sources and makes it search-
able by name, CASRN, or chemical structure. 
A system called Vitic is being developed by 
Lhasa Limited in collaboration between the 
European Chemicals Agency’s International 
Uniform Chemical Information Database 
(IUCLID 2008) project and a number of phar-
maceutical companies, with the goal of being 
an international toxicology information center 
(Judson et al. 2005). In addition, the European 
Substances Information System provides links 
to a number of databases, including U.S. EPA 
HPV, IUCLID, and European Inventory of 
Existing Commercial Chemical Substances. 
Finally, the Chemical Effects in Biological 
Systems project at the National Institute of 
Environmental Health Sciences is constructing 
a multidomain information repository to hold 
the detailed results and summaries of in vivo 
and in vitro toxicology experiments from NTP 
studies, with particular emphasis on toxico-
genomics and microarray experiments (Waters 
et al. 2008).

To adequately characterize the toxicology 
of all environmental chemicals of potential 
concern, we still face significant challenges. 
Screening and prioritization approaches such as 
ToxCast can make significant headway in ana-
lyzing small organic and organometallic com-
pounds, for which most HTS methods have 
been developed for use in the pharmaceutical 
industry. Because of solubility and volatility 

issues, however, many exceptionally high- and 
low-MW environmental compounds or highly 
lipophilic compounds may require new screen-
ing methods. Of special interest are nano-
materials, which will require new standards for 
description (i.e., size, shape, composition, etc.) 
and may require entirely new approaches to 
thinking about cellular and organism-level tox-
icity (Maynard et al. 2006; Shaw et al. 2008). 
One rarely has knowledge of metabolites that 
can arise from a parent compound in vivo and 
whether any of these metabolites are more or 
less toxic than the parent. However, a number 
of metabolic pathway databases and/or simula-
tors are currently available or under develop-
ment that could potentially be incorporated 
into ACToR in the future. Finally, a large 
number of known biological pathways (i.e., 
signaling, metabolism, etc.) have the potential 
to lead to toxicity when significantly perturbed. 
Many toxicity pathways have been implicated 
in whole-animal end points, such as liver can-
cer, and most chemicals can perturb multiple 
candidate toxicity pathways. Gaining a predic-
tive and mechanistic understanding of chemi-
cal toxicity will require the ability to predict 
which set of toxicity pathways are triggered by 
individual chemicals.

A significant amount of data on chemicals 
is not currently accessible for modeling, either 
because it is not publicly available or because 
it is not yet extracted from primary reports 
in a useful, tabular format. Several efforts are 
under way at the U.S. EPA and other institu-
tions to extract, standardize, compile, and ana-
lyze such high-quality data (U.S. EPA 2008b). 
We would welcome collaborations with other 
groups producing such tabular data sets on 
these important classes of chemicals.

Conclusions
In this article, we have described a process for 
determining a set of environmental chemi-
cals with the highest need for hazard and risk 
evaluation, which is based primarily on objec-
tive, simple measures of data availability. In 
addition, we have collected information from 
a large number of publicly available sources 
to determine the state of our current knowl-
edge of these chemicals. The list we developed 
includes HPV and MPV chemicals, pesticide 
and antimicrobial active and inert ingredi-
ents, and potential air and drinking water 
pollutants, in addition to chemicals already 
being evaluated by the U.S. EPA IRIS and 
ToxCast programs. Although the input lists 
are developed from the perspective of regula-
tory and research needs of the U.S. EPA, we 
believe that our overall conclusions will have 
wide applicability. This process resulted in 
a collection of 9,912 unique chemicals. We 
have at least limited hazard information on 
approximately two-thirds of these and detailed 
toxicology information on approximately 

Figure 2. Distribution of calculated logP for representative chemical sets. The sum of fractions for each 
data set equals 1.
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one-quarter. The combination of chemical 
structure and in vivo data on this large range 
of environmental chemicals in ACToR can 
facilitate structure–activity relationship and 
other types of trend analyses. These analyses 
will have direct relevance to U.S. EPA pro-
grams such as HPV Challenge (U.S. EPA 
2008m) and the Chemical Assessment and 
Management Program (U.S. EPA 2008b).

The principal reason for the lack of more 
complete toxicity information is the extremely 
high cost for full evaluation using standard 
guideline animal studies, which is millions of 
dollars per chemical. This has prompted the 
call for the use of more cost-effective HTS 
methods for quickly screening and prioritiz-
ing chemicals for more detailed testing. The 
analysis presented here is a first step in such 
a screening and prioritization process being 
carried out at the U.S. EPA as part of the 
ToxCast program. ToxCast is using hun-
dreds of in vitro HTS assays to assess poten-
tial mechanisms through which chemicals 
could cause toxicity. This hazard prediction is 
just one of several axes along which potential 
risk needs to be evaluated. Chemicals need 
to be evaluated for exposure potential, and 
for adsorption, distribution, metabolism, 
and excretion (ADME) and pharmacokinet-
ics properties. Of special concern would be 
compounds that are persistent or bioaccu-
mulative. Researchers at Health Canada have 
demonstrated a process to evaluate exposure 
for many of these chemicals (Health Canada 
2006). Chemical structure analysis can be 
used as part of the prioritization process, 
for instance, in predicting bioaccumulation 
potential (Meylan et al. 1999; Weisbrod 
et al. 2007) and fractional absorption (Ekins 
et al. 2007a, 2007b). Nonanimal experimen-
tal methods are available to approximate gut 
absorption (Sun et al. 2008) and total hepatic 
clearance (Naritomi et al. 2003). Reverse-
pharmacokinetic methods (Brightman et al. 
2006) can be used to predict oral doses that 
would be required to trigger molecular pro-
cesses, for instance, based on half maximal 
inhibitory concentrations (IC50) for recep-
tor binding from in vitro assays. These and 
other related approaches are being considered 
as part of the overall ToxCast screening and 
prioritization process. Of special relevance to 
the ToxCast program, we have identified a set 
of 1,046 candidate chemicals that have reli-
able in vivo toxicology data and have physico-
chemical properties that make them suitable 
for in vitro HTS analysis. These are candidates 
for phase II of the ToxCast program, which 
will be used to validate in vitro-to-in vivo tox-
icity predictions, which are one outcome of 
phase I of this program.

Another important input to this process is 
high-quality, tabular in vivo toxicity data. This 
is required to anchor our in vitro-to-in vivo 

prediction models, in both the model build-
ing and model validation phases. Initially, 
we are making use of the results of guideline 
toxicology studies for pesticide active ingredi-
ents, which are being collected into the U.S. 
EPA ToxRefDB (Martin et al. 2008). We are 
expanding this data collation effort in coordi-
nation with the ACToR project. As already 
described, ACToR is a database consisting 
of information on environmental chemicals 
from a wide number of sources. However, 
currently much of the high-quality toxicology 
data indexed in ACToR still resides in text 
reports and remains to be manually extracted 
into tabular form.

An important aspect of this program is 
openness and transparency. The ToxCast 
program is making all of its data publicly 
available. It has a large community of col-
laborators, from government labs, compa-
nies, and universities. Finally, important open 
venues for learning about this program and 
the Chemical Prioritization and Exposure 
Communities of Practice are providing 
input (U.S. EPA 2008i). These are bringing 
together representatives from U.S. EPA, state, 
and other national environmental regulatory 
organizations, academic labs, stakeholder 
companies, and public interest groups, all of 
whom are providing important input as we 
collectively work to address this important 
problem. All of these efforts are consistent 
with achieving the goals and vision of the 
recent NRC report Toxicity Testing in the 21st 
Century (NRC 2007).
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There are thousands of environmental chemi-
cals, including many industrial chemicals and 
pesticidal active and inert ingredients, with 
the potential for significant human exposures 
but for which toxicity information is either 
limited or nonexistent (Judson et al. 2009). 
This data gap is due largely to the high cost 
and length of time required to conduct ani-
mal testing in rodents and other species. A 
complete set of regulatory tests for a single 
chemical (including those for carcinogenic-
ity and for chronic, reproductive, and devel-
opment toxicity) uses thousands of animals 
and costs millions of dollars. In addition, 
traditional animal tests often yield limited 
information on mechanism of action, and 
hence on the cellular pathways that could 
lead to toxicity in humans. Such mechanistic 
information is key to moving beyond default 
approaches for extrapolating from high-dose 
animal toxicity tests to estimation of human 
risk at realistic exposure levels.

There is a pressing need to screen the 
large backlog of chemicals for their potential 
toxicity and, ultimately, their contribution 
to human diseases. The National Research 
Council (2007) advocated the use of mecha-
nistically informative in vitro assays based on 
human cells or human cell constituents that 
measure effects on “toxicity pathways” leading 

to human disease. The U.S. Environmental 
Protection Agency (EPA), through its 
ToxCast program (Dix et al. 2007) and 
the Tox21 collaboration with the National 
Toxicology Program and the National 
Institutes of Health Chemical Genomics 
Center, is pursuing similar objectives and 
applying many of the ideas represented in the 
National Research Council report (Collins 
et al. 2008; Kavlock et al. 2009).

ToxCast is a large-scale experiment using 
a battery of in vitro, high-throughput screen-
ing (HTS) assays, applied to a relatively large 
and diverse chemical space, to develop meth-
ods to predict potential toxicity of environ-
mental chemicals at a fraction of the cost of 
full-scale animal testing. Three major goals of 
ToxCast are to a) identify in vitro assays that 
can reliably indicate alterations in biologi-
cal processes of relevance to in vivo toxicity; 
b) develop signatures or prediction models 
based on multiple assays, along with com-
puted or available chemical properties, that 
can achieve higher predictive power than 
single assays or chemical structure alone; and 
c) use these combined in silico and in vitro 
assay-based signatures to screen large numbers 
of previously untested environmental chemi-
cals. The ToxCast data set provides a rich 
resource for identifying chemically induced 

changes in biological pathways that are associ-
ated with in vivo end points and that could 
potentially lead to human disease. Chemicals 
whose properties and assay profiles match 
these predictive signatures can be prioritized 
for more in-depth testing, which may include 
nontraditional, mechanism-focused in vivo 
tests. In this article, we provide an overview of 
the entire ToxCast phase I assay results data 
set and present initial analyses and findings.

Materials and Methods
Phase I of ToxCast employed a chemical 
library of 320 substances (U.S. EPA 2008a). 
Within this set there are 309 unique chemi-
cals, most of which are food-use pesticides 
for which extensive animal testing results are 
available. The mechanisms of toxicity for a 
number of these chemicals are known, thus 
affording the opportunity to match in vitro 
results with existing knowledge. Further 
information on the chemical library is pro-
vided in the Supplemental Material (available 
online at doi:10.1289/ehp.0901392).

We screened the chemical library using 
nine separate assay technologies, with assays 
run in concentration–response format and in 
some cases with multiple time points. Assays 
encompass both direct, primary interac-
tions between chemicals and molecular tar-
gets and downstream cellular events such as 
gene expression. Table 1 summarizes the nine 
in vitro assay technologies, and Supplemental 
Material, Table 1 (doi:10.1289/ehp.0901392) 
lists the complete set of in vitro assays. There 
are 467 cell-free or cell-based assays. Assay sets 
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In Vitro Screening of Environmental Chemicals for Targeted Testing 
Prioritization: The ToxCast Project
Richard S. Judson, Keith A. Houck, Robert J. Kavlock, Thomas B. Knudsen, Matthew T. Martin,  
Holly M. Mortensen, David M. Reif, Daniel M. Rotroff, Imran Shah, Ann M. Richard, and David J. Dix

National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency,  
Research Triangle Park, North Carolina, USA

Background: Chemical toxicity testing is being transformed by advances in biology and computer 
modeling, concerns over animal use, and the thousands of environmental chemicals lacking toxicity 
data. The U.S. Environmental Protection Agency’s ToxCast program aims to address these con-
cerns by screening and prioritizing chemicals for potential human toxicity using in vitro assays and 
in silico approaches.

oBjectives: This project aims to evaluate the use of in vitro assays for understanding the types of 
molecular and pathway perturbations caused by environmental chemicals and to build initial priori-
tization models of in vivo toxicity.

Methods: We tested 309 mostly pesticide active chemicals in 467 assays across nine technologies, 
including high-throughput cell-free assays and cell-based assays, in multiple human primary cells 
and cell lines plus rat primary hepatocytes. Both individual and composite scores for effects on 
genes and pathways were analyzed.

results: Chemicals displayed a broad spectrum of activity at the molecular and pathway levels. We 
saw many expected interactions, including endocrine and xenobiotic metabolism enzyme activity. 
Chemicals ranged in promiscuity across pathways, from no activity to affecting dozens of pathways. 
We found a statistically significant inverse association between the number of pathways perturbed 
by a chemical at low in vitro concentrations and the lowest in vivo dose at which a chemical causes 
toxicity. We also found associations between a small set of in vitro assays and rodent liver lesion 
formation.

conclusions: This approach promises to provide meaningful data on the thousands of untested 
environmental chemicals and to guide targeted testing of environmental contaminants.

key words: in vitro screening, liver proliferative lesions, liver tumors, pathways, ToxCast. Environ 
Health Perspect 118:485–492 (2010). doi:10.1289/ehp.0901392 [Online 14 December 2009]
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include biochemical HTS and cell-based HTS 
assays measuring direct molecular interactions 
with specific protein targets; high-content cell-
imaging assays measuring complex cellular 
phenotypes; a multiplexed gene expression 
assay for xenobiotic metabolizing enzymes 
and transporters in human primary hepato-
cytes; multiplexed transcription factor reporter 
assays; multiplexed biological activity profiling 
assays measuring biomarkers in a variety of 
human primary cell cocultures; assays measur-
ing effects of phase I and II xenobiotic metab-
olizing enzyme (XMEs) on cytotoxicity; an 
HTS genotoxicity assay; and a real-time cellu-
lar impedance assay that measures the kinetics 
of cell growth and changes in morphology. For 
all cell-based assays, time points were selected 
on the basis of studies conducted during the 
assay development and were considered opti-
mal for the end point being evaluated.

A total of 624 in vitro assay end points 
(including multiple time points) were meas-
ured for each chemical, generating > 200,000 
concentration responses. Assays have been 
mapped to a total of 315 genes, most of which 
are human (231) or rat (65) [see Supplemental 
Material, Table 1 (doi:10.1289/ehp.0901392)]. 
In all cases we report a charac teristic micro-
molar concentration for each chemical–assay 
combination. These values were either half-
maximal activity concentration (AC50) or 
lowest effective concentration (LEC) at which 
there was a statistically significant change from 
the concurrent negative control. Criteria for 
determining the characteristic concentration is 
given in the Supplemental Material. Chemical–
assay combinations that did not show signifi-
cant activity below the highest concentration 
tested were labeled inactive. The complete 
data set, including AC50/LEC values for all 
chemical–assay measurement pairs, is available 
from the EPA ToxCast Web site (U.S. EPA 
2008b). Experimental protocols and informa-
tion on data quality are summarized in the 
Supplemental Material.

Many of the compounds in our library 
have matching guideline study animal toxicity 

data. Information from regulatory toxicity 
studies on the pesticide compounds submit-
ted to the U.S. EPA (Knudsen et al. 2009; 
Martin et al. 2009a, 2009b) were compiled 
in the U.S. EPA Toxicity Reference Database 
(ToxRefDB) (U.S. EPA 2008c). Study types 
include rat and mouse 2-year cancer or chronic 
bioassays, rat multigenerational reproductive 
toxicity assays, and rat and rabbit prenatal 
developmental toxicity assays. ToxRefDB pro-
vides the lowest effective level at which par-
ticular in vivo treatment-related effects were 
significantly different from negative controls. 
For each of the in vivo study types, typically 
250–280 of the ToxCast chemicals had data 
available and entered into ToxRefDB.

Results
Figure 1 shows a heat map of the entire 
in vitro data set, providing an overview of the 
data. Generally, the biochemical HTS assays 
(indicated by red in the top band) had fewer 
hits than did the cell-based assays, as evident 
from the increasing density of hits progress-
ing from left to right in the heat map. On 
the left side of this plot are 87 assays that had 
no AC50/LEC values identified for any of the 
chemicals at levels below the highest concen-
tration tested (see Table 1 for concentration 
ranges tested). In Figure 1, all hits are shown, 
up to where the AC50/LEC occurred at the 
highest tested concentration. However, some 
of these values may not be physiologically rele-
vant because in vitro systems can be exposed to 
concentrations higher than can occur in vivo in 
relevant tissues under conditions of a bioassay. 
Supplemental Material, Figure 1 (doi:10.1289/
ehp.0901392) shows the number of hits 
per chemical as a function of the threshold 
AC50/LEC values used to define a hit. At the 
comparatively low threshold of 1 µM, there 
were relatively few hits per chemical. There 
were 828 chemical–assay pairs (0.5% of pairs 
tested) with an AC50/LEC < 1 µM (listed in 
Supplemental Table 2), many of which were 
related to nuclear- receptor–mediated xeno-
biotic metabolism. Of the chemicals that had 

AC50/LEC values < 1 µM in multiple assays, 
some showed cytotoxicity in one or more of 
the cell-based assays, which suggests cytotox-
icity pathway activation, although in many 
cases we do not have a specific (cell-free) assay 
that would indicate which pathway that was. 
Cytotoxicity may comprise a relevant end 
point of specific biological process(es) lead-
ing to cellular demise (e.g., apoptosis), or it 
may comprise nonspecific collapse of cellular 
homeostasis (e.g., necrosis). Both are consid-
ered in phase I, and the former may be the 
result of targeted pathways engaged by specific 
molecular lesions, whereas the latter may gen-
erally follow from nonspecific cell injury. In 
other chemicals, we only saw specific targeted 
activities at these low concentrations, without 
any accompanying cytotoxicity.

Confidence in the predictive power of 
in vitro HTS data builds from many exam-
ples that confirm reported mechanisms of 
action for a number of well-studied chemi-
cals. For example, bisphenol A, a known 
estrogen receptor (ER) agonist (Chapin et al. 
2008), had AC50/LEC values < 1 µM for 
three separate ER (estrogen receptor, ESR1) 
assays [Supplemental Material, Table 2 
(doi:10.1289/ehp.0901392)]. Expected ER 
activity at concentrations < 1 µM was also 
found for methoxychlor’s potent metabolite 
2,2-bis(4-hydroxyphenyl)-1,1,1-trichloro-
ethane. Similarly, results for the well-known 
androgen receptor (AR) antagonists linuron, 
prochloraz, and vinclozolin (Wilson et al. 
2008) showed activity in AR assays (linuron, 
57 µM antagonist, 5.1 µM binding; prochlo-
raz, 12.5 µM binding; vinclozolin, 27 µM 
antagonist, 0.9 µM binding). Expected peroxi-
some proliferator–activated receptor (PPAR) 
activators perfluorooctanoic acid (PFOA) 
and perfluorooctane sulfonic acid (PFOS) 
(DeWitt et al. 2009; Lau et al. 2004), di ethyl-
hexyl phthalate (Melnick 2001), and lactofen 
(Butler et al. 1988) were all positive for PPARγ 
assays, and all but PFOS were also active in 
PPARα assays. Azoxystrobin, fluoxastrobin, 
and pyraclostrobin were active mitochondrial 

Table 1. Summary of the ToxCast in vitro assays: types of cells, number of concentrations (concentration range), time points, and types of readout. 
Assay set Assays Cell type Concentrations (µM) Time points Readout
Cell-free HTS 239 Cell free CYP assays: 8 (0.00914–20)

All others: 8 (0.0229–50)
1 IC50

Cell-based HTS 13 HEK293, HeLa, HepG2, FAO 15 (0.0012–92) 1 IC50
High-content cell imaging 19 HepG2 and primary rat hepatocytes 10 (0.39–200) 3 (1, 24, 72 hr) IC50
Quantitative Nuclease protection 16 Primary human hepatocytes 5 (0.004–40) 3 (6, 24, 48 hr) IC50
Multiplex transcription reporter 81 HepG2 7 (0.0014–100) 1 LEC
Biologically multiplexed activity 

profiling (BioMAP)
87 HUVEC, HDFn, HBEC, ASMC,  

KC, PBMC
4 (1.48–40) 1 LEC (separate up- and  

down-regulation readouts)
Phase I and II XME cytotoxicity 4 Hep3B 9 (0.0146–960) 1 IC50
HTS genotoxicity 1 TK6 3 (50–200) 1 LEC
Real-time cell electronic sensing 7 A549 8 (0.047–100) Continuous (0–48 hr) IC50, LEC

Abbreviations: A549, human alveolar basal epithelial cell carcinoma cell line 549; ASMC, arterial smooth muscle cells; CYP, cytochrome P450; FAO, Reuber rat hepatoma cell line; HBEC, 
human bronchial epithelial cells; HDFn, human neonatal foreskin fibroblasts; HEK293, Human embryonic kidney cell line 293; HeLa, Henrietta Lacks cervical cancer cell line; Hep3B, hepa-
tocellular carcinoma cell line 3b; HepG2, hepatocellular carcinoma cell line G2; HUVEC, human umbilical vein endothelial cells; KC, keratinocytes; PBMC, peripheral blood mononuclear 
cells; TK6, T-cell blast cell line 6. Data were collected in concentration–response format for each chemical–assay pair. If data were fit to a Hill function, we report the AC50 values. In 
other cases, an LEC was determined by significant change relative to negative control. Assay methods are described in more detail in Supplemental Material (doi:10.1289/ehp.0901392). 
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poisons in the HepG2 (hepatocellular carci-
noma cell line G2) high-content cell-imaging 
assays, consistent with their pesticidal mode of 
action (Brandt et al. 1988). Thus, the redun-
dancy and complementarity of multiple assays 
allow an integration of data across multiple 
assay technologies to boost confidence in the 
results. In some cases, in vitro results include 
indications of other biological pathways being 
activated by these well-studied chemicals, sug-
gesting that other modes of action may be 
operative as well. To take one chemical as an 
example, PFOS shows activity against several 
matrix metalloproteinases, with AC50 values 
for direct interaction with matrix metallo-
proteinase (MMP)3 and MMP13 in cell-free 
HTS assays (14.6 and 32.4 µM, respectively) 
and perturbation of MMP1 and MMP9 levels 
in a cell-based assay (13.3 and 4.4 µM, respec-
tively). MMPs are involved in the breakdown 
of extracellular matrix during development 
and tissue remodeling. These and other inter-
actions could lead to the formation of specific 
hypotheses to test regarding toxicity mecha-
nisms of these chemicals.

Activity against human genes and path-
ways. Most of the ToxCast assays use human 
proteins and cells because our ultimate aim 
is to predict human toxicity. Assays probed 
231 human genes either through direct inter-
actions with the relevant protein or using a 
variety of indirect, downstream readouts of 
mRNA or protein levels. These genes were 
mapped to 143 published pathways from 
the KEGG (Kyoto Encyclopedia of Genes 
and Genomes) (Kanehisa et al. 2002) and 
Ingenuity Systems (http://www. ingenuity.
com). From these human-based assays, com-
posite gene and pathway perturbation scores 
were calculated. We computed “gene per-
turbation scores” for the subset of genes for 
which we had one or more assays, and these 
were assigned an LEC value for each chem-
ical. The LEC is the minimum AC50/LEC 
value for that chemical in any assay that was 
mapped to that particular gene. We also com-
puted “pathway perturbation scores,” which 
were assigned the minimum AC50/LEC value 
for a chemical in any assay that was mapped 
to a gene in the pathway. For a chemical to 
be considered active in a pathway, it had to 
have shown activity in at least five assays that 
mapped to that pathway. A total of 122 path-
ways had at least one chemical hit. [The chem-
ical-by-pathway assay LEC values are given in 
Supplemental Material, Table 3 (doi:10.1289/
ehp.0901392).] This collection of published 
pathways show significant overlap, so we 
also compiled a minimal set of 33 pathways 
inclusive of all genes represented in the total 
pathway set. Although this is a small subset 
of the total number of human pathways that 
could lead to toxicity, it allows us to sample 
the range of potential activities across phase I 

chemicals. Supplemental Figure 2 shows a net-
work diagram of the minimal set of pathways 
linked to the genes for which we have assays. 
From this one can see redundancy between 
pathways in the down-selected target set.

Figure 2 shows the distribution of hits 
across all assays, direct assays, and gene and 
minimal pathway perturbation scores, as a 
function of the minimum AC50/LEC value 
used to define a hit. Direct assays are those 
measuring perturbation of chemical–target 
activity in an optimized biochemical assay 
(Table 1). The balance of the assays are cell 
based and mostly measure up- or down-
 regulation of particular genes or proteins 
through direct or indirect mechanisms of 
chemical activity. Because indirect effects can 
arise from multiple direct chemical–target 
interactions, chemicals logically show broader 
activity in these assays. The number of direct 
assay and total assay measurements for human 
targets are 130 and 425, respectively. In 

general, the ratio of hits between direct and 
indirect is much less than the overall ratio 
of the number of direct to indirect assays. 
Some chemicals show a large number of hits 
against direct targets. At a 30-µM cutoff for 
activity, nine chemicals have at least 20 direct 
hits: emamectin benzoate, fentin, imazalil, 
mancozeb, maneb, metiram-zinc, milbemec-
tin, oxytetracycline dihydrate, and PFOS. 
Mancozeb, maneb, and metiram-zinc are dif-
ferent salts of the same parent, and emamec-
tin benzoate and milbemectin are related 
macrocyclic antibiotics. Overall, however, 
these nine chemicals are structurally diverse. 
Figure 2B shows the same distribution of hits 
for the gene and minimal pathway assays. 
Note that the scale for the pathways is signifi-
cantly smaller because of the requirement that 
chemicals hit at least five pathway-mapped 
assays to be considered to have a positive 
pathway perturbation score. Except at the 
lowest cutoff of 1 µM, the median number of 

Figure 1. Heat map of 624 assay measurements (including multiple time points where available) in ToxCast 
phase I data set. Assays are arranged left to right, and chemicals are arranged top to bottom. The color 
bar at the top indicates the assay type: red (cell-free HTS), violet (multiplexed transcription reporter), yel-
low (biologically multiplexed activity profiling), green (high-content cell imaging), blue (multiplexed gene 
expression), pink (cell-based HTS), black (phase I and II XME cytotoxicity), white (real-time cell electronic 
sensing), and orange (HTS genotoxicity). Data values are –log10(AC50/LEC), where light pink is inactive and 
darker reds indicate increased activity (lower AC50/LEC).
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hits for genes or minimal pathways is > 5, and 
a number of chemicals show much broader 
activity than this. The chemicals that hit ≥ 20 
of the minimal pathways with a 30-µM cutoff 
are fluazinam, mancozeb, maneb, metiram-
zinc, and pyraclostrobin.

This broad range of activity is not seen 
universally across chemical classes. Figure 3 
shows the distribution of hits against the 
minimal pathway set with chemicals parsed 
by chemical class (limited to classes with at 
least 10 chemicals). The conazoles and tri-
azoles (many of which overlap) and pyre-
throids show the broadest activity spectrum, 
with median number of pathway hits of 
around 10 of the 33 minimal pathways. In 
contrast, the sulfonylurea and phenoxy com-
pounds are active in only a few pathways on 

average. However, even across the broadly 
active chemical classes, there is a spectrum of 
activity. These findings show that environ-
mental chemicals are active across multiple 
human genes and pathways.

We next examined the consequence of the 
multiplicity of pathways perturbed by these 
chemicals. A simple analysis is to see if the like-
lihood of cytotoxicity increases with the num-
ber of pathways in which a chemical is active. 
The data set includes 15 cytotoxicity assays 
using 11 primary human cell types or cell 
lines. We found a strong correlation between 
the number of pathways in which a chemical 
is called active and the minimum concentra-
tion at which cytotoxicity is observed across 
15 cytotoxicity assays. Figure 4 shows the cor-
relation between the number of pathway hits 

and the minimum AC50/LEC for cytotoxicity 
across the 15 assays. The p-value for the asso-
ciation is < 2.2E-16, and R2 = 0.55 for linear 
correlation.

We tested the hypothesis that the lower 
the concentrations at which a chemical shows 
activity in vitro, the lower will be the doses 
at which in vivo toxicity will be observed for 
that chemical. This hypothesis is based on 
three assumptions: a) Pathways perturbed by a 
chemical in vitro will also tend to be perturbed 
in vivo, although the magnitude may be very 
different because of tissue-specific feedback 
or adaptation not active in vitro. b) Pathway 
perturbations in vivo arising from specific 
chemical–target interactions require chemical 
concentration at the target site to be in the 
range where effects on the in vitro assay are 
seen; hence, lower in vitro AC50 values imply 
lower concentrations at which in vivo effects 
are seen. c) There are combinatorial pathways 
that, when perturbed, can lead to a given 
observed toxicity, and the AC50 values for the 
toxicity-related pathways for a chemical will be 
distributed randomly through the total distri-
bution of AC50 values, including some in the 
low concentration tail of that distribution.

To test this hypothesis, we first looked 
for direct correlations between low in vitro 
pathway perturbation score AC50 values for 
the minimal pathway set and the lowest dose 
at which toxicity was seen in vivo. Because we 
have only sparsely sampled the space of direct 
targets (e.g., enzymes, receptors), we used the 
number of pathways perturbed below some 
concentration threshold as a surrogate esti-
mate for minimum concentration at which a 
chemical significantly perturbs pathways. This 
is based on the assumption that each chemi-
cal shows a distribution of AC50 values across 
the complete set of pathways and that this 
distribution has a long tail going toward low 
concentrations. More pathway hits below a 
defined cutoff will correlate with the entire dis-
tribution shifting toward lower concentrations. 
For each chemical and each in vivo study type 
in ToxRefDB, we tabulated the lowest dose at 
which any treatment-related effect occurred. 
A linear regression fit between the number of 
pathway hits at concentrations < 30 µM (trend 
and significance is relatively insensitive to this 
cutoff) and the lowest dose at which toxic-
ity was observed yielded p-values of 0.0031 
(chronic rat), 0.0007 (chronic mouse), 0.037 
(developmental rat), 0.053 (developmental 
rabbit), and 0.019 (multigenerational rat). 
Except for the developmental rabbit study, all 
study types showed a significant association 
at the 0.05 level. In addition, the sign of the 
association was correct in all cases: The higher 
the number of low-concentration in vitro 
pathway hits, the lower the observed low-
est toxic dose in vivo. Therefore, these results 
show a significant association between low 

Figure 2. Distribution of number of hits per chemical as a function of AC50/LEC cutoff used to define a hit. 
(A) Distributions for all human assay measurements (out of 425) and the “direct” measurements from 
the cell-free HTS assays. The other assays are cell based and can potentially respond to multiple direct 
chemical interactions. (B) Number of hits per chemical for the gene and pathway perturbation scores. 
In each box and whisker plot, the heavy bar indicates the median, the boxes encompass the second and 
third quartiles, the whiskers extend to ±1.58 (interquartile range)/(number of assay-chemical hits), and the 
circles indicate outliers.
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in vitro concentrations for pathway perturba-
tions caused by a chemical and the lowest dose 
at which treatment-related effects are first seen 
in vivo.

We also performed the association calcula-
tion using the short-term half-maximal lethal 
dose (LD50) (International Programme on 
Chemical Safety 2005) as a covariate. LD50 
has a strong correlation with the lowest dose 
at which other toxic effect occurs and can help 
correct for factors not included in the path-
way parameter, including pharmacokinetics. 
In models including both terms, the p-values 
for association between the number of path-
way hits at concentrations < 30 µM and the 
lowest dose at which toxicity was observed 
were 0.0019 (chronic rat), 0.00015 (chronic 
mouse), 0.00049 (developmental rat), 0.011 
(developmental rabbit), and 0.00063 (multi-
generational rat). We see stronger correlations 
between in vitro activity and the threshold of 
toxicity after adjusting for LD50, and the sign 
of the effect was as hypothesized in all cases. 
The example in Figure 5 shows the results of 
the model fit for prenatal developmental toxic-
ity in rats, which resulted in the highest corre-
lation across the five study types (R2 = 0.51).

 Rat liver tumors and PPAR signaling. 
Almost half of the tested chemicals caused 
tumors in either rats or mice in high-dose 
2-year chronic/cancer bioassays (Martin 
et al. 2009a), with most of these having been 

determined by the U.S. EPA to be nongeno-
toxic tumorigens (U.S. EPA 2009). Of the 309 
chemicals tested, 248 have rat 2-year chronic/
cancer bioassay data entered into ToxRefDB, 
and 21 of these are liver tumorigens [chemi-
cals shown in Supplemental Material, Figure 3 
(doi:10.1289/ehp.0901392)]. These 21 are a 
subset of the 97 chemicals that are rat tum-
origens of any tissue type. All rat liver tumors 
caused by this set of chemicals were hepatocyte 
derived. We tested for univariate associations of 
all in vitro assays and gene perturbation scores 
against all rodent liver in vivo end points, and 
identified a total of five in vitro assays with a 
significant association with rat liver tumors 
(Fisher’s exact test p-value < 0.01). Results 
for these five assays and for the 21 chemicals 
that are rat liver tumorigens are illustrated in 
Supplemental Material, Figure 3. Three of the 
five assays are associated with the nuclear recep-
tor pathway genes PPARA and PPARG, one is 
associated with the cytokine chemokine (C-C 
motif) ligand 2 (CCL2), and the last with the 
AR. The PPARA transcription reporter assay 
shows high specificity (0.99) but low sensitiv-
ity (0.19) (Fisher’s exact p-value = 0.0005). 
The relative risk of causing rat liver tumors 
for chemicals being positive for this assay was 
9.5. The PPARG assay shows high sensitivity 
(0.86) but low specificity (0.53) (Fisher’s exact 
p-value = 0.0009). Also associated with rat liver 
proliferative lesions is hydroxymethylglutaryl-

coenzyme A synthase 2 (HMGCS2), which is 
a gene regulated by PPARA, providing indirect 
evidence that the human PPARα pathway has 
been activated by this group of chemicals.

PPAR activation is a well-studied mecha-
nism or mode of action for chemically induced 
liver tumors in rodents (Abbott 2008; Klaunig 
et al. 2003; Lai 2004; Peters 2008; Takeuchi 
et al. 2006). The primary role of PPARs is 
in lipid and fatty acid metabolism; however, 
xenobiotic compounds may activate PPAR in 
hepatocytes, leading to induction of xenobi-
otic metabolizing enzymes as well as peroxi-
some proliferation and hepatocyte hypertrophy. 
During prolonged exposure to PPAR activa-
tors, rodent hepatocytes can become hyperplas-
tic, necrotic, or apoptotic, and in some cases 
neoplastic. The relevance of PPAR-mediated 
rodent tumors to human toxicity and disease is 
an active area of research and debate (Desvergne 
et al. 2009; Guyton et al. 2009; Klaunig et al. 
2003). Nonetheless, based on the carcinogenic 
potential of PPAR-activating compounds, 
current U.S. Food and Drug Administration 
(FDA) guidance on PPAR agonists requires 
2-year carcinogenicity evaluations in rats and 
mice before initiation of human clinical studies 
longer than 6 months (U.S. FDA 2008).

CCL2 levels have been shown to be 
associated with severity or progression in a 
number of tumor types (Roca et al. 2008). 
CCL2 helps drive angiogenesis (Kuroda et al. 

Figure 4. Plot of the minimum concentration at which a chemical caused cyto-
toxicity as a function of the number of minimal pathways in which the chemical 
was active at concentrations < 30 µM. Chemicals for which no cytotoxicity was 
observed were assigned an AC50 of 1 mM. The correlation coefficient is mini-
mally sensitive to this default value. The line gives the fitted regression model. 
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2005). There is also evidence linking CCL2 
with up-regulation of bile acids, cholestatic 
liver injury, and fibrogenesis in rats (Ramm 
et al. 2009). Studies have discovered linkages 
between AR and androgen levels and hepato-
cellular carcinoma in humans and animals 
[reviewed by Kalra et al. (2008)].

There is extensive evidence that perturb-
ing androgen signaling activity is associated 
with increased risk of liver tumors. AR is 
expressed in the liver of rats (Konoplya and 
Popoff 1992) and humans (Iqbal et al. 1983), 
and hepatic tumor development is likely influ-
enced by androgens, as indicated by the fact 
that males have a greater prevalence of liver 
neoplasms in humans (Curado et al. 2007) 
and rodents (Kemp and Drinkwater 1989). 
Elevated levels of testosterone (Grange et al. 
1987) are associated with increased risk of 
hepatic adenomas in men. In male rats, testos-
terone (Morris and Firminger 1956) promote 
rat liver tumor development. The hypoth-
esized mode of action for the liver tumorige-
nicity of AR antagonists such as vinclozolin 
and linuron is as follows: The antiandrogens 
block AR function and negative feedback of 
the pituitary, so more luteinizing hormone 
is produced, which in turn leads to increased 
production of androgens by testicular Leydig 
cells. Whereas androgen homoeostasis may 

eventually reset, animals can have significantly 
elevated androgen levels, which can in turn 
promote liver tumor development.

We also investigated associations between 
in vitro assays and the progression of liver dis-
ease in rats. Chemicals were categorized accord-
ing to rat liver disease progression: those causing 
no liver lesions (122 chemicals) or causing any 
type of liver lesion (126 chemicals). Chemicals 
causing liver lesions could be classified further 
into subsets of those causing preneoplastic or 
neoplastic liver lesions (58 chemicals), or those 
causing just neoplastic liver lesions (21 chemi-
cals). All assays were correlated against these 
three rat liver lesion categories. Figure 6 shows 
associations with a p-value < 0.01 (either t-test 
or Fisher’s exact test), in which the genes linked 
to assays statistically associated with the three 
rat liver lesion categories, as well as human dis-
ease categories assigned through the Online 
Mendelian Inheritance in Man (OMIM) data-
base (Goh et al. 2007). PPARG, HMGCS2, 
and CCL2 are all associated with preneoplastic 
and neoplastic levels in the liver disease progres-
sion, and PPARA is additionally associated with 
neoplastic lesions.

More than half of genes with any associa-
tion were involved with xenobiotic metabo-
lism in the liver (9 of 15), with most of these 
being cytochrome P450 enzymes. Many of 

these XME genes are regulated by PPAR or 
other nuclear receptors, and other assays indi-
cated direct associations with rat and human 
pregnane X receptor (NR1I2). Preneoplastic 
and neoplastic liver lesions are also associated 
with PPARG activation. These data suggest that 
induction of liver neoplasms by these chemicals 
is PPARA dependent, and potentially coupled 
with PPARG and CCL2, whereas a variety of 
xenobiotic metabolism and other pathways can 
lead to more general liver lesions.

Discussion
The large ToxCast data set links in vitro 
and in vivo assay results to genes and path-
ways, providing a unique public resource for 
researchers modeling chemical biology and 
toxicity. We are expanding this collection in 
both chemical and assay space and plan to 
test thousands of environmental chemicals 
in the coming years. The examples we give 
here are among the many areas of toxicol-
ogy that can be explored using this data set, 
and we are finding other associations with 
chronic, developmental, and reproductive tox-
icity. In vitro assays directly probe chemical 
perturbations of pathways either by measur-
ing small molecule–protein interactions or 
closely linked downstream effects. Because 
of this, we can make use of information on 
links between genes, proteins, and diseases 
that have been derived from genetic variation 
and gene knockout studies. Organizing HTS 
in vitro data around human toxicity and dis-
ease pathways will allow synthesis with other 
mechanistic data on environmental chemi-
cals coming from genomics, proteomics, and 
metabolomics studies. An initial mapping of 
this set of assays to broad molecular, cellular, 
and disease classes using the OMIM-based 
categories of Goh et al. (2007) is illustrated in 
Supplemental Material, Figure 4 and Table 4 
(doi:10.1289/ehp.0901392). Genes in the 
current assay set are linked to various toxic-
ity end-point classes. One important series of 
next steps is to identify the key disease classes 
and pathways relevant to the toxicity of envi-
ronmental chemicals and to work with other 
researchers to develop critical missing assays in 
these pathways.

Our short-term goal is to screen large 
numbers of environmental chemicals and 
prioritize them for further testing, based on 
scores for disease-related predictive signatures 
and on exposure potential. The longer term 
goal is to use in vitro assays to understand 
the multitude of mechanisms of action for 
in vivo chemical toxicity, and for this to be 
realized there remain a number of significant 
challenges. The most widely held criticism of 
this in vitro–to–in vivo prediction approach 
is that genes or cells are not organisms and 
that the emergent properties of tissues and 
organisms are key determinants of whether 

Figure 6. Network of genes associated with the progression of rat liver tumor end points. Associations 
were calculated using Fisher’s exact test, with assay AC50/LEC values ≤ 100 µM set to 1 and those with 
> 100 µM set to 0. Only associations with a p-value < 0.01 are included. Links between genes (yellow) and 
in vivo end points (pink) are shown where there is a statistical association based on the in vitro assay 
results. The “Any lesion” category contains the “Preneoplastic” category, which in turn contains the 
“Neoplastic” lesions category. Disease or disorder classes (cyan) are linked to genes according to Goh 
et al. (2007).
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a particular chemical will be toxic. A related 
challenge is the understanding of what short-
timescale (hours to days) in vitro assays can tell 
us about long-timescale (months to years) pro-
cesses that lead to in vivo toxicity end points 
such as cancer. Finally, biotransformation of 
compounds into metabolites that can be more 
or less active than the parent clearly must be 
considered in the assay or modeling treatment. 
We either need assays in which realistic levels 
of biotransformation occur in vitro so that the 
complete suite of active metabolites can be 
assessed, or need to explicitly or implicitly test 
active metabolites.

Understanding the correlation between 
in vitro AC50/LEC values and the correspond-
ing chemical concentrations in blood or tissues 
will be crucial in extending this approach to 
quantitative risk assessments. If we find that 
environmental contaminants activate toxic-
ity pathways in cell systems at concentrations 
close to those detected in human samples, for 
instance, from population-wide biomonitor-
ing studies (Centers for Disease Control and 
Prevention 2005), it should raise the priority 
for studying the potential human toxicity of 
those chemicals (National Research Council 
2007). In ToxCast, we aim to predict the 
potential for chemicals to affect human health, 
but all of the current in vivo data being used 
to develop prediction models is from high-
dose animal testing. Where possible, it will be 
important to evaluate chemicals for which we 
have human toxicity data, such as pharma-
ceutical compounds that have displayed tox-
icities when tested in humans. The U.S. EPA 
and Pfizer Inc. have recently agreed to work 
together in testing such compounds in the next 
phases of ToxCast. Assuming these challenges 
are adequately addressed, we believe that this 
HTS approach for toxicity testing will be a 
practical solution for evaluating the backlog of 
thousands of untested environmental chemi-
cals, leading to more efficient, informed, and 
targeted testing for protection of public health.

Conclusions
The first phase of ToxCast, outlined here, 
is an important step in evaluating the use of 
high-throughput in vitro assays to prioritize 
chemicals for more detailed testing and to 
prioritize which tests should be run. The latter 
will be driven by the mechanistic understand-
ing that these assays provide. Perhaps the most 
important conclusion from the summary data 
presented here is how multifunctional these 
chemicals can be. Chemicals can hit many 
molecular targets and perturb many path-
ways, albeit typically with AC50 values of tens 
of micromolar. This means that understand-
ing the route from molecular interactions to 
in vivo toxicity will likely not be a matter of 
finding single molecular targets linked to well-
defined whole-animal phenotypes. Whether 

at the molecular, cellular, tissue, or whole-
 animal level, these chemicals have the poten-
tial to perturb many processes.

Understanding the complex biological 
cascades triggered by environmental chemi-
cals and understanding how to use in vitro 
data in a prioritization and regulatory con-
text will be complex tasks requiring insights 
spanning many disciplines. Because of the 
enormity of the challenge, we have already 
made the ToxCast phase I assay data avail-
able to a network of analysis partners around 
the world. These results are being compared 
with the $2 billion worth of traditional toxi-
cology results, collected by the U.S. EPA 
over the past 30 years and incorporated into 
ToxRefDB, as a transitional step toward a 
new toxicity testing paradigm focused on pre-
dicting the potential hazards of environmental 
chemicals. When key events are linked to tox-
icity and disease pathways, they provide regu-
latory agencies with a powerful new tool for 
determining under what conditions environ-
mental exposures pose risks to human health.

The ability to use molecular and computa-
tional sciences holds the potential to usher in 
a new era of prioritizing, assessing, and man-
aging chemicals at the U.S. EPA. Building 
this new toxicity testing paradigm will be a 
challenge and will take time, and no one orga-
nization can accomplish it alone. In addition, 
achieving these objectives will require trans-
parency, data sharing, peer review, and a cohe-
sive plan for interpretation and application of 
these emerging approaches. We are preparing 
to launch a second phase of ToxCast that 
will expand on and verify the ability of this 
approach to predict potential human toxicity. 
We expect to complete this second phase of 
ToxCast over the next several years and realize 
the promise of delivering innovative computa-
tional methods for evaluating potential health 
impacts of environmental chemicals.
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Understanding the potential health risks posed by environmental chemicals is a significant challenge ele-
vated by the large number of diverse chemicals with generally uncharacterized exposures, mechanisms,
and toxicities. The present study is a performance evaluation and critical analysis of assay results for an
array of 292 high-throughput cell-free assays aimed at preliminary toxicity evaluation of 320 environ-
mental chemicals in EPA’s ToxCastTM project (Phase I). The chemicals (309 unique, 11 replicates) were
mainly precursors or the active agent of commercial pesticides, for which a wealth of in vivo toxicity data
is available. Biochemical HTS (high-throughput screening) profiled cell and tissue extracts using semi-
automated biochemical and pharmacological methodologies to evaluate a subset of G-protein coupled
oxicology, ToxCast, Environmental
hemicals

receptors (GPCRs), CYP450 enzymes (CYPs), kinases, phosphatases, proteases, HDACs, nuclear receptors,
ion channels, and transporters. The primary screen tested all chemicals at a relatively high concentration
25 �M concentration (or 10 �M for CYP assays), and a secondary screen re-tested 9132 chemical-assay
pairs in 8-point concentration series from 0.023 to 50 �M (or 0.009–20 �M for CYPs). Mapping relation-
ships across 93,440 chemical-assay pairs based on half-maximal activity concentration (AC50) revealed
both known and novel targets in signaling and metabolic pathways. The primary dataset, summary data

trol c
and details on quality con

. Introduction

Environmental chemicals encompass a wide diversity of chemi-
al structures and have the potential for broad toxicities depending
n chemical property, exposure and bioavailability, and specified
r unspecified biological activity (Judson et al., 2009). The current
aradigm used for setting human exposure standards based on low-
ose extrapolation or conservative default assumptions follows
rom observing traditional toxicity endpoints (apical response) in

uideline animal testing protocols. Dose–response curves are fit-
ed from the animal data and then used to estimate the in vivo
xposure corresponding to a specified adverse change in the apical
esponse. This method has historically contributed valuable infor-
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mation for risk assessments to support human exposure standards
(Crump et al., 2010). The current paradigm based on in vivo data
does not, however, effectively scale to the need for toxicity infor-
mation on 10,000 chemical compounds of importance to the U.S.
Environmental Protection Agency (Judson et al., 2009) and 30,000
chemicals under European REACH legislation (REACH, 2008). Nor
does the current paradigm address the public demand to reduce
animal testing (Hartung, 2009), or meet scientific demands for
detailed information to support more mechanistically-based mod-
els of human toxicity (National Research Council, 2007).

High-throughput screening (HTS) and high-content screening
(HCS) technologies combined with an array of in vitro assays and
computational tools are now being explored for potential applica-
tion in assessing toxicity and managing chemical risks (Dix et al.,
2007; Collins et al., 2008; Inglese et al., 2007; Schmidt, 2009;

Firestone et al., 2010; Judson et al., 2010). Toward this end, EPA’s
ToxCastTM project released a HTS-HCS dataset on 309 environ-
mental chemicals, mostly data-rich pesticide active ingredients
tested across nearly 500 in vitro assays that probe diverse molecu-
lar functions and cellular behaviors (Judson et al., 2010). Phase-I of
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oxCast provided detailed in vitro information across 467 in vitro
ssays [http://www.epa.gov/ncct/toxcast/]. Most of the Phase-I
hemical library is made up of active or inert ingredients in com-
ercial pesticide products (Dix et al., 2007); hence, most of the

hemical compounds have high-quality and uniformly-generated
n vivo toxicity data as mandated by the Federal Insecticide, Fungi-
ide, and Rodenticide Act (FIFRA) and Food Quality Protection
ct (FQPA) (USEPA, 2009a). The corresponding results have been
ade available as a database (ToxRefDB), also released in 2010

http://actor.epa.gov/toxrefdb/] containing bioassay data evalu-
ted on chronic/cancer (Martin et al., 2009a), multi-generational
eproductive (Martin et al., 2009b) and prenatal developmental
Knudsen et al., 2009) endpoint studies.

The transformative nature of ToxCast, which is somewhat dis-
inct from other applications of HTS-HCS data, is in the capacity
o derive ‘predictive models’ of toxicity that are mechanistically-
ased, i.e. providing conceptual relationships between molecular
arget and key events that can potentially aid regulatory decisions
ritical to human health. Some of the known pesticidal modes of
ction (MoA) for chemicals in the Phase-I library include disrup-
ion of microtubule assembly, oxidative phosphorylation, sterol
nd fatty acid biosynthesis, platelet aggregation, and neurotrans-
ission (e.g., cholinergic, ion channels) in specific target organisms

Guyton et al., 2008). The pesticidal efficacy is therefore dependent
pon the degree to which an active ingredient(s) discriminates
etween target and non-target species, the physical application
ringing the product into selective contact with target organisms,
nvironmental fate and in some cases, the onset of resistance
Stenersen, 2004). As such, their intended use in unwanted species
aises the question: what cross-species or off-target effects may
ead to human toxicity?

The present study is a performance evaluation and critical anal-
sis of the biochemical HTS data. This analysis surveys the results
rom a total of 292 cell-free biochemical assays, including 239
ssays from the original public release of ToxCast (Judson et al.,
010) and 53 newly added assays. The biochemical assay portfo-

io includes enzymatic and binding assays for specified G-protein
oupled receptors (GPCRs), cytochrome P450 mono-oxygenase
nzymes (CYPs), kinases, phosphatases, proteases, histone deacety-
ases (HDACs), nuclear receptors, ion channels, and transporters.
he assays were selected from a commercial ‘NovaScreen’ panel
NVS) for preclinical drug development based on published evi-
ence linking assay targets to pathways of toxicity, cell signaling
nd xenobiotic metabolism. Some assays were simple component
ystems (e.g., purified recombinant mammalian protein expressed
n bacterial or insect systems) and others multi-component (e.g.,

embrane fractions from tissue homogenates or soluble fractions
rom cultured human cell lines). Both human and non-human
ssay targets were investigated to allow cross-species compari-
on of orthologous assay results. The Phase-I chemical library thus
rovides an excellent prototype for initial exploration of HTS tech-
ologies intended to probe a broad range of interactions relevant
o pathways of biological activity and potential toxicity.

The biochemical HTS platform screened 93,440 chemical-assay
airs in two series. A primary screen tested all 309 chemicals at
5 �M concentration (or 10 �M for CYP assays). Although a typi-
al drug discovery effort may screen a chemical library for active
ompounds at lower chemical concentrations (e.g., 1 �M) to avoid
alse positives, our strategy was to use high concentration test-
ng to minimize false negatives. In comparison, work reported by
nother laboratory (Morisseau et al., 2009), reporting HTS data

rom an evaluation of 176 compounds from a structurally diverse
ibrary of environmental chemicals across 9 enzyme-based and 5
eceptor-based assays, performed primary screening at concen-
rations of 1 �M for enzymes and 10 �M for receptors to avoid
alse negatives (Morisseau et al., 2009). In our study, the follow-
gy 282 (2011) 1–15

up secondary screen then evaluated actives and selected inactives
in 8-point concentration response to derive the concentration of
chemical yielding 50% activity (AC50) (Judson et al., 2010). Our goal
was three-fold: provide concentration–response curves and derive
AC50s for chemical-target hits in the biochemical HTS assays; eval-
uate known and novel targets of binding or enzymatic activity
based on AC50 values; and cluster chemical and assay space by
AC50 relationships.

2. Materials and methods

2.1. Chemical library

Phase-I of the ToxCast chemical library contains 320 compounds consist-
ing of 309 unique structures, 5 duplicates that were differently sourced and 3
triplicates as plating replicates for internal quality control (Houck et al., 2009).
The rationale for chemical selection was based on several criteria: extensive
chronic/cancer, multi-generational reproductive, and developmental assay data
available (95% of compounds meet this criteria); soluble in DMSO (−1 < log P < 6,
i.e., log of the octanol/water partition coefficient; 97.5% meet this criteria); molec-
ular weight range 250–1000 (90% meet this criteria); and commercially available
with purity >90% (98.1% meet this criteria). These criteria were largely satisfied
with a diverse set of pesticide active ingredients that had guideline in vivo tox-
icology studies conducted as part of their registration process with the US EPA.
Several other high interest environmental chemicals meeting these criteria were
also included in the library. Despite a large presence of pesticide actives, the
Phase-I chemical library spans a wide range of property values and is structurally
diverse, representing over 40 chemical functional classes (e.g., pyrazole, sulfon-
amide, organochlorine, pyrethroid, carbamate, organophosphate, and so forth) and
over 24 known pesticidal MoA classes (e.g., phenylurea herbicides, organophosphate
insecticides, dinitroaniline herbicides, and so forth). A tabular listing and Structure
Data Format (SDF) file of the Phase-I chemical library is available for download at
http://www.epa.gov/NCCT/dsstox/sdf toxcst.html.

2.2. Chemical quality control (QC)

Chemical information was quality reviewed and structure-annotated within
the DSSTox project. Chemicals comprising the Phase-I library were commercially
procured and plated by BioFocus DPI (South San Francisco, CA). Supplier-provided
Certificates of Analysis indicated purity >97% for the large majority of chemicals
(87%), and >90% purity for all but a few instances of technical grade or known mix-
tures. Follow-up analysis of an original solution plate by BioFocus DPI using LC/MS
(liquid chromatography mass spectrometry), subsequent to assay screening, has
confirmed mass identification, stability, and purity for over 83% of the chemical
library. For the majority of the remaining chemicals, currently employed analysis
methods are known or suspected to be inadequate for confirming sample purity and,
for the residual 8% of the chemicals (e.g., sulfurons) follow-up studies provided evi-
dence of sample decomposition in DMSO over time. A QC summary result mapped
to chemical solution sample is available from the ToxCast website in association
with the assay results.

2.3. Source data library

The primary data file http://www.epa.gov/ncct/toxcast/ provides plate-level
raw data and concentration response values, calculated as percent inhibition, along
with any corrected values due to plate-level variation. Unique plate, row and col-
umn positions are also provided for complete re-analysis and/or reinterpretation
capacity. The initial ToxCast survey publication reported data from 239 biochemical
HTS assays (Judson et al., 2010); the present study includes results for an additional
53 assays and focuses exclusively, and in further depth on results across the full 292
assay set. Most of the 53 add-ons were receptor tyrosine kinase assays and nuclear
receptor assays that became available or were selected since the original 239 were
run. This full biochemical assay set, including species and target class breakdown,
is described in Supplemental Table S1. This table also includes an active link to each
specific assay protocol summarizing the general conditions and control agents, as
well as the concentration–response for chemical-assay pairs, if tested.

The NVS assays were developed and run by Caliper Discovery Alliances and Ser-
vices (Hanover, MD). Details on individual assays, catalogue numbers, quality assur-
ance methods and literature references can be found at http://www.caliperls.com/
products/contract-research/. The assay panel was distributed as follows: 77 G-
protein coupled receptor binding assays; 32 CYP450-related enzyme activities
(ADME) that included 30 distinct assay targets plus 2 redundant assays with
observed activation (activator mode); 132 enzymatic assays (ENZ) that included

72 kinases (13 activator mode), 22 phosphatases (3 activator mode), 15 proteases,
6 HDACs (1 activator), 3 cholinesterases and 14 other enzyme activities; 18 nuclear
receptor binding assays (NR); 20 ion channel (IC) and ligand-gated ion channel
(LGIC) activities; 9 transporter proteins (TR), 2 mitochondrial pore proteins (MP)
and 2 other receptor types (OR) for a total of 292 assays. Most assays are human
(194) or rat (66) targets, in addition to 10 bovine, 10 guinea pig, 3 mouse, 3 rodent

http://www.epa.gov/ncct/toxcast/
http://actor.epa.gov/toxrefdb/
http://www.epa.gov/NCCT/dsstox/sdf_toxcst.html
http://www.epa.gov/ncct/toxcast/
http://www.caliperls.com/products/contract-research/
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rat/mouse), 2 sheep, 2 boar and 2 rabbit targets. Binding assays used specific radioli-
ands (tritiated, iodinated) with non-radioactive competitive displacement ligands
n agonist or antagonist protocols (as indicated) and various reference compounds
nd inhibitors to titrate specific binding to receptors and transporters. Most enzyme
ssays (CYPs, kinases, phosphatases, proteases, HDACs) used recombinant protein
nd specific substrates (fluorescence mostly, some colorimetric and radioactive) and
nhibitors, followed by a biochemical separation of substrate and product.

.4. Screening strategy

All assays for the biochemical HTS were initially run in duplicate at a single
oncentration (10 �M for CYP450 assays and 25 �M for all others). Assay-chemical
ombinations meeting a pre-defined threshold (e.g., 30% inhibition and other crite-
ia defined below) were then run in singleton concentration–response format with
aximum concentration of 20 �M for CYPs and 50 �M for all others. Each assay was

un with positive and negative controls, and concurrent controls on every plate. The
C50 value determined for each reference compound run at 8–14 point calibration
as compared to a historical control database for consistency of assay performance

ver time. Replicas varying by >20% activity were re-assayed. Caliper’s system of
ata analysis addresses HTS of large chemical libraries using an automated system,
ctivityBase®. Statistical ‘Z-factor’ (Z′) was used to determine an assay’s robustness
nd reproducibility by comparing its dynamic range to the data variation (Malo et al.,
006). Z′-factor analysis provides a composite measure of an assay’s dynamic range
positive control versus negative control) as well as its variability (standard devia-
ions of positive and negative controls) (Zhang et al., 1999). A Z′-factor value of 1.0
as regarded as a perfect assay and >0.5 as excellent assay quality.

Raw data for each replicate assay plate was internally normalized and corrected
o scale the data between 0% inhibition (DMSO control) and 100% (positive con-
rols). Data were scaled such that a value of 100% represents full inhibition relative
o the maximal effect of the reference compound. To characterize scale, we mea-
ured data spread near the center and the tails. Median absolute deviation (MAD)
as computed as median |x − xmed| where x is the parameter data element and

med is the parameter median. Unlike standard deviation, this measure does not
quare the distance from the median, so it is less affected by extremes in the tail and
an provide a reasonably stable estimate of spread for data with extreme values in
he tails. For single-point screening, values in the −20% to +20% range of inhibition
ere considered noise. Negative inhibition in the primary screen was considered

n a case by case basis for technical artifact (radioligand binding assays, chemical
nterference with the measurement technology), enhanced ligand binding (assays
un in antagonist mode), or stimulation due to a direct effect (enzymes) or cou-
ling to another protein in the fraction. Re-testing in the secondary screen revealed
9 assays with concentration-dependent ‘activator’ responses (see Supplemental
able S1).

Chemical-assay pairs were defined as active in the primary screen when the
ean assay signal differed by at least 30% from the vehicle (DMSO) control signal

r if the Z score was at least 2.0 median absolute deviations from the median (30%
nhibition or MAD2). We looked across the replicas to compare scenarios for %-cutoff
nd Z-score hits. On the basis of 30% cutoff, there were 3813 same calls among 3924
otal calls (97.2% agreement). Z-scoring at MAD2-3 approximated the accuracy of a
0–20% cutoff, whereas 30% cutoff approximated MAD4. Preliminary actives were
ltered at cutoff 30% (0.3 threshold) or Z factor 2.0 (two MADs from the median).

The follow-up (secondary) screen tested active chemical-pairs in concentration
eries, as well as a few additional assays not tested in the primary screen, some
elected negative inactives, and several cases re-run in the concentration series
or confirmatory purposes. Negative chemical-assay combinations were selected
o include, for instance, all chemicals within a particular class, chemicals previously
eported to target particular pathways, and some that showed negative inhibition.
his incidentally allowed us to determine what fraction of chemicals called inactive
n the initial screen appeared active in the follow-up. The final matrix dimension of
hemical-assay pairs was 93,440 (320 chemicals representing 309 unique chemicals
nd 11 replicates; 292 assays representing 273 inhibited and 19 activated).

.5. AC50 calculation

A custom curve-fitting algorithm was developed in R language (Ihaka
nd Gentleman, 1996) for the concentration-series data. The curve
tting algorithm is being made available as a supplemental file (Tox-
ast CurveFitting Script 30June2010.r). We used a 4-parameter Hill function
nd the following assumptions: all concentration responses were assumed to be
onotonic; outliers were discounted when there was an obvious monotonic curve;

ariable slope was allowed; and negative-inhibition (activation) was allowed for
nzymatic assays that resolved substrate-product by lab-on-chip methodology.
hen a chemical-assay pair registered activity in the secondary screen, then the

C50 was assigned that estimate in micromolar (�M) units. The upper and lower

symptotes of the curve were constrained to between 0- and 20% activity and
etween 100- and 120% activity, respectively, to allow for consistent extrapolation
f the AC50 across assay-chemical combinations. Extrapolated AC50s above the
ighest concentration tested were allowed if the Emax was greater than 25%
ctivity. Emax is defined in this analysis as the maximal tested response minus the
ower asymptote, in order to adjust for any offset baseline responses. In addition
gy 282 (2011) 1–15 3

to an Emax filter of 25% for establishing a chemical-assay combination as a hit
and reporting the AC50, an R-squared filter of 0.5 was also applied. In a small
number of cases the automated AC50 generation failed but Emax was high (e.g.,
>70). For each of those cases, the concentration plot was manually inspected. If a
clear trend was evident, then AC50 was estimated manually and a flag was inserted
on the corresponding concentration–response plots (Supplemental Table S1).
Issues underlying failure of the automated AC50 derivation included: an inverted
‘U-shaped’ concentration response curve (strong activation at lower concentrations
and strong inhibition at higher concentrations); very strong inhibition (effect
well-above 50% even at the lowest concentration tested); and noisy data (no clear
trend despite a high Emax).

For computational purposes we assigned an arbitrarily high AC50 value
(1,000,000 �M) to any chemical-assay pair that failed to return an AC50 in the
concentration series, or that was inactive in the primary screen and not re-tested
in the concentration series. This was meant to track inactivity in computational
matrices and does not impute a true value. For clustering, AC50 values were trans-
formed to molar −log10 values to scale chemical-assay pairs between 0 (inactive)
and 9 (AC50 = 1 nM). Transformed data were clustered with Partek Genomic Suite
6.4 software (Partek, Inc., St. Louis MO). For unsupervised, hierarchical clustering,
Euclidean distance was used as the similarity metric and Ward’s method was used
for assembling clusters. For correlation matrices, Pearson’s correlation was used as
the similarity metric and Ward’s method was used for assembling clusters.

3. Results

3.1. Several quality control checks of performance showed
excellent assay reproducibility and accuracy within the dataset,
and pointed out important nuances as well

A primary screen of the entire chemical library tested chem-
icals at 25 �M concentration (or 10 �M concentration for CYP
assays). Although these concentrations would be high for a drug-
discovery screen aiming to minimize false positives (e.g., 1 �M),
our primary screen was designed to minimize false negatives and
maximize assay coverage. This strategy returned 5587 prelimi-
nary active chemical-assay pairs that, together with 2971 selected
inactives and 574 unknowns from 8 assays that had been under
development at the time of the primary screen, were subsequently
run in 8-point concentration series (0.023–50 �M, or 0.009–20 �M
for CYP assays). Positive AC50 values were generated on 3032
of 9132 chemical-assay pairs (33.2%) in the secondary screen.
Fig. 1 provides several examples of concentration–response curves
with extracted AC50 and Emax values. All concentration–response
curves for active and inactive assays are electronically-linked to the
assay definitions file (Supplemental Table S1). To assess quality and
performance we examined results for three types of chemical-assay
pairs: replication between primary screen, secondary and confir-
matory assays (Fig. 2A); consistency across compound replicates
(Fig. 2B); and concordance between assay orthologs (Fig. 2C).

3.1.1. Concordance between primary and secondary screens
Replication between primary and secondary screens was

assessed by comparing active and inactive calls between single-
concentration and concentration–response series (Fig. 2A). The
secondary screen confirmed active calls on 3032 of 4707 chemical-
assay pairs (64.4% true positive rate) and countered 75 of 2971
inactive calls (2.5% false negative rate). The ∼35% false-positive rate
for the primary screening was comparable to the approximately
40% false-positive rate reported by another HTS study (Morisseau
et al., 2009). All false negatives mapped to 20 distinct assays. The
human pregnane X receptor (hPXR) accounted for more than half of
the false negative rate. Analysis of the true-false classification by a
2×2 contingency table indicated a significant association between
screens (Fisher P < 0.001). Setting the AC50 threshold to a more
stringent filter (10 �M) returned active calls for 1052 chemical-

assay pairs (22.3% true positives) and countered 72 inactive calls
(2.4% false negatives) (Fisher P < 0.001). The preponderance of false
positives over false negatives by either threshold scenario is consis-
tent with a conservative strategy that emphasizes sensitivity over
specificity (Morisseau et al., 2009).
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Fig. 1. Selected examples of HTS curve fitting used to automatically derive AC50 values. Singleton plots are shown for the chemicals listed above each assay, which plots %-
inhibition or %-activation of activity on the ordinate versus chemical concentration in micromolar units on the abscissa. AC50 is marked (with range) and listed in the readout
along with the Emax. LEFT PANELS: Cytochrome P450 mono-oxygenase type 2C9 (hCYP2C9) activity showing replication in original and confirmatory runs tested against
Cyproconazole (AC50 = 0.056 and 0.064 �M, respectively); two examples of expected hits for estrogen receptor (hER) binding with 3H-estradiol tested against 2,2-Bis(4-
hydroxyphenyl)-1,1,1-trichloroethane (HPTE, AC50 = 0.048 �M), and rodent adrenergic receptor subtype a2B (rmAdra2B) binding with 3H-MK912 tested against Amitraz
(AC50 = 0.96 �M); activation of hTie2 receptor tyrosine kinase activity by Mancozeb (AC50 = 15 �M in original and confirmatory runs) and specificity of Mancozeb-induced
receptor tyrosine kinase activation at human ephrin receptors hEphA1 (inactive) and hEphA2 (AC50 = 9.1 �M). RIGHT PANELS: Curve-fits for rat (r) and human (h) orthologs
s d test
t trobin
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howing acetylcholinesterase (AChE) activity measured with acetylthiocholine an
ype benzodiazepine receptor (PBR) binding to 3H-PK11195 tested against Pyraclos
H-methyltrienolone tested against Triadimefon (AC50 = inactive and 5.3 �M, respe

Among 245 chemical-assay pairs tested in confirmatory concen-
ration series, we obtained concordant negative calls (e.g., no AC50)
or 147 cases (60.0%), concordant positive calls for 72 cases (29.4%),

nd discordant positive calls for 26 cases (10.6%) (Fig. 2B). Hit con-
ordance was 72 of 98 cases (73.5%) and overall AC50 concordance
as 89.4%. The specific confirmatory assays returned concordant
C50s and, as a general rule, only the lowest AC50 value was
eported (Supplemental Table S2). The only exception to this rule
ed against Chlorpyrifos oxon (AC50 = 0.21 and 0.12 �M, respectively); peripheral-
(AC50 = 0.21 and 0.095 �M, respectively); and androgen receptor (AR) binding to

y) and its Triadimenol metabolite (AC50 = inactive and 29 �M, respectively).

was a small number of AChE chemical-assay pairs that had been
re-tested due to concern over false-positive activity in the origi-
nal series and subsequently shown to be relatively inactive in the

confirmatory screen.

3.1.2. Concordance across chemical replicates
The second quality metric of assay performance was concor-

dance across the compound replicates. We compared AC50 values
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Fig. 2. Concordance across biochemical HTS assays. Each comparison is scaled to plot agreement for negative (left axis) and positive (right axis) features. Features inactive
in both sets being compared were concordant negative (gray); features positive in one set only were discordant positive (red); and features positive in both sets were
concordant positive (yellow). Concordance between primary screen (single concentration) and secondary screen (concentration series) for subsets of chemicals across 258
distinct NVS assays, with primary positives based on screening AC30 or MAD2 at 25 �M (10 �M for CYP assays) and secondary positives based on AC50 values from 8-point
concentration curves (highest concentration tested = 25 �M for CYP assays and 50 �M for all other assays). Confirmatory assays compared AC50 values for 245 chemical-assay
p of 8 re
b s with
p

f
c
c
c
c
d
9
t
f
m
fi
f
F

airs. Concordance between chemical replicates: global correlation for AC50 values
etween species orthologs: 26 assays run with 320 chemicals to compare response
rogesterone receptor (PR) that compare human-bovine).

or the 3 plate-position triplicate chemicals and 5 source repeat
hemicals (Fig. 2B). Across 2336 chemical-assay pairs, the replicate
hemicals yielded concordant negative calls for 2245 cases, con-
ordant positive calls for 68 cases, and discordant positive calls for
ases (96.1%, 2.9%, and 1.0% of the total, respectively). Hit concor-
ance was 68 of 91 cases (74.7%) and overall AC50 concordance was
9.0%. Using −log10 transformed molar AC50 values, the correla-
ion coefficient (R) was 0.79 for plate-position triplicates and 0.64

or the differently sourced chemicals. Setting the AC50 filter to a

ore stringent value (10 �M) did not increase R. Correlation coef-
cients varied substantially by chemical replicate, being strongest

or Bensulide plate-position triplicates (R = 0.93) and weakest for
enoxaprop-ethyl source replicates (R = 0.44).
plicated chemical compounds (19 samples) tested across 292 assays. Concordance
in 13 orthologous pairs (human-rat, except for the Histamine 1 receptor (H1) and

3.1.3. Concordance between species orthologs
The third test of assay performance analyzed activity across

26 assay orthologs (Fig. 2C). These targets came from different
biological sources and species (refer to Supplemental Table S1).
As such, the orthologs can be viewed as equivalent assay tar-
gets across animal species, but also at the level of sample origin
(e.g., recombinant protein, diseased cell line, tissue of origin).
A Spearman rank correlation analysis (Grauel et al., 1999) was

conducted to determine when a statistical correlation existed.
Nonparametric analysis was selected because the bivariate data
were known not to be normally distributed. To test for species
concordance, all chemical-assay relationships were considered,
both active and inactive, and the tendency of rank order to be
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Table 1
Hit distribution of the most active chemical-assay pairs (AC50 < 10 �M).

A; #Assays hit by B B; #Chemicals hitting A C; #Chemicals hitting D D; #Assays hit by C

135 0 136 0
106 1–2 78 1–2

37 4–9 48 3–6
21 10–14 14 7–20
12 15–19 13 20–39

s
o
t
T
(
(
c
d
t
d
f
a
r
r
i
b
c
b
c

F
0
T

6 20–29
3 40–320

imilar across species was evaluated based on the occurrence
f at least 4 active chemical hits. The Spearman rank correla-
ion was significant (P ≤ 0.05) in 7 of 13 orthologous assay pairs.
he concordant assays were CYP1A1, norepinephrine transporter
NET), serotonin transporter (SERT), AChE, progesterone receptor
PR), CYP1A2, and PBR. The Spearman correlation was not signifi-
ant for CYP2E1 and the androgen receptor (AR), and insufficient
ata were available to evaluate the remaining assays. Results for
he AR assay are explored in detail below; however, the discor-
ance of this assay between human and rat samples is evident
or 18 chemicals with AC50 values below 10 �M for the hAR
ssay versus only 1 of these chemicals showing activity in the
AR assay. Although species dimorphism is possible, we cannot
ule out instability of recombinant protein, secondary activities
n extracts, or variations in dynamic range and/or sensitivity

etween assays. Until we better understand nuances in the bio-
hemical HTS dataset and reasons for this dissonance, comparison
etween orthologous assay results must be interpreted with due
aution.

ig. 3. Hierarchical relationship for 309 ToxCastTM chemicals across 292 biochemical HTS
(white) to 4 (blue) to 8 (red). Lower color ribbon indicates 292 assay columns by type (

he electronic image can be enlarged to visualize each individual chemical and assay.
2 40–49
1 50–292

3.2. Summary statistics of chemical-assay pairs reveals a
biochemical spectrum of potential targets for the ToxCast Phase I
chemical library

Table 1 counts the number of chemical-assay pairs with AC50
values below 10 �M as an arbitrary cutoff to indicate strong activ-
ity. A chemical on average hit 3.4 assays and an assay on average
was hit by 3.7 chemicals. There were 21 chemicals (6.6% of the
library) with strong activity at 15 or more different assays and 135
chemicals (42.2% of the library) without activity across all assays.
Among assays, 30 (10.3% assay space) were susceptible to a strong
effect by 7 or more chemicals whereas 136 assays (46.6% assay
space) were not susceptible to the chemical library under the condi-
tions of the biochemical HTS and analysis methods. These numbers
are reasonably close to results obtained by others using a struc-

turally diverse library of 176 synthetic chemicals, all commonly
encountered environmental chemicals, that reported an average of
five positive hits per assay, or 3% of the library (Morisseau et al.,
2009).

assays. Heatmap scales relative activity based on AC50 = −log10(M), ranging from
as labeled in the Assay Class legend); left cluster tree indicates 320 chemical rows.
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Total assay hits per chemical were also considered as a func-
ion of log P (log octanol/water partition coefficient), which often
erves to model properties such as bioavailability and membrane
ermeability that can relate to solubility and in vitro or in vivo activ-

ty. These results, not unexpectedly, showed that chemicals with
he largest number of assay hits tended to span the mid-range of
he log P distribution (centered around 2.0), dropping off towards
he extremes (results not shown), but with no clearly discernable
orrelation.

.3. The biochemical HTS heatmap reveals a hierarchical
elationship for chemical-assay pairs, with hot and cold regions
orresponding to broad and narrow specificities, respectively

For clustering purposes, we transformed AC50s to molar −log10
alues. All AC50s were used, including those extrapolated beyond
he highest concentration tested. Unsupervised clustering struc-
ured the chemical-assay space hierarchically based on strength
nd specificity (Fig. 3). Considerable void is evident in the heatmap
ue to a prevalence of inactive chemical-assay pairs. Robustness
f the data structure is reflected in replicate chemicals that were
tacked or otherwise closely positioned. The active (‘hot’) corner
ontained many conazoles, reflecting their known activity binding
eme and inhibiting mammalian CYPs (Goetz and Dix, 2009).
he inactive (‘cold’) corner contained many sulfurons, most likely
eflecting their chemical decomposition in DMSO over time due to
cid hydrolysis. In general, hierarchical clustering delineated a dis-
ontinuous spectrum of susceptibilities across the different assay
roups. The most broadly hit targets were: hCYP2C19, hPXR, hPBR
nd rPBR. Some notable features from Fig. 3 are described below.

Three imidazolinone herbicides (Imazamox, Imazapyr,
mazethapyr) co-clustered with one another based on moderate
ctivity at the Farnesoid X receptor (hFXR) antagonist binding
ssay. It is not clear how this target relates to the pesticidal MoA of
hese broad-spectrum herbicides, which inhibits branched chain
mino acid biosynthesis in plant cells. Another group of herbicides
Propazine, Simazine, Atrazine, 6-Deisopropylatrazine, Cyanazine,
erbacil, Bromacil, and Prometon) co-clustered by their effects on
nzymatic assays for cAMP-phosphodiesterase (hPDE4A1) and to
lesser degree cGMP-phosphodiesterase (hPDE5). Several of the

ommon 2-chloro-s-triazine herbicides (Propazine, Simazine and
trazine) are known to be capable of cAMP-mediated aromatase

nduction through competitive inhibition of phosphodiesterase
Roberge et al., 2004). The rank-order inhibitory activity of
hese compounds at hPDE4A1 was: Cyanazine (AC50 = 0.36 �M) >
trazine (AC50 = 1.4 �M) > Propazine (AC50 = 5.1 �M) > Simazine

AC50 = 51 �M) > 6-Deisopropylatrazine (AC50 = 58 �M). The latter
s a degradation product of Atrazine. The most potent inhibitor
f hPDE4A1 overall was Dimethomorph (AC50 = 0.043 �M). This
ystemic morpholino fungicide did not cluster with the s-triazines.
imethomorph’s pesticidal MoA is inhibition of fungal ergosterol

ynthesis. The present screen detected some inhibition of hAR
inding activity by Dimethomorph (AC50 = 4.9 �M); otherwise,
one of the s-triazine compounds showed activity at the androgen
eceptor (hAR, rAR), estrogen receptor (hER, bER, mER�), or
romatase (hCYP19A1) assays.

Four neonicotinoids (Imidacloprid, Acetamiprid, Thiacloprid,
lothianidin) co-clustered with one another based on strong activ-

ty at alpha-bungarotoxin nicotinic acetylcholine receptor channels
hNNR, rNNR), as expected for this class of insecticides. The
lant growth regulator Mepiquat Chloride also co-clustered with

he neonicotinoids by unexpected strong activity at hNNR and
NNR targets. A tight cluster of 8 anticholinesterase insecticides
Propoxur, Bendiocarb, Methomyl, Aldicarb, Dichlorvos, Oxamyl,

evinophos and Chlorethoxyfos) co-clustered by their specific
ctivity at the hAChE and rAChE assays. In contrast, 10 other
gy 282 (2011) 1–15 7

cholinesterase inhibitors spread to other clusters in the heatmap
due to secondary effects at various CYP assays.

Six compounds showed unanticipated effects on kinase-
phosphatase activities that grouped into two closely linked clusters.
One cluster consisted of 3 diverse chemicals (Cyclanilide, Oxyte-
tracycline dehydrate, and Perfluorooctane sulfonic acid) and
the second cluster consisted of 3 ethylene-bis-dithiocarbamate
(EBDC) fungicides (Metiram-zinc, Maneb and Mancozeb). The
EBDC fungicides also showed unexpected activity against enzy-
matic assays for hHDAC3, hHDAC6, hSIRT1, hSIRT2, hSIRT3 that
represent all 3 classes of histone deacetylases. The HDACs,
in general, were moderately susceptible to the iodine-based
preservative, 3-Iodo-2-propynylbutylcarbamate, as well as the
pthalimide fungicide, Captan. Finally, 3 known estrogenic com-
pounds (Bisphenol A, Clorophene, and HPTE) formed a tight
cluster based on anticipated activity on the estrogen recep-
tors (hER, bER, mER�), as well as several GPCR and CYP assay
targets.

3.4. Similarity matrices reveal systematic structure in the
biochemical HTS dataset, keying in on similar structures, and
familiar binding or enzymatic assays that worked as expected

Next, heatmaps were built from Pearson similarity profiles
for all chemical-assay pairs that had at least one AC50 hit
(Fig. 4). This type of analysis, similar to hierarchical cluster-
ing, also revealed anticipated relationships for chemicals based
on known pesticidal MoA classes but more clearly reveals the
inter-relationships. Cluster-A1b, for example, contains 10 chem-
icals with anticholinesterase activity (Fig. 4A) but also contains
Thiacloprid, a neonicotinoid insecticide that showed very weak
anticholinesterase activity (extrapolated AC50s were 55 and
130 �M for rAChE and hAChE, respectively). Several novel rela-
tionships could also be found. For example, Cluster-A1a consists
of 6 chemicals with broad assay targets similar to one another
but distinct from the remainder of the chemical library. These
6 chemicals were Cyclanilide, Oxytetracycline dehydrate, PFOS,
Metiram-zinc, Maneb and Mancozeb. In contrast, Cluster-A1b had
11 chemicals, of which 10 showed specific anticholinesterase
activity (Ethylenethiourea, Methomyl, Formetanate hydrochloride,
Propoxur, Bendiocarb, Oxamyl, Mevinphos, Aldicarb, Dichlorvos,
Chloroxyfos).

Correlations based on comparing molar −log10 AC50 val-
ues were also mapped for assay–assay relationships (Fig. 4B).
Robustness of the data structure is again evident in tight co-
clustering of closely-related assays. For example, Cluster-B1a
consists of the 3 cholinesterase assays (rAChE, hAChE and plasma
cholinesterase); Cluster-B1c consists of ligand-gated ion channels
rNNR and hNNR; Cluster-B1d contains a stack of adenosine recep-
tors (bAdoR nonselective, hAdoRA1 and hAdoA2a); Cluster-B1e has
4-stacked monoamine oxidase assays (rMAOBC, rMAOBP, rMAOAC,
rMAOAP); Cluster-B1g has the estrogen receptors (hER, mERa,
bER). Clusters B1i-B1k contain many GPCRs stacked by subtype:
dopamine receptors DRD1, DRD4.4, DRD2s (Cluster-B1i); serotonin
receptors 5HT6, 5HT7, 5HT5A (Cluster-B1j); and muscarinic recep-
tors M1, M2, M3, M4, M5 (Cluster-B1k). Cluster-B1n had several
human and guinea pig GPCR targets in the leukotriene pathway
(hLTB4 BLT1, gLTD4, gLTB4).

Several other novel relationships are worth noting. Cluster-B1f
shows a similar profile for rCYP1A2-hCYP1A2 (endoplasmic retic-
ulum) and rPBR-hPBR (mitochondrial) orthologs for many diverse

chemicals. Cluster-B1m strongly relates two assay triads: kinase
hNEK2, caspase hCASP4, and hCASP2 on one hand; and kinase
hPAK2, hCASP8, and hCASP1 on the other. The main distinguish-
ing feature between these two triads is a parallel relationship
to protein tyrosine phosphatases and serine-threonine kinases,
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ig. 4. Correlation matrix for the ToxCast Phase-I chemical library clustered by Pea
f correlation of log-transformed molar-AC50s (−0.3 to +0.5) based on chemical–c
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3.5. Specific examples of familiar chemical-assay linkages that

worked as expected or highlight unexpected problems and
nuances in the HTS dataset

We next attempted to discern local trends in the heatmap that
might be anticipated based on a priori knowledge of the chemi-
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als or assay targets. A preliminary evaluation is given here for the
uclear receptors, AChE activity, and pesticidal MoAs to support the
egree to which a biochemical HTS signature might correspond to
chemical species or chemical class. We also evaluated non a priori

rends in the dataset that suggest new chemical-assay linkages.

.5.1. Nuclear receptors
Of the 309 chemicals tested, 114 (36.8%) had an AC50 < 50 �M

or at least one of 18 NR targets assayed here and 58 (18.8%) had
n AC50 < 10 �M. This produced a list of 218 (<4%) chemical-target
airs among 5562 possible with an AC50 less than 50 �M, and 86
<2%) with an AC50 below 10 �M, of which hPXR was the most
requent target (92 chemicals). Of those 92 chemicals, more than
alf (60 chemicals) perturbed only the hPXR target among the 18
R targets. This promiscuity is consistent with the general role of
XR as a xenobiotic sensor (Kliewer et al., 2002). For the other 17
Rs, at least one interaction was demonstrated by 54 (17.5%) of

he 309 chemicals, more than half of which involved the human
R receptor assay. In contrast to hAR, only 5 of the chemicals have
C50 < 50 �M for the rat AR target. Consideration of this contrast
rovides useful insights into the complexity of evaluating data from
his panel of assays.

Several compounds that exhibit inhibitory activity against the
ranscriptional activity induced by 5�-dihydrotestosterone in a
AR-mediated reporter assay (Kojima et al., 2004) are repre-
ented in the ToxCast Phase-I library. We observed that two of
hese, namely Fenitrothion (Sebire et al., 2009) and Vinclozolin
Martinović et al., 2008), strongly inhibited hAR binding activity
AC50 = 0.07 and 0.95 �M, respectively) in the biochemical HTS. The
C50 for Fenitrothion (31 �M) was 400-fold weaker at the rAR tar-
et, whereas Vinclozolin was inactive. Iprodione, a dichlorophenyl
icarboximide fungicide similar to Vinclozolin, was inactive in
ssays for either AR ortholog. This chemical has been shown to
eakly inhibit R1881 binding to hAR in COS cells (AC50 = 86.0 �M

or Iprodione relative to 1.4 �M for Vinclozolin), and may act as
mixed mechanism anti-androgen in the pubertal male rat to

nhibit steroid synthesis (Blystone et al., 2009). Two weak anti-
ndrogens with inhibitory effects on AR transcriptional activity
n the reporter screen (Kojima et al., 2004) had weak effects on
AR binding activity, namely Linuron, a urea-based herbicide, and
rochloraz, a conazole fungicide. Both chemicals inhibited the hAR
ssay (AC50 = 5.1 and 14 �M, respectively), and both were inactive
n binding in the rAR assay. Linuron competitively inhibits andro-
en binding to rAR in vitro with a relatively high Ki of 100 �M (Cook
t al., 1993) and, as such, may not have been expected to hit the rAR
ssay at even the highest concentration level tested here (50 �M).
n the other hand, Prochloraz should have been detected by the rAR

arget. Studies of in vitro anti-androgenic effects of Prochloraz have
eported the inhibition of R1881-induced AR transactivation at
C50 = 3.6 �M, relative to IC50 = 0.4 �M for Vinclozolin (Vinggaard
t al., 2002). In conclusion, the hAR assay results were consistent
ith the literature for these pesticides but the rAR assay did not

ehave as expected. Reduced sensitivity of rAR relative to hAR was
lso noted for methyltrienolone, the reference compound run in
he assay (AC50 = 24.4 nM versus 1.37 nM, respectively), where the
AR assay was about 100-fold less sensitive than expected.

The marked differences in assay sensitivity between rAR and
AR could reflect different sources of the protein. The rAR target in
his screen is a small recombinant protein. It contains just the hinge
nd a ligand binding domain amino acid sequence identical to that
f the hAR, but is not full length. In contrast, the source of the human

R protein in this set of assays is the LNCaP cell line established from
n androgen-independent prostate cancer cell. This cell line har-
ors a T877A mutation in the ligand binding domain of the AR that
akes the binding pocket larger and more flexible (Sack et al., 2001;

ohl et al., 2007), and it may contain other mutations as well (Matias
gy 282 (2011) 1–15 9

et al., 2002). These mutations affect binding kinetics and speci-
ficity of the receptor, making it a more promiscuous target then
the wild-type protein (Veldscholte et al., 1990) and able to con-
fer androgen-independent growth to the LNCaP cells (Veldscholte
et al., 1994). Given this caveat, the hAR assay was better able to
detect chemicals that would bind the wild-type androgen receptor
than the rAR target used in the present screen and may have iden-
tified a number of chemicals with potential for other related types
of biological activity.

Two known estrogenic chemicals in the Phase-I library had
nanomolar AC50 activity at the estrogen receptor binding assays
from human (hER), murine (mER) and bovine (bER) sources. These
were Bisphenol A (BPA) and HPTE. Both chemicals are known ER
agonists (Gupta et al., 2006a,b; Tomic et al., 2006; Miller et al.,
2006; National Toxicology Program, 2008), although the binding
assay protocol used here cannot separate agonist from antagonist
activity. HPTE is a biologically active metabolite of Methoxychlor,
which itself had no demonstrable effect on hER, mER, or bER assays.
This result illustrates the necessity of providing biotransformation
capability for in vitro assays to account for generation (or loss) of
bioactive molecules as would be expected in vivo, or to account
for metabolism with additional assays. It is also interesting to note
that among the current set of assays, both chemicals that interact
with hER targets (HPTE, BPA) also interact with the mutated hAR
target. This may have biological relevance because prostatic ade-
nocarcinoma cells harboring the same AR mutation do respond to
BPA (Wetherill et al., 2002).

The larger and more flexible ligand-binding pocket of the LNCaP-
derived hAR protein can accept other steroids (Bohl et al., 2007) and
glucocorticoids (Matias et al., 2002) as well. For example, all of the 7
chemicals that show an interaction with the human progesterone
receptor (hPR) also interact with the mutated hAR target. Of the
14 chemicals that interact with the bovine progesterone receptor
(bPR) target, 11 (including all of the chemicals that interact with
hPR) were also active at the mutated hAR target, including all 3 with
measured AC50 values below 10 �M. Of the 20 chemicals with AC50
values < 50 �M at the human glucocorticoid receptor (hGR) target,
11 also interact with the mutated hAR target. Four of the remain-
ing 9 chemicals are likely too large to fit into the ligand-binding
pocket of either receptor and probably cause a response at the GR
target for reasons other than competitive binding in the ligand-
binding pocket. Another 3 have AC50s above 10 �M for the GR
target and may interact too weakly with the mutated AR receptor to
be detected in this assay. Whereas the AR targets in this set of assays
may not be optimal for the detection of environmental androgens
because of conformational differences between these targets and
a full length wild-type AR target, the mutated hAR target may be
useful in screening environmental chemicals for interactions with
a variety of NRs (including the androgen receptor).

3.5.2. Acetylcholinesterase (AChE)
The presence of many pesticidal cholinesterase inhibitors in the

Phase-I chemical library prompted examination of AChE activity.
Table 2 lists AC50 values for rat and human AChE assays, whether or
not the active compound (or metabolite) is included in the dataset,
and if metabolic activation is required for in vivo anticholinesterase
activity based on information given by Pope (Pope, 1999). The
human AChE (hAChE) assay identified 14 chemical compounds hav-
ing AC50 values at or below 50 �M. These 14 chemicals, together
with another 3 compounds, were positive in the rat AChE (rAChE)
assay. Each represents carbamate or organophosphate chemistries

or active metabolites with known anticholinesterase activity. Gen-
erally, the rAChE was the more sensitive of the two assays (median
AC50 = 2.6 �M for rAChE versus 18.0 �M for hAChE). In vitro AC50
measures that reflect sensitivity of AChE to inhibition by spe-
cific compounds do not necessarily distinguish between extrinsic
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Table 2
Cholinesterase inhibition in vitro (ToxCastTM) and in vivo (ToxRefDB).

Chemical compounda Human AChEb AC50 (�M) Rat AChEb AC50 (�M) Direct actingc ToxRefDB LELd (mg/kg/day)

Positives
Aldicarb* 40 8.1 Y 0.47
Azamethiphos§ 4.8 0.72 Y 8.1
Bendiocarb* 1.9 0.04 Y 0.86
Carbaryl** 24 6.1 Y 50.0
Chlorethoxyfos* 18 2.7 N 0.311
Chlorpyrifos-oxon§§ 0.12 0.21 Y Chlorpyrifos metabolite
Dichlorvos* 31 5.9 Y 0.1
Ethylenethiourea* NA 29 Y EBDC metabolite
Formetanate hydrochloride* NA 28 Y 0.45
Malaoxon§§ 31 0.87 Y 1.0
Methomyl* 13 3.4 Y >tested range
Mevinphos* 3.0 0.69 Y 0.025
Naled§ 2.1 0.45 Y 2.0
Oxamyl* 8.6 12 Y 4.19
Profenofos 53 2.4 Y 1.0
Propoxur* 12 2.6 Y 2.1
Thiodicarb§ 50 2.0 Y 15.0

Negatives
(Z,E)-Fenpyroximate NCR NCR 1.65
3-Iodo-2-propynylbutylcarbamate NA NCR Y 20.1
Acephate NCR NCR Y 0.12
Azinphos-methyl NA NA N 0.25
Bensulide NCR NCR N 2.3
Chlorpyrifos-methyl NA NA N 0.1
Coumaphos NCR NCR N 0.08
Diazinon NCR NCR N 0.06
Dicrotophos NCR NCR Y 0.02
Dimethoate NCR NCR N 0.25
Disulfoton NA NCR N 0.04
Endosulfan NCR NCR 18.0
EPTC NCR NCR Y 5.0
Ethephon NCR NCR Y 1.25
Ethoprop NCR NCR Y 0.08
Fenamiphos NCR NCR Y 0.098
Fenitrothion NCR NCR N 0.27
Fenthion NCR NCR N 0.03
Fosthiazate NCR NCR Y 0.051
Isazofos NCR NCR N 4.5
Malathion NA NA N 29.0
Methamidophos NCR NCR Y 0.08
Methidathion NCR NCR N 1.6
Molinate NCR NCR Y 13.0
Parathion NCR NCR N 0.40
Parathion-methyl NA NA N 0.21
Phosalone NCR NCR N 0.7
Pirimiphos-methyl NA NCR N 0.87
Propetamphos NCR NCR N 0.632
Quizalofop-ethyl NCR NCR Y 1.1
Tebupirimfos NCR NCR N 0.06
Tribufos NCR NCR Y 0.2
Trichlorfon NCR NCR Y 15.0
Triflumizole NCR NCR N 14.4

Positives mapped to Cluster-A1b (*), Cluster-A1d (**), Cluster-A2b (§) and Cluster-A2i (§§) in the chemical–chemical correlation matrix (Fig. 4A).
a Selection criteria AC50 ≤ 50 �M in hAChE or rAChE assay.
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b AC50 (micromolar); NCR indicates not active in single-concentration screen an
c Direct-acting implies compound capable of inhibiting AChE activity without bi
oser (US EPA) (McDaniel et al., 2007); blank cells indicate data not available.
d Refers to administered dose (mg/kg/day) yielding the lowest effect level (LEL) o

nd intrinsic factors (Mortensen et al., 2002); hence, the 3 chem-
cals missed by the hAChE assay but detected by the rAChE
ssay might relate to factors influencing enzyme stability such
s recombinant protein in one case (hAChE), and brain mem-
rane extract in the other (rAChE). Profenofos had strong activity
gainst the rAChE assay only (AC50 = 2.4 �M). A weaker trend was
vident for several other compounds, including Ethylenethiourea

AC50 = 29 �M), Formetanate Hydrochloride (AC50 = 28 �M), and
cibenzolar-S-methyl (AC50 = 86 �M; not shown). The case for
cibenzolar-S-methyl is perhaps unusual because the 1,2,3-
enzothiodiazide ring structure of this compound is an effective
ethylcarbamate synergist due to anti-microsomal activity
ndicates tested but not active in the concentration–response series.
formation (Y) or not (N) based on (Pope, 1999) or expert opinion from Dr. Virginia

n, erythrocyte, plasma or whole blood cholinesterase bioassay data from ToxRefDB.

(Wilkinson, 1971). Its local effect on rAChE could reflect extrinsic
factors present in the rat brain extract but lacking in the hAChE
recombinant protein assay. As noted earlier, direct comparison
between orthologous assays should be made with caution until we
have a better understanding of the reason(s) for these differential
effects.

Three cholinesterase inhibitors in the chemical library

(Malaoxon, Ethylenenitrosourea, Chlorpyrifos-oxon) are known
anti-AChE metabolites generated from weak or inactive parent
compounds. Malaoxon is the anti-AChE metabolite responsible
for efficacy of Malathion as a selective insecticide (Rodriguez
et al., 1997). Malaoxon strongly inhibited the rAChE assay
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Table 3
Promiscuity of pesticides with multi-site action.

Chemical1 Assay hits2 (Total) Assay hits (AC50 < 10 �M)

Mancozeb* 77 (26.4%) 43 (14.7%)
Maneb* 57 (19.5%) 34 (11.6%)
Metiram-zinc* 49 (16.8%) 18 (6.2%)
Thiram§§ 18 (6.2%) 10 (3.4%)
Captan§ 15 (5.1%) 2 (0.6%)
Chlorothalonil* 12 (4.1%) 7 (2.4%)
Dichloran* 6 (2.1%) 4 (1.4%)
Folpet** 5 (1.7%) 3 (1.0%)
Chloroneb 0 (0.0%) 0 (0.0%)
T.B. Knudsen et al. / T

AC50 = 0.87 �M) whereas Malathion was not active, consistent
ith Malaoxon being the proximate cholinesterase inhibitor of
alathion. Ethylenethiourea is a non-specific breakdown prod-

ct of EBDC fungicides such as Mancozeb (Aprea et al., 1998).
thylenethiourea inhibited the rAChE assay with moderate activ-
ty (AC50 = 29 �M), whereas Mancozeb was inactive. The other
ioactivated anti-AChE was Chlorpyrifos-oxon, a strong anti-
holinesterase metabolite of Chlorpyrifos-ethyl (Mortensen et al.,
002). Strong inhibition was observed with Chlorpyrifos-oxon in
oth rAChE (AC50 = 0.21 �M) and hAChE (AC50 = 0.13 �M) assays,
hereas Chlorpyrifos-methyl was inactive (Chlorpyrifos-ethyl,

he true parent metabolite, was not tested). As such, chemical-
pecific pairing of inactive parent to active anti-AChE metabolite
ompound was expected and observed for Malathion/Malaoxon,
ancozeb/Ethylenethiourea, and Chlorpyrifos/Chlorpyrifos-oxon.
Most chemicals with anticholinesterase activity had an LEL

lowest effect level) recorded for brain, erythrocyte or plasma
holinesterase activity in ToxRefDB. A qualitative association
etween in vitro and in vivo activity was evident for 16 of 17
94%) anticholinesterases, with the exception of Methomyl that
s considered a direct-acting cholinesterase inhibitor (Table 2).
herefore, in vitro positives for AChE inhibition generally pre-
ict in vivo anticholinesterase activity (at least in the rat). The
everse was not true, however. Table 2 lists 34 chemical com-
ounds with a recorded LEL for cholinesterase inhibition in one
f the ToxRefDB bioassays but that were inactive by the in vitro
creen (Table 2). Approximately 56% (19 of 34) of these in vitro
egatives are not considered to be direct-acting cholinesterase

nhibitors (e.g., Malathion, Parathion, Parathion-methyl). Their
otential requirement for in vivo bioactivation is consistent with
he lack of observed activity in vitro, but also points to a limitation
f the in vitro screen. Another 38% (13 of 34) of the in vitro nega-
ives are known to be direct-acting cholinesterase inhibitors (e.g.,
icrotophos, Ethoprop, Fenamiphos, Methamidophos). In all cases
xcept 3-Iodo-2-propynylbutylcarbamate, these false negatives
ere not retested in concentration-response based on inactivity

n the primary screen. As such, they did not meet the criteria of
0% inhibition at 25 �M. The 2 remaining in vitro negatives are
Z,E)-Fenpyroximate and Endosulfan. Their pesticidal MoA involves
isruption of energy metabolism and their status as direct or indi-
ect cholinesterase inhibitors is unclear.

.5.3. Mitochondrial 18 kDa transporter protein (TSPO)
Rat and human orthologs of this mitochondrial 18 kDa trans-

orter protein, formerly known as the PBR (Papadopoulos et al.,
006), were among the most common assay targets in both pri-
ary and secondary screens. Fifteen chemicals hit one or both PBR

rthologs with submicromolar AC50 values. Two of these chemi-
als, namely Bifenazate and Pyraclostrobin, hit both rPBR and hPBR
rthologs in the submicromolar range. Bifenazate has an unknown
oA; however, Pyraclostrobin, like other strobilurin fungicides,

isrupts mitochondrial respiration by binding to the Qo site of
ytochrome b (Bartlett et al., 2002). Two other chemicals with
otent activity at the rPBR or hPBR disrupt mitochondrial res-
iration by the same (Trifloxystrobin) or a different (Flutolanil)
oA process. The promiscuity of PBR may reflect the breadth of

ndogenous ligands binding the protein while performing its multi-
unctional cellular roles in heme-porphyrin exchange, cholesterol
ransport, and oxygen-sensing (Papadopoulos et al., 2006; O’Hara
t al., 2003).
.5.4. Analysis by chemical class
Many possible chemical feature or reactivity designations could

e examined for assay associations. Pesticidal MoAs are described
or many chemical products intended for unwanted mammalian
rodenticide), non-mammalian (piscicide), invertebrate (insec-
Mapped to Cluster-A1a (*), Cluster-A1c (**), Cluster-A2a (§), and Cluster-A2g (§§)
in the chemical–chemical correlation matrix (Fig. 4A). Defined as AC50 < 20 �M for
CYPs and <50 �M otherwise.

ticide) and microbial (fungicide) species (USEPA, 2009b). The
formamidine pesticide Amitraz, for example, is a well-known
alpha-adrenergic agonist that targets the related insect octopamine
receptor (Costa et al., 1988; Yilmaz and Yildizdas, 2003). Amitraz
showed strong interference with binding activity at two adren-
ergic receptors: hAdra2A (AC50 = 0.054 �M) and rodent Adra2B
(AC50 = 0.96 �M). Abamectin, a potent anthelmintic and agonist of
the inhibitory type-A gamma-aminobutyric acid (GABAA) recep-
tor (Holden-Dye and Walker, 1990; Liu et al., 2003), showed weak
inhibition in the bGABA5 assay (AC50 = 34 �M). The systemic fungi-
cide Carboxin, known to affect mitochondrial electron transport at
Complex-II and induce oxidative stress (Mowery et al., 1977; Kim
et al., 2006), showed weak activity at both hPBR and rPBR assays
(AC50 = 55 and 43 �M, respectively). This is consistent with the
physiological role of PBR as a multi-functional mitochondrial outer
membrane protein that can participate in the antioxidant stress
response system (Papadopoulos et al., 2006).

The chemical library has several fungicides with multiple sites
of action. Table 3 lists several of these broad spectrum compounds,
along with the number of assays hit based on AC50 values of
10 �M. These chemicals had varied degrees of promiscuity and,
as such, appeared in different clusters in the chemical-chemical
matrix (Fig. 4A). The most promiscuous were metal ion-containing
EBDC fungicides: Mancozeb, Maneb and Metiram-zinc. Mancozeb,
which hit 43 assays with AC50 < 10 �M, has been extensively stud-
ied in the scientific literature (e.g., 242 references in PubMed at the
time of this writing). On the other hand, the non-metallic fungi-
cide Chloroneb hit 0 assays and has far less information known (17
PubMed references). As such, the current screen either is deficient
in assays that would provide insight into Chloroneb’s direct-acting
pesticidal MoA or biotransformation is required.

3.5.5. Kinase activities
AC50 values were obtained for at least one chemical in 62 of

72 kinase assays tested here, covering all major groups in the
human kinome (Manning et al., 2002). Various combinations of
kinase activities were susceptible across 22 different chemicals. The
broadest activity (AC50 < 10 �M) was for Mancozeb (23 kinases),
Maneb (17 kinases), and Metiram-zinc (9 kinases), PFOS (4 kinases),
Oxytetracycline dehydrate (3 kinases) and Cyclanilide (3 kinases).
Mancozeb’s kinome signature included all major kinome groups.
The kinome signatures for Maneb and Metiram-zinc were simi-
lar, except for fewer targets in the cytoplasmic tyrosine kinase and
receptor tyrosine kinase families than hit by Mancozeb. The EBDCs
also showed broad activity on the phosphatases but were inactive
at cholinesterases (Supplemental Table S2). Mancozeb and Maneb,

in particular, hit several kinase and phosphatase assays, with AC50s
in the submicrolar range.

The EBDC fungicides share a similar chemical structure but with
varying composition and inorganic salt counterions. Maneb is the
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n++ salt form, Metiram-zinc is a polymeric mixture of Zn++ salt,
nd Mancozeb is a mixture of Zn++ and Mn++ salts. Their multi-
le potential targets included tyrosine kinase assays activated with
C50 values < 10 �M (see ‘activator assays’). The extent to which
resence of metal ions contributes to the observed effect of EBDCs
n kinase profiling is not known. Next to EBDCs, the surfactant
FOS was the most promiscuous kinase inhibitor. PFOS strongly
nhibited phosphoinositide 3-kinase (hPI3Ka), two VEGF receptors
hVEGR1, hVEGR3) and the TEK angiopoietin-1 receptor (hTie2),
ith AC50 < 10 �M in all cases. Perfluorooctanoic acid (PFOA) had

nly moderate activity at hTie2 (AC50 = 36 �M versus 5 �M for
FOS) and marginal activity at hPI3Ka (AC50 = 74 �M versus 6.8 �M
or PFOS).

.5.6. Activator assays
Several assays in the primary screen revealed activator

esponses. The SRC assay, for example, was sensitive to 16 chem-
cals and in 15 cases the response was activation, rather than
nhibition. Because the secondary screen principally followed up
n assay inhibition, only a few chemical-activator pairs were fol-
owed in the concentration-response. Those re-tests confirmed
ctivation in response to the chemical and, furthermore, showed
he effect to be concentration-dependent (see Fig. 1). The chem-
cal library was screened against a total of 19 ‘activator assays’,
ncluding 6 cytosolic tyrosine protein kinases (hAbl1, hFyn, hLck,
LynA, hSRC, hTRKA), 6 receptor tyrosine kinases (hCSFR1, hEphA2,
EphB2, hIG1R, hInsR, hVEGFR1), 3 protein phosphatases (hPTEN,
PTPN6, PPM1A), 1 serine-threonine kinase (hNEK2), 2 CYPs
hCYP2C19, hCYP4F12), and 1 histone deacetylase (hHDAC3). Most
hemical-activator pairs showed an AC50 < 1 �M. In several cases
he activator concentration-response curve was an inverted ‘U’
hape due to activation at the lower concentrations and inhibi-
ion at higher concentrations. Mancozeb, Maneb, and Metiram-zinc
ere the major kinase-phosphatase activators.

. Discussion

Analysis of the ToxCast biochemical HTS assay dataset revealed
omplex, hierarchical relationships between chemical and tar-
et activity. This complexity might be have been anticipated for
nvironmental chemicals that encompass a very wide diversity
f chemical structures; however, the classification of chemicals
y relative activities against specific biochemical assays revealed
utative targets in signaling and metabolic pathways that are
otential key events in toxicity. These effects are mostly inhibition,
ut in some cases activation.

The strategic importance of commercialized pesticides in devel-
ping ToxCast Phase-I proof-of-principle follows the wealth of data
vailable from animal studies with these compounds (Martin et al.,
009a,b; Knudsen et al., 2009). Caution must be exercised, however,

n interpreting the perturbations to signaling and metabolic path-
ays, insofar as the biochemical HTS is not a direct test of in vivo

oxicity (Crump et al., 2010). Exposure, biotransformation, toxi-
okinetics, and individual genetic diversity are not covered here.
s such, the use of biochemical HTS data in predictive modeling of
uman toxicology requires integration with other information.

Several quality control checks showed excellent assay repro-
ucibility and accuracy within the dataset, and pointed out

mportant nuances as well. Our working assumption is that per-
urbation of any chemical-assay pair can be attributed to specific

nteraction with the molecular target, variations in the assay design,
r interference among the assay components. Potential reasons for
alse positives may include, for example, fluorescence or quenching
f the fluorescent substrates used in the biochemical HTS enzyme
ssays, artifactual reactivity or covalent modification of assay com-
gy 282 (2011) 1–15

ponents, or physical effects such as colloidal aggregation of the
test chemical or assay target. Potential reasons for a false nega-
tive include limited in vitro solubility of chemicals, insufficiency
of optimized HTS assay conditions, limited physiological activity
of recombinant enzyme or biological samples, and the lack of bio-
transformation. Additionally, there is possibility for degradation or
impurities associated with commercially-supplied chemical sam-
ples that could produce either false negatives or false positives.
Furthermore, biological inferences should be based on a combina-
tion of assays that include different relevant factors. Ultimately, it
is in the broader context of ToxCast assays, which includes related
(orthogonal) assays that we can begin to address these challenges.
For example, whereas the rAR under predicts chemicals that might
be androgens because of the way it is made, and the hAR over pre-
dicts chemicals some of which might not be true androgens because
of the mutation that increases its flexibility.

Recognizing the potential for false positive and false negative
calls, the data have been interpreted assuming that most of the vari-
ance among assay outcomes for a particular chemical is due to the
assay target and, as such, resulting from a direct effect of chemical
on target protein. This analysis suggests that environmental chem-
icals, such as pesticides, have the potential to act on a broad palette
of molecular targets, and these targets have the potential to influ-
ence divergent biological pathways through specific ligand-binding
interactions impacting on the activity of a signal, receptor, or effec-
tor. Most currently available HTS technologies were developed for
screening potential therapeutics for on- or off-target effects (Keiser
et al., 2009). Here we have explored the potential for a biochemical
HTS approach to identify targets that could lead to cellular changes
and toxicological outcomes.

Screening of chemicals for hazard identification poses sig-
nificantly different challenges than a therapeutic screen. Unlike
pharmaceuticals indicated for human use, the Phase-I chemical
library of ToxCast comprises largely pesticides that are biocidal in
nature and intended for controlling unwanted species. It is interest-
ing to note that comparison of assay orthologs across human and rat
(or in some cases bovine) species showed only weak concordance
for diverse endocrine, neurological and xenobiotic metabolizing
enzyme targets. Whether this diversity is specific to the Phase-
I chemical library or a general rule of the data requires further
analysis; however, intra- and inter-species differences, as well as
sex-specific differences in endocrine and neurotransmitter sys-
tems are known (Walker et al., 1999; Smythies, 1992). Additionally,
species differences between rats and humans in response to envi-
ronmental toxins have been described for CYP1A (Schrenk et al.,
1995; Zeiger et al., 2001) and CYP2E1 (Csanady et al., 1992; Lewis
et al., 1997). Sexually dimorphic expression of cytochrome P450
genes has been noted by several authors for humans and other
species, and can be explained by variation in regulation by nuclear
receptors (Wiwi et al., 2004). Sex differences in CYP expression
are most striking in rats and mice, with up to 500-fold differ-
ences, but are also observed in humans, though to a much lesser
degree and in relation specifically to hepatic drug clearance and
steroid metabolism (Westerink et al., 2008). These gender and
cross-species differences have important implications for charac-
terizing MoA processes.

Understanding how singular or combinatorial perturbations of
molecular targets propagate to in vivo toxicities is a key chal-
lenge, and one that aligns with the National Academy of Sciences’
new paradigm to evaluate the biological activity of large numbers
of chemicals utilizing in vitro assays largely derived from human

cells (National Research Council, 2007) and EPA’s new strategic
plan for evaluating the toxicity of chemicals using pathway-based
information (Firestone et al., 2010). Working to address this chal-
lenge, it will be important to learn if the most sensitive assays,
with sensitivity defined by the number of chemical hits in cell-free
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argets, have relevance to in vivo biological activity. For example,
any rat and human CYP assays, as well as the mitochondrial PBR

rom both species and the hPXR, were sensitive to a large variety
nd number of chemicals. The broad sensitivity of CYP assays and
PXR is not surprising owing to their respective roles in xenobiotic
etabolism (Westerink et al., 2008) and biosensing (Kliewer et al.,

002). Broad sensitivity of the PBR was not expected, however. This
ay reflect on its namesake, the peripheral-type benzodiazepine

eceptor, a ligand-activated mitochondrial membrane transporter
riginally identified as an off-target (peripheral) binding site for
ome benzodiazepines. The renaming of PBR to 18 kDa Transporter
rotein (TSPO) reflects a physiologic role in mitochondrial choles-
erol transport in steroidogenic cells, heme-porphyrin exchange in
ematopoietic cells, regulation of the mitochondrial permeability
ransition pore during apoptosis, and oxygen-sensing signal gen-
ration in the embryo (Papadopoulos et al., 2006). Regarding the
atter, PK11195, the control ligand used for specific binding in the
BR assays described here, when used pharmacologically in mice,
s a powerful in vivo suppressor of some instances of developmen-
al toxicity that follows mitochondrial dysfunction (Papadopoulos
t al., 2006). The large number of chemical actives for PBR is con-
istent with xenosensing akin to hPXR (Kliewer et al., 2002) but
erhaps specified for mitochondrial stressors.

Not all observed effects of the chemicals on the cell-free assays
ere inhibitory. A cluster of 19 assays that included 6 cytosolic

yrosine kinases and 6 receptor tyrosine kinases were activated at
ow concentrations of a few chemicals, most notably the EBDCs,

hich at higher concentrations inhibited the same assays. The
ctivator effect stands apart from chemical compounds known
o inhibit tyrosine kinase activity (Ghose et al., 2008). Further
tudies will be needed to determine the extent to which this
esponse has value in predictive modeling of in vivo toxicities, but
he effect and the potential activation mechanisms are worthy of
dditional consideration here. One factor that could account for
he activator response is the mode of recombinant protein engi-
eering. The present set of kinase assays utilizes His-tagged or
ST-tagged recombinant protein. Although all activator kinases
ere His-tagged recombinant proteins, not all His-tagged kinases

howed activation; hence, His-tagging was not a sufficient expla-
ation. Another possible factor is the sufficiency of recombinant
inases when expressed and purified. Length of the recombinant
rotein was not a factor because some activators were full-length
equence whereas others were partial sequence recombinant pro-
eins. Purified recombinant kinase may, however, require allosteric

echanisms and aggregation to release the tyrosine kinase domain
rom autoinhibition (Zhang et al., 2006). It is possible the divalent

etals present in the EBDC activator chemicals induced aggrega-
ion of His-tagged kinases, thereby promoting activation. On the
ther hand, the allosteric mechanism of activation was described
or the EGFR kinase domain, and the hEGFR assay evaluated in the
resent study was not one of the activator assays.

EBDC-induced activation of tyrosine kinases may demonstrate
real stimulation at low chemical concentrations. This needs

o be validated in vivo; however, we might speculate on sev-
ral possible mechanisms for this to occur. One is release of
ndogenous inhibitors. A recent study showed novel hyper-
hosphorylation of AKT at regulatory serine and threonine domains
ue to the ‘hijacking’ of a small molecule AKT-inhibitor, which
ay be due to direct binding to the kinase or indirect pathway-

evel activation (Okuzumi et al., 2009). The structural basis for
yrosine kinase activation has a range of mechanisms that lead

o auto-phosphorylation (Lemmon and Schlessinger, 2010). For
xample, a subset of the activator tyrosine kinases contain SH2/SH3
rc-homology domains that negatively regulate tyrosine kinase
ctivities. Introducing specific mutations or deletions into the
H2/SH3 domains permanently activated kinase activities for SRC,
gy 282 (2011) 1–15 13

LYN and FYN (Weng et al., 1994). SH2/SH3 domain-mediated
suppression of kinase auto-phosphorylation is important for cell
signaling because SH3/SH3 domains are responsible for binding
the tyrosine kinase to its cellular targets, which may be uni-
versal adapter proteins or specific targets, to release the kinase
from negative regulation (Cheng et al., 1994). In a similar way,
the multi-site EBDCs may interfere with SH2/SH3 domains to
cause auto-phosphorylation. Given the importance of mutational
activation of SRC-related tyrosine kinases in oncogenesis, differ-
entiation, focal-adhesion signaling, and REDOX imbalance (Weng
et al., 1994; Cheng et al., 1994), this might comprise a novel tox-
icity pathway connected to tyrosine kinase signaling (Lemmon
and Schlessinger, 2010). A link between specific cytosolic SRC-
related kinase-phosphatase targets and mitochondrial toxicity
could involve a role for cyclic AMP signaling due to the well-studied
consequences for environmental human disease through PTPN11
phosphatase (Zheng et al., 2009).

A cell-free assay, lacking the protective mechanisms of a cell
or tissue, and with the exclusion of metabolic capability, is a highly
simplified model for assessing the extent to which a chemical might
adversely affect a specific target protein or class of proteins in
relation to an in vivo response. Assuming that the active form of
the chemical is what is being tested in vitro, then the biochem-
ical HTS assays are profiling the multiplicity of potential targets
to a chemical or class of chemicals. On the other hand, some of
the direct perturbations caused by particular chemicals to indi-
vidual cell-free targets, while raising a flag of potential hazard or
concern, may not be relevant for understanding the consequences
of environmentally relevant exposures because AC50 values are
well-above achievable in vivo exposures, or biotransformation is
required. In addition, given the uncertainties and known techni-
cal factors that could impact any particular chemical-assay pair
result (i.e., giving rise to false positives or negatives), individual data
points should not be considered in isolation. The spectrum of hits
across multiple assays, in the context of results for diverse chemi-
cals, must, therefore, be the broader focus of the present screening
studies.

In some cases, an incomplete effect on a target (e.g., <100%) at
a known exposure level in vivo may not be adverse to the system.
For all of these reasons, it is critical to begin to organize perturbed
molecular targets into biological themes—ontologies or pathways
that represent a higher-order processing of the complex HTS data
(Crump et al., 2010). This is especially relevant for the plethora
of receptors (GPCRs, receptor tyrosine kinases, nuclear receptors)
and signaling intermediates (kinases, phosphatases, proteases) that
formed the localized clusters in response to the chemical library.
Further studies are needed to understand how these individual
interactions with specific targets translate ultimately into adverse
effects of environmental chemicals in relation to in vivo pheno-
types. Although the current biochemical HTS included over several
dozen assays of human and rat xenobiotic metabolism enzymes,
chemical activity in vitro (hazard identification) must be evaluated
together with exposure assessment in vivo in order to prioritize
chemicals for targeted testing (Hartung, 2009; National Research
Council, 2007; Dix et al., 2007).

In conclusion, the classification of chemicals by their rela-
tive activities on cell-free biochemical and pharmacological assays
has revealed a number of susceptible targets that play impor-
tant roles in pathways that may lead to key events in toxicity.
The present study provides an initial survey of the biochemical
HTS dataset comprising one technology platform in its entirety,

to assess the performance of the dataset in the context of known
and novel relationships, and then to bring these relationships
together systematically. This survey revealed quality checks of
assay performance and nuances in the source data. However imper-
fect or complex these data, they have the potential to shed light
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n chemical–biological interactions in a much larger data con-
ext than has previously been available. Because the dataset has
een released to the public (Judson et al., 2010), the scientific
ommunity is open to many additional avenues for exploration
f complex relationships among chemical-target effects for envi-
onmental chemicals and application of this information to the
onstruction of toxicity pathways. The larger battery of assays
ncluded in the ToxCast project includes cell-based assays, com-
lex cultures, and small model organisms (zebrafish), which further
xpand opportunities to explore features of the data in an inte-
rated way.
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artinović, D., Blake, L.S., Durhan, E.J., Greene, K.J., Kahl, M.D., Jensen, K.M., Makynen,
E.A., Villeneuve, D.L., Ankley, G.T., 2008. Reproductive toxicity of vinclozolin in
the fathead minnow: confirming an anti-androgenic mode of action. Environ.
Toxicol. Chem. 27, 478–488.

atias, P.M., Carrondo, M.A., Coelho, R., Thomaz, M., Zhao, X.Y., Wegg, A., Crusius,
K., Egner, U., Donner, P., 2002. Structural basis for the glucocorticoid response
in a mutant human androgen receptor (AR(ccr)) derived from an androgen-
independent prostate cancer. J. Med. Chem. 45, 1439–1446.

cDaniel, K.L., Padilla, S., Marshall, R.S., Phillips, P.M., Podhorniak, L., Qian, Y., Moser,
V.C., 2007. Comparison of acute neurobehavioral and cholinesterase inhibitory
effects of N-methylcarbamates in rat. Toxicol. Sci. 98, 552–560.

iller, K.P., Gupta, R.K., Flaws, J.A., 2006. Methoxychlor metabolites may cause ovar-
ian toxicity through estrogen-regulated pathways. Toxicol. Sci. 93, 180–188.

orisseau, C., Merzlikin, O., Lin, A., He, G., Feng, W., Padilla, I., Denison, M.S.,
Pessah, I.N., Hammock, B.D., 2009. Toxicology in the fast lane: application of
high-throughput bioassays to detect modulation of key enzymes and receptors.
Environ. Health Perspect. 117, 1867–1872.

ortensen, S.R., Brimijoin, S., Hooper, M.J., Padilla, S., 2002. Comparison of the
in vitro sensitivity of rat acetylcholinesterase to chlorpyrifos-oxon: what do
tissue IC50 values represent? Toxicol. Appl. Pharmacol. 148, 46–49.

owery, P.C., Steenkamp, D.J., Ackrell, A.C., Singer, T.P., White, G.A., 1977. Inhibition
of mammalian succinate dehydrogenase by carboxins. Arch. Biochem. Biophys.
178, 495–506.

ational Research Council, 2007. Toxicity Testing in the 21st Century: A Vision and
a Strategy. National Academies Press, Washington D.C.

ational Toxicology Program, 2008. NTP-CERHR monograph on the potential human
reproductive and developmental effects of Bisphenol A. NTP CERHR MON 22,
i–III1.

’Hara, M.F., Nibbio, B.J., Craig, R.C., Nemeth, K.R., Charlap, J.H., Knudsen, T.B., 2003.
Mitochondrial benzodiazepine receptors regulate oxygen homeostasis in the
early mouse embryo. Reproduct. Toxicol. 17, 365–375.

kuzumi, T., Fiedler, D., Zhang, C., Gray, D.C., Aizenstein, B., Hoffman, R., Shokat,
K.M., 2009. Inhibitor hijacking of Akt activation. Nat. Chem. Biol. 5, 484–493.

apadopoulos, V., Baraldi, M., Guilarte, T.R., Knudsen, T.B., Lacapère, J.J., Lindemann,
P., Norenberg, M.D., Nutt, D., Poupon, M.F., Weizman, A., Zhang, M.R., Gavish, M.,
2006. TspO: new nomenclature for the peripheral-type benzodiazepine recep-
tor/recognition Site (PBR) based on its structure and molecular function. Trends
Pharmacol. Sci. 8, 402–409.

ope, C.N., 1999. Organophosphorus pesticides: do they all have the same mecha-
nism of toxicity? J. Toxicol. Environ. Health B Crit. Rev. 2, 161–181.

EACH, 2008. European Chemical Agency—List of Pre-registered Substances.
http://apps.echa.europa.eu/preregistered/pre-registered-sub.aspx.

oberge, M., Hakk, H., Larsen, R., 2004. Atrazine is a competitive inhibitor of phos-
phodiesterase but does not affect the estrogen receptor. Toxicol. Lett. 154, 61–
68.

odriguez, O.P., Muth, G.W., Berkman, C.E., Kim, K., Thompson, C.M., 1997. Inhibi-
tion of various cholinesterases with the enantiomers of Malaoxon. Bull. Environ.
Contam. Toxicol. 58, 171–176.

ack, J.S., Kish, K.F., Wang, C., Attar, R.M., Kiefer, S.E., An, Y., Wu, G.Y., Scheffler, J.E.,
Salvati, M.E., Krystek Jr., S.R., Weinmann, R., Einspahr, H.M., 2001. Crystallo-
graphic structures of the ligand-binding domains of the androgen receptor and
its T877A mutant complexed with the natural agonist dihydrotestosterone. Proc.

Natl. Acad. Sci. U.S.A. 98, 4904–4909.

chmidt, C.W., 2009. Tox21: new dimensions of toxicity testing. Environ. Health
Perspect. 117, A349–A353.

chrenk, D., Stuven, T., Gohl, G., Viebahn, R., Bock, K.W., 1995. Induction of CYP1A
and glutathione S-transferase activities by 2,3,7,8-tetrachlorodibenzo-p-dioxin
in human hepatocyte cultures. Carcinogenesis 16, 943–946.
gy 282 (2011) 1–15 15

Sebire, M., Scott, A.P., Tyler, C.R., Cresswell, J., Hodgson, D.J., Morris, S., Sanders,
M.B., Stebbing, P.D., Katsiadaki, I., 2009 The organophosphorous pesticide, feni-
trothion, acts as an anti-androgen and alters reproductive behavior of the male
three-spined stickleback, Gasterosteus aculeatus. Ecotoxicology 18, 122–133.

Smythies, J.B.R., 1992. J. International Review of Neurobiology. Academic Press, Inc.,
London.

Stenersen, J., 2004. Chemical Pesticides. Mode of Action and Toxicology. CRC Press,
296 pp.

Tomic, D., Frech, M.S., Babus, J.K., Gupta, R.K., Furth, P.A., Koos, R.D., Flaws, J.A., 2006
Methoxychlor induces atresia of antral follicles in ERalpha-overexpressing mice.
Toxicol. Sci. 93, 196–204.

U.S. EPA, 2009. Federal Insecticide, Fungicide and Rodenticide Act (FIFRA) Enforce-
ment http://www.epa.gov/compliance/civil/fifra/index.html.

U.S. EPA, 2009. Common Mechanism Groups; Cumulative Exposure and Risk Assess-
ment. http://www.epa.gov/pesticides/cumulative/common mech groups.htm.

Veldscholte, J., Ris-Stalpers, C., Kuiper, G.G., Jenster, G., Berrevoets, C., Claassen,
E., van Rooij, H.C., Trapman, J., Brinkmann, A.O., Mulder, E., 1990. A mutation
in the ligand binding domain of the androgen receptor of human LNCaP cells
affects steroid binding characteristics and response to anti-androgens. Biochem.
Biophys. Res. Commun. 173, 534–540.

Veldscholte, J., Berrevoets, C.A., Mulder, E., 1994. Studies on the human prostatic
cancer cell line LNCaP. J. Steroid Biochem. Mol. Biol. 49, 341–346.

Vinggaard, A.M., Nellemann, C., Dalgaard, M., Bonefeld Jørgensen, E., Andersen, H.R.,
2002. Antiandrogenic effects in vitro and in vivo of the fungicide Prochloraz.
Toxicol. Sci. 69, 344–353.

Walker, C., Ahmed, S.A., Brown, T., Ho, S.M., Hodges, L., Lucier, G., Russo, J., Weigel, N.,
Weise, T., Vandenbergh, J., 1999. Species, interindividual, and tissue specificity
in endocrine signaling. Environ. Health Perspect. 107 (4), 619–624.

Weng, Z., Thomas, S.M., Rickles, R.J., Taylor, J.A., Brauer, A.W., Seidel-Dugan, C.,
Michael, W.M., Dreyfuss, G., Brugge, J.S., 1994. Identification of Src, Fyn, and
Lyn SH3-binding proteins: implications for a function of SH3 domains. Mol. Cell
Biol. 14, 4509–4521.

Westerink, W.M., Stevenson, J.C., Schoonen, W.G., 2008. Pharmacologic profiling of
human and rat cytochrome P450 1A1 and 1A2 induction and competition. Arch.
Toxicol. 82, 909–921.

Wetherill, Y.B., Petre, C.E., Monk, K.R., Puga, A., Knudsen, K.E., 2002. The xenoe-
strogen bisphenol A induces inappropriate androgen receptor activation and
mitogenesis in prostatic adenocarcinoma cells. Mol. Cancer Ther. 1, 515–524.

Wilkinson, C.F., 1971. Effects of synergists on the metabolism and toxicity of anti-
cholinesterases. Bull. Wld. Hlth. Org. 44, 171–190.

Wiwi, C.A., Gupte, M., Waxman, D.J., 2004. Sexually dimorphic P450 gene expression
in liver-specific hepatocyte nuclear factor 4�-deficient mice. Mol. Endocrinol.
18, 1975–1987.

Yilmaz, H.L., Yildizdas, D.R., 2003. Amitraz poisoning, an emerging problem: epi-
demiology, clinical features, management, and preventive strategies. Arch. Dis.
Child. 88, 130–134.

Zeiger, M., Haag, R., Hockel, J., Schrenk, D., Schmitz, H.J., 2001. Inducing effects of
dioxin-like polychlorinated biphenyls on CYP1A in the human hepatoblastoma
cell line HepG2, the rat hepatoma cell line H4IIE, and rat primary hepatocytes:
comparison of relative potencies. Toxicol. Sci. 63, 65–73.

Zhang, J.H., Chung, T.D., Oldenburg, K.R., 1999. A simple statistical parameter for
use in evaluation and validation of high throughput screening assays. J. Biomol.

Screen. 4, 67–73.

Zhang, X., Gureasko, J., Shen, K., Cole, P.A., Kuriyan, J., 2006. An allosteric mechanism
for activation of the kinase domain of epidermal growth factor receptor. Cell
125, 1137–1149.

Zheng, H., Alter, S., Qu, C.-K., 2009. SHP-tyrosine phosphatase in human diseases.
Int. J. Clin. Exp. Med. 2, 17–25.

http://apps.echa.europa.eu/preregistered/pre-registered-sub.aspx
http://www.epa.gov/compliance/civil/fifra/index.html
http://www.epa.gov/pesticides/cumulative/common_mech_groups.htm


TOXICOLOGICAL SCIENCES 124(1), 109–127 (2011)

doi:10.1093/toxsci/kfr220

Advance Access publication August 26, 2011

Predictive Models of Prenatal Developmental Toxicity from ToxCast
High-Throughput Screening Data

Nisha S. Sipes,*,1 Matthew T. Martin,* David M. Reif,* Nicole C. Kleinstreuer,* Richard S. Judson,* Amar V. Singh,†
Kelly J. Chandler,‡ David J. Dix,* Robert J. Kavlock,* and Thomas B. Knudsen*

*National Center for Computational Toxicology, Office of Research & Development, U.S. Environmental Protection Agency, Research Triangle Park, North

Carolina 27711; †Lockheed Martin, Research Triangle Park, North Carolina 27711; and ‡National Health and Environmental Effects Research Laboratory,
Office of Research & Development, U. S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711

1To whom correspondence should be addressed at National Center for Computational Toxicology (B205-01), Office of Research & Development,

U.S. Environmental Protection Agency, Research Triangle Park, NC 27711. Fax: (919) 541-1194. E-mail: sipes.nisha@epa.gov.

Received May 26, 2011; accepted August 3, 2011

Environmental Protection Agency’s ToxCast project is profiling

the in vitro bioactivity of chemicals to assess pathway-level and

cell-based signatures that correlate with observed in vivo toxicity.

We hypothesized that developmental toxicity in guideline animal

studies captured in the ToxRefDB database would correlate with

cell-based and cell-free in vitro high-throughput screening (HTS)

data to reveal meaningful mechanistic relationships and provide

models identifying chemicals with the potential to cause de-

velopmental toxicity. To test this hypothesis, we built statistical

associations based on HTS and in vivo developmental toxicity data

from ToxRefDB. Univariate associations were used to filter HTS

assays based on statistical correlation with distinct in vivo

endpoint. This revealed 423 total associations with distinctly

different patterns for rat (301 associations) and rabbit (122

associations) across multiple HTS assay platforms. From these

associations, linear discriminant analysis with cross-validation

was used to build the models. Species-specific models of predicted

developmental toxicity revealed strong balanced accuracy (> 70%)

and unique correlations between assay targets such as trans-

forming growth factor beta, retinoic acid receptor, and G-protein–

coupled receptor signaling in the rat and inflammatory signals,

such as interleukins (IL) (IL1a and IL8) and chemokines (CCL2),

in the rabbit. Species-specific toxicity endpoints were associated

with one another through common Gene Ontology biological

processes, such as cleft palate to urogenital defects through

placenta and embryonic development. This work indicates the

utility of HTS assays for developing pathway-level models

predictive of developmental toxicity.

Key Words: developmental toxicity; ToxCast; ToxRefDB; high-

throughput screening; predictive models; computational models

predictive toxicology.

A chemical’s capacity to disrupt embryogenesis and cause

developmental defects depends on many factors including

inherent chemical properties, dose and time of exposure, genetic

susceptibility, bioavailability and biotransformation, and chemical

interactions with biological systems. Mechanistically, embryonic

susceptibility to chemical insult is determined by the sensitivity

and specificity with which chemicals (or their metabolites) interact

with pathways during particular developmental stages, be it the

mother or conceptus. The potential for an adverse outcome is

further dependent on the complex cellular and molecular pro-

cesses governing morphogenesis, growth and differentiation, and

the higher-order response (resiliency) of a dynamic system (the

developing embryo) to local or systemic perturbations (National

Research Council, 2000).

Given this complexity, the assessment of the potential for

chemicals to induce developmental toxicity has largely relied on

apical phenotypic endpoint observations from in vivo mammalian

studies. For example, the current method for determining

a chemical’s developmental toxicity potential is outlined in both

the U.S. Environmental Protection Agency (EPA) Health Effects

Tests Guidelines OPPTS 870 and the Organisation for Economic

Co-operation and Development guideline studies, test number

414 (www.oecd-ilibrary.org/environment/oecd-guidelines-for-the-

testing-of-chemicals-section-4-health-effects_20745788), which

includes a series of rat and/or rabbit prenatal developmental

studies. Whereas these tests give an integrated evaluation of

developmental toxicity over a broad dose range, they are labor

intensive, costly, and require large numbers of test animals.

Furthermore, such a high-level assessment does not provide

detailed mechanistic information that would inform chemical

mode of action (MoA) and facilitate extrapolation and pre-

diction. The sustainability of the traditional testing paradigm has

been debated, given the thousands of chemicals in commerce

and potentially entering the environment that are lacking adequate

developmental toxicity data (Council on Environmental Health,

2011; Hartung, 2010).
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Alternative approaches to traditional developmental toxicity

testing in animals have been proposed in the form of in vitro
methods and small model organisms, as well as computational

toxicology. Many of these approaches use technologies

amenable to high-throughput methods, thereby providing

a means to screen hundreds to thousands of compounds for

a particular biological response (high-throughput screening

[HTS]) or capture information on multiple responses for

a particular compound (high-content screening [HCS]).

Alternative methods that aim to predict developmental toxicity

have included invertebrate model organisms, such as Drosoph-

ila (Schuler et al., 1982), sea urchin (Hagstrom and Lonning,

1973), and hydra (Johnson and Gabel, 1983), as well as

vertebrate model organisms such as Frog Embryo Teratogen-

esis Assay Xenopus, FETAX (Fort et al., 1988), zebrafish

embryos (Birge et al., 1983; Brannen et al., 2010), and whole

mammalian embryo culture (New, 1978; Robinson et al.,
2010). Additional in vitro models include micromass and

embryonic stem cell cultures (Chapin and Stedman, 2009;

de Jong et al., 2011; Flint and Orton, 1984; Hassell and

Horigan, 1982; West et al., 2010) and human embryonic

palatal mesenchyme (Welsch et al., 1986).

EPA’s ToxCast and ToxRefDB projects are building a large

HTS in vitro data set coupled with a rich in vivo legacy

database that provides a novel resource for building predictive

models of chemical toxicity, with the initial goal of prioritizing

chemicals for further testing (Dix et al., 2007). The first phase

of ToxCast profiled the biological activity of 309 unique

chemicals using over 600 HTS/HCS assays including bio-

chemical assays (e.g., nuclear receptor and enzyme activation),

cell-based assays (e.g., embryonic stem cell differentiation and

cytotoxicity), multicellular complex co-cultures (e.g., inflam-

matory responses), and small animal models (e.g., zebrafish),

as well as chemical property information (Judson et al., 2010)

(actor.epa.gov/actor/faces/ToxCastDB/Home.jsp). For Phase I

of ToxCast, many of these chemicals had guideline de-

velopmental toxicity in vivo studies entered into ToxRefDB.

ToxRefDB contains 30 years worth of acute, chronic,

reproductive, and developmental toxicity information on over

400 chemicals (Knudsen et al., 2009; Martin et al., 2009a,b)

and is publicly available (actor.epa.gov/toxrefdb/faces/

Home.jsp).

Predictive models have been built using ToxCast in vitro
data anchored to ToxRefDB in vivo effects for chronic liver

cancer in rodents (Judson et al., 2010; Shah et al., 2011) and

reproductive toxicity in rat multigeneration studies (Martin

et al., 2011) and anchored to biological themes such as

pathways important for vasculature development (Kleinstreuer

et al., 2011). Here, we hypothesize that predictive models of

prenatal developmental toxicity can be derived from the

ToxCast in vitro data anchored to the ToxRefDB in vivo
studies in pregnant rats and rabbits.

The present study focuses on mining correlations between

in vivo developmental defects from ToxRefDB and in vitro

profiling from ToxCast. Univariate associations identified by

statistical correlations for the ToxCast Phase I chemical

library were used to build the species-specific models. The

models determined from simple machine learning methods

(e.g., linear discriminant algorithms) were statistically robust

(balanced accuracy [BA], which is the average of sensitivity

and specificity, > 70%) and differed depending on the

species (rat or rabbit) and the specific developmental

endpoints/malformations. Annotating assays to Gene Ontol-

ogy terms (GO biological processes) and mapping these

terms to distinct endpoint categories (e.g., cleft palate, renal

defects) through univariate associations revealed a systematic

network of associations that linked biological processes from

in vitro profiling to in vivo activity in prenatal developmental

toxicity studies. This novel approach can be used to

prioritize chemicals for further testing based on the predicted

potential for prenatal developmental toxicity in rats or

rabbits.

METHODS

ToxCast Phase I chemical library. Phase I of ToxCast employed

a chemical library containing 309 unique structures and some replicates for

internal quality control (QC). The rationale for chemical selection was based on

several criteria, including available in vivo data from a chronic/cancer,

multigenerational/reproductive, or prenatal developmental study (95% of

compounds meet these criteria); soluble in dimethyl sulfoxide (97.5% meet this

criteria); molecular weight range 250–1000 (90% meet this criteria); and

commercially available with purity > 90% (98% meet this criteria). These criteria

were largely satisfied with pesticide active ingredients that have had guideline

in vivo toxicology studies conducted as part of their registration process with the

U.S. EPA. The chemical library spans a wide range of property values and is

structurally diverse with over 40 chemical functional classes and over 24 known

pesticidal MoA classes. Pesticides were chosen for proof of principle because

these chemicals require specific in vivo animal testing. Chemicals were either

commercially procured or gathered from internal sources and plated for ToxCast

assays by BioFocus DPI (South San Francisco, CA). Certificates of analysis

indicated purity > 97% (87% of the chemicals) and > 90% purity for all but

a few instances of technical grade or mixtures. Follow-up analysis confirmed

mass identification, stability, and purity for over 83% of the chemical library

(www.epa.gov/ncct).

Data sources. The data used to link in vivo developmental defects with

in vitro chemical profiles are available in ToxCastDB (actor.epa.gov/actor/faces/

ToxCastDB/Home.jsp), which contains information from both the ToxRefDB

in vivo guideline studies and ToxCast in vitro assay results. The former

(ToxRefDB) contains source data from 1318 prenatal developmental studies

mostly in pregnant rats and rabbits from acceptable guideline animal studies

(Knudsen et al., 2009), as well as reproductive and chronic cancer studies (Martin

et al., 2009a,b). The data from the guideline studies have historically been

reviewed by regulatory toxicologists and provide the underlying hazard

information for risk assessments. ToxRefDB aims to parse these data in

a computable publicly available format and is meant to serve as in vivo endpoint

anchors in comparing with the ToxCast in vitro data. The ToxCast and

ToxRefDB data combined are meant to be used for predictive toxicology research

and to support regulatory decision making by providing screening tools,

prioritization approaches, and plausible modes of action. All data entered into

ToxRefDB have undergone 100% cross-checking for the values entered into the

database to ensure systematic QC and underwent an external stakeholder review

process (Martin et al., 2009a). In translating the data from written guideline
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studies to a computable format, each unique observed endpoint was mapped to

a ‘‘category.’’ These categories are represented in ToxCastDB as a string of

variables: <study type_species_effect_category>, where study type is ‘‘DEV’’ if

it is a developmental study, species is ‘‘rat’’ or ‘‘rabbit’’ for the species tested,

effect is ‘‘developmental’’ or ‘‘maternal’’ if the effect is on the mother or fetus,

and category is the specific target organ(s) affected. For example, DEV_rabbit_

Developmental_Cardiovascular refers to an observable treatment-related effect on

the heart and/or major blood vessels in rabbit fetuses, whether at the dLEL

(developmental lowest effect level) or cLEL (categorical lowest effect level).

Endpoint categories represented in this data set include fetal weight reduction

(FWR), specific malformations and/or anomalies/variations (MAL) (e.g., cleft

palate, microphthalmia), and prenatal loss (PNL) (e.g., embryo-fetal death

impacting litter size, pregnancy loss, and maternal wastage because separating

maternal vs. embryo influences on embryo loss is difficult) (Table 1). dLELs are

represented for developmental effects including FWR, MAL, and embryo-fetal

death impacting litter size. For each endpoint category, data are shown as dosage

in milligrams per kilogram per day for the lowest effect level (LEL) on a maternal

endpoint (mLEL), dLEL, or cLEL. These definitions of chemicals as potential

developmental toxicants are restricted to the purposes of this research study.

ToxCast contains in vitro assay data for 309 environmental chemicals in

over 600 HTS assays (Judson et al., 2010). The data came from ToxCastDB

v17 (November 2010), which is a publicly accessible database with both the

in vitro ToxCast and in vivo ToxRefDB data. The data collection for the

predictive model was based on 662 HTS assay measurements per chemical

from the following platforms: ACEA Biosciences; Attagene, Inc.; Bioseek,

Inc.; Cellumen, Inc. (a service brand of Apredica); CellzDirect, Inc. (acquired

by Life Technologies); NovaScreen panel (Caliper Life Sciences); NIH

Chemical Genomics Center; and EPA’s National Health and Environmental

Effects Research Laboratory (NHEERL) (Table 2). Additional assay definitions

and data can be found at: www.epa.gov/ncct/toxcast/data.html (ToxCastAssay-

Master_20091214.xls) and actor.epa.gov/actor/faces/ToxCastDB/DataCollec-

tionList.jsp. Data are reported as the chemical concentration (micromolar) at

half maximal efficacy (AC50) or lowest effective concentration (LEC) for each

assay and time-point, as applicable (Judson et al., 2010). The complete data set,

including AC50/LEC values and corresponding concentration response data for

all chemical assay measurement pairs, is available from ToxCastDB

(www.epa.gov/ncct/).

Univariate associations for in vivo developmental endpoint categories. To

address simple univariate (assay to categorical endpoint) associations, individual

ToxRefDB in vivo developmental endpoints were analyzed for their association

with individual ToxCast in vitro assays. Each of the 662 in vitro HTS assays was

compared with the training set of chemicals, positive and negative for

developmental toxicity for any of the 17 categorical endpoints (defined as having

any cLEL or not), using continuous (Pearson’s correlation test and Student’s t-test)

and dichotomous (chi-squared test) statistical methodology, with the level of

significance returned as p values. The continuous tests compared the distribution of

AC50 assay values (potency) between in vivo categorical developmental toxicity

(either positive or not) for the chemicals. The dichotomous test used a 2 3 2

contingency table to compare chemicals having positive/negative in vitro assay

results (defined as having an AC50 value for a given chemical-assay pair) with

in vivo categorical developmental toxicity (either positive or not). In order to pass

the initial selection filter for model building, each in vitro assay from the univariate

analyses had to have a minimum p value of 0.05 from any method and at least

three true positives (chemicals that affected both the in vitro assay and in vivo
developmental toxicity).

General rat and rabbit developmental toxicity models. The first step in

developing a predictive model of developmental toxicity included selecting those

chemicals having evidence for adverse developmental effects in ToxRefDB. As

such, the chemical space used for model development focused on a subset of

chemical compounds in the ToxCast Phase I chemical library having prenatal rat

or rabbit studies in ToxRefDB and availability of in vitro profiling HTS assay

data in ToxCastDB. This returned 251 chemicals with rat developmental studies

and 234 with rabbit studies. Of those chemicals, the dLEL was used to delineate

a positive and negative set for developmental toxicity in either species. Negative

chemicals were those tested in a particular species but were not assigned a dLEL

due to lack of developmental effects up to the highest dose tested.

Model development followed the same general approach for the predictive

model of rodent reproductive toxicity (Martin et al., 2011). Here, we built

separate predictive models for rat and rabbit developmental toxicity (Fig. 1). The

first step in the development of the predictive model was univariate assay set

selection. Because general developmental toxicity is complex, consisting of

a combination of individual in vivo endpoint toxicities, we used the univariate

analyses (p � 0.05) for the individual in vivo endpoints, from the ‘‘Univariate

associations for in vivo developmental endpoint categories’’ section, as the initial

assay selection filter. The second step in model development was assay set

aggregation and reduction. Due to high correlation and observed biological

commonality among the filtered in vitro assay set, assays were grouped into

individual assay sets based on common gene target, family, pathway, assay

platform, or biological function, if there were at least two common assays (a� 2),

and represented as the average of the �log3(AC50/1000) across each assay to

comprise a single assay set. In some instances, assays that did not pass the initial

selection filter (i.e., nonsignificant from the univariate analysis) but were

complimentary, in terms of common gene target, family, pathway, assay platform,

or biological function, to assays that were included in the assay sets were included

in the model. These assays included two retinoic acid receptor (RAR) assays for

the rat model and two monocyte chemotactic protein-1 (MCP-1) assays and one

TABLE 1

Chemical -Endpoint Representation Across Developmental

Endpoints

Endpoint categories

Number of chemicals

Rat Rabbit Overlap

Developmental (dLEL) 146 106 65

Fetal weight reduction (FWR) 87 45 20

Malformation (MAL)a 127 75 39

Skeletal (axial) 113 53 25

Skeletal (appendicular) 49 22 7

Skeletal (cranial) 40 19 3

Urogenital (renal) 15 2 0

Urogenital (ureteric) 11 2 0

Jaw/hyoid 14 6 0

Cleft lip/palate 10 2 0

Neurosensory (eye) 2 4 0

Neurosensory (brain) 7 5 0

Body wall (somatic) 5 1 0

Viscera (splanchnic) 4 8 0

Cardiovascular (heart) 2 3 0

Cardiovascular (major vessels) 1 3 0

Prenatal loss (PNL) 86 136 47

Note. Developmental defects from ToxRefDB for the 271 chemicals containing

information in either rat or rabbit studies are characterized into four categories:

dLEL, FWR, MAL, and PNL. dLEL consists of chemicals affecting any

developmental endpoint (including FWR, MAL, and embryo-fetal death impacting

litter size). FWR consists of fetal weight reduction defects. MAL includes 13

distinct malformation and/or anomaly/variation categories, shown unbolded and

include skeletal (axial, appendicular, and cranial), urogenital (renal and ureteric),

jaw/hyoid, cleft lip/palate, neurosensory (brain and eye), body wall, splanchnic

viscera, and cardiovascular (heart and major vessels) endpoints. PNL consists of

embryo-fetal death impacting litter size, pregnancy loss, and maternal wastage.
aThis category adjusts for chemical redundancy across the distinct

malformation categories.
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transforming growth factor beta (TGFb) assay for the rabbit model. The addition

of these assays increased overall model performance, i.e., BA. Assays within an

assay set were further reduced by descending correlation to the dLEL, and the

cutoff for the number of assays within an assay set was chosen where the assay

set obtained maximal dLEL association. Using the selected composite assay sets,

a multivariate model was developed using linear discriminant analysis (LDA).

Fivefold cross-validation (wherein five divisions of the data into 80%/20%

chemical sets for training/testing is performed) was used to optimize the model

for stability. The resulting cross-validation statistics are presented as the average

and standard deviation (SD) of the training and test set balanced accuracies across

the five runs.

Data visualization. For cross-species comparison of developmental

toxicity models, the predictive models scored and ranked the chemicals based

on their activity in the composite in vitro assay set, defined for each species.

From the predictive models, each chemical score was the sum across each

individual assay set weight factor multiplied by the chemical potency,

�log3(AC50/1000). This model score was used to rank the chemicals, and

the rank order was visualized using ToxPi (Toxicological Priority Index) (Reif

et al., 2010). ToxPi is a flexible prioritization support software tool that

incorporates data from HTS assay bioactivity profiles, inferred toxicity

pathways, and other sources of information. The ToxPi profiles generated

here used the composite assay set for each species model to simply display

a visual that represents the relative activity of each model assay set (slice) for

the entire chemical set. For each ToxPi, the slice width corresponds with the

weight factor for each assay set, and length corresponds with the chemical

potency, �log3(AC50/1000), for that assay set. The larger the weight factor

value, the larger the slice width, and the longer the slice, the more potent that

chemical is for that assay set. ToxPi was not used to rank the chemicals because

the model was built and parameters optimized outside of this framework.

Endpoint–GO biological process map. GO biological processes were

compared with the in vivo categorical endpoints using similar univariate

association methods to understand the relationship between endpoints and their

biological significance. ToxCast HTS assays were mapped to distinct genes

where possible, using the assay technical information and the National Center for

Biotechnology Information (www.ncbi.nlm.nih.gov), where the mapping from

genes to assays can be found in ToxCastDB (actor.epa.gov/actor/faces/

ToxCastDB/Home.jsp). Genes were mapped to GO biological processes if a gene

was a component of a particular GO process using the GO annotation system.

The AC50 value for a chemical-GO process paring was assigned as the average

AC50 value for any gene or protein in that GO process which was affected by

a given chemical. Univariate associations between in vivo endpoints (cLEL) and

GO biological processes were carried out as described above using a minimum p

value of 0.05 from the three test methods mentioned above, positive correlations

only, and at least three true positives (chemicals affecting both the endpoint and

GO process). These associations were plotted in Cytoscape: An Open Source

Platform for Complex Network Analysis and Visualization (www.cytoscape.org)

(Cline et al., 2007). The Cytoscape file for Figure 7 is provided as supplemental

data, allowing specific GO biological process annotations to be visualized.

TABLE 2

HTS Assay Platform Summaries

Source Web site Description Number of assays References

ACEA Biosciences www.aceabio.com Real-time cell electronic

sensing in human A549 cells

7 assays —

Attagene, Inc. www.attagene.com Transcriptional activity with

multiplexed reporter genes in human

HepG2 liver cells

81 assays Martin et al. (2010)

Bioseek, Inc. www.bioseekinc.com Primarily evaluating inflammatory

responses using ELISA in a

mixture of human primary cells

174 assays Berg et al. (2006)

Cellumen, Inc. (a service

brand of Apredica)

www.cellumen.com Cellular HCS evaluating markers

such as stress pathways, mitochondrial

involvement, cell cycle, cell loss,

mitotic arrest, and the cytoskeleton

in human HepG2 liver cells

33 assays Giuliano et al. (2006)

CellzDirect, Inc. (acquired

by Life Technologies)

www.cellzdirect.com Transcriptional upregulation

of genes involved in

metabolism using primary

human hepatocytes

48 assays Rotroff et al. (2010)

NIH Chemical

Genomics Center

www.ncgc.nih.gov Nuclear receptor activity

(gene reporter assays) in

human embryonic kidney

HEK 293 cell lines

19 assays Huang et al. (2011);

Inglese et al. (2006);

Shukla et al. (2010)

NovaScreen panel

(Caliper

Life Sciences)

www.caliperls.com/products

/contract-research

Biochemical enzyme inhibition

and receptor-binding assays

in a cell-free format

292 assays Knudsen et al. (2011)

U.S. EPA, National Health

and Environmental

Effects Research Laboratory

www.epa.gov/nheerl MESC cytotoxicity and

cardiomyocyte differentiation

8 assays Chandler et al. (2011)

Note. Descriptions of assay platforms used in this study including source of the assays, Web site, description, number of assays in ToxCast, and references for

the assays used. Additional assay definitions and data can be found at: www.epa.gov/ncct/toxcast/data.html (ToxCastAssayMaster_20091214.xls) and:

actor.epa.gov/actor/faces/ToxCastDB/DataCollectionList.jsp
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RESULTS

Developmental Toxicity Model Development

To build models for prenatal developmental toxicity, it was

first necessary to identify potential developmental toxicants. For

the purposes of this research study, potential developmental

toxicants were defined as a ToxCast chemical having an in vivo

dLEL in ToxRefDB for rat and/or rabbit. We identified 271

ToxCast chemicals containing information in ToxRefDB, with

251 of these tested in pregnant rats, 234 in pregnant rabbits, and

214 tested in both species. A total of 187 unique chemicals were

identified as having a dLEL, leaving 60 to be considered

negative for developmental toxicity in both species. We did not

distinguish a chemical as being ‘‘sensitive’’ or ‘‘specific’’ for

FIG. 1. Predictive model assay selection. ToxCast in vitro HTS assay data consisted of AC50 values for 309 chemicals 3 662 assays. ToxRefDB in vivo

prenatal developmental toxicity test endpoints were organized into 17 categories, yielding cLELs for 251 chemicals in the rat and 234 chemicals in the rabbit.

ToxCast and ToxRefDB data were compared via univariate analyses, assay sets were aggregated and reduced, and the composite assay set was run through LDA

for model assessment as described in the ‘‘Methods’’ section. The variables g, r, and s represent a given gene, group, or single assay, where G, R, and S represent

the total number of genes, groups, or single assays, respectively.
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adverse pregnancy outcomes for this modeling effort. By

sensitive, we mean developmental effects recorded in ToxRefDB

at or below maternal toxicity dose levels, and by specific, we

mean a dLEL without maternal toxicity (no mLEL) (Knudsen

et al., 2009). Of the chemicals tested in each species and

recorded in ToxRefDB as having a dLEL, 146 were positive in

the rat (58%) and 106 were positive in the rabbit (45%), with

65 overlapping chemicals (Table 1). This moderate chemical

overlap space, along with the historic differences in chemical

toxicity seen in rats and rabbits, supported the decision to

develop species-specific models of developmental toxicity.

We evaluated correlations between in vivo dLEL or mLEL and

the number of in vitro assays that were positive (indicated by an

AC50 value) for each chemical. We plotted the relationship

between in vivo developmental activity (�log3((dose in mg/kg/

day)/10,000)) and promiscuity (number of assays positive across

662 assays) for rat or rabbit endpoints. Initial analysis revealed no

simple relationship between in vitro promiscuity and in vivo
developmental activity; that is, the developmental toxicity

potential of a ToxRefDB chemical could not be inferred simply

from the generic number of assays perturbed in ToxCast (Fig. 2).

Neither was a simple trend evident when the data were parsed by

mLEL. For that reason, we considered all chemicals in the

predictive model, regardless of whether they affected no assays,

a few specific assays or multiple diverse assays. For example,

specific activity on a narrow but relevant developmental pathway

(e.g., TGFb) could be highly relevant to a predictive model and so

all chemicals were considered for model building purposes.

Chemical solubility (e.g., logP), instability, or biotransformation

issues were not considered in this modeling effort, although we

acknowledge that including such information could potentially

strengthen the model performance.

Univariate Associations for In Vivo Developmental Endpoint
Categories

We sought to determine the associations between the specific

in vivo endpoint categories and the assays as a first step toward

a global predictive model of developmental toxicity. Chemicals

with a dLEL can affect a variety of endpoints in ToxRefDB,

including FWR, MAL, and embryo loss, with potentially very

different mechanisms of disruption. Table 1 gives the number

of chemicals across endpoint distribution. There were 187

unique chemicals with a dLEL recorded in ToxRefDB and 44

with a maternal-related PNL but no dLEL. There exists

redundancy across endpoints due to the fact that a particular

chemical may have been reported to cause one or many defects

at the dLEL. The chemical space overlapped between both

species at most by 60% for a given species in all four broad

categories (dLEL, FWR, MAL, and PNL), and the only MAL

subcategory to exhibit overlap was the skeletal system.

Univariate associations were evaluated to find biologically

meaningful relationships between specific in vivo categorical

endpoints and cellular targets of the in vitro HTS assays.

Univariate associations based on the 16 cLEL ToxRefDB

categories (not including the broad MAL category) for rat and

rabbit developmental outcomes were classified by endpoint-

target contingency tables. Although there was no trend for

a chemical’s developmental or maternal toxicity and number of

assays affected between species (Fig. 2), the nature of

developmental defects varied considerably between species

(Table 1). This implies that the univariate associations would

vary between species as well. Overall, this analysis returned 423

univariate associations. Univariate associations showed a non-

uniform distribution across the 17 endpoint categories assessed

here (Table 3). Most (301 total) were rat dependent, but 122

were rabbit dependent with MAL having the most associations

in either species. For disaggregated (categorical) endpoints, most

univariate associations were correlated with FWR, PNL,

urogenital, cleft palate, and skeletal defects in the rat and

FWR, PNL, and skeletal endpoints in the rabbit (Table 3). As

such, the number of univariate associations did not reflect the

number of chemical-endpoint effects, potentially indicating that

chemicals affecting a single endpoint category may be affecting

similar assays and/or pathways or may be affecting very

different assay sets and/or pathways. For example, 15 chemicals

had a cLEL for renal defects in the rat versus 113 chemicals for

axial skeleton defects (Table 1), whereas the univariate

associations numbered 60 and 29, respectively, for these

systems (Table 3).

FIG. 2. Lack of correlative relationship between in vivo toxicity and

number of assays affected. Chemicals tested in ToxRefDB for rat and rabbits

were plotted by their developmental (dLEL) and maternal (mLEL) toxicity

potential (�log3((dose in mg/kg/day)/10,000)) (A) for rat and (B) rabbit

species. Chemicals are ordered hitting the least number of assays in the

ToxCast screening to the most number of assays (left to right). Number of

assays hit by the chemical is listed on the x-axis.
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Species differences in the malformation categorical end-

points show that most rat associations correspond to urogenital,

skeletal (axial and appendicular), and cleft lip/palate (CLP)

categories, whereas rabbit associations correspond to skeletal

(axial, appendicular, and cranial) categories (Table 3). Very

few assay associations overlap between the species. This may

be indicative of different targets being perturbed, chemicals

affecting different endpoints potentially because of differences

in rates of embryogenesis and maternal and placental

physiologies, dose level and extent of exposure at the target

site, or the inherent nuances due to study designs over the years

(e.g., exposure window, strain differences in gestational age,

how time-to-pregnancy is measured, and length of gestational

exposed in rat and rabbit). There were, however, four common

in vitro HTS assay targets for the rat and rabbit dLEL

categories, namely cytochrome P450 enzymes CYP2A2 and

CYP1A1, tumor necrosis factor alpha (TNFa), and prostaglan-

din e2 (PGE2). The CYP and PGE2 assays were included in

both species’ developmental toxicity models. There were 12

common associations for the aggregated MAL endpoint. The

predominant endpoints from these common associations were

skeletal defects and neurosensory defects in the rabbit studies

and skeletal and urogenital endpoints in the rat (data not

shown). The stratification of univariate associations by

technology platform is shown in Figure 3.

We next examined univariate associations with respect to

in vitro HTS assay targets. Assay targets versus in vivo
developmental defects for rabbit and rat were plotted as shown

in Figure 4. Individual assay targets are shown along with their

categorized functional groups, such as chemokine signal, G-

protein–coupled receptor (GPCR), kinase/phosphatase activi-

ties, tissue factor, xenobiotic-intermediary metabolism, nuclear

receptor, nuclear factor, channel transporter, murine embryonic

stem cell (MESC), and cellular morphological assays. The

heatmap on the right side of each panel reflects the total

number of associations for a particular cellular target over the

various developmental endpoints. Although there are more rat

associations (331) than rabbit (141), the heatmap shows

distinct trends between species in this data set.

Species differences. Species differences were evident

among statistically correlated target groups from the HTS

in vitro assays with in vivo categorical endpoints (Fig. 4).

Endpoints with the most correlations include FWR, urogenital

(renal and ureteric) defects, CLP, skeletal (appendicular and

axial), and fetal loss in the rat and FWR, skeletal axial, and

PNL in the rabbit. Most rabbit associations were connected to

tissue factor (3–48 true positives [TPs]) and chemokine signal

groups (3–38 TPs), whereas most rat associations were

connected to xenobiotic-intermediary metabolism (3–102

TPs) and kinase/phosphatase groups (mostly 3 TPs). Univariate

associations were distinct for each species. In the rat,

xenobiotic-intermediary metabolism, channel-transporters,

and cell-based assays correlated mostly with urogenital defects

and cleft palate, whereas these assays minimally correlated

with rabbit defects. Additionally, a subset of chemokine signal,

GPCR, metabolism, and nuclear factor groups associated with

rabbit axial skeletal defects while minimally correlating with

rat defects.

Intra-species differences. Intra-species differences are seen

for the various developmental outcomes. Although the kinase/

phosphatase targets associate mainly with FWR and PNL in the

rats, this is due to three chemicals (maneb, mancozeb, and

metiram zinc). Cell-based assays associated mainly with rat

renal (5–12 TPs) endpoints. Additionally, urogenital and

skeletal axial endpoints correlated exclusively with mitochon-

drial disruption assays. The urogenital categorical endpoint

exclusively affected MESC down assays, whereas an increase

in MESC cell number was associated with PNL. Examples for

the rabbit associations reveal similar trends of specific targets

associating with specific endpoints. Roughly half of the tissue

factor targets associate with DEV defects, whereas 25%

exclusively associates with PNL.

TABLE 3

Univariate Association Representation Across Developmental

Endpoints

Endpoint

Number of assay associations

Rat Rabbit Overlap

Developmental (dLEL) 22 17 4

Fetal weight reduction (FWR) 52 20 0

Malformation (MAL)a 117 34 12

Skeletal (axial) 29 16 0

Skeletal (appendicular) 27 8 0

Skeletal (cranial) 7 6 0

Urogenital (renal) 60 0 0

Urogenital (ureteric) 31 0 0

Jaw/hyoid 4 2 0

Cleft lip/palate 21 0 0

Neurosensory (eye) 0 1 0

Neurosensory (brain) 2 3 0

Body wall (somatic) 0 0 0

Viscera (splanchnic) 0 5 0

Cardiovascular (heart) 0 0 0

Cardiovascular (major vessels) 0 0 0

Prenatal loss (PNL) 46 44 0

Note. Developmental defects from ToxRefDB for the 271 chemicals containing

information in either rat or rabbit studies are characterized into four categories: dLEL,

FWR, MAL, and PNL. dLEL consists of univariate associations linked to any

developmental endpoint (including FWR, MAL, and embryo-fetal death impacting

litter size). FWR consists of fetal weight reduction defects. MAL includes 13 distinct

malformation and/or anomaly/variation categories, shown unbolded and include

skeletal (axial, appendicular, and cranial), urogenital (renal and ureteric), jaw/hyoid,

cleft lip/palate, neurosensory (brain and eye), body wall, splanchnic viscera, and

cardiovascular (heart and major vessels) endpoints. PNL consists of embryo-fetal

death impacting litter size, pregnancy loss, and maternal wastage.
aThis category adjusts for univariate association redundancy across the

distinct malformation categories.
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Sensitivity and specificity evaluation of univariate associa-
tions. To assess the statistical relevance of the univariate

associations, each in vitro assay association was plotted as the

TP rate (sensitivity) against the false-positive (FP) rate (1-

specificity). This was done to map the various in vitro target-

in vivo endpoint associations as inputs for machine learning.

Strictly mapping individual univariate points assumes those

furthest from the diagonal (random) have greater diagnostic

value. Sensitivity analysis was evaluated for each endpoint

(Fig. 5). dLEL associations produced a weak predictive trend

only slightly improved over random (Fig. 5A). This was also

the case for FWR (Fig. 5B) and PNL (Fig. 5C). Diagnostic

value increased substantially when the sensitivity analysis

considered specific developmental defects. Most likely, this is

because a chemical will be affecting fewer pathways for

disrupting each specific malformation than for causing a dLEL,

FWR, or PNL. For example, chemical effects on several assays

showed moderate sensitivity and specificity for rat CLP and

ureteric defects (Fig. 5D). Rabbit jaw/hyoid, neurosensory (eye

and brain), and splanchnic viscera endpoints were more

sensitive than specific (Fig. 5E).

Rat Developmental Toxicity Model

Twelve assay sets were identified in building the model for

rat developmental toxicity of which eight were considered

positive predictors and four were negative predictors (Table 4).

Positive predictors are assay sets that were positively correlated

with developmental toxicity (i.e., chemicals having a dLEL in

general affected these assays, whereas chemicals tested in

a species but without a dLEL did not). Negative predictors are

assay sets that were negatively correlated with developmental

toxicity (i.e., chemicals tested in a species but did not have

a dLEL generally affected these endpoints, whereas chemicals

having a dLEL did not), which may indicate a protective

mechanism. The following 12 assay sets were stratified based

on their weight factor: (1) RAR included two transcriptional

assays and one receptor-binding assay; (2) GPCR included the

purinergic (PY2), opiate (opiate_mu), opiate receptor-like 1

(ORL1), and the muscarinic cholinergic rececptor 1 (M1)

GPCR-binding assays, which were among the highest

correlating GPCRs; (3) TGFb included protein expression

and transcription factor binding activity assays; (4) MT

(microtubule destabilization) imaging assay; (5) SENS_CYP

(cytochrome P450) included two CYP transcription factor

binding activity assays (CYP1A1 and CYP2B6) affected by at

least 88 chemicals; (6) AP1 (activator protein 1) transcription

factor binding activity assay; (7) SLCO1B1 (solute carrier

organic anion transporter family member 1B1) expression

assay; (8) CYP enzyme assays (CYP2A2 and CYP2B1)

affected by a maximum of 27 chemicals; (9) HLA-DR (major

histocompatibility complex) as a negative predictor included an

increase in protein expression; (10) PXR (pregnane X receptor)

expression assay was also a negative predictor; (11) interleukin

(IL)8 was a negative predictor including two assays showing

decreases in protein expression; and (12) PGE2 (prostaglandin

receptor) as a negative predictor included decreases in protein

expression. These assay sets reflect a number of target

pathways relevant to developmental processes and toxicities.

FIG. 3. Univariate associations of ToxRefDB developmental endpoints with activity in ToxCast experimental assays. (A) Species-specific univariate associations

show more associations for rat than rabbit endpoints (dLEL, FWR, MAL, and PNL) over the ToxCast assays (pmin � 0.05, TP � 3). Numbers in parentheses indicate

total number of assays in each platform. Associations aggregated by species revealed more rat-associated assays for all platforms with the most contributions from the

absorption, distribution, metabolism, and excretion (ADME) and enzyme (ENZ) NovaScreen (NVS) assays. (B) Specific endpoint univariate associations show broad

associations with ToxCast assays with the most to least being MAL (malformations and/or anomalies/variations), PNL (prenatal loss), and FWR. Note the MAL

category consists of multiple univariates from individual endpoints. Assays stratified over aggregated endpoints (FWR, MAL, and PNL) generally revealed more MAL

associations for each platform with the most contributions from the ADME and ENZ NVS assays and the BSK inflammatory response assays. Overall, the BSK

platform gave more associations as well as the biochemical HTS platform (NVS). ACEA, ACEA Biosciences; NCGC, NIH Chemical Genomics; CLM, Cellumen

(Apredica); ATG, Attagene; CLZD, CellzDirect; NVS_OTHER, NovaScreen other assays; NVS_NR, NovaScreen nuclear receptor assays; NVS_GPCR, NovaScreen

G-protein–coupled receptor assays; NVS_ADME, NovaScreen CYP assays; NVS_ENZ, NovaScreen enzyme assays; BSK, Bioseek.

116 SIPES ET AL.

 at E
nvironm

ental Protection A
gency L

ibrary on A
pril 25, 2012

http://toxsci.oxfordjournals.org/
D

ow
nloaded from

 

http://toxsci.oxfordjournals.org/


FIG. 4. Stratification of univariate associations between ToxCast assays and ToxRefDB. The number of univariate associations between developmental

defects and assay targets are shown (pmin � 0.05, TP � 3) for (A) rat and (B) rabbit species. In vitro assay targets (vertical) indicate in vitro effect, which were

grouped by similar biological functional groups (annotated on the right of each panel). Endpoint categories (horizontal) indicate in vivo developmental endpoints
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Different weighting factors were assigned to the 12 assay

sets using LDA to optimize the BA in the model (Table 4). The

weighting factors define overall contribution of each assay set

to the model. The highest weighting factors were assigned to

the RAR and GPCR assay sets, mainly due to high specificity

for a subset of chemicals with a dLEL. The SENS_CYP assay

set improved the model sensitivity (affected by 209 chemicals).

The negative predictors PXR, IL8, and PGE2 were sensitive

assay sets (affected by � 54 chemicals) that helped to minimize

FPs. The remaining assay sets were affected by a minimal

number of chemicals (� 18 chemicals for MT, SLOC1B1, and

HLA-DR) or by a moderate range (� 39 chemicals for RAR,

TGFb, and CYP). These assay sets had different weighting

factors and significance values associated with the dLELs, but

all assay sets helped to maintain overall model BA.

Modeling the data using the 12 assay sets yielded a training BA

of 71% (± 1% SD) with a p value of 7.5 3 10�11 (Table 5). In order

to achieve the 71% training BA, a model score cutoff value was

given fromthe LDA analysis. The sensitivity and specificity was 72

and 70%, respectively. When subjected to fivefold cross-validation

within the data set, this model returned a testBA of 70% (±9% SD).

These results are reasonable for a preliminary model, given there

was no a priori filtering applied.

Rabbit Developmental Toxicity Model

Seven assay sets were identified in building the model for

rabbit developmental toxicity of which five were considered

positive predictors and two were considered negative predictors

(Table 6). The assay sets are stratified based on their weight

factor: (1) CCL2 (chemokine ligand 2) (MCP1, monocyte

(by ToxRefDB malformation data) in the order of increasing severity from FWR to MAL to PNL, shown by increasing color intensity. Univariate associations are

represented by colored boxes where empty boxes are no associations. Color-ribbon values are the total number of univariate associations across in vitro assay

targets (vertical) and endpoint categories (horizontal) visualized by increasing number of univariate associations (yellow to red). *Indicates multiple potential

targets.

FIG. 5. Sensitivity and specificity statistics associated with HTS assay to in vivo endpoint univariate associations. Sensitivity and specificity statistics for assay

to endpoint univariates were plotted for each endpoint category. Endpoints include (A) dLEL, (B) FWR, (C) prenatal loss (PNL), (D) rat, and (E) rabbit

malformation and/or anomalies/variations (MAL). Points represent individual univariate associations that had a significance of p � 0.05 and number of TP � 3.
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chemotactic protein 1) included five small cytokine protein

expression assays; (2) IL included protein expression assays of

IL1a and IL8; (3) CYP included a CYP1A1 expression and

CYP2A2 enzyme inhibition assay, as in the rat developmental

toxicity model; (4) TGFb included two protein expression assays,

much like the rat developmental toxicity model, but with only

one specific assay in common; (5) MESC included assays

measuring a decrease in cell number and MHC (myosin heavy

chain) expression; (6) SULT2A1 (sulfotransferase) expression

assay as a negative predictor; and (7) PGE2 (prostaglandin

receptor) as a negative predictor similar to the rat model.

Different weighting factors were assigned to the seven assay

sets using LDA to optimize the BA in the model (Table 6). All of

the assays were moderately sensitive (affected� 47 chemicals),

but the highest weighting factors were assigned to the CCL2 and

IL assay sets, which were more specific than the CYP, TGFb, and

MESC assay sets. The negative predictor SULT2A1 was the

most specific as determined by the ratio of the number of

chemicals that had a dLEL and affected the assay (true positive)

over the number of chemicals that did not have a dLEL and did

not affect the assay (true negative). PGE2 was the least specific

but helped to decrease the score of FPs. These assay sets were all

significantly associated with the dLELs (p values were � 0.1).

Modeling the data using the seven assay sets yielded a training

BA of 75% (± 2% SD) with a p value of 7.2 3 10�13 (Table 7).

The sensitivity and specificity were 70 and 78%, respectively.

When this model was subjected to fivefold cross-validation

within the data set yielded a test BA of 71% (± 3% SD). These

results are reasonable for a preliminary model, given there was

no a priori filtering applied.

ToxPi Profiling and Concordance

The Phase I chemical library data set was run through each

species model for ranking, and these rankings were then

visualized as ToxPi (Fig. 6). The model score for each

TABLE 5

Predictive Rat Developmental Toxicity Model. Rat

Developmental Toxicity Model Statistics on the Model Assay

Sets and after Fivefold Cross-Validation

Cross-validation statistics Full model statistics

Learner LDA TP 105 F1 74%

CV Fivefold FP 32 RR 2.1

No. F 12 FN 41 OR 5.8

Assays 22 TN 73 PPV 77%

BA Train 71% SENS 72% NPV 64%

SD Train 1% SPEC 70% Pred 70%

BA Test 70% BA 71% p Value 7.5 3 10�11

SD Test 9% Acc 71% Cutoff 0.3

Note. CV, cross-validation; FN, false negative; NPV, negative predictive

value; OR, odds ratio; PPV, positive predictive value; RR, relative risk; SENS,

sensitivity; SPEC, specificity; TN, true negative.

TABLE 4

Predictive Rat Developmental Toxicity Model. Rat Developmental Toxicity Model Composite Assay Set Includes 12 Assay Sets

(8 positive predictors and 4 negative predictors) Containing One to Four Assay Components

Assay set Individual assay Weight factor Correlation p Value

1) RAR ATG_RARa_TRANS 0.58 0.10 8.37 3 10�2

ATG_RARb_TRANS

NVS_NR_hRAR_Antagonist

2) GPCR NVS_GPCR_hPY2 0.55 0.16 8.08 3 10�3

NVS_GPCR_hOpiate_mu

NVS_GPCR_hORL1

NVS_GPCR_hM1

3) TGFb ATG_TGFb_CIS 0.38 0.16 6.34 3 10�3

BSK_BE3C_TGFb1_down

4) MT CLM_MicrotubuleCSK_Destabilizer_24hr 0.30 0.13 1.74 3 10�2

5) SENS_CYP CLZD_CYP1A1_48 0.26 0.17 5.19 3 10�3

CLZD_CYP2B6_48

6) AP1 ATG_AP_1_CIS 0.24 0.08 1.70 3 10�1

7) SLCO1B1 CLZD_SLCO1B1_48 0.11 0.14 1.29 3 10�2

8) CYP NVS_ADME_rCYP2A2 0.06 0.16 3.22 3 10�3

NVS_ADME_rCYP2B1

9) HLA-DR BSK_BE3C_hLADR_up �0.38 �0.15 2.13 3 10�2

10) PXR ATG_PXR_TRANS �0.24 �0.08 2.06 3 10�1

NCGC_PXR_Agonist_human

11) IL8 BSK_LPS_IL8_down �0.23 �0.09 1.36 3 10�1

BSK_SAg_IL8_down

12) PGE2 BSK_LPS_PGE2_down �0.18 �0.13 4.25 3 10�2

Note. Individual assays are listed along with the weighting factor, correlation, and p value with respect to the rat dLEL for each assay set.
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chemical was based on the in vitro activity profile from the

HTS assays of the selected composite assay set for each model.

Higher scoring chemicals are predicted to be more likely

developmentally toxic than chemicals with lower ranking

scores. The top left ToxPi is the chemical predicted to most

likely be a developmental toxicant for the given species,

whereas the bottom most ToxPi is the least likely. Optimizing

the model through LDA gave the cutoff values for de-

velopmental toxicity in species-specific models, which are

shown as black bars in the figures (Fig. 6). Red-yellow and

blue slices of ToxPi indicate positive and negative assay set

predictors, respectively. Chemicals with the highest activity

among positive and negative predictors are ranked highest and

lowest, respectively. Chemicals in the middle either have little

activity for the given assay sets or had near equal activity in

both positive and negative predictors. For predicted rat

developmental toxicants, a combination of assay sets were

evident for the highest ranking chemicals, although a number

of chemicals only affected a single positive predictor, such as

TGFb and SENS_CYP (Fig. 6A). For predicted rabbit

developmental toxicants, a combination of assay sets were

evident for the highest ranking chemicals, with most containing

a CCL2 assay set, although a number of chemicals only

affected a single positive predictor, such as CCL2, IL, CYP,

and TGFb (Fig. 6B). Low-ranking chemicals for species-

specific models showed little bioactivity across the HTS assays

and the least ranking chemicals primarily affected negative

predictors.

Next, we examined concordance between the species-

specific models (Table 8). Each model was analyzed in-

dependently over the collective 309 ToxCast chemicals using

model cutoff values preset as described above (see Tables 4, 5,

6 and 7). Whereas the primary species model gave � 71% BA

in each case, the secondary species gave BA of 62% (rat to

rabbit) and 53% (rabbit to rat) for dLEL predictivity. As such,

both models contribute unique species-specific information in

predicting developmental toxicity.

Endpoints Linked through GO Process Associations

Univariate associations of GO biological processes

(www.geneontology.org) were plotted in Cytoscape (Fig. 7;

Supplemental data; www.cytoscape.org). This map has the

potential to show meaningful relationships between cellular

TABLE 7

Predictive Rabbit Developmental Toxicity Model. Rabbit

Developmental Toxicity Model Statistics on the Model Assay

Sets and after Fivefold Cross-Validation

Cross-validation statistics Full model statistics

Learner LDA TP 74 F1 71%

CV Fivefold FP 28 RR 3.0

No. F 7 FN 32 OR 8.3

Assays 16 TN 100 PPV 73%

BA Train 75% SENS 70% NPV 76%

SD Train 2% SPEC 78% Pred 74%

BA Test 71% BA 74% p Value 7.2 3 10�13

SD Test 3% A 74% Cutoff 0.7

Note. CV, cross-validation; FN, false negative; TN, true negative; SENS,

sensitivity; SPEC, specificity; RR, relative risk; OR, odds ratio; PPV, positive

predictive value; NPV, negative predictive value.

TABLE 6

Predictive Rabbit Developmental Toxicity Model. Rabbit Developmental Toxicity Model Composite Assay Set Includes Seven Assay

Sets (five positive predictors and two negative predictors) Containing One to Five Assay Components

Assay set Individual assay Weight factor Correlation p Value

1) CCL2 BSK_3C_MCP1_up 1.15 0.31 1.5 3 10�6

BSK_SM3C_MCP1_up

BSK_SAg_MCP1_up

BSK_LPS_MCP1_up

BSK_KF3CT_MCP1_up

2) IL BSK_BE3C_IL1a_up 0.39 0.19 3.9 3 10�3

BSK_LPS_IL1a_up

BSK_LPS_IL8_up

3) CYP CLZD_CYP1A1_24 0.24 0.18 4.6 3 10�3

NVS_ADME_rCYP2A2

4) TGFb BSK_BE3C_TGFb1_up 0.28 0.11 1.0 3 10�1

BSK_BE3C_TGFb1_down

5) MESC MESC_CellCount_AC50_Down 0.13 0.11 8.6 3 10�2

MESC_MHC_AC50_Down

6) SULT2A1 CLZD_SULT2A1_6 �0.26 �0.23 4.1 3 10�4

7) PGE2 BSK_LPS_PGE2_down �0.15 �0.15 2.4 3 10�2

Note. Individual assays are listed along with the weighting factor, correlation, and p value for each assay set.
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FIG. 6. Cross-species comparison of developmental toxicity predictions. ToxPis (toxicity prioritization index) indicate a graphical representation of predicted

developmental toxicity across all 309 unique ToxCast chemicals. (A) The eight positive and four negative predictors (indicated by red-yellow and blue pie slices,

respectively) were used as inputs, along with their respective weighting factors for the rat developmental toxicity model. (B) The five positive and two negative predictors

(indicated by red-yellow and blue pie slices, respectively) were used as inputs, along with their respective weighting factors for the rabbit developmental toxicity model.
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processes and in vivo endpoints and how the endpoints are

associated with each other through these processes. Most

endpoints shared at least one biological process with another

endpoint, except for rabbit splanchnic visceral defects. A hub

of GO processes (lymph node, salivary gland, and muscle

development, germ cell migration, TGFb signaling, prolifera-

tion, differentiation, ossification, and collagen regulation)

connect a number of endpoints including, rat FWR, dLEL,

axial skeleton, body wall, cleft palate, and rabbit FWR. Rat

FWR also clusters with rat CLP, appendicular, cranial, and

PNL. Rabbit FWR appears to connect to a number of endpoints

but with only one or two associations. Rat urogenital endpoints

cluster together with rat CLP (via placental and embryonic

development, aging, growth, NF-jB, response to drug, and

apoptosis). Common GO process themes include migration,

inflammatory signaling, blood vessel development, and pro-

liferation.

DISCUSSION

Predictive modeling of potential in vivo developmental

toxicity from in vitro data is a complex problem that is

confounded by many factors such as chemical perturbations of

key developmental pathways, intracellular and tissue-level

crosstalk, xenobiotic metabolism, and chemical solubility and

partitioning. This study is the first attempt to construct

predictive models of developmental toxicity based on broad

spectrum profiling of biological activity in HTS assays. Results

of this study demonstrate the following findings: (1) individual

species-specific models are necessary for predicting develop-

mental toxicity in pregnant rats and rabbits, (2) plausible

cellular targets and pathways can be linked to specific endpoint

toxicity, (3) toxicity endpoints cluster together based on similar

biological process associations indicating potential similarities

in developmental stage or processes, (4) xenobiotic metabolism

plays a role in developmental toxicity, (5) there is no clear

trend between in vivo chemical dose and assay characteristics,

and (6) this analysis demonstrates the capability of using HTS

assays to predict developmental toxicity. Taken together, these

data indicate for the first time that ToxCast HTS of a large

number of compounds can produce in vitro bioactivity profiles

that can predict, with a BA of over 70%, in vivo developmental

toxicity potential.

Species Specificity

Mammalian species, genotype, and gender have been known

to be factors associated with a chemical’s potential to cause

developmental toxicity. The weak concordance between rat and

rabbit predictors could reflect the Phase I chemical space, the

assay sets used for model building, the predictivity of species-

specific models, or that univariate associations minimally

overlap between species. These data do not indicate which

species might be more or less relevant for human developmental

toxicity but suggest that there is a pronounced separation in

developmental toxicity between both species, seen from both the

chemical and assay space. This is especially noteworthy

considering the majority of in vitro assay targets were human

genes/cells/proteins, yet the human-based predictive models still

yielded a clear delineation between rats and rabbits.

Compounds without an acceptable in vivo guideline study

but among the top 22 chemicals predicted to be most likely

developmental toxicants using species-specific models (Fig. 6)

have literature documentation of developmental toxicity.

Imazalil made the top 22 for both species and along with

other imidazoles have been indicated in rat whole embryo

culture and zebrafish toxicity (Menegola et al., 2006; Sisman

and Turkez, 2010). Specifically, for the rat model, PFOS has

been shown to affect mammalian survival and hypothyrox-

inemia (Lau et al., 2003; Luebker et al., 2005) and MEHP

administration in mice showed teratogenicity (Yagi et al.,
1980). For the rabbit model, malaoxon has been shown to

cause chick teratogenicity (Walker, 1971); however, prometon

has not been shown to be embryotoxic. Additionally, depend-

ing on the intended application, cutoff values set from LDA

analysis may be increased to reduce the number of compounds

considered positive for developmental toxicity thereby gener-

ally increasing specificity or decreased to increase the number

of positives thereby generally increasing sensitivity for either

species to tailor the models for specific applications. Such an

approach may further help to prioritize targets and pathways

for gaining a better understanding of mechanisms.

TABLE 8

Concordance between Species-Specific Models

Model Rat Rabbit

Test Rat Rabbit Rat Rabbit

TESTED

TP 105 72 65 74

FP 32 57 40 28

FN 41 34 81 32

TN 73 71 65 100

UNTESTED

NTP 32 40 30 33

NTN 26 35 28 42

STATISTICS

Sens 72 68 45 70

Spec 70 55 62 78

BA 71 62 53 74

Acc 71 61 52 74

Note. Species-specific models including the optimum cutoff values were

used to evaluate the predictivity of developmental toxicity in the other species.

These data indicate that species-specific models can only accurately predict

(BA > 70%) species-specific developmental toxicity for which the model was

built. Acc, accuracy; FN, false negative; NTN, not tested (and predicted to be)

negative; NTP, not tested (and predicted to be) positive; Sens, sensitivity; Spec,

specificity; TN, true negative.
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Mechanistic Implications

The predictive models reveal biologically plausible linkages

to molecular targets and processes and possible modes of

action for developmental toxicity. ToxRefDB contains in vivo
data from many different rat strains, and the ToxCast HTS

assays consist of data collected on a variety of human and rat

cell lines, mouse primary cells, and proteins and genes from

a variety of species assayed in cell-free formats. Even with this

diversity (genetic and technical), the predictive models may

reflect groups of genes and proteins that work together in

cellular processes fundamental to embryogenesis and pregnan-

cy—regardless of species, genotype, or gender. For example,

the CYPs, TGFb, and PGE2 were represented in both species

models of developmental toxicity. CYPs are important

enzymes in drug and steroid metabolism (Finnell et al.,
1995; Hines, 2008), TGFb signaling is critical for morpho-

genesis and differentiation, and PGE2 plays a role in the

pregnant uterus (Lim and Dey, 1997; Wanggren et al., 2006).

These may give an indication into which pathways represent

common routes between species for chemical effects on

development.

Species-specific targets also have known roles in prenatal

development. The rat model included the purinergic, opioid,

and muscarinic acetylcholine GPCRs, which play a role in

brain development (Lauder and Schambra, 1999; Majumder

et al., 2007; Vernadakis et al., 1990), and CYPs and

microtubules have roles in metabolism and preimplantation,

respectively (Davis et al., 2010; Maro and Pickering, 1984).

RAR, TGFb, and AP-1 have established roles in development

(Jochum et al., 2001; Mark et al., 2009; Wu and Hill, 2009).

The negative predictor PXR may indicate a metabolic factor for

drug toxicity indicating a protective mechanism or may be

a side effect of being affected by a number of chemicals.

Human leukocyte antigens (HLA) and ILs are involved in the

inflammatory signaling cascade and trophoblast migration

(Jovanović et al., 2010; von Rango, 2008). On the other hand,

some targets, such as SLCO1B1 (solute carrier organic anion

transporter family member 1B1), had no established role in

developmental toxicity; however, other transporters such as

ABCB1 and ABCG2, which had univariate associations with

rat developmental endpoints, play roles in chemical suscepti-

bility to birth defects and stem cell plasticity (Chandler et al.,

FIG. 7. Univariate associations clustering in vivo endpoints based on HTS GO biological processes. GO biological processes were linked to ToxCast assays

through genes and further to endpoints through univariate analysis (pmin � 0.05, TP � 3, correlation > 0). Endpoint to GO process univariate analyses were

plotted in Cytoscape using the spring embedded clustering method. Terms listed indicate cellular targets or processes enriched in the circled GO processes.

PREDICTIVE MODELING OF DEVELOPMENTAL TOXICITY 123

 at E
nvironm

ental Protection A
gency L

ibrary on A
pril 25, 2012

http://toxsci.oxfordjournals.org/
D

ow
nloaded from

 

http://toxsci.oxfordjournals.org/


2011; Ding et al., 2010; Lankas et al., 1998). The rabbit

model–specific assay sets include CCL2, which is correlated

with early detection of pregnancy and has been suggested to be

a marker of toxemia, an accumulation of toxic metabolites that

may lead to an imbalance in energy between the maternal-fetal

unit (Boomsma et al., 2009; Yarim et al., 2007). CCL2 has also

been indicated as a potential marker for disruption of vascular

development (Kleinstreuer et al., 2011). Interestingly, the stem

cell differentiation and cytotoxicity correlated with rabbit

developmental toxicity and have been shown to predict

developmental toxicity (Chapin and Stedman, 2009; West

et al., 2010). Finally, the sulfotransferase acts upon many

factors including steroids, alcohol, drugs, and xenobiotic

compounds, which like PXR, may indicate a protective

mechanism. The evidence that these targets have important

roles in developmental toxicity gives plausibility to these assay

sets for predicting developmental toxicity.

Endpoint Clustering through Biological Processes

Susceptibility of an organ to chemical perturbations is

dependent on the genotype and developmental stage at which

an embryo might be exposed either directly or indirectly through

a maternal effect (Daston and Manson, 1995). Critical periods of

development have been identified for various organ systems and

the corresponding windows of greatest vulnerability. It is

expected that some developmental defects would cluster

together, based on overlapping windows of vulnerability during

organogenesis. For example, rat cleft palate and urogenital defects

are among the last organs to complete organogenesis. We see

a similar trend in the data where cleft palate and urogenital defects

are clustering together around assay targets and common GO

processes. The assay targets from the univariate associations

include CYP activation/inhibition, ATP-binding cassette trans-

porters (ABCG2 and ABCB1) inhibition, increase in prostaglan-

din protein expression (PTGER2), androgen receptor binding

(AR), tumor necrosis factor receptor activation (TNFRSF10B),

and stress activation (JUN/AP1). The conazole fungicides were

highly represented in these endpoints with flusilazole and

propiconazole affecting both endpoints, cyproconazole specifi-

cally affecting cleft palate, and diniconazole, tetraconazole,

paclobutrazol, and triadimenol affecting urogenital defects.

These conazoles were among the highest scoring for both

developmental toxicity models (Fig. 6). As mentioned above, the

ATP transporters have been linked with embryonic stem cell

pluripotency, which is most likely the link to the embryonic

development GO process connecting these endpoints. Although

these conazoles did rank high in these predictive models, this

should not be construed as a risk of developmental toxicity,

which would involve all elements of hazard and exposure in real-

world use scenarios.

Xenobiotic Metabolism

Although the assays allow for limited ability for drug

metabolism and this work did not address the bioavailability of

the ToxCast chemicals to the embryo in vivo, it does give some

indication about chemicals disrupting xenobiotic metabolism,

which affects chemical properties. Each species-specific de-

velopmental toxicity model utilized CYP assays in a predictive

assay set, indicating that xenobiotic metabolism may be playing

a pivotal role in developmental toxicity regardless of species.

Additionally, from the univariate analyses, rat cleft palate,

urogenital, and axial skeletal endpoints associate with the

disruption of a range of CYP enzymes, suggesting that these

systems may be affected through CYP disruption. Further efforts

to characterize chemical properties have not been performed;

however, studies are underway to determine how chemical

features could augment the ability of the bioassays used in this

data set to predict developmental toxicity.

Dosage

According to the ‘‘Principles of Teratology,’’ one would

assume that the in vivo data follow a trend of FWR to

malformations to fetal loss with increasing dose, although

a majority of the ToxCast chemicals with ToxRefDB studies do

not display this trend. This may be because most guideline

studies test three dose levels to ensure that a no observed effect

level is identified at the lowest level, whereas effects are

usually confined to the high level. Graded responses across the

limited multiple dose levels may not be seen. This principle has

been a guiding factor for studies linking developmental toxicity

with FWR (Kavlock et al., 1995). However, the predictive

model did not uncover a simple relationship between dLEL

potency, suggesting that an additional focus on specific

endpoints is necessary to inform mechanisms and to in-

corporate dosage into these models. LEL values for in vivo
endpoint observation and AC50 values for in vitro assay calls

may play a role in determining these underlying associations.

Predicting Developmental Toxicity

This analysis provides a unique perspective in using HTS

assays to predict developmental toxicity potential. First, for this

research project, we used the dLEL for defining positive and

negative developmental toxicants, rather than lowest observed

adverse effect level (LOAEL), which is used in regulatory

toxicology. We previously defined dLEL in Knudsen et al.
(2009) as meaning that some developmental effect was

observed from the ToxRefDB database, whether at the

developmental LOAEL or not. Hydroureter is an example of

an endpoint from animal toxicity studies with limited

toxicological relevance to human health risk. This is considered

a transitory and nonspecific disturbance of fetal development

whether or not it is treatment related. In children, hydroureter is

a common but generally reversible symptom of urinary tract

obstruction/infection. Furthermore, hydroureter in children can

ascend to pyelonephritis, which is an inflammatory defect of

the kidney that can lead to histological damage (and permanent

scarring) of renal tissue, causing a range of postnatal functional

deficits that are not usually assessed in an animal
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developmental toxicity study. Our results indicate that the

category of ureteric defects can be linked to cleft palate,

a toxicologically relevant endpoint, through GO processes

common to HTS assays associated with these defects (Fig. 7).

The model included all dLEL endpoints, irrespective of their

implications for regulatory toxicology, and we think this is the

current best practice for predictive modeling of developmental

toxicity based solely on ToxCast and ToxRefDB data. As the

developmental toxicity field advances, predictive modeling

may focus on more sensitive in vivo endpoints or pathways of

concern, but the predictive modeling approach presented herein

would still be applicable.

Second, our model does not consider concomitant maternal

toxicity as an independent variable. ToxRefDB studies look at

maternal and fetal responses differently but cannot answer

whether fetal effects are primary (direct) or secondary (maternal)

to chemical exposure. When we looked at chemicals with dLEL

but no mLEL or vice versa, we did not see any predictive value in

discriminating between the two. As noted earlier, the Phase I

portfolio of ToxCast assays are not specific for molecular

pathways and cellular processes that constitute a developmental

hazard. Although a battery of in vitro assays that predict

chemicals having developmental specificity (dLEL without an

mLEL) or sensitivity (dLEL < mLEL) would be significant, this

should be construed as a future goal rather than a current

limitation. Indeed, a chemical with an effect on an important

pathway such as TGFb could disrupt development through direct

effects on the embryo (e.g., preventing palatal closure) or

through the mother (e.g., uterine vascularity or placental

development).

Third, we employ a target-level prediction rather than

a response-based prediction. As a predictive screening tool to

identify potential developmental toxicants, we recognize

nuances that could limit BA, including the somewhat narrow

coverage of developmental processes by the Phase I ToxCast

assay suite, sensitivity of ToxRefDB endpoints, and consid-

erations of biotransformation. One could anticipate that a single

assay focused on morphogenesis and differentiation response

such as embryonic stem cells or zebrafish embryos might have

a higher BA for smaller numbers of chemicals, e.g., BA around

87% for a more limited set of compounds (Brannen et al.,
2010; West et al., 2010); however, the chemical targets

themselves that initiate a response cannot be deciphered, only

pathway-level and endpoint response. The ToxCast model not

only includes these endpoints but also adds assays for broader

biochemical, molecular, and cellular functions. As such, it

provides a global model for target-level inputs on top of

response-based outputs. The BA, which is significantly greater

than random, thus predicts based on chemical biology across

a larger set of endpoints and larger set of chemicals than

models with higher BA. Additionally, if we focus our efforts

specifically on mode of action, such as, for example, stem cell

differentiation or blood vessel development, we get much

improved performance (~80–90% BA) (Chandler et al., 2011;

Kleinstreuer et al., 2011). Putting all of these efforts together

may ultimately give the best predictive models and mecha-

nisms of action.

Limitations

Care needs to be taken in using these associations and

predictions for all applications. Chemical selection included

mainly food use pesticides in which we currently have in vivo
developmental toxicity studies. ToxCast is currently being

expanded to include a broader diversity of chemicals in Phase

II, which includes bona fide developmental toxicants (e.g.,

valproate, retinoic acid, 5-fluorouracil, etc.) and a more diverse

chemical landscape. Because the endpoints were characterized

from the guideline studies, some chemicals with a dLEL in one

species may not have been tested at an equivalent administered

dose level in the other species, whereas others may not be

comparable due to maternal toxicity at lower dosages.

Additionally, the descriptions of the endpoints in these studies

are relatively broad in nature and specific endpoints such as

microphthalmia that give a subtle visual phenotype may have

been missed if the study was not designed to specifically

capture endpoints as these. Furthermore, developmental targets

and appropriate assays may not have been included in these

HTS analyses. These limitations aside, the usefulness of these

models is to gain new insight into potential targets for

developmental toxicity among the various endpoints. Addi-

tionally, one would not assume that all developmental defects

are occurring in the same way, and while our analysis gives

associated targets over the aggregated endpoint, screening the

data on a chemical by chemical basis may be needed to give

a better insight into how each chemical may be causing

developmental toxicity.

Future Directions

We hope to use predictions from the present model, along

with knowledge drawn from the literature, to further HTS and

prioritizing the testing of environmental chemicals for de-

velopmental toxicity. Additionally, we hope to identify specific

embryonic organ systems or biological themes (e.g., limb bud

or embryonic vasculature development) for additional pre-

dictive models that capture developmental complexities.

Focusing on particular embryonic organs or themes will

narrow the relevant chemical and biological space, allowing

for more detailed analyses. Additionally, in silico agent-based

models can be used to integrate and visualize the process of

tissue disruption, from genes to cellular processes to tissue-

level perturbations. Pathways and processes that are linked to

particular developmental defects can be studied in these

various models, and model outputs can be used for hypothesis

generation. These models can also be used to identify missing

ToxCast HTS assays, representing important developmental

toxicity pathways and processes. These additional data would

likely improve the performance of future predictive models of

developmental toxicity.

PREDICTIVE MODELING OF DEVELOPMENTAL TOXICITY 125

 at E
nvironm

ental Protection A
gency L

ibrary on A
pril 25, 2012

http://toxsci.oxfordjournals.org/
D

ow
nloaded from

 

http://toxsci.oxfordjournals.org/


FUNDING

U.S. Environmental Protection Agency.

ACKNOWLEDGMENTS

The authors thank Dr Aldert Piersma (National Institute of

Public Health and the Environment [RIVM]) for his helpful

comments on this manuscript. The authors also thank the

government contract support, government contractors, and

collaborators of ToxCast. We thank our Tox21 partners at the

NIH Chemical Genomics Center for their generation of the

chemical-nuclear receptor data.

REFERENCES

Berg, E. L., Kunkel, E. J., Hytopoulos, E., and Plavec, I. (2006).

Characterization of compound mechanisms and secondary activities by

BioMAP analysis. J. Pharmacol. Toxicol. Methods 53, 67–74.

Birge, W. J., Black, J. A., Westerman, A. G., and Ramey, B. A. (1983). Fish

and amphibian embryos—a model system for evaluating teratogenicity.

Fundam. Appl. Toxicol. 3, 237–242.

Boomsma, C. M., Kavelaars, A., Eijkemans, M. J., Lentjes, E. G.,

Fauser, B. C., Heijnen, C. J., and Macklon, N. S. (2009). Endometrial

secretion analysis identifies a cytokine profile predictive of pregnancy in

IVF. Hum. Reprod. 24, 1427–1435.

Brannen, K. C., Panzica-Kelly, J. M., Danberry, T. L., and Augustine-

Rauch, K. A. (2010). Development of a zebrafish embryo teratogenicity

assay and quantitative prediction model. Birth Defects Res. B Dev. Reprod.

Toxicol. 89, 66–77.

Chandler, K. J., Barrier, M., Jeffay, S., Nichols, H., Kleinstreuer, N., Singh, A.,

Reif, D. M., Sipes, N. S., Judson, R., Dix, D., et al. (2011). Evaluation of

309 environmental chemicals using a mouse embryonic stem cell adherent

cell differentiation and cytotoxicity assay. PLoS One 6, e18540. doi:10.1371/

journal.pone.0018540.

Chapin, R. E., and Stedman, D. B. (2009). Endless possibilities: stem cells and

the vision for toxicology testing in the 21st century. Toxicol. Sci. 112, 17–22.

Cline, M. S., Smoot, M., Cerami, E., Kuchinsky, A., Landys, N., Workman, C.,

Christmas, R., Avila-Campilo, I., Creech, M., Gross, B., et al. (2007).

Integration of biological networks and gene expression data using

Cytoscape. Nat. Protoc. 2, 2366–2382.

Council on Environmental Health. (2011). Policy statement–chemical-

management policy: prioritizing children’s health. Pediatrics 127, 983–990.

Daston, G. P., and Manson, J. M. (1995). Critical periods of exposure and

developmental outcome. Inhal. Toxicol. 7, 863–871.

Davis, C. D., and Hanumegowda, U. M. (2010). The role of drug metabolism in

toxicity. In Pharmaceutical Sciences Encyclopedia: Drug Discovery,

Development, and Manufacturing (Shayne Gad, Ed.), pp. 1–68. John Wiley

& Sons, Hoboken, NJ.

de Jong, E., Barenys, M., Hermsen, S. A., Verhoef, A., Ossendorp, B. C.,

Bessems, J. G., and Piersma, A. H. (2011). Comparison of the mouse

Embryonic Stem cell Test, the rat Whole Embryo Culture and the Zebrafish

Embryotoxicity Test as alternative methods for developmental toxicity

testing of six 1,2,4-triazoles. Toxicol. Appl. Pharmacol. 253, 103–111.

Ding, X. W., Wu, J. H., and Jiang, C. P. (2010). ABCG2: a potential marker of

stem cells and novel target in stem cell and cancer therapy. Life Sci. 86, 631–637.

Dix, D. J., Houck, K. A., Martin, M. T., Richard, A. M., Setzer, R. W., and

Kavlock, R. J. (2007). The ToxCast program for prioritizing toxicity testing

of environmental chemicals. Toxicol. Sci. 95, 5–12.

Finnell, R. H., Bennett, G. D., Slattery, J. T., Amore, B. M., Bajpai, M., and

Levy, R. H. (1995). Effect of treatment with phenobarbital and stiripentol on

carbamazepine-induced teratogenicity and reactive metabolite formation.

Teratology 52, 324–332.

Flint, O. P., and Orton, T. C. (1984). An in vitro assay for teratogens with

cultures of rat embryo midbrain and limb bud cells. Toxicol. Appl.

Pharmacol. 76, 383–395.

Fort, D. J., Dawson, D. A., and Bantle, J. A. (1988). Development of

a metabolic activation system for the frog embryo teratogenesis assay:

Xenopus (FETAX). Teratog. Carcinog. Mutagen. 8, 251–263.

Giuliano, K. A., Johnston, P. A., Gough, A., and Taylor, D. L. (2006). Systems

cell biology based on high-content screening. Methods Enzymol. 414,

601–619.

Hagstrom, B. E., and Lonning, S. (1973). The sea urchin egg as a testing object

in toxicology. Acta Pharmacol. Toxicol. (Copenh.) 1, 3–49.

Hartung, T. (2010). Lessons learned from alternative methods and their

validation for a new toxicology in the 21st century. J. Toxicol. Environ.

Health B Crit. Rev. 13, 277–290.

Hassell, J. R., and Horigan, E. A. (1982). Chondrogenesis: a model

developmental system for measuring teratogenic potential of compounds.

Teratog. Carcinog. Mutagen. 2, 325–331.

Hines, R. N. (2008). The ontogeny of drug metabolism enzymes and

implications for adverse drug events. Pharmacol. Ther. 118, 250–267.

Huang, R., Xia, M., Cho, M. H., Sakamuru, S., Shinn, P., Houck, K. A.,

Dix, D. J., Judson, R. S., Witt, K. L., Kavlock, R. J., et al. (2011). Chemical

genomics profiling of environmental chemical modulation of human nuclear

receptors. Environ. Health Perspect. 119, 1142–1148.

Inglese, J., Auld, D. S., Jadhav, A., Johnson, R. L., Simeonov, A., Yasgar, A.,

Zheng, W., and Austin, C. P. (2006). Quantitative high-throughput

screening: a titration-based approach that efficiently identifies biological

activities in large chemical libraries. Proc. Natl. Acad. Sci. U.S.A. 103,

11473–11478.

Jochum, W., Passegue, E., and Wagner, E. F. (2001). AP-1 in mouse

development and tumorigenesis. Oncogene 20, 2401–2412.

Johnson, E. M., and Gabel, B. E. (1983). An artificial ‘embryo’ for detection of

abnormal developmental biology. Fundam. Appl. Toxicol. 3, 243–249.
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ABSTRACT

The U.S. Environmental Protection Agency’s ToxCast research
program uses high throughput screening (HTS) for profiling
bioactivity and predicting the toxicity of large numbers of
chemicals. ToxCast Phase I tested 309 well-characterized
chemicals in more than 500 assays for a wide range of molecular
targets and cellular responses. Of the 309 environmental
chemicals in Phase I, 256 were linked to high-quality rat
multigeneration reproductive toxicity studies in the relational
Toxicity Reference Database. Reproductive toxicants were
defined here as having achieved a reproductive lowest-
observed-adverse-effect level of less than 500 mg kg�1 day�1.
Eight-six chemicals were identified as reproductive toxicants in
the rat, and 68 of those had sufficient in vitro bioactivity to
model. Each assay was assessed for univariate association with
the identified reproductive toxicants. Significantly associated
assays were linked to gene sets and used for the subsequent
predictive modeling. Using linear discriminant analysis and
fivefold cross-validation, a robust and stable predictive model
was produced capable of identifying rodent reproductive
toxicants with 77% 6 2% and 74% 6 5% (mean 6 SEM)
training and test cross-validation balanced accuracies, respec-
tively. With a 21-chemical external validation set, the model was
76% accurate, further indicating the model’s potential for
prioritizing the many thousands of environmental chemicals
with little to no hazard information. The biological features of
the model include steroidal and nonsteroidal nuclear receptors,
cytochrome P450 enzyme inhibition, G protein-coupled recep-
tors, and cell signaling pathway readouts—mechanistic infor-
mation suggesting additional targeted, integrated testing
strategies and potential applications of in vitro HTS to risk
assessment.

female reproductive tract, fertility, male reproductive tract,
predictive toxicology, reproductive toxicity, toxicology

INTRODUCTION

Current chemical evaluations in the United States range
from those providing either little to no evidence of safety for
most industrial chemicals to an expensive battery of animal
tests for food-use pesticides that offers little mechanistic
insights. No in vivo toxicology test uses more animals than the
rat multigeneration reproductive test. It has been estimated that
70% of the total cost and 90% of the animal use for compliance
with Registration, Evaluation, Authorization, and Restriction of
Chemicals (REACH) will be due to reproductive toxicity
testing [1]. Addressing the existing chemical evaluation
bottleneck can only be achieved through progressive changes
to the current animal testing paradigm. A promising resource
for addressing this bottleneck is computational toxicology, a
field that integrates tools from computer science, bio- and
chemi-informatics, molecular biology, and high throughput
screening (HTS). Currently prescribed in vivo tests for
chemical toxicity are resource-intensive, particularly for multi-
generation reproductive and prenatal developmental assess-
ment. Policy directives such as the Cosmetics Directive of the
European Union (EU) call for the elimination of animals for
evaluating reproductive toxicity by 2013 for cosmetic products
and development of alternative methods for safety evaluation.
In the past, significantly less attention has been spent modeling
or predicting chemical-induced reproductive toxicity relative to
efforts spent modeling cancer and other endpoints. Reasons for
the meager effort in this area include a lack of reference animal
toxicity data to model as well as the molecular and
physiological complexity of maternal-fetal interactions, life
stages, and generational sensitivities [2]. Recent efforts
capturing in vivo reproductive toxicity studies into databases
and in vitro bioactivity profiling have enabled the development
of predictive, mechanistic, and pathway-based models for these
complex reproductive outcomes.

The Toxicity Reference Database (ToxRefDB) has been the
primary tool for storing and accessing high-quality toxicology
studies and is available online for searching and download [3].
ToxRefDB has characterized thousands of studies using a
standardized vocabulary, a uniform structure across study
types, and a high level of internal and external quality control
(QC) for the extraction of endpoints useful in developing
predictive models [4]. The primary study for assessing
reproductive effects of chemicals is the multigeneration
reproductive test (Office of Prevention, Pesticides, and Toxic
Substances 870.3800 and Organization for Economic Cooper-
ation and Development [OECD] 416), which is typically
conducted under continuous exposure to male and female rats
from 10 wk premating through lactation in the second
generation. From multigeneration reproductive studies in
ToxRefDB, we have the capacity to identify individual or
aggregated endpoints for predictive modeling across hundreds
of chemicals and have made comparisons across generations to
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identify adverse impacts on developmentally sensitive repro-
ductive endpoints based on the prevalence of specific endpoints
at later generations compared to the first generation [5].
Generational comparisons using ToxRefDB have also been
part of the OECD evaluation of the proposed Extended One-
Generation Reproductive Toxicity Study (EOGRTS). Tox-
RefDB was the primary database used in the large-scale
retrospective analysis aimed at evaluating the impact of the
second generation on risk assessments and classification and
labeling (C&L) in Europe [6]. However, the acceptance of the
EOGRTS in lieu of the existing two-generation test will not
alleviate the chemical testing bottleneck for the many
thousands of chemicals in commerce. One set of solutions to
this testing bottleneck are alternative methods for chemical
prioritization and intelligent, targeted testing decisions.

The use of alternative methods as part of an integrated
reproductive and developmental toxicity testing strategy is
currently being developed as a battery of in silico, in vitro, and
in vivo tests [7, 8]. One component of this toolbox is the large-
scale bioactivity profiling of chemicals in HTS and high-
content assays. The ToxCast research project of the U.S.
Environmental Protection Agency (EPA) has produced a
substantial amount of HTS data on environmental chemicals
for developing predictive models of toxicity [9]. Phase I of
ToxCast profiled 309 toxicologically well-characterized chem-
icals in more than 500 assays using nine technologies,
including cell-free HTS assays and cell-based assays. ToxCast
HTS data and multigeneration reproductive toxicity data from
ToxRefDB provide an effective dataset for developing
predictive toxicology models. In the present study, we present
a robust and stable predictive model of chemically induced
reproductive toxicity that demonstrates external predictivity
useful for targeting testing prioritizations and significantly
advancing predictive and computational toxicology.

MATERIALS AND METHODS

Chemical

Phase I of the U.S. EPA’s ToxCast program employed a chemical library
containing 320 samples consisting of 309 unique structures, with five
duplicates that were differently sourced and three triplicates as technical
repeats for internal QC. The rationale for chemical selection was based on
several criteria: extensive chronic, cancer, multigeneration reproductive, and
developmental assay data available (95% of compounds met this criteria);
soluble in dimethyl sulfoxide (DMSO;�1 , log P , 6 [i.e., log of the octanol/
water partition coefficient]; 97.5% met this criteria); molecular weight range of
250-1000 (90% met this criteria); and commercially available with purity of
greater than 90% (98% met this criteria). These criteria were largely satisfied
with a diverse set of pesticide active ingredients that have had guideline in vivo
toxicology studies conducted as part of their registration process with the U.S.
EPA. Several other miscellaneous chemicals of environmental concern meeting
these criteria were also included in the library. Despite its large representation
of pesticidal actives, the Phase I chemical library spans a wide range of
property values and is quite structurally diverse, representing more than 40
chemical functional classes (e.g., pyrazole, sulfonamide, organochlorine, and
pyrethroid) and more than 24 known pesticidal mode-of-action classes (e.g.,
phenylurea herbicides, organophosphate insecticides, and dinitroaniline
herbicides). A complete listing of the quality-reviewed and structure-annotated
chemical library is available for download as a Structure Data Format (SDF)
file at the DSSTox website [10].

Chemicals comprising the ToxCast Phase I library were commercially
procured and plated by BioFocus DPI. Supplier-provided certificates of
analysis indicated a purity of greater than 97% for the majority of chemicals
(87%) and of greater than 90% for all but a few instances of technical grade or
known mixtures. Follow-up analysis of an original solution plate by BioFocus
DPI using liquid chromatography/mass spectrometry subsequent to assay
screening has confirmed mass identification, stability, and purity for more than
83% of the chemical library. For the majority of the remaining chemicals,
currently employed methods of analysis are known or suspected to be
inadequate for confirming sample purity, and for the remaining 8% of the

chemicals, follow-up studies have provided some evidence of sample
decomposition in DMSO over time. A QC summary result mapped to chemical
solution sample is provided on the ToxCast website in association with assay
results [11]. All chemicals were included in the analysis regardless of analytic
results but were accounted for throughout the analysis process.

In Vivo (Class Data)

Multigeneration reproductive toxicity testing study design and treatment
group information along with all treatment-related effects were manually
collected into the U.S. EPA’s ToxRefDB. The database structure, standardized
vocabulary and ontology, and QC procedures have been described previously
[4]. To date, ToxRefDB has captured 393 acceptable reproductive studies
across 353 chemicals, equating to 14, 347, and 32 one-, two-, and three-
generation studies, respectively. An acceptable study can be defined as any
study that adequately followed the multigeneration testing guideline, primarily
determined by regulatory toxicologists from the U.S. EPA’s Office of Pesticide
Programs and for which the review of the study contains sufficient information
for complete entry into ToxRefDB. Of the 309 ToxCast chemicals, 256
chemicals have been linked to an acceptable reproductive study entered in
ToxRefDB, with 242 exact structural matches, 4 close structural matches
presumed to be toxicological equivalents (e.g., parent-to-salt, salt-to-parent, or
different isomeric forms) not already linked to a ToxCast chemical, 4 close
structural matches already linked to a ToxCast chemical (e.g., fluazifop-butyl
and fluazifop-p-butyl), and 6 parent-to-metabolite pairs (e.g., diethylhexyl
phthalate, phthalic acid, and mono-2-ethylhexyl ester). An additional 39
chemicals have unacceptable reproductive studies, whereas 14 chemicals have
no data available in ToxRefDB.

In ToxRefDB, 650 unique effects were observed across the entire
multigeneration reproductive toxicity study dataset, ranging from body weight
decreases to organ weight changes to litter survival to fertility decrements. Each
unique effect was mapped to one of three multigeneration study categories:
parental (e.g., body weight, liver weight, and other systemic toxicities),
reproductive (e.g., primarily fertility and early offspring survival), and offspring
(e.g., offspring weight, longer-term offspring survival, and other systemic
offspring toxicities during their juvenile period). Specifically, 120 effects were
directly related to reproductive outcomes, and another 175 effects indicated
adverse offspring outcomes, with the remainder being systemic parental effects
[5]. Based on the review of each study, primarily by regulatory toxicologists
from the U.S. EPA’s Office of Pesticide Programs, lowest-observed-adverse-
effect levels (LOAELs) were established for the parental, offspring, and
reproductive categories based on the weight of evidence and expert judgment of
the reviewer. The reproductive LOAEL (rLOAEL) was used to delineate a
positive and negative set for reproductive toxicity based on a 500 mg kg�1

day�1. This cutoff value approximates the testing limit of 1000 mg kg�1 day�1

in the reproductive test guideline and accounts for the large uncertainty around
the dose intake measurements and standard conversions used in capturing the
dosing information across hundreds of chemicals and more than 30 yr of
toxicity testing. Any chemical with an rLOAEL of less than or equal to the
cutoff was considered to be positive for reproductive toxicity, and any chemical
with an rLOAEL of greater than the cutoff or that was not assigned an rLOAEL
by the study reviewer was considered to be negative for reproductive toxicity.
Specific effects within this endpoint category include reproductive performance
measures (e.g., fertility, mating, and gestational interval), male and female
reproductive tract effects (e.g., testis, epididymis, ovary, and uterus pathology
and weight, along with sperm measures and morphology), and sexual
developmental landmarks (e.g., preputial separation, vaginal opening, and
anogenital distance). Teratogenic endpoints from prenatal toxicity testing were
not included as part of the definition of a reproductive toxicant for the purposes
of this modeling effort. Additional information regarding the treatment groups,
including the life stage and generation of the animals and the administered
dose, were captured in ToxRefDB to provide additional context for each
chemical’s reproductive toxicity potential.

In Vitro (Features)

As part of the ToxCast research program, the chemical library was tested in
more than 500 assays across nine technologies, including cell-free HTS assays
and cell-based assays in multiple human and rodent primary and derived cell
lines. A complete overview of the assays, assay selection, analysis methods,
quality measures, and assay annotation have been previously published [12]. In
general, concentration at half-maximal efficacy (AC

50
) values or lowest-

effective concentrations (LECs) were derived for each assay and time point,
where applicable. The complete dataset, including AC

50
/LEC values and

corresponding concentration response data for all chemical-assay measurement
pairs, is available from the U.S. EPA’s ToxCast website [11]. For the purpose
of predictive modeling, assays form the input features and can be thought of as
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the right side of the equation, where some linear combination of these assays or
sets of assays is equal to the class data (the reference in vivo endpoint).

The AC
50

/LEC values were �log
3

transformed (�log
3
[AC

50
/1000]), and a

value of zero was given to all negative assay results. A log
3

transformation and
setting negatives to 1000 lM was used over a log

10
transformation and setting

negatives to 1 mol/L, as has been done in previous publications of ToxCast
results [12], to enhance the scoring range between high- and low-potency active
chemicals and to decrease the distance between active (i.e., achieving an AC

50
and defined as a hit in the assay) and inactive chemicals. Therefore, the ‘‘assay
score’’ where the AC

50
was 100 lM would have a value of roughly two,

whereas one where the AC
50

was 100 nM would have a value of roughly eight.
A ‘‘gene score’’ or ‘‘gene-set score’’ was derived based on the average assay
score across a set of closely related assays (e.g., assays mapped to a single gene
or gene family). Any chemical active in 10 or fewer assays (�2% aggregate
active) was removed from the initial model development due to the lack of
information provided by the chemical’s bioactivity fingerprint to discern active
and inactive for any toxicity. The rationale for excluding the chemicals with
little or no in vitro activity is based on the following logic: Specific chemicals
may lack activity in in vitro assays for a number of reasons, including chemical
degradation, aqueous insolubility, lack of metabolic activation, or volatility.
Such chemicals would be characterized by little to no activity across a broad
range of in vitro assays. Because this behavior is, at least to some extent,
relevant only to the in vitro systems, these chemicals are not good candidates
for including in a model predicting in vivo activity. They were thus excluded
from the training set. However, their exclusion is making no statement of a
chemical’s true reproductive toxicity potential.

Model (Class and Features)

The first step in the development of a predictive model was univariate
feature selection. Each assay was compared to the training set of chemicals,
both positive and negative for reproductive toxicity, using continuous and
dichotomous statistical methodology, including linear (Pearson) correlation
test, chi-square test, and t-test, with the level of significance returned as P-
values. Each assay with a P-value of less than 0.1 from any method passed the
initial feature selection filter. The resulting assays were then grouped by gene
or assay family, as described above, to form the input features for subsequent
modeling. In some instances, assays that were not statistically significantly
associated but that provided orthogonal or complimentary readouts for the same
target were included in model development. This was performed for various
nuclear receptor targets in which cell-based transcription factor assays were
significantly associated with reproductive toxicity, whereas the more specific
cell-free binding assays were not because of the low number of active
chemicals. The highly specific assays provide increased evidence that a
chemical interacts with a particular target. Significantly associated assays that
were part of a large assay family or that were highly correlated to other higher
prioritized assays, based on relative P-value and correlation, were excluded to
minimize the total number of assays moving into the model development phase.
For example, as part of ToxCast, 54 G protein-coupled receptor (GPCR)-
binding assays were evaluated, with 18 being significantly associated with
reproductive toxicity. Of those 18 GPCR assays, five were selected based on
having the greatest correlation collectively; adding further GPCR assays only
lowered the overall association to reproductive toxicity.

Based on the selection of a small and balanced feature set, the prediction of
reproductive toxicity potential was performed using linear discriminant analysis
(LDA). Fivefold cross-validation was used to explore the stability of the
resultant model, a process of developing the model using 80% of the chemical
set and testing the model accuracy with the remaining 20% and repeating five
times until all data have been used as both training and test datasets. The
resulting cross-validation statistics are presented as the average and standard
deviation of the training- and test-set balanced accuracies across the five runs.
Additionally, a subset of chemicals with positive findings in unacceptable
studies within ToxRefDB and chemicals with clear literature evidence of
reproductive toxicity or no reproductive toxicity were used to assess the
forward predictivity of the resultant model and to serve as an initial external
validation set.

RESULTS

The quality and forward predictivity of any model is limited
by the quality of the feature and class data being used in the
model development process. Therefore, strict and transparent
methods were used for identifying the training set used in the
initial modeling effort from both in vivo (i.e., class) data and in
vitro (i.e., feature) data perspectives. Of the 256 chemicals
linked to an acceptable reproductive study, 86 reported an

rLOAEL of less than 500 mg kg�1 day�1 (Table 1). The
additional 12 chemicals that reported an rLOAEL from an
unacceptable reproductive study were not incorporated into the
initial model development process but were used for model
assessment and external validation of the model. Six chemicals
had an rLOAEL above the 500 mg kg�1 day�1 cutoff and were
considered to be negative for modeling purposes; these
chemicals included fluoxastrobin (862 mg kg�1 day�1),
trifloxysulfuron sodium (631 mg kg�1 day�1), propoxycarba-
zone sodium (1314 mg kg�1 day�1), oxasulfuron (1115 mg
kg�1 day�1), isoxaben (1000 mg kg�1 day�1), and propamocarb
hydrochloride (1000 mg kg�1 day�1). The toxicity profile for
these chemicals primarily consisted of high-dose systemic
parental and offspring toxicities leading to confounding sexual
developmental landmark findings and early offspring survival
decrements. Of the 98 chemicals identified as reproductive
toxicants (i.e., 86 from acceptable and 12 from unacceptable
studies), 49 chemicals had treatment-related effects on the male
and/or female reproductive tract, 51 caused decrements in
reproductive performance, 67 affected early offspring survival,
and 18 altered sexual development. A combined model of
reproductive toxicity is presented, as opposed to individual
models of each endpoint class, because of the large overlap in
chemicals across these endpoint classes, the lack of gender-
specific phenotypes, and the lack of mechanistic information in
the guideline multigeneration reproductive studies.

A significant number of ToxCast chemicals had little to no
in vitro activity across hundreds of assays. Aggregate activity
for each chemical was calculated as the number of actives
divided by the total number of assays used in this analysis (n¼
512). A 2% activity cutoff was established based on the
minimal impact of aggregate in vitro activity on the sensitivity
and, to a limited degree, specificity of resulting models. In
total, 62 chemicals were identified as falling below the 2%
cutoff and were not used in the initial model development
process. Table 2 summarizes the chemical counts for each
chemical group based on in vivo reproductive study accept-
ability/availability and aggregate in vitro activity. The entire
chemical library was split into these groups to identify a
chemical set with the capacity to develop a stable and robust
model without the negative impacts of low in vivo multi-
generation study quality or potential limited amenability to in
vitro screening. Thus, chemical group A was selected for the
initial development of the predictive reproductive toxicity
model, including internal cross-validation. Groups B, C, and D
were used to evaluate the stability and identify the current
weaknesses, limitations, and gaps of the model. Groups E and
F have also provided insight regarding the forward predictivity
of the model based on available open-literature reproductive
toxicity studies. In conjunction with Table 2, a schematic of the
full decision process, including chemical groupings, class
definitions (i.e., positive or negative for reproductive toxicity),
and final summary model statistics, is provided as an overview
and guidepost to the remaining, more detailed results (Fig. 1).

Of the 206 chemicals used in the initial development of the
predictive reproductive toxicity model (i.e., chemical group A),
68 were identified as reproductive toxicants—roughly one third
of the total. In relating the in vitro bioactivity to these
reproductive toxicants, a set of assays and genes were
identified as significant indicators of reproductive toxicity
based on their univariate association. In total, 36 of more than
500 assays were selected for model development and
subsequently mapped to genes or gene sets (Table 3). The
primary genes identified were nuclear receptors, both steroidal
and nonsteroidal, and included the androgen receptor (AR),
estrogen receptor alpha (ERa; ESR1), and peroxisome

HTS PREDICTIVE MODEL OF REPRODUCTIVE TOXICITY 329

D
ow

nloaded from
 w

w
w

.biolreprod.org. 



TABLE 1. Ninety-eight chemicals, linked to 86 acceptable and 12 unacceptable studies in ToxRefDB, achieved a reproductive LOAEL (rLOAEL � 500
mg/kg per day) and used as the positive class set for the training and testing of the predictive model.

CASRN
Chemical

name
rLOAEL*

(mg/kg per day)
Acceptable

study?

Male
reproductive

tract�

Female
reproductive

tract�
Reproductive
performance�

Early
offspring
survival�

Sexual
developmental

landmark�

71751-41-2 Abamectin 0.4 NO P1 F1
30560-19-1 Acephate 25 YES P1 F1/F2
135410-20-7 Acetamiprid 51 YES F1 F1
33089-61-1 Amitraz 12 YES F1
3337-71-1 Asulam 250 YES P2 F1
35575-96-3 Azamethiphos 50 YES F1
1861-40-1 Benfluralin 401 YES P2 F1/F2
17804-35-2 Benomyl 234 YES P1/P2
80-05-7 Bisphenol A 500 YES P2 P1/P2 P1/P2 F1/F2 F1
134605-64-4 Butafenacil 23.8 YES P1/P2 P1/P2
75-60-5 Cacodylic acid 17.9 YES P2
63-25-2 Carbaryl 92.4 YES P2 F2 F1
5234-68-4 Carboxin 20 YES P2
101-21-3 Chlorpropham 150 YES P1/P2
64902-72-3 Chlorsulfuron 541 NO P2 F1
210880-92-5 Clothianidin 31.2 YES P1/P2 F1/F2 F1
1134-23-2 Cycloate 50 YES F1/F2
94-75-7 2,4-D 80 YES P1 F1
94-82-6 2,4-DB 112 YES P1 F1
1596-84-5 Daminozide 500 YES P1/P2
117-81-7 DEHP 391 YES P1/P2 P1 F1 F1
333-41-5 Diazinon 35.2 YES P1/P2 F1/F2
962-58-3 Diazoxon 35.2 YES P1/P2 F1/F2
84-74-2 Dibutyl phthalate 531 YES P2 P1 P1 F1
1918-00-9 Dicamba 419 YES F1
99-30-9 Dichloran 102 YES P1/P2
120-36-5 Dichlorprop 220 YES P1/P2 F1/F2
62-73-7 Dichlorvos 7.2 YES P2 P2
51338-27-3 Diclofop-methyl 7.3 YES P1 P1/P2
115-32-2 Dicofol 2.4 YES P1/P2 F1/F2
141-66-2 Dicrotophos 0.56 YES P1 F1/F2
60-51-5 Dimethoate 6.5 YES P1/P2
122-39-4 Diphenylamine 399 YES P1/P2 F2
298-04-4 Disulfoton 0.12 NO P1/P2 F1/F2
155569-91-8 Emamectin benzoate 1.8 YES P2
66230-04-4 Esfenvalerate 6.7 NO F2
60168-88-9 Fenarimol 1.2 YES P1/P2 F1/F2
114369-43-6 Fenbuconazole 40 YES P1/P2 F1/F2
122-14-5 Fenitrothion 0.68 NO P1/P2 F1/F2
55-38-9 Fenthion 0.7 YES P1/P2 P1/P2 F1/F2
76-87-9 Fentin 1.4 YES P1/P2 P1/P2 F1/F2
120068-37-3 Fipronil 26.3 YES P2 P1/P2 P2 F1/F2
69806-50-4 Fluazifop-butyl 5.8 YES P1/P2 P2 P1/P2 F1
79241-46-6 Fluazifop-P-butyl 5.8 YES P1/P2 P2 P1/P2 F1
79622-59-6 Fluazinam 47.3 YES P2 F2
103361-09-7 Flumioxazin 12.7 YES P2 P1 P1 F1/F2
85509-19-9 Flusilazole 17.5 YES P1/P2 F1/F2
133-07-3 Folpet 180 YES P2
68157-60-8 Forchlorfenuron 544 YES P1/P2 P2 F2
79983-71-4 Hexaconazole 50 YES F2
35554-44-0 Imazalil 80 YES P1/P2 F1/F2
144550-36-7 Iodosulfuron-methyl-na 346 YES P1 F2
55406-53-6 IPBC 37.5 YES F1/F2
77501-63-4 Lactofen 26.2 YES P1/P2 P1/P2 F1/F2
330-55-2 Linuron 54 YES P1/P2 P2 F2
12427-38-2 Maneb 106 YES P2 P2 P2 F1
94-74-6 MCPA 22.5 YES P1/P2
4376-20-9 Mono-(2-ethylhexyl)

phthalate (MEHP)
391 YES P1/P2 P1 F1 F1

104206-82-8 Mesotrione 1.1 YES F1/F2
950-37-8 Methidathion 1.25 YES P2 P1/P2 P1/P2 F1
9006-42-2 Metiram-zinc 16 NO P2 F1/F2
7786-34-7 Mevinphos 0.5 YES P2 P2 P2
51596-11-3 Milbemectin 65.6 NO F1/F2
2212-67-1 Molinate 0.8 YES P1/P2 P1/P2 P1 F1/F2 F1
131-70-4 Monobutyl phthalate 531 YES P2 P1 P1 F1
88671-89-0 Myclobutanil 50 YES P2 F1/F2
300-76-5 Naled 18 YES F2
27314-13-2 Norflurazon 103 YES P1/P2
116714-46-6 Novaluron 298 YES P2 P1 F1 F1
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proliferator-activated receptors alpha and gamma (PPARA and
PPARG, respectively). These molecular targets have extensive
literature detailing their role in normal reproductive function as
well as reproductive and endocrine toxicity. A number of
cytochrome P450 enzyme (CYP) inhibition assays, including
aromatase (CYP19A1), were also significantly associated with
the reproductive toxicants. Interestingly, besides the human
aromatase assay, rat CYP assays had increased association to
the endpoint as compared to the human CYP assays. For the
purposes of the model and based on the increase in overall
statistical correlation, all associated rodent CYP assay scores,
as well as aromatase, were averaged and used as a single
feature, called CYP. In addition to these genes and assay sets,
individual assays representing cell-based markers of growth
factor stimulation and cell signaling, including epidermal
growth factor 1 (EGFR1), transforming growth factor beta 1
(TGFB1), vesicular monoamine transporter 2 (VMAT2), and
nuclear factor kappa light-chain enhancer of activated B cells
(NFKB), were other positive indicators of reproductive toxicity
potential. These assays were also averaged together as a
miscellaneous set of assays and called OTHER. As part of
ToxCast, 54 GPCR-binding assays were evaluated, with 18
being significantly associated with reproductive toxicity. Of
those 18 GPCR assays, five were selected based on having the
greatest correlation collectively; adding further GPCR assays
only lowered the overall association to reproductive toxicity.
Assays targeting the pregnane X receptor (PXR, NR1L2) were
negatively correlated with reproductive toxicity potential and
used in the model development process with the expectation of

providing some indication of the metabolic clearance of the
chemical or representing general nuclear receptor promiscuity.

Using the combination of the selected gene/gene-set scores,
a multivariate linear classifier was developed using LDA and
fivefold cross validation. The feature set included PPARA
(average �log

3
[AC

50
/1000] across three assays), AR (average

�log
3
[AC

50
/1000] across three assays), ESR1 (average

�log
3
[AC

50
/1000] across seven assays), PPARG (average

�log
3
[AC

50
/1000] across four assays), CYP (average

�log
3
[AC

50
/1000] across seven assays), GPCR (average

�log
3
[AC

50
/1000] across five assays), OTHER (average

�log
3
[AC

50
/1000] across four assays), and NR1L2 (average

�log
3
[AC

50
/1000] across three assays) for a total of eight

features. Figure 2 demonstrates the relative impact on
classification rates between individual assays, genes/gene sets,
and the final model. In general, we find that aggregating
multiple related assays into a single feature increased the

TABLE 2. Chemical groupings based on aggregate in vitro activity across
the over 500 ToxCast assays and in vivo reproductive study acceptability/
availability within ToxRefDB.*

ToxRefDB assessment
In vitro
activity

Little-to-no
in vitro activity
(,2% active)

Total in vivo
chemical
counts

Acceptable reproductive study 206 (A) 50 (B) 256
Unacceptable reproductive study 31 (C) 8 (D) 39
No reproductive study available 10 (E) 4 (F) 14
Total in vitro chemical counts 247 62 309

* Letters in parenthesis identifies letter assigned to chemical group.

TABLE 1. Continued.

CASRN
Chemical

name
rLOAEL*

(mg/kg per day)
Acceptable

study?

Male
reproductive

tract�

Female
reproductive

tract�
Reproductive
performance�

Early
offspring
survival�

Sexual
developmental

landmark�

42874-03-3 Oxyfluorfen 146 YES F1/F2
40487-42-1 Pendimethalin 215 YES F2
335-67-1 Perfluorooctanoic

acid (PFOA)
30 YES F1

1763-23-1 PFOS 3.2 YES P1 F1
2310-17-0 Phosalone 29.4 YES F1 F1
86209-51-0 Primisulfuron-methyl 250 YES P2
67747-09-5 Prochloraz 31.3 NO P2 P2 F1/F2
709-98-8 Propanil 53 YES P2 P1 F1
31218-83-4 Propetamphos 5.5 YES P1/P2 F1/F2
60207-90-1 Propiconazole 238 YES F2
23950-58-5 Propyzamide 123 YES P2
10453-86-8 Resmethrin 70.8 YES P2
83-79-4 Rotenone 7 YES F1/F2
148477-71-8 Spirodiclofen 178 YES P2 P2 F1
118134-30-8 Spiroxamine 44.8 NO F1
122836-35-5 Sulfentrazone 33 YES P2 P2 P1/P2 F1/F2
119168-77-3 Tebufenpyrad 19.3 YES F1
96182-53-5 Tebupirimfos 1.25 NO P1/P2
79538-32-2 Tefluthrin 12.5 NO F1
112281-77-3 Tetraconazole 6 YES P1 F1
153719-23-4 Thiamethoxam 1.84 YES P2
43121-43-3 Triadimefon 90 YES P1 P1/P2 P2
55219-65-3 Triadimenol 25 YES P2 P2
2303-17-5 Tri-allate 30 YES P1/P2 P2
78-48-8 Tribufos 15 NO P1/P2 F1/F2
52-68-6 Trichlorfon 175 YES P2 F2
68694-11-1 Triflumizole 1.5 YES P1/P2 P1/P2 F2
131983-72-7 Triticonazole 250 YES P1/P2 F1/F2
50471-44-8 Vinclozolin 4.9 YES P1/P2 P1/P2 P1/P2 F1 F1

* In enforcing the 500 mg/day cutoff, rLOAEL were rounded to one significant figure due to the uncertainty of dose intake especially at high doses.
� Reproductive effects were grouped into endpoint classes and assigned to the specific generation at which the effect occurred. P1 and P2 refer to adult
parental animals from the first and second generation; F1 and F2 refer to offspring of the first and second generation, respectively.
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FIG. 1. Decision tree diagram represent-
ing the process by which the 309 ToxCast
chemicals were grouped, based on in vivo
study acceptability/availability and in vitro
aggregate bioactivity, and subsequently
defined as positive or negative for repro-
ductive toxicity, based on having achieved
an rLOAEL of less than 500 mg kg�1 day�1.
Applying the model developed using
chemical group A to all other chemical
groups, individual and combined balanced
accuracy values (average of sensitivity and
specificity) summarize the results across the
entire chemical library and provide context
and summary information; each chemical
group is discussed in greater detail
throughout the Results and Discussion
sections.

TABLE 3. Feature selection statistics based on univariate correlations and associations between individual assays or genes/gene-sets and reproductive
toxicants in chemical group A, dichotomously represented (i.e., 1 for positive and 0 for negative).

Individual assay Correlation (P value)* Gene/Gene Set Correlation (P value)

ATG_PPARA_TRANS 0.24 (6.6E-4) PPARA 0.30 (9.6E-6)
NCGC_PPARA_Agonist 0.17 (1.7E-2)
NVS_NR_hPPARA 0.17 (1.6E-2)
NCGC_AR_Antagonist 0.18 (3.6E-3) AR 0.31 (4.8E-6)
NVS_NR_hAR 0.28 (3.7E-5)
NVS_NR_rAR 0.04 (NS)
ATG_ESR1_TRANS 0.17 (1.5E-2) ESR1 0.15 (2.3E-2)
ATG_ERE_CIS 0.04 (NS)
NCGC_ESR1_Agonist 0.05 (NS)
NCGC_ESR1_Antagonist 0.11 (9.3E-2)
NVS_NR_hER 0.10 (NS)
NVS_NR_mESR1 0.10 (NS)
NVS_NR_bER 0.10 (NS)
ATG_PPRE_CIS 0.10 (NS) PPARG 0.14 (4.1E-2)
ATG_PPARG_TRANS 0.09 (NS)
NCGC_PPARG_Agonist 0.06 (NS)
NVS_NR_hPPARG 0.14 (4.1E-2)
NVS_ADME_rCYP2A2 0.30 (1.5E-5) CYP 0.27 (1.1E-4)
NVS_ADME_rCYP2B1 0.23 (7.2E-4)
NVS_ADME_rCYP2C12 0.14 (4.9E-2)
NVS_ADME_rCYP2C11 0.17 (1.5E-2)
NVS_ADME_rCYP2A1 0.21 (2.4E-3)
NVS_ADME_rCYP2C13 0.21 (2.3E-3)
NVS_ADME_hCYP19A1 0.17 (1.3E-2)
NVS_GPCR_hOpiate_mu 0.26 (1.8E-4) GPCR 0.34 (8.6E-7)
NVS_GPCR_h5HT6 0.22 (1.3E-3)
NVS_GPCR_hAdra2C 0.21 (2.0E-3)
NVS_GPCR_hPY2 0.20 (3.3E-3)
NVS_GPCR_gOpiateK 0.19 (7.3E-3)
BSK_hDFCGF_EGFR_up 0.14 (4.5E-2) OTHER 0.28 (4.5E-5)
BSK_BE3C_TGFB1_up 0.08 (NS)
NVS_TR_rVMAT2 0.21 (2.7E-3)
ATG_NF_KB_CIS 0.14 (4.9E-2)
ATG_NR1L2_TRANS �0.14 (4.2E-2) NR1L2 �0.14 (4.5E-2)
ATG_PXRE_CIS �0.11 (NS)
NCGC_NR1L2_Agonist_human �0.09 (NS)

* NS: Not statistically significant (P value . 0.1).
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classification rate and yielded a more balanced and stable
model. Grouping the assays by gene and gene sets also allows
assays with low hit prevalence that would otherwise not be
included in the model to contribute to the overall assessment of
whether a chemical interacts with a specific molecular target.

Using the eight gene and gene-set features, a robust (i.e.,
high predictivity with high balanced accuracy; .70%) and
stable (i.e., high test cross-validation and external validation
accuracies; .70%) classifier or predictive model was gener-
ated as shown by the resulting model statistics (Table 4). The
cross-validation balanced accuracy (equal to the average of
sensitivity and specificity) for the training and test sets,
averaged across all five runs, was 77% and 74% for the training
set and the test set, respectively, with a standard deviation of
2% and 5%, respectively. Conversely, using the single most
significantly associated assay per gene or gene set resulted in
training and test balanced accuracies of 71% and 64%,
respectively, illustrating the loss in predictivity and model
stability when relying on a single assay to represent a
molecular target or pathway. After demonstrating stability

across the cross-validation runs, a model generated using all
206 group A chemicals was optimized, resulting in a balanced
accuracy of 80% (P¼ 4.2E-17), indicating a highly predictive
model for reproductive hazard.

Chemical group B was not included in the initial model
development because of the lack of in vitro bioactivity across
hundreds of assays. Interestingly, a comparable prevalence of
reproductive toxicants was observed in chemical group B, with
18 of the 50 chemicals characterized as active (36% active vs.
64% inactive). Only 20 chemicals in group B were active
across any of the 33 assays or seven input features that
positively indicated reproductive toxicity. If the model is
applied to chemical group B only, the balanced accuracy is
54%, with a very low sensitivity of 11%. If the model is
applied to chemical groups A and B, balanced accuracy and
sensitivity drop to 75% and 66%, respectively. The diminished
model performance, especially in terms of sensitivity when
including low in vitro activity chemicals, provides justification
for considering these chemicals as outside the domain of in
vitro biological applicability, akin to the domain analysis

FIG. 2. Classification or predictivity rates
increase from individual HTS assays to
aggregated genes or gene sets, whereas
misclassification rates proportionately de-
crease, demonstrating the advantage of
combining assays for same genes in model
development. Classification rate (blue line)
was calculated as the proportion of true
positives (greater than the mean assay/gene/
gene set/model and positive for in vivo
reproductive toxicity) over the total number
positives (n ¼ 68). The misclassification rate
(red line) was calculated as the proportion
of false positives (greater than the mean
assay/gene/gene set/model score but nega-
tive for reproductive toxicity) over the total
number of chemicals negative for repro-
ductive toxicity (n ¼ 138).

TABLE 4. Performance metrics for the predictive model of reproductive toxicity, including cross-validation and optimized model statistics and weighting
of model input features.

Cross-Validation Statistics Full Model Statistics Parameter Coefficients

Learner LDA TP 55 F1 73% PPARA 1.37
CV 5-fold FP 28 RR 6.3 AR 0.98
No. F 8 FN 13 OR 17 ESR1 0.45
Assays 36 TN 110 PPV 66% PPARG 0.23
BA Train 77% SENS 81% NPV 90% CYP 0.28
SD Train 2% SPEC 80% Pred 78% GPCR 0.5
BA Test 74% BA 80% P-Value 4.2E-17 OTHER 0.45
SD Test 5% A 80% Cutoff 0.6 NR1L2 �0.21

CV ¼ Cross Validation; No. F ¼ Number of selected features; Assays ¼ Number of assays comprising the selected features; BA ¼ Balanced accuracy
(Average of sensitivity and specificity); SD ¼ Standard deviation of the Balanced Accuracy for each Fold; TP ¼ True Positive Count; FP ¼ False Positive
Count; FN¼ False Negative Count; TN¼True negative count; SENS¼ Sensitivity; SPEC¼ Specificity; A¼Accuracy; P-Value¼Chi-Square P-Value; Cutoff
¼ LDA Model Intercept; F1 ¼ F-measure (harmonic mean of precision and recall); OR ¼ Odds ratio; PPV ¼ Positive predictive value; NPV ¼ Negative
predictive value; Pred¼ Predictivity (Average of PPV and NPV)
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performed in structure-activity studies, and provides no
evidence as to the safety or toxicity of the chemical. In real-
world applications of this reproductive toxicity model,
chemicals could be identified for follow-up analysis ranging
from traditional animal toxicity testing to additional in vitro
screening attempting to address confounding issues such as
chemical decomposition, aqueous insolubility, or volatility to
the application of purely in silico models.

Chemical groups C and D are comprised of 39 chemicals
that have been tested in guideline reproductive studies that
were deemed to be unacceptable for a variety of reasons,
including quality of the review, dose selection, and guideline
adherence. It would not be expected that these studies were
deemed to be unacceptable because of false-positive findings;
therefore, the 12 chemicals designated as reproductive
toxicants were used to demonstrate external predictivity of
the model. Examples of such chemicals include the putative
antiandrogen prochloraz [13] and the possible endocrine-
disrupting chemical fenitrothion [14], both of which were
predicted to be positive for reproductive toxicity. In total, 7 of
the 12 reproductive toxicants in chemicals groups C or D were
predicted to be positive. The same presumption for the positive
findings cannot be extended to the negative findings across
studies flagged as unacceptable. For example, the male
reproductive toxicant boric acid [15] caused only limited
reproductive effects in the unacceptable guideline multigenera-
tion reproductive study and showed little in vitro activity
(chemical group D), possibly as a result of limited amenability
to HTS.

Chemical groups E and F have no guideline-based multi-
generation reproductive toxicity study entered into ToxRefDB
and, in most cases, have never had such a study performed.
However, of the 14 chemicals in groups E and F, nine were
linked to reproductive toxicity tests available in the open

literature. Varying sources and degrees of evidence can be
found for reproductive toxicity: methoxychlor and its metab-
olite 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE)
based on positive findings in numerous pubertal and other in
vivo assays [16–19], bromoxynil based on EU labeling as a
reproductive toxicant (R62), methyl cellosolve (2-methoxye-
thanol) based on reproductive findings in multiple systemic
repeat-dose and multigenerational studies [20], and mono-
crotophos based on male and female reproductive toxicity
across multiple studies [21, 22]. Equivocal evidence of
reproductive toxicity could be found for alachlor [23] based
on non-dose-dependent effects on ovarian weight and preg-
nancy index effects, which did not result in an rLOAEL being
determined. Dimethyl phthalate and its metabolite methyl
hydrogen phthalate [24, 25] as well as butralin [26] were
considered to be negative for reproductive toxicity based on the
available studies. The model correctly divided this subset of
chemicals as reproductive toxicants or not with the exception
of monocrotophos, which was in the low in vitro activity group
(chemical group F). Interestingly, alachlor, which showed
limited evidence of reproductive toxicity, was predicted to be
positive and was just above the cutoff or model intercept,
which could readily be interpreted as an equivocal prediction.
In summary, five of six chemicals with literature evidence of
reproductive or endocrine toxicity were accurately predicted,
whereas all three negative chemicals were accurately predicted.

The remaining five chemicals had no reproductive toxicity
information available in the literature and were candidates for
forward predictions. Based on the model, symclosene and
phenoxyethanol were predicted to be negative, but it should be
noted that the chemicals had low confidence in their purity
from the analytical QC and/or low in vitro activity. Three
chemicals with no reproductive toxicity data were predicted to
be positives, including diniconazole, niclosamide, and clor-

TABLE 5. External validation chemical set used to test the forward predictivity of the model.

Chemical
group* CASRN Chemical name

Evidence of
reproductive toxicity

Predicted
reproductive toxicant Model score

E 2971-36-0 HPTE Yes Yes 11.9
C 122-14-5 Fenitrothion Yes Yes 5.5
C 67747-09-5 Prochloraz Yes Yes 3.4
E 1689-84-5 Bromoxynil Yes Yes 3.4
E 72-43-5 Methoxychlor Yes Yes 2.7
C 51596-11-3 Milbemectin Yes Yes 2.4
C 9006-42-2 Metiram-zinc Yes Yes 1.6
C 64902-72-3 Chlorsulfuron Yes Yes 0.8
F 109-86-4 Methyl cellusolve Yes Yes 0.8
C 71751-41-2 Abamectin Yes Yes 0.7
C 96182-53-5 Tebupirimfos Yes Yes 0.7
E 15972-60-8 Alachlor Yes Yes 0.7
C 78-48-8 Tribufos Yes No 0.0
C 118134-30-8 Spiroxamine Yes No �0.1
C 79538-32-2 Tefluthrin Yes No �0.1
C 298-04-4 Disulfoton Yes No �0.2
C 66230-04-4 Esfenvalerate Yes No �0.5
E 4376-18-5 Methyl hydrogen phthalate No No 0.0
F 6923-22-4 Monocrotophos No No 0.0
F 131-11-3 Dimethyl phthalate No No �0.2
E 33629-47-9 Butralin No No �0.2
E 120-32-1 Clorophene Unknown Yes 4.4
E 83657-24-3 Diniconazole Unknown Yes 2.4
E 50-65-7 Niclosamide Unknown Yes 1.6
F 122-99-6 Phenoxyethanol Unknown No 0.0
E 87-90-1 Symclosene Unknown No �0.2

* Each chemical is associated with a chemical group based on reproductive study acceptability/availability and aggregate in vitro activity. Chemical group
C showed evidence of reproductive toxicity based on positive findings in an unacceptable multigeneration study, while chemical groups E and F showed
literature evidence of reproductive toxicity.
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ophene. Diniconazole, similar to many of the other conazoles,
demonstrated CYP inhibition, which was highly associated
with decrements in early offspring survival. Niclosamide
displayed fairly potent PPARG agonist activity in multiple
assays (top 5 of 309 chemicals for aggregate PPARG activity),
which was associated most with male and female reproductive
tract effects. AR binding was observed for clorophene at
potencies similar to the CYP inhibition findings, which were
both associated with delays in sexual development and
decrements in reproductive performance. These results provide
examples of how in vitro screening leading to targeted testing
could be used to identify chemicals as potential reproductive
toxicants based on model predictions. Additionally, the
components of the predictive model have increased associa-
tions with specific endpoints and can help make recommen-
dations about study design, including incorporating more
sensitive or mechanistic endpoints into the study. A summary
of the external validation (i.e., chemicals that are not used in
training or testing the model and that have sufficient
ToxRefDB or literature data to confidently classify the
chemical as a reproductive toxicant or not) and forward
validation (i.e., chemicals for which a prediction has been made
but that have no available evidence of whether the chemical is a
reproductive toxicant) chemical sets demonstrates the forward
predictivity of the model and provides examples of predictions
made on chemicals with no reproductive toxicity information
available (Table 5). Of the 21 external validation chemicals, 12
were accurately predicted as reproductive toxicants, 5 were
incorrectly predicted as negative, and 4 were accurately
predicted to be negative, resulting in an external validation
accuracy of 76% and a balanced accuracy of 85%.

In practice, the use of a predictive reproductive toxicity
model can assist in prioritizing further targeted testing. Using
chemical group A, we demonstrate the utility of this model in
decision making and how it could assist in alleviating the
current chemical testing bottleneck. Depending on prioritiza-
tion goals, increasing or decreasing the optimal balanced cutoff
would alter the specificity, sensitivity, and predictivity of the
applied model (Fig. 3). Using a high cutoff, testing the top 30
scoring chemicals would yield 26 reproductive toxicants. On
the other hand, to identify the vast majority of reproductive
toxicants (57 of the 66 total reproductive toxicants), one would
have to test the top 136 of 206 scoring chemicals. If the
prioritization task was to follow up with an expensive and time-

consuming multigeneration reproductive study in a short period
of time, then a more specific approach (i.e., higher cutoff)
might be more appropriate. If the prioritization task was to
follow up with a medium throughput assay capable of testing
many chemicals, then a more sensitive approach (i.e., lower
cutoff) could be used, ensuring the testing strategy catches as
many potential reproductive toxicants as possible. A maximum
sensitivity of 86% and a maximum specificity of 97% are
achieved dependent on the cutoff, which can be adjusted to the
prioritization task.

Beyond the accurate prediction of reproductive toxicants
identified solely from animal studies, we have compiled the
available EU C&L for reproductive toxicity (R60&62 for
fertility and R61&63 for developmental toxicity) in Table 6. Of
the 206 group A chemicals, 19 have been reviewed for EU
classification, and of these 19 chemicals, 7 have been classified
for fertility (R60&62), 8 for developmental toxicity (R61&63),
and 4 for neither. In all, 14 of the 15 R60&63 classified

FIG. 3. Chemicals ordered by their repro-
ductive toxicity model score with the
positive training set on the left and the
negative training set on the right. The
optimal cutoff was determined to be 0.6
(black line) and achieved a balanced
accuracy of 80%. Depending on the prior-
itization goals, an increased or decreased
cutoff could greatly alter your confidence in
detecting a reproductive toxicant. Using an
increased cutoff, one could test the top 32
scoring chemicals and expect to have 27 be
reproductive toxicants (cutoff of 1.8 in
blue). On the other hand, to accurately
predict 59 of the 68 total reproductive
toxicants, one would have to test the top
scoring 137 of 206 chemicals (cutoff of .0
in red).

TABLE 6. Comparison of predictive model results to classification and
labeling for reproductive toxicity.

Chemical name
Predicted
positive Repro C&L*

Model
score

Bisphenol A Yes R62 6.1
Vinclozolin Yes R60&61 4.7
Flusilazole Yes R61 4.6
Linuron Yes R62&61 2.9
Myclobutanil Yes R63 2.4
Fenarimol Yes R62 2.5
Fentin Yes R63 3.5
Fluazifop-P-butyl Yes R63 1.7
Flumioxazin Yes R61 0.9
Cyproconazole Yes R63 1.2
Diethylhexyl phthalate (DEHP) Yes R60&61 0.9
Isoxaflutole Yes R63 0.6
Fluazifop-butyl Yes R61 1.0
Dibutyl phthalate Yes R62&61 0.8
Benomyl No R60&61 0.0
Diuron No — 0.4
Lindane No — 0.0
Propazine No — �0.3
Propargite No — �0.5

* Repro C&L is the European Union classification and labeling for
reproductive toxicity, with R60 and 62 referring to fertility impairment and
R61 and 63 to developmental toxicity.
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chemicals were predicted by the current model to be positive.
Only the metabolically activated benomyl was a false negative
using the predictive model [27]. All four nonclassified
chemicals were predicted to be negative, but it should be
noted that these chemicals could have been unclassified as a
result of insufficient data to assess C&L. As opposed to the risk
assessment process, in which quantitative dose-response
information is needed, the C&L process evaluates the intrinsic
hazard of a substance. The output of the predictive reproduc-
tive toxicity model appears to be well suited to C&L.

DISCUSSION

The results of the present analysis demonstrate that in vitro
HTS data can be used to predict developmentally sensitive
reproductive toxicity in the rat. The capacity to use ToxCast
HTS data, costing roughly $20,000–$30,000 per chemical for
more than 500 assays, in predicting the reproductive toxicity of
hundreds to thousands of chemicals could transform the way in
which chemicals are prioritized and selected for targeted
reproductive toxicity testing. Reproductive toxicity testing is
animal intensive, time-consuming, and costly. Current testing
requirements are expanding internationally beyond conven-
tional pesticides to industrial chemicals and other chemical
domains. Past, present, and future multigeneration reproductive
studies characterize reproductive toxicity through the integrat-
ed assessment of more than 100 potential endpoints across
varying life stages and generations. Even with these large
numbers of measured endpoints, the imprecise nature of many
of the endpoints limits the ability to identify gender and life-
stage specificity, let alone mechanisms of action. The
complexity of the biology, physiology, and study design are
primary reasons for using molecular and cellular markers to
model reproductive toxicity, but these complexities are also the
reasons why previous modeling efforts have not shown
dramatic success. Therefore, we have focused not only on
the model development but also on the detailed capture and
uniform assessment of the reference in vivo reproductive
toxicity information leading to a predictive and biologically
relevant model that can be applied not just to testing
prioritization but also to refinement or even replacement.

The overall accuracy and predictivity of the current model
based on the cross-validation statistics and examples of
forward predictivity demonstrate its potential for use in an
integrated evaluation strategy for environmental chemicals.
Additionally, the model is specific to reproductive toxicity and
is not modeling general systemic toxicity, as evident by the
lack of concordance with the systemic parental and offspring
LOAELs. It should be noted that the ToxCast assay data are
being used concurrently to develop independent predictive
models of cancer as well as systemic and developmental
toxicities. Once further model performance assessment has
been performed on models developed using ToxCast data, the
models could be combined into an integrated testing strategy.
As a starting point in this process, the current reproductive
toxicity model underwent performance-based assessment
demonstrating its strengths and limitations. For example,
chemicals that require metabolic activation, such as benomyl
or molinate, will not be predicted as a reproductive toxicant by
this model, at least not until HTS data using metabolically
competent systems are available [27, 28]. Additionally,
chemicals such as boric acid, which likely causes its male
reproductive toxicity through nonmolecular interactions, dem-
onstrate limitations of the current model [15, 28] and point to
the larger issue of chemical domain of applicability. The
ToxCast Phase I chemical set contains a large number of

conventional pesticides. The ToxCast Phase II chemical library
contains approximately 700 chemicals with more diverse
structural and use characteristics, including on-the-market and
failed pharmaceuticals, food additives, antimicrobials, and
other industrial chemicals. ToxCast Phase II will provide a
robust external validation set testing the forward predictivity of
the current model and evaluating the model’s chemical domain
of applicability. An advantage of developing predictive models
using quantitative HTS data linked to genes, proteins, and
pathways is the ability to identify gaps in the mechanisms
covered by the model. Additionally, chemicals predicted to be
reproductive toxicants that caused minimal reproductive
toxicity in the multigenerational study have at times instead
been shown to cause reproductive-related effects in either
chronic, developmental, or other types of studies. Examples of
reproductive related effects for triclosan and bensulide [29, 30]
from other study types demonstrate the difficulty in definitively
calling training-set chemicals positive or negative for repro-
ductive toxicity.

Among the 21 chemicals selected for external validation, the
model provided accurate predictions for 16 of the chemicals.
The five chemicals with inaccurate predictions provide
valuable insight regarding potential limitations or gaps of the
model. Interestingly, the five chemicals had a common
phenotypic profile with respect to reproductive toxicity.
Tribufos, spiroxamine, tefluthris, disulfoton, and esfenvalerate
all caused reduced early offspring survival, particularly litter
size decrease, with little to no accompanying effects on
reproductive performance or reproductive tract pathology. The
rLOAELs for all five chemicals were set at the high dose tested
based on the early offspring survival effects, and the parental
and offspring LOAELs were set at the lower dose levels. Based
on the inclusive definition used for defining a positive for
reproductive toxicity for model development, all five were
considered to be positive, but all five lack evidence of specific
fertility-related or developmentally sensitive reproductive
outcomes. Nonetheless, a gap in model predictivity has been
identified and could potentially be filled using additional assay
technologies, physical-chemical properties and structural
descriptors, or acute or short-term in vivo studies.

The model development process identified biologically
plausible features and pathways from more than 500 assays
mapped to hundreds of genes and spanning many reproduc-
tively relevant modes of action. PPARa activity was clearly
associated with reproductive toxicity, with all 10 PPARa
agonists in the training set (chemical group A) causing
reproductive toxicity. Putative PPARa agonists (lactofen
[31], imazalil [32], diclofop-methyl [32], DEHP [33], MEHP
[33], and PFOA [33]) and environmental chemicals identified
as potential PPARa agonists through the ToxCast research
program (fluazinam, emamectin benzoate, vinclozolin, and
fenthion) span many chemical classes yet share a relatively
common reproductive toxicity profile—namely, a decrease in
reproductive performance (i.e., decreased fertility) in 8 of the
10 chemicals. Although a mechanistic link between PPAR
activity and fertility or other reproductive impairments remains
unclear [34], the role of PPAR in steroid metabolism and its
activity in reproductive tissues allows us to infer that it is a
plausible target for disruption of endocrine signaling and
altered gametogenesis.

The AR and ESR1 activity was also associated with
reproductive toxicity. The ToxCast receptor profiling identified
most, if not all, of the known antiandrogenic and estrogenic
chemicals in the current dataset, including well-studied
chemicals such as vinclozolin, bisphenol A, methoxychlor,
HPTE, and clorophene. The role of potency in determining a
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chemical’s relative reproductive toxicity potential needs to be
explored further, considering that five of the top seven scoring
ESR1 activators (i.e., active across multiple ESR1 assays and at
relatively low concentrations) did not cause substantial
reproductive toxicity in vivo, including flumetralin, fenhex-
amid, fludioxonil, pyridaben, and endosulfan. Additionally, the
impact of weak or partial nuclear receptor agonists and
antagonists on reproductive toxicity potential and other
toxicities needs to be explored further.

Inhibition of the CYP enzyme, as compared to gene
induction, was significantly more associated with reproductive
toxicity. Alterations in steroid metabolism through CYP
induction have been previously associated with reproductive
impairment [35]; however, the nonspecific inhibition of CYPs
may be a surrogate for a chemical’s capacity to disturb steroid
metabolism, including inhibition of key CYPs involved in
steroidogenesis (e.g., CYP19 and CYP17). Related to CYP
activity, NR1L2 interestingly displayed a negative correlation/
association with reproductive toxicity. In general, NR1L2
lowered the false-positive rate of the model by lowering the
model score of chemicals with nonspecific and low-potency
nuclear receptor activity. Robust NR1L2 activity is an indication
of potent xenosensing and potentially rapid metabolism.

The pyrethroid class of pesticides has shown limited
reproductive toxicity in guideline toxicity studies, although
limited evidence does link pyrethroid exposure to decreased
human sperm quality [36]. Of the 10 pyrethroids in chemical
group A, only resmethrin was considered to be a reproductive
toxicant based on the criteria described in this manuscript. All
10 pyrethroids displayed low-potency activity across one or
more of the selected features, including AR, ESR1, and
PPARG, but not CYP. Without the down-weighting based on
each of their NR1L2 activities, the pyrethroids would have all
been predicted to be reproductive toxicants.

A major component of the model not directly related to
nuclear receptor biology and xenobiotic/steroid metabolism
was GPCR binding. Numerous GPCR-binding assays were
significantly associated with reproductive toxicity. Those
chosen to represent the GPCR family were selected for
statistical, not biological, reasons, because the literature
contains limited information on their role in reproduction, in
contrast to their well-characterized role in nervous system
function.

Platforms measuring EGFR, TGFB1, and NFKB activity
were also associated with reproductive toxicity and make up
the OTHER feature. All three gene products have been shown
to modulate the relative sensitivity of developmental toxicants,
especially aryl-hydrocarbon receptor signaling [37, 38], and
may be indicative of altered xenobiotic metabolism, cellular
proliferation, cell-cell signaling, or potential epigenetic effects
[39, 40].

Overall, the key targets in the model identify plausible
modes of action leading to reproductive toxicity covering
antiandrogenic, estrogenic, cholesterol/steroid metabolism,
limited coverage of disruption of steroidogenesis, and altered
xenobiotic metabolism modes of action.

Limited efforts have been made toward the development of
models predictive of reproductive toxicity, due in part to the
lack of reference data with which to model. One resource for
predictive models have come from structure-based methods
(i.e., quantitative structure-activity relationship [QSAR] mod-
els), but the accuracy and predictivity of the resultant models
have been limited. A comprehensive effort toward the
prediction of reproductive and developmental toxicity was
undertaken by the U.S. Food Drug Administration [41]. The
resultant QSAR models were developed for endpoints such as

sperm effects, female reproductive toxicity, and male repro-
ductive toxicity and generally were highly specific, with an
average specificity across all generated models being 88%.
However, the average balanced accuracy across all models was
58%, with the maximum balanced accuracy for any single
model being 68% for predictive trans-species female repro-
ductive toxicity. It is difficult to assess the true accuracy and
forward predictivity of the models based solely on the
summary statistics, but the balanced accuracy values provide
the most direct and unbiased comparison to the current model.
Most likely, the limitation lies in the physiological complexity
of reproductive toxicity and structural diversity of reproductive
toxicants. The current predictive model has improved accuracy
compared to any published QSAR model of reproductive
toxicity and provides additional mechanistic information and
indications of specific reproductive effects. The model also can
be extended to include new data either covering the gene
targets in the current model or new gene targets of other
potential reproductive toxicity modes of action. Additional
international efforts are underway with the goal of using
alternative testing approaches in the detection of reproductive
toxicants and have shown promise on limited chemical sets
[42]. However, the current ToxCast-based approach utilizes
hundreds of diverse biological-chemical activities associated
with many potential modes of action leading to reproductive
toxicity. The output of the current model provides a binary
classification. Applications beyond hazard identification and
testing prioritization may require dose-response and even
mechanistic information. To accomplish this, research is
underway incorporating toxicokinetic information into the
modeling process using primary rodent and human hepato-
cytes, plasma protein binding, and pharmacokinetic modeling
intended to reverse engineer the expected oral dose required to
achieve a particular in vitro bioactivity level [43]. Experimen-
tally and computationally deriving dosimetry relevant to in
vivo exposures has the potential to provide quantitative dose-
response information that can be incorporated into the
modeling process. For example, the in vitro constitutive
androstane receptor (CAR, NR1L3) and NR1L2 activity on a
set of conazole fungicides in ToxCast Phase I demonstrated the
dose-response relationship between the equivalent in vivo
levels required to observe the NR1L3/NR1L2 activity and the
known dose levels causing rodent liver toxicity [44]. Examples
such as this provide a path toward incorporating in vitro assay
data into the risk assessment process, but they also demonstrate
the amount of prior knowledge currently required to perform
such an analysis. The vast majority of environmental chemicals
have little to no prior toxicity data, and those that do commonly
lack information regarding potential modes of action or human
relevance. The reality is that among the thousands of
environmental chemicals, few will ever have a multigeneration
reproductive study run. Over the past 30 years, only 500
chemicals have been run in multigeneration reproductive
studies because of the high animal and financial burdens for
such large-scale animal testing [1, 6]. A practical solution and
pressing need, especially with regards to reproductive toxicity
testing, is for prioritization tools, such as the current model, to
make more informed reproductive toxicity testing decisions.

Cross-validation and external validation sets used to
develop and assess the quality of the reproductive toxicity
model helped identify strengths and weaknesses of the present
model and will help focus future research. Using HTS assays as
the input into the model provided mechanistic insights and
helped further characterize the predicted chemicals beyond
negative and positive prediction outcomes. However, a subset
of chemicals were deemed to be outside the domain of
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applicability based on low in vitro activity as a result of
physical-chemical characteristics, biological gaps, chemical
decomposition, or volatility. Further research is needed to
better characterize this chemical subset to expand the current
model’s domain of applicability. A limited number of
chemicals selected from the ToxCast Phase I chemical set
were used for external validation and provided supporting
evidence of the model quality. A large set of chemicals from
ToxCast Phase II will have a full complement of in vitro
bioactivity data, and rodent reproductive toxicity studies will
be used to further evaluate, validate, and expand the predictive
model. Additionally, ToxCast Phase II contains a library of
failed pharmaceuticals with preclinical and clinical toxicity
outcomes as well as reference chemicals with known
mechanisms of reproductive toxicity. In addition to diversify-
ing the current chemical library, these chemicals will aid in the
expansion of predictive reproductive toxicity model develop-
ment toward mechanistic and human reproductive toxicity
models useful in risk assessment applications.

The ability of this predictive reproductive toxicity model to
externally predict numerous chemicals with biological and
structural diversity demonstrates suitability for chemical testing
prioritization. Although the model does not provide quantita-
tive dose-response information, it does provide accurate
predictions of a chemical’s reproductive toxicity potential.
Because the model is based on HTS data, it is amenable to
screening and prioritizing thousands of chemicals. Additional-
ly, the biological features of the model provide mechanistic
insights regarding modes of action useful in developing an
integrated testing strategy for reproductive toxicity.
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Research

We currently face significant challenges in 
understanding develop mental health risks 
associated with the thousands of diverse 
compounds entering the environment 
(Martin et al. 2009b). Traditional prenatal 
animal testing is a resource-intensive, low- 
throughput approach that yields limited mech-
anistic information about biological pathways 
and potential adverse consequences in humans, 
motivating a new paradigm for toxicity evalua-
tion (National Research Council 2007). To 
this end, the U.S. Environmental Protection 
Agency (EPA) ToxCast™ research project (Dix 
et al. 2007) and the federal Tox21 consortium 
(Collins et al. 2008) have initiated a large-
scale effort to profile the biological activities 
of a large number of chemicals across multiple 
in vitro assays, largely focused on human cel-
lular and molecu lar targets, and to compile this 
information into predictive models of toxicity. 
Combined approaches using high-throughput 
screening (HTS) and high-content screening 

(HCS) platforms with computational (in silico) 
systems modeling efforts aim to identify sensi-
tive molecular targets of chemicals, the bio-
logical pathways relevant to these targets, and 
their integration into modes of human develop-
mental toxicity. Analysis of the ToxCast data 
set has revealed significant activity across a 
number of biological targets known to partici-
pate in blood vessel formation, maintenance, 
and remodeling. Examining perturbations 
in these crucial processes constitutes a focus 
for predictive modeling and chemical priori-
tization, and this proof-of-concept study on 
a proto typical toxicity pathway—vascular 
development—demon strates the opportunity 
to increase mechanistic understanding of pre-
natal health and disease.

The cardio vascular system is the first organ 
system that develops to a functional state in 
the vertebrate embryo, reflecting the critical 
need for nutrient delivery and waste removal 
(Ferrara 2004). Blood vessel develop ment 

occurs by two successive processes: vasculo-
genesis, in situ formation of nascent ves-
sels from angio blasts leading to a primary 
capillary plexus, and expansion of this plexus 
by subsequent pruning and reorganization of 
endothelial cells through angio genesis (Czirok 
et al. 2008). Disruption of vascular develop-
ment has been directly correlated with pre-
natal loss, mal formations, maternal placental 
complications, and neuro developmental 
problems (D’Amato et al. 1994; Ema et al. 
2010; Hanson and Gottesman 2005; Hoyme 
et al. 1990; Klauber et al. 1997; Tideman 
et al. 2007). HTS of a 200-chemical small- 
molecule library in transgenic zebrafish embryos 
has revealed site-specific disruption of vascular 
develop ment by several mechanistically diverse 
compounds, such as angiotensin-converting 
enzyme inhibitors, micro tubule inhibitors, and 
estrogenic myco toxins (Kitambi et al. 2009). 
Thalidomide is perhaps the best-known exam-
ple of a vascular-disruptive develop mental toxi-
cant. Originally prescribed as an anti nausea 
agent in the 1960s, the develop mental toxicity 
of the drug was discovered after thousands of 
tragic cases of skeletal appendicular malforma-
tions, micro phthalmia, and fetal loss occurred 
in humans (Mellin and Katzenstein 1962). 
It has since been shown to inhibit angio-
genesis (D’Amato et al. 1994) via prevention 
of filopodial extensions from the endothelial 
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Environmental Impact on Vascular Development Predicted by 
High‑Throughput Screening
Nicole C. Kleinstreuer,1 Richard S. Judson,1 David M. Reif,1 Nisha S. Sipes,1 Amar V. Singh,2 Kelly J. Chandler,1,3 
Rob DeWoskin,4 David J. Dix,1 Robert J. Kavlock,1 and Thomas B. Knudsen1

1National Center for Computational Toxiciology, Office of Research and Development, U.S. Environmental Protection Agency, Research 
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Effects Research Laboratory, and 4National Center for Environmental Assessment, Office of Research and Development, U.S. 
Environmental Protection Agency, Research Triangle Park, North Carolina, USA

Background: Understanding health risks to embryonic development from exposure to environ-
mental chemicals is a significant challenge given the diverse chemical landscape and paucity of 
data for most of these compounds. High-throughput screening (HTS) in the U.S. Environmental 
Protection Agency (EPA) ToxCast™ project provides vast data on an expanding chemical library 
currently consisting of > 1,000 unique compounds across > 500 in vitro assays in phase I (complete) 
and Phase II (under way). This public data set can be used to evaluate concentration-dependent 
effects on many diverse biological targets and build predictive models of prototypical toxicity path-
ways that can aid decision making for assessments of human develop mental health and disease.

oBjective: We mined the ToxCast phase I data set to identify signatures for potential chemical 
disruption of blood vessel formation and remodeling.

Methods: ToxCast phase I screened 309 chemicals using 467 HTS assays across nine assay tech-
nology platforms. The assays measured direct inter actions between chemicals and molecular targets 
(receptors, enzymes), as well as downstream effects on reporter gene activity or cellular conse-
quences. We ranked the chemicals according to individual vascular bioactivity score and visualized 
the ranking using ToxPi (Toxicological Priority Index) profiles.

results: Targets in inflammatory chemokine signaling, the vascular endothelial growth factor 
pathway, and the plasminogen-activating system were strongly perturbed by some chemicals, and we 
found positive correlations with develop mental effects from the U.S. EPA ToxRefDB (Toxicological 
Reference Database) in vivo database containing prenatal rat and rabbit guideline studies. We 
observed distinctly different correlative patterns for chemicals with effects in rabbits versus rats, 
despite derivation of in vitro signatures based on human cells and cell-free biochemical targets, imply-
ing conservation but potentially differential contributions of develop mental pathways among species. 
Follow-up analysis with anti angiogenic thalidomide analogs and additional in vitro vascular targets 
showed in vitro activity consistent with the most active environmental chemicals tested here. 

conclusions: We predicted that blood vessel development is a target for environmental chemicals 
acting as putative vascular disruptor compounds (pVDCs) and identified potential species differ-
ences in sensitive vascular develop mental pathways.

key words: angiogenesis, developmental toxicity, high-throughput screening (HTS), thalidomide, 
vascular development. Environ Health Perspect 119:1596–1603 (2011). http://dx.doi.org/10.1289/
ehp.1103412 [Online 25 July 2011]
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tip cell in immature embryonic blood vessels 
(Therapontos et al. 2009), leading to secondary 
effects on gene expression, generation of reac-
tive oxygen species, and cell death in neighbor-
ing tissue (Ito et al. 2010; Vargesson 2009).

When analyzing the HTS-HCS data, we 
strive to address several important questions. 
Do environmental chemicals that disrupt blood 
vessel develop ment also cause develop mental 
toxicity? For a subset of these chemicals, is the 
disruption of blood vessel develop ment neces-
sary and sufficient to account for the develop-
mental toxicity? Given the apical, non specific 
nature of the observed end points in vivo (e.g., 
decreased fetal body weight, delayed skeletal 
ossification), which are typical of regulatory 
guideline develop mental toxicity studies in 
rats and rabbits, more detailed information is 
required to determine whether vascular disrup-
tion is the true mechanism by which a chemical 
acts. The ToxCast data, covering a wide variety 
of highly specific mechanistic end points, strives 
to meet this need and provide a more in-depth 
description of potential chemical toxicity.

In light of the global importance of 
blood vessel develop ment in cancer, develop-
mental toxicity, and reproductive effects of 
pharmaceutical compounds, in the present 
study we examined whether putative vascu-
lar disruptor compounds (pVDCs) can be 
used as a class predictor for environmental 
chemicals. Here, we define pVDCs to include 
compounds that may directly perturb pro-
cesses fundamental to vascular develop ment. 
The mode-of-action processes could include 
vascular patterning–remodeling or utero- 
placental circulation, with specificity that may 
vary depending on mechanisms intrinsic to 
the embryo, placenta, or mother.

Materials and Methods
Source data. Phase I of ToxCast (U.S. EPA 
2010a) employed a chemical library of 309 
unique structures, most of which are registered 
food-use pesticides with extensive animal bio-
assay data available. Chemicals were screened 
using 467 HTS assays across nine assay tech-
nology platforms with active chemicals run in 
concentration-dependent dose–response format 
(Judson et al. 2010). Assays measured direct 
inter actions between chemi cals and molecu lar 
targets (receptors, enzymes), as well as down-
stream effects on reporter gene activity or cellu-
lar consequences. For each assay–chemical  
combination, using automated curve fitting, 
we derived either an AC50 (half-maximal activ-
ity concentration) or LEC (lowest effective 
concentration, statistically significant change 
from controls), where a default value of 1 M 
was assigned for inactive chemicals. Pathway, 
process, and disease-based perturbation scores 
were constructed by mapping assays to genes 
and then to pathways from Gene Ontology 
(GO 2010), Kyoto Encyclopedia of Genes 

and Genomes (KEGG; Kanehisa Laboratories 
2010), Ingenuity Pathways Analysis (IPA; 
Ingenuity Systems Inc., Redwood City, CA), 
Pathway Commons (Memorial Sloan-Kettering 
Cancer Center and the University of Toronto 
2010), and Mouse and Online Mendelian 
Inheritance in Man [OMIM; National Center 
for Biotechnology Information (NCBI) 2010a]
phenotype databases. In brief, a chemical-
pathway perturbation score corresponds to the 
minimum AC50 for that chemical for any assay 
mapping to the pathway, where the chemical 
must show activity (AC50 or LEC) against at 
least five assay targets mapping to genes in the 
pathway. The calculation of these scores has 
been described in detail elsewhere (Judson et al. 
2010). The perturbation scores are a method of 
aggregating assays into groups and providing 
a higher-level view of chemical activity across 
important signaling pathways.

For most of the ToxCast phase I chemi-
cals, in vivo regulatory test guideline data are 
entered into ToxRefDB (Toxicity Reference 
Database; U.S. EPA 2010b). ToxRefDB con-
tains standardized and computable data on 
2-year cancer/chronic studies on rats and mice 
(Martin et al. 2009a), multi generational repro-
ductive studies on rats (Martin et al. 2009b), 
and pre natal develop mental studies on rats and 
rabbits (Knudsen et al. 2009). The database 
includes standardized end points such as fetal 
body weight reduction, pubertal delays, skeletal 
malformations, and tumor formation in adult 

organs. The data are reported as LEL (lowest 
effect level) doses (milli grams per kilo gram per 
day) for maternal, develop mental, or categori-
cal end points. All defect categories (skeletal, 
urogenital, neuro sensory, etc.) include both 
malformations and variations, which, although 
they may be transitive delays in some cases (e.g., 
dilated renal pelvis), may still represent chemi-
cal effects. In total, there were 76 aggregated 
end points across the ToxRefDB pre natal stud-
ies. The ToxRefDB annotation system used 
inter nationally harmonized nomenclature 
(Knudsen et al. 2009; Makris et al. 2009; Wise 
et al. 1997) to create a thesaurus of 988 non-
redundant terms that apply to maternal and 
develop mental end points (Knudsen et al. 
2009). The complete data set is available for 
download (U.S. EPA 2010b) and is also acces-
sible via a web-searchable format.

Work flow. We probed the ToxCast data 
set for signatures of biological activity that 
could indicate the potential for disrupting 
blood vessel morpho genesis and remodeling 
(vasculogenesis/angio genesis). The general 
work flow for identification, prioritization, 
hypothesis generation, and validation of 
pVDCs is shown in Figure 1. To select the 
relevant assays, we used the Virtual Tissues 
Knowledgebase (VT-KB; U.S. EPA 2010c) 
to extract and organize rele vant facts from the 
scientific literature, using a dictionary of terms 
built with publicly available ontologies of 
genes, pathways, anatomy, clinical outcomes, 

Figure 1. Work flow to identify pVDCs among 309 environmental chemicals. Assays critical to vascular 
development were identified by VT-KB, chemicals were ranked by their VBS against these vascular targets, 
and the ToxPi tool was used to filter/visualize the chemical library. Multivariate algorithms produced pre-
dictive signatures of species-specific vascular disruption, correlated with ToxRefDB in vivo end points in 
prenatal guideline studies. The chemical library was tested against additional reference in vitro assays, and 
reference anti angiogenic compounds (thalidomide and 5HPP-33) were tested against the pVDC signature.
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and chemicals. We compiled a list of key words 
relevant to embryonic vascular formation 
[see Supplemental Material, Figure 1 (http://
dx.doi.org/10.1289/ehp.1103412)] and cross- 
referenced these with > 300 ToxCast in vitro 
assay targets among 20 million abstracts in 
PubMed (NCBI 2010b). Relevancy of the 
assay targets was determined based on the 
number of cooccurrences with vascular key 
words and biological plausibility. Briefly, the 
vascular key words were first used to extract the 
subset of articles from PubMed that pertain to 
embryonic vascular develop ment. This database 
of approximately 88,000 articles was named 
VasculoDB. All genes and proteins were then 
ranked by their number of occurrences within 
the abstracts from the VasculoDB and cross- 
referenced with the ToxCast assay targets. Each 
of the highest-ranking assay targets was used 
to perform further key word searches using all 
synonyms of that target [e.g., VEGFR2 (vas-
cular endothelial growth factor receptor 2), 
KDR, VEGFRII, Flk1, etc.] and extract the 
relevant articles for manual full-text evalua-
tion and curation. Biological plausibility was 
determined based on the scientific weight of 

evidence for each target being critical to and 
necessary for embryonic vascular develop ment.

Chemicals were ranked for vascular- 
disruptive potential by their activity across the 
selected targets. This ranking was referred to 
as a vascular bioactivity score (VBS) and repre-
sented a weighted sum based on the log trans-
form of the AC50/LEC values for the specified 
assay targets [for details, see Supplemental 
Material, pp. 4–5 (http://dx.doi.org/10.1289/
ehp.1103412)]. The 123 chemi cals that fell 
above the mean score for the entire phase I 
chemical landscape were designated as pVDCs. 
We tested reference thalidomide compounds 
with known anti angio genic effects [thalidomide 
and 5-hydroxy-2-(2,6-diisopropylphenyl)-1-
H-isoindole-1,3-dione (5HPP-33); Sigma-
Aldrich Corp., St. Louis, MO] in the identified 
subset of vascular assays (processed under the 
same conditions in rele vant ToxCast assays) 
and calculated their VBS rankings. We identi-
fied additional assays with biochemical targets 
critical to vascular develop ment and tested the 
ToxCast chemical library to determine if the 
rank order of activity cor responded with the 
predicted pVDC potential.

The subset of pVDCs with in vivo develop-
mental toxicity data in ToxRefDB were ana-
lyzed for species-specific trends. We used a 
step wise linear discriminant analy sis (LDA) 
with 5-fold cross-validation to identify multi-
variate toxicity signatures based on significant 
associations between groups of pVDCs with 
develop mental effects specific to rats or rab-
bits and the remainder of the ToxCast in vitro 
assays and pathway perturbation scores. Here 
the independent variables were the in vitro 
assay data, and the dependent variables, or 
predictions, were the groups of pVDCs with 
 species-specific in vivo effects from animal 
testing data in ToxRefDB. The model with 
the best test-set balanced accuracy (BA; aver-
age of sensitivity and specificity) was chosen. 
For algorithm details, example queries, and 
equations, see Supplemental Material, pp. 5–7 
(http://dx.doi.org/10.1289/ehp.1103412). 

Results
Identifying pVDCs. Six assay targets emerged 
as most relevant to embryonic blood vessel 
formation based on biological plausibility 
and prevalence in the VasculoDB literature. 

Figure 2. ToxPi visualization for top 50 pVDCs ranked by VBS across six in vitro targets: CCL2 down-regulation, CXCL10 up-regulation, uPAR up- and down- regulation, 
PAI-1 up- and down-regulation, VEGFR2 down-regulation, and TIE2 binding. 
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These targets have been previously identified, 
based on murine knock out models or sig-
nificant associations between biomarker data 
and adverse pregnancy effects, as critical to 
proper embryonic blood vessel formation or 
maternal–fetal placental circulation. In order 
of descending influence (with correspond-
ing references highlighting their importance 
to vascular develop ment), these were down- 
regulation of the receptor tyrosine kinase 
(RTK) VEGFR2 (Drake et al. 2007); inhi-
bition of the enzymatic activity of TIE2, 
an angio genic RTK (Patan 1998); down-
regulation of the pro angio genic chemokine 
CCL2 (Keeley et al. 2008); perturbation of 
the plasminogen-activating system (PAS) con-
trolling extra cellular matrix breakdown via 
up- or down-regulation of plasminogen acti-
vator inhibitor type 1 (PAI-1/SERPINE1) 
(Behzadian et al. 2003); up-regulation of the 
pro inflammatory anti angio genic chemokine 
CXCL10 (Romagnani et al. 2001); and pertur-
bation of the PAS via up- or down- regulation 
of urokinase-type plasminogen activator recep-
tor (uPAR/PLAUR) (D’Alessio and Blasi 
2009). Other ToxCast assay targets broadly 
involved in cell signaling, such as transforming 
growth factor β (TGFβ), had occurrence levels 
comparable to these six features; however, the 
identified features were those deemed to be 
simultaneously highly relevant to embryonic 
vascular develop ment and specific to those 
cell types that are directly involved in vasculo/
angio genic processes (endothelial cells, mural 
cells, inflammatory cells). In total, 23 unique 
assays were represented by the six target fea-
tures, including one cell-free biochemical assay 
(Knudsen et al. 2011) and 22 assays com-
bining eight primary human cell types with 
BioMAP (Biologically Multiplexed Activity 
Profiling) protein readouts from complex 
cell-culture mixtures to more closely simulate 
 tissue biology (Houck et al. 2009). 

A VBS was computed as a weighted sum 
of the activity across 23 assays representing 
the six prioritized vascular targets for each 
of 309 unique chemicals in the library. We 
found 123 of 309 chemicals with a VBS above 
the mean score for the entire phase I chemi-
cal landscape and provisionally labeled them 
as pVDCs. The top candidate was pyrida-
ben (VBS = 6.9), and the mean cutoff cor-
responded to cyfluthrin (VBS = 1.48). The 
186 chemicals that did not fall above the mean 
cutoff had a VBS range of 0–1.30. We ranked 
the 309 chemicals according to individual 
VBS and visualized the VBS ranking using 
ToxPi (Toxicological Priority Index) profiles 
(Reif et al. 2010). ToxPi results for the top 
50 pVDCs are shown in Figure 2 [for profiles 
of the entire 309 ToxCast chemical library, see 
Supplemental Material, Figure 2 (http://dx.doi.
org/10.1289/ehp.1103412)]. Each sector is 
normalized to show the relative effect of each 

chemical on each readout, and the overall pro-
files combine the relative weights across VBS 
targets into a single graphic for each pVDC.

Reference thalidomide compounds. 
Statistical models for pVDCs built from 
ToxCast data identified environmental chemi-
cals with no previously known potential to 
disrupt vascular develop ment. Thalidomide, 
a well-studied develop mental toxicant, and 
its anti angio genic analogue 5HPP-33 are 
known to disrupt blood vessel develop ment 
(D’Amato et al. 1994; Noguchi et al. 2005; 
Sarkanen et al. 2011). These reference com-
pounds were used to test the pVDC signature 
defined for the ToxCast chemical library. The 
corresponding VBS was derived in the same 
way from s AC50 and s LEC values (Table 1).

As predicted, thalidomide and 5HPP-33 
were active across most of the pVDC signa-
ture assay targets. Both compounds signifi-
cantly down-regulated CCL2 with an LEC 
of 0.625 µM in a coculture of peripheral 
blood mono nuclear cells and endothelial cells. 
Thalidomide up-regulated PAI-1 in fibro blasts 
at 40 µM, whereas 5HPP-33 down-regulated 
PAI-1 in both fibroblasts and bronchial epi-
thelial cells (LEC = 20 µM). 5HPP-33 up-
regulated uPAR in bronchial epithelial cells at 
1.25 µM, and thalidomide up-regulated uPAR 
in endothelial cells at 2.5 µM. 5HPP-33 also 
had effects on uPAR in the endothelial cell sys-
tem at 10 µM. Neither compound affected the 
CXCL10 signal assay or produced an AC50 in 
the TIE2 assay. Both compounds, however, fell 
above the mean VBS cutoff and would be clas-
sified as pVDCs based on in vitro activity for 
vascular targets identified by the ToxCast data 

and chemicals. Thalidomide had a lower VBS 
and would be predicted as a moderate vascular 
disruptor, whereas the analog designed spe-
cifically to be anti angio genic, 5HPP-33, scored 
the second highest VBS among all 311 com-
pounds tested (ToxPi visualization shown in 
Figure 2). Thus, our findings with reference 
compounds known to be anti angio genic sup-
port the contention that VBS is an effective 
metric for vascular disruption.

Reference vascular targets. We expanded 
the initial ToxCast assay portfolio to include 
additional bio chemical assay targets known 
to be critical in vascular develop ment: VEGF 
receptors VEGFR1, VEGFR2, and VEGFR3; 
the arterial vessel marker EphB2 (ephrin-B2); 
and PI3Ka (phosphatidyl inositol 3-kinase) and 
PTEN (phosphatase and tensin homolog), both 
of which have been shown to govern normal 
vascular develop ment (Chappell et al. 2009; 
Drake et al. 2007; Eichmann et al. 2008; 
Hamada et al. 2005). We hypothesized that 
the ToxCast chemicals predicted to be pVDCs 
would have greater activity on these targets than 
that shown by the remainder of the chemical 
library. The chemical library was run against 
these assays, as was a repeat of the TIE2 assay 
from the original data series (Table 2). Of the 
309 compounds, 14 had one or more AC50 hits 
across these targets. Of these candidates, 11 were 
previously classified as pVDCs based on the 
original portfolio, which involved one biochem-
ical assay (TIE2) and five assays from cell–cell 
signaling platforms. The chemicals in Table 2 
are ranked based on their VBS. The 11 pVDCs 
resulted in 42 AC50 values across these critical 
vascular targets, with an average AC50 of 16 µM, 

Table 1. Reference anti angiogenic compounds: activity across pVDC signature. 

LEC (µM) TIE2 AC50 
(µM)Chemical VBSa CCL2. CXCL10- uPAR1 PAI‑11 VEGFR2.

5HPP‑33 6.61 0.625 — 1.25 20 20 —
Thalidomide 1.76 0.625 — 2.5 40 — — 

Symbols: ., down-regulation; -, up-regulation; 1, up- and down-regulation; —, no change. 
aSummed activity across 23 assays, corresponding to the 6 assay targets shown here. 

Table 2. Chemical activities (AC50) across biochemical targets critical to vascular development. 

AC50 (µM)
ToxCast chemical name VBS VEGFR1 VEGFR2 VEGFR3 TIE2 EphB2 PI3Ka PTEN
Predicted pVDCs from ToxCast data

Abamectin 5.19 38.8 17 6.4
Maneb 4.69 4.1 31 12 8.08 23 0.9
Metiram‑zinc 4.35 6.6 41 22 15 29 12
Oxytetracycline dihydrate 3.85 19 6.5 15 6.2 1.6
Perfluorooctanesulfonic acid 3.48 8.2 50 8 4.43 6.5 17
Perfluorooctanoic acid 3.04 31.9
Mancozeb 3.00 19 5.9 1.3 10.4 21 20 0.23
Emamectin benzoate 2.91 21 7.9 2.1
2,2‑bis‑(p‑Hydroxyphenyl)‑1,1,1‑trichloroethane 2.28 28
Diclosulam 2.09 50
Milbemectin 1.49 20 11 12

Predicted non‑pVDCs from ToxCast data 
Captan 1.14       35
Cyclanilide 0.21 50 3.9
Sethoxydim 0.00 22
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whereas the three non-pVDCs resulted in four 
AC50 values, with an average value of 28 µM. 
The results from these assays revealed a trend 
whereby pVDCs with a higher VBS had lower 
AC50 values (30 values ≤ 20 µM) across a wider 
variety of vascular targets, whereas compounds 
that did not make the pVDC cutoff had higher 
AC50 values (one value ≤ 20 µM) for a more 
limited number of targets. These additional data 
for more targets in vascular pathways further 
demonstrated that VBS is an effective tool iden-
tifying vascular disruptors.

Correlations with in vivo animal data. 
Most ToxCast chemicals have corresponding 
in vivo bioassay data in ToxRefDB (Knudsen 
et al. 2009; Martin et al. 2009a, 2009b), a 

standardized and computable database that 
includes 76 aggregated end points across rat 
and rabbit pre natal develop mental toxic-
ity studies (U.S. EPA 2010b). The candidate 
pVDCs were cross-referenced to ToxRefDB 
develop mental effects [for a list of pVDCs 
(n = 17) without pre natal guideline study 
data in either species, see Supplemental 
Material, Table 1 (http://dx.doi.org/10.1289/
ehp.1103412)]. Many of those chemicals, such 
as imazalil and perfluoro octanoic acid, are 
known from the literature to have mammalian 
develop mental toxicity (Lau et al. 2004; Zega 
et al. 2009), and these data were captured by 
the VT-KB and reported, where applicable [for 
a list of pVDCs that did not have a recorded 

develop mental effect or result in pregnancy-
related fetal loss in rat or rabbit (n = 7), see 
Supplemental Material, Table 2]. In addition 
to the correlations with end points from the 
pre natal literature, toxicity was exhibited across 
a wide range of biological systems in chronic 
and multi generational guideline studies; the 
most common end points recorded were liver 
and kidney effects.

For pVDCs with data in both rat and 
rabbit (n = 84), adverse effects directly on 
the embryo were seen with 68% of chemi-
cals. In rabbits, the most numerous end points 
(k) were embryonic fetal loss (k = 23), skele-
tal axial defects (k = 17), and fetal weight 
reduction (k = 15). In rats, the most preva lent 
end points were skeletal axial defects (k = 40), 
fetal weight reduction (k = 30), embryonic fetal 
loss (k = 21), and skeletal appendicular defects 
(k = 16). The category of skeletal defects poten-
tially shows high representation because bone 
elements, such as vertebrae, femur, and ribs, are 
entered into the database as individual targets 
and further annotated by descriptions such as 
absent, incomplete ossification, or misshapen. 
In the ToxRefDB ontology, maternal effects 
are recorded separately. In cases of increased 
resorptions and fetal losses, it is not possible 
to know whether these effects were maternal 
or embryo mediated. Pregnancy-related fetal 
loss (all expressions of fetal wastage, includ-
ing pre implantation loss, implantation failure, 
resorptions, and fetal death) was a distinct cat-
egory entered into ToxRefDB that may also be 
indicative of embryo toxicity, and if this addi-
tional end point is included, the number of 
potentially develop mentally toxic pVDCs with 
pre natal data in both rats and rabbits increased 
from 68% to 92%. This was the most preva-
lent end point in the rabbit (k = 32) and also 
occurred in the rat (k = 20).

Species-specific signatures. We observed 
a striking difference between the subsets of 
pVDCs active in pregnant rats versus rabbits, 
which raised two important questions about 
predictive modeling useful for informing 
human health risk assessments. First, can the 
same suite of in vitro assays based primarily 
on human cells and biochemical targets pro-
vide a signature that distinguishes chemicals 
develop mentally toxic in rabbits from those 
develop mentally toxic in rats? Second, what 
distinguishes pathway-level perturbations by 
chemicals that affect one species differently 
from the other?

Among pVDCs tested in both species 
and entered into ToxRefDB, 22 candidates 
exhibited develop mental toxicity in the rab-
bit only (Table 3), and 21 chemicals resulted 
in develop mental phenotypes in the rat only 
(Table 4). Each subset of species-specific 
pVDCs was run through a step wise LDA to 
determine commonalities among their bio-
activity profiles and to identify susceptible 

Table 4. pVDCs with rat-specific effects in ToxRefDB prenatal studies.

Chemical VBS Developmental phenotype
Diniconazole 4.57 General fetal pathology; embryo fetal loss; maternal pregnancy loss; skeletal: 

appendicular, axial; urogenital: renal
Naled 4.22 Embryo fetal loss; trunk: body wall
(Z,E)‑Fenpyroximate 3.88 Skeletal: axial
Cyazofamid 3.34 Skeletal: axial
Chlorothalonil 3.28 Embryo fetal loss; maternal pregnancy loss
Lactofen 3.18 Fetal weight reduction; maternal pregnancy loss; skeletal: appendicular; skeletal: axial
Spirodiclofen 3.15 Urogenital: renal
Thiodicarb 2.97 Fetal weight reduction, general fetal pathology; embryo fetal loss; maternal 

pregnancy loss; skeletal: axial
Alachlor 2.97 Fetal weight reduction; embryo fetal loss
Emamectin benzoate 2.91 Fetal weight reduction; skeletal: appendicular, axial, cranial
Fluoxastrobin 2.79 Skeletal: appendicular
Hexythiazox 2.78 Skeletal: appendicular
Tetraconazole 2.23 General fetal pathology; skeletal: axial; urogenital: renal, ureteric
Prodiamine 2.19 Neurosensory: eye
Fenpropathrin 2.18 Maternal pregnancy loss
Acetochlor 2.16 Fetal weight reduction; general fetal pathology; embryo fetal loss; maternal 

pregnancy loss; skeletal: axial
Prallethrin 2.11 Maternal pregnancy loss
Thiazopyr 2.00 Skeletal: axial
Fludioxonil 1.82 Urogenital: renal, ureteric
Profenofos 1.71 Maternal pregnancy loss
Metolachlor 1.57 Fetal weight reduction; embryo fetal loss; maternal pregnancy loss

Table 3. pVDCs with rabbit-specific effects in ToxRefDB prenatal studies.

Chemical VBS Developmental phenotype
Methylene bis(thiocyanate) 6.55 Maternal pregnancy loss
Trifloxystrobin 4.26 Skeletal: axial
Propargite 3.79 Skeletal: axial
Etoxazole 3.66 Skeletal: axial
Fenoxycarb 3.60 Skeletal: axial
Azamethiphos 3.10 Maternal pregnancy loss
Quinoxyfen 3.02 Maternal pregnancy loss
Butafenacil 2.94 Embryo fetal loss
Dazomet 2.61 General fetal pathology; embryo fetal loss; skeletal: axial
Rimsulfuron 2.52 Embryo fetal loss; maternal pregnancy loss
Dichlorvos 2.34 Maternal pregnancy loss
Bensulide 2.17 Maternal pregnancy loss
Flumiclorac‑pentyl 2.11 Maternal pregnancy loss
Diclosulam 2.09 Maternal pregnancy loss
Propetamphos 2.08 Embryo fetal loss
Butachlor 1.99 Fetal weight reduction; embryo fetal loss; maternal pregnancy loss
Dicofol 1.92 Maternal pregnancy loss
Oxyfluorfen 1.82 Embryo fetal loss; maternal pregnancy loss
Famoxadone 1.82 Embryo fetal loss; maternal pregnancy loss
Flufenpyr‑ethyl 1.73 Maternal pregnancy loss
Dicrotophos 1.59 Fetal weight reduction; maternal pregnancy loss
Carboxin 1.56 Maternal pregnancy loss
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systems that can account for the cross-species 
differences. In each case we considered the 
set of pVDCs that were tested in both spe-
cies, where the model positives were those that 
showed effects specific to one species and the 
negatives were the remainder of the set. The 
algorithm was run several times with varying 
feature sets allowing for linear combinations 
of in vitro assays, in vivo data, and pathway 
perturbation scores, and we chose the model 
with best cross-validation test BA. Running 
the algorithm with the same feature set several 
times did not produce different BAs, so the 
model was assumed to be stable.

Remarkably, the statistical model pre-
dicted that the PAS was a significant target for 
pVDCs active in the rabbit but not rat studies. 
The best predictive signature was capable of 
identifying with 80% accuracy rabbit-specific 
develop mental toxi cants that may be work-
ing via a vascular-disruptive mechanism (test 
BA = 0.8 over 20 itera tions). Table 5 shows 
the model features, which include down- 
regulation of PAI-1 in a complex culture assay 
of bronchial epithelial cells and a group of 
pathways from databases such as GO, IPA, 
and KEGG. Many of the pathways being tar-
geted by these compounds are related to inter-
actions with the extracellular matrix and the 
PAS and include processes such as regulation 
of angio genesis, fibrinolysis, collagen binding, 
blood coagulation, and trans membrane recep-
tor activity. Other perturbed pathways, such 
as regulation of apoptosis and p53 signaling, 
pertain to cellular survival and programmed 
cell death critical to proper embryonic 
develop ment. When run against a feature set 
consisting of only the ToxCast assays, the sig-
nature had lower predictivity (test BA = 0.6) 
but was still focused on elements of the PAS, 
with down-regulation and up-regulation of 
PAI-1 emerging as the two strongest com-
ponents. This signature is represented by 
the rabbit ToxPi in Figure 1. The pattern of 
in vivo end points caused by the rabbit-specific 
pVDCs (Table 3) was nearly uniform, with 
18 of 22 (82%) resulting in either embryonic 
loss or maternal pregnancy loss and 5 of 22 
resulting in skeletal axial defects (dazomet 
affected both end points and caused general 
fetal pathology). Fetal weight reduction was 
also due to butachlor and dicroto phos in 
ToxRefDB (U.S. EPA 2010b). 

In contrast, pVDCs that were active in the 
rat but not in rabbit prenatal studies (Table 4) 
were significantly associated with inflamma-
tory response targets. The signature was able to 
identify with 90% accuracy rat-specific develop-
mental toxicants that may be acting via a  
vascular-disruptive mechanism (cross- validation 
BA = 0.9). The model features (Table 6) con-
sisted of three assays: CCL2 down-regulation 
in a complex coculture of peripheral blood 
mononuclear cells and endothelial cells, CD40 

down-regulation in the same system, and a cell 
viability assay in the HepG2 human hepato-
cellular carcinoma cell line. This model was 
produced by a feature set containing only the 
ToxCast assays. When run against a feature 
set including pathway perturbation scores, the 
same signature is produced with one additional 
feature, the GO pathway “Component: integral 
to membrane,” and a slightly lower BA = 0.84 
(data not shown). These compounds appear to 
be preferentially targeting inflammatory sig-
naling, specifically via the angio genic chemo-
kine CCL2 and CD40, a tumor necrosis factor 
receptor family protein that controls a variety 
of immune-related processes and is expressed 
by vascular endothelial cells and macrophages, 
among others. The downstream effects of per-
turbing CD40/chemokine signaling involve 
interruption of cell–cell adhesion and prolifera-
tion, which could correlate with the cell loss 
observed in HepG2 cells at the 72-hr time 
point. In vivo end points caused by the rat-
specific pVDCs were more diverse, with fetal 
loss being less common (10 of 21) than in the 
rabbit and a wider variety of phenotypes, with 
the most common being axial and appendicular 
skele tal defects. We also observed urogenital 
end points (due to diniconazole, spirodiclofen, 

tetraconazole, and fludioxonil) and fetal weight 
reduction in ToxRefDB (U.S. EPA 2010b).

Discussion
These results provide a novel ranking of 
environ mental chemicals based on potential 
to disrupt critical targets in vascular develop-
ment and suggest a strong association with the 
potential for adverse develop mental effects in 
pregnant rats or rabbits. This finding frames the 
hypothesis that vascularization of the embryo–
placenta is a common biological target for the 
develop mental toxicity of some environmental 
chemicals that act as pVDCs. The two most 
prevalent effects in the animal prenatal testing, 
skeletal malformation and fetal loss, further 
suggest that pVDCs act on different aspects 
of vascular signaling, including the VEGF 
pathway, the PAS, and the chemo kine signal-
ing network. Deeper examination of ToxCast 
chemicals also revealed a species-specific in vivo 
response in the inflammatory signaling net-
work (rats) and the PAS (rabbits). It is note-
worthy that the reference compounds tested 
here (thalidomide, 5HPP-33) produced results 
consistent with the observed vascular disrup-
tion signature. This study demon strates the use 
of rapid in vitro testing to rank and prioritize 

Table 5. Multivariate toxicity signature: pVDCs with rabbit-specific effects in ToxRefDB prenatal studies.

Descriptor Result
Model statistics

Learner LDA
CV 5‑fold
BA train 0.86
BA test 0.8
Best sensitivity 0.84
Best specificity 0.84
Best AUC 0.86

Model features
Pathways

Gene SERPINE1 (PAI‑1); MMP9
GO: Process Regulation of angiogenesis; fibrinolysis; blood coagulation; positive regulation of apoptosis
KEGG p53 signaling pathway; complement coagulation cascades
IPA Coagulation system; acute phase response signaling
GO: Function Serine type endopeptidase activity; transmembrane receptor activity; collagen binding
GO: Component Extracellular region; integral to membrane

ToxCast assays BSK:BE3C (bronchial epithelial cells): PAI‑1 down

Abbreviations: AUC, area under receiver operating characteristic curve; BA, balanced accuracy; CV, cross valida-
tion; MMP9, matrix metalloproteinase 9. Pathways were output from different annotations, including GO (2010), KEGG 
(Kanehisa Laboratories 2010), and PathwayCommons (Memorial Sloan-Kettering Cancer Center and the University of 
Toronto 2010). 

Table 6. Multivariate toxicity signature: pVDCs with rat-specific effects in ToxRefDB prenatal studies.

Descriptor Result
Model statistics

Learner LDA
CV 5‑fold
BA train 0.9
BA test 0.9
Best sensitivity 0.9
Best specificity 0.9
Best AUC 0.9

Model features
ToxCast assays BSK:SAg (peripheral blood mononuclear cells + endothelial cells): CCL2 down, CD40 down

CLM (HepG2 human hepatocellular carcinoma cell line): cell loss 72‑hr time point

Abbreviations: AUC, area under receiver operating characteristic curve; BA, balanced accuracy; CV, cross-validation. 
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environ mental chemi cal libraries to identify 
compounds with the potential for vascular dis-
ruption. We developed a phenomenological 
vascular-disruptive toxicity signature based on 
short-term assay information and showed that 
the most compounds identified by this signa-
ture also caused in vivo develop mental toxicity.

Prenatal guideline studies in vivo record 
predominantly apical end points with insuffi-
cient detail to determine whether the observed 
develop mental toxicity is via vascular disrup-
tion or some other mechanism. One would 
expect that most pVDCs would be potential 
develop mental toxicants, as is the case here 
(92%), but not that all develop mental toxi-
cants would be pVDCs. Of the remaining 
ToxCast phase I compounds (non-pVDCs) 
with prenatal guideline studies in both species 
(n = 130), 75% have direct embryonic effects 

or pregnancy-related fetal loss recorded in 
ToxRefDB, and we would predict that those 
effects are via a mechanism other than vascu-
lar disruption. We were unable to find any 
statistically significant concordance between 
the potency of the AC50 values in vitro and the 
incidence or pattern of develop mental effects 
due to the ToxCast compounds, pVDC or 
otherwise (Sipes et al. 2011).

Many vascular-active develop mental toxi-
cants from the literature show concordance with 
the signaling pathways and specific targets iden-
tified in this analysis. The first anti angio genic 
compound to be assessed in clinical trials, TNP-
470 (O-[chloroacetyl-carbamoyl]fumagillol), 
resulted in spontaneous resorption and intra-
uterine growth restriction when administered 
early or late in murine pregnancy, respectively 
(Rutland et al. 2005). Targeted examination 

of TNP-470’s effect on the ocular vasculature 
revealed a significant decrease in VEGF expres-
sion and VEGFR2 phosphorylation (Joussen 
et al. 2001; Satchi-Fainaro et al. 2005). Placental 
vascular remodeling was suppressed in rats after 
exposure to the develop mental toxi cant 2,3,7,8-
tetrachloro dibenzo-p-dioxin (TCDD) and was 
significantly correlated with decreased expres-
sion of TIE2 mRNA (Ishimura et al. 2009). 
Angiostatin is a naturally occurring product of 
the PAS from the cleavage of plasminogen with 
strong inhibitory effects on blood vessel forma-
tion in vivo (Jing et al. 2004). Thalidomide is an 
anti angio genic compound that has been studied 
for > 40 years and was shown here to target 
inflammatory signaling and extra cellular matrix 
breakdown via the PAS. This corresponds to 
the pattern of genetic perturbations of vascular 
signaling found in a recent study in pregnant 
monkeys (Ema et al. 2010). The thalidomide 
analog 5HPP-33 was shown to have potent 
anti angio genic activity in a human umbilical 
vein endothelial cell assay (~ 60% inhibition of 
tube formation), whereas the parent compound 
had moderate activity (~ 30% inhibition of tube 
formation) (Noguchi et al. 2005). When tested 
against our signature, both compounds were 
classified as pVDCs; however, 5HPP-33 was 
predicted to be more strongly anti angio genic 
than the parent compound, as expected.

An intriguing result of this analysis is the 
emergence of a possible species-specific signa-
ture that may shed light on the mecha nisms 
under lying differential effects in animal studies. 
A subset of chemicals with rat-specific develop-
mental toxicity correlated with down-regulation 
of pro inflammatory chemokine assays, whereas 
the subset of chemi cals with rabbit-specific 
activity resulted in up-regulation of these  
signals. We observed a bias toward targets in 
the PAS and extra cellular regions by rabbit- 
specific chemicals, with greater bio activity across 
assay end points such as PAI-1. The observed 
develop mental toxicity also showed a differen-
tial response across species, with higher inci-
dences of skeletal deformation in rat studies and 
of prenatal death in rabbit studies. Recent work 
has shown that a functional overlap of plasmi-
nogen and matrix metalloproteinases (MMPs) 
regulates placental vascularization (Solberg et al. 
2003). Additionally, the hemostatic challenge 
of placentation requires a shift from an anti- to 
a pro coagulant state (Li and Huang 2009), and 
the rabbit-specific pVDCs were correlated with 
several blood coagulation pathways. We specu-
late that pVDCs have a strong effect on placen-
tation in the rabbit, leading to prenatal death, 
whereas the vascular-disruptive mechanism in 
the rat may be acting farther downstream via 
the inflammatory system and targeting vessel 
remodeling of the forming skele tal system. The 
signature derived here would have predicted 
that thalidomide, because of its impact on 
the PAS, would affect the developing rabbit. 

Figure 3. Vascular developmental signaling pathways identified by pVDC signature and hypothesized 
species-specific target sites. Rabbit-specific developmental toxicants potentially target the PAS (e.g., PAI-1, 
uPAR), and rat-specific developmental toxicants potentially target inflammatory chemokine signaling (e.g., 
CXCL10, CCL2). The VEGF and ANG/TIE2 pathways are critical pathways associated with developmental 
toxicity across species. Abbreviations: ANG, angiopoietin; Elk-1, ETS-like transcription factor 1; GPI, glycosyl-
phosphatidylinositol; JAK/STAT, Janus kinase/signal transducer and activator of transcription; MMP, matrix 
metalloproteinase; NFKB, nuclear factor kappa B; PLC/IP3, phospholipase C/inositol triphosphate; P13K/
AKT, phosphatidylinositol 3-kinase/protein kinase B; SHC/RAS/MAPK/ERK 1&2, Src homology 2 domain 
containing proteins/RAt sarcoma family/mitogen-activated protein kinases/extracellular-signal-regulated 
kinases 1 and 2; SRC/FAK, sarcoma tyrosine kinase/focal adhesion kinase.
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Such has been confirmed many times in vivo, 
although the mechanism was attributed to 
redox imbalance rather than anti angio genesis 
(Hansen et al. 2001). To our knowledge, 
5HPP-33 has not been tested in pregnant rats 
or rabbits, but the VEGFR2 signature effect 
would lead us to predict that it would interrupt 
vascular develop ment across species. Figure 3 
depicts an overview of vascular develop mental 
signaling involved in the pVDC signature and 
the proposed species-specific target pathways, 
where chemicals preferentially affecting the rab-
bit may be acting on the PAS and those prefer-
entially affecting the rat may be more strongly 
perturbing inflammatory signaling.

Although there is no doubt that conserva-
tion of vascular develop mental pathways across 
species exists, the relative importance of these 
pathways may differ in each species. Similarly, 
the consequences of disrupting these pathways 
may be species specific. Species-specific differ-
ences in pharmaco  kinetics could contribute 
to variations in develop mental effects due to 
chemical insult, as well as affecting in vitro to 
in vivo predictions. Because of inter correlation 
among assays and pathways, there is a poten-
tial for over fitting of the models. Continued 
investigation is required to increase our under-
standing of this potential connection between 
develop mental toxicity and vascular disruption 
and further delineate which elements of these 
signatures are most useful in predicting and 
modeling potential effects in humans.

The pVDC toxicity signature represents 
an important tool in evaluating the vascular-
disruptive potential of environmental chemi-
cals. Although ToxCast HTS data and other 
information may not yet be sufficient to pre-
dict develop mental toxicity in animals and 
humans, it is providing unique and valuable 
mechanistic information on proto typical tox-
icity pathways such as vascular disruption that 
could assist in chemical prioritization and fur-
ther targeted testing.
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High-throughput in vitro toxicity screening can provide an

efficient way to identify potential biological targets for chemicals.

However, relying on nominal assay concentrations may misrepre-

sent potential in vivo effects of these chemicals due to differences in

bioavailability, clearance, and exposure. Hepatic metabolic clear-

ance and plasma protein binding were experimentally measured for

239 ToxCast Phase I chemicals. The experimental data were used

in a population-based in vitro–to–in vivo extrapolation model to

estimate the daily human oral dose, called the oral equivalent dose,

necessary to produce steady-state in vivo blood concentrations

equivalent to in vitro AC50 (concentration at 50% of maximum

activity) or lowest effective concentration values across more than

500 in vitro assays. The estimated steady-state oral equivalent doses

associated with the in vitro assays were compared with chronic

aggregate human oral exposure estimates to assess whether in vitro
bioactivity would be expected at the dose-equivalent level of human

exposure. A total of 18 (9.9%) chemicals for which human oral

exposure estimates were available had oral equivalent doses at

levels equal to or less than the highest estimated U.S. population

exposures. Ranking the chemicals by nominal assay concentrations

would have resulted in different chemicals being prioritized. The

in vitro assay endpoints with oral equivalent doses lower than the

human exposure estimates included cell growth kinetics, cytokine

and cytochrome P450 expression, and cytochrome P450 inhibition.

The incorporation of dosimetry and exposure provide necessary

context for interpretation of in vitro toxicity screening data and are

important considerations in determining chemical testing priorities.

Key Words: reverse dosimetry; in vitro–to–in vivo extrapolation;

toxicokinetics; human exposure; ToxCast.

For several decades, toxicity testing has relied on the

administration of high doses of a chemical to laboratory animals

to identify potential adverse effects. These testing approaches

were established at a time when knowledge of mode of action and

the role of signaling pathways in biological responses was limited,

and the high-dose effects in laboratory species were presumed to

be indicative of effects at relevant human exposures (Andersen

and Krewski, 2009). Although advances in our understanding of

endpoints relevant to human health risk have added additional

testing requirements for specific chemicals, an overall reevaluation

of both the relevance and the benefits of the current testing

requirements has yet to occur (NRC, 2007). One consequence of

the complexity and expense of the current testing paradigm is that,

with certain exceptions such as food-use pesticidal active

ingredients, relatively few chemicals in commerce have been

fully evaluated for toxicity (Allanou et al., 2003; EPA, 1998;

Judson et al., 2009; Wilson and Schwarzman, 2009).

To address concerns regarding the large number of relatively

untested chemicals and to improve chemical risk management,

the U.S. Environmental Protection Agency (EPA) has imple-

mented the ToxCast research program to evaluate hundreds to

thousands of chemicals in a broad panel of in vitro high-

throughput screening (HTS) assays at a fraction of the cost and

time of in vivo animal studies (Dix et al., 2007). In the first phase

of the ToxCast program, a library of 309 unique chemicals,

consisting primarily of food-use pesticides and high-production

volume chemicals, was screened in concentration-response format

across hundreds of cell-based and biochemical assays (Houck

et al., 2009; Huang et al., 2011; Judson et al., 2010; Knight et al.,
2009; Knudsen et al., 2011; Martin et al., 2010; Rotroff et al.,
2010a). The potency of each chemical in each positive assay was

summarized using AC50 (concentration at 50% of maximum

activity) or lowest effective concentration (LEC) values, depend-

ing on the type of dose-response data that were collected for each
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assay. The pattern of nominal potency values among the in vitro
assays along with other chemical information has been proposed

for use in hazard identification and in prioritizing chemicals for

further testing (Reif et al., 2010). However, hazard identification

and prioritization based on nominal in vitro assay concentrations

without considering the impact of bioavailability, clearance, and

exposure can over- or underestimate the potential risk of these

chemicals to human health (Blaauboer, 2010).

In this study, we evaluated the utility of integrating human

dosimetry and exposure information with in vitro toxicity HTS

data across the majority of the Phase I ToxCast chemicals. This

investigation extends results of an earlier study where a small

subset of the ToxCast Phase I chemicals were analyzed (Rotroff

et al., 2010b). For human dosimetry, in vitro assays were

performed for each chemical to estimate hepatic metabolic

clearance and plasma protein binding. Computational in vitro–

to–in vivo extrapolation (IVIVE) methods were used to calculate

the daily human oral dose, called the oral equivalent dose, that

would be required to produce steady-state in vivo blood

concentrations of a chemical equivalent to the in vitro AC50

and LEC value from each of the previously published ToxCast

assays. These oral equivalent doses for each chemical-assay

combination were compared with the human oral exposure

estimates (derived either following consideration of human

activity [e.g., consumption of certain goods] or back calculated

from excreted metabolite data) to assess whether in vitro
bioactivity would be expected at the dose-equivalent level of

human exposure. Our results show that incorporation of dosimetry

and exposure information improve the ability to prioritize

chemicals for further testing and to evaluate the potential human

health effects at relevant levels of exposure.

MATERIALS AND METHODS

Biochemicals. 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)

buffer, gentamicin, penicillin/streptomycin, and GlutaMAX were purchased from

Invitrogen Corporation (Grand Island, NY). ITSþ was purchased from BD

Biosciences (San Jose, CA). William’s E Medium, dexamethasone, acetonitrile,

dimethyl sulfoxide (DMSO), and Trypan Blue were obtained from Sigma

Chemical Co. (St Louis, MO).

Chemical selection and stock preparation. The 239 chemicals analyzed

in this study comprise a subset of the 309-chemical ToxCast Phase I chemical

library (http://www.epa.gov/ncct/toxcast/chemicals.html) for which analytical

detection methods were readily available. Data for 35 of these 239 chemicals

were analyzed and discussed previously (Rotroff et al., 2010b) and were

included in this paper to provide a comprehensive assessment of incorporating

dosimetry as it applies to the more complete ToxCast Phase I chemical

inventory. The complete ToxCast Phase I chemical library consisted of 309

unique compounds selected largely on the availability of extensive in vivo
toxicity data but also filtered by solubility in DMSO, molecular weight, and

purity (Houck et al., 2009). Compounds for the plasma protein and metabolic

stability assays were obtained either commercially or from Compound Focus,

Inc., a subsidiary of BioFocus DPI (South San Francisco, CA) in neat form or

as 20mM stock solutions in DMSO supplied in 96-well polypropylene plates

(Supplementary table 1). Solutions were prepared from the neat chemicals to

generate the analytical calibration curves. All stock solutions were stored at <

�70�C. Neat chemicals were stored either at < �70�C (those supplied in 96-

well format) or as directed by the vendor. Of the 239 chemicals analyzed, 16

(6.7%) had a documented purity < 95%. Of these, two had a documented purity

< 90%—chlorethoxyfos (60.0%) and iodosulfuron-methyl-sodium (89.0%).

Three chemicals had no purity information available (cinmethylin, endosulfan,

and fentin hydroxide). Specific vendor and vendor-supplied purity information

for each chemical is provided as supplementary material (Supplementary

table 1).

Plasma protein binding assay. Plasma protein binding was determined for

each chemical using the rapid equilibrium dialysis (RED) method with slight

modification (Rotroff et al., 2010b; Waters et al., 2008). Human plasma was

obtained using anti-coagulant (K2EDTA) from healthy consented paid donors

at a U.S. Food and Drug Administration-licensed and inspected donor center

(#HMPLEDTA2; Bioreclamation, Inc., Westbury, NY). The plasma was

pooled from three males (34, 23, and 46 years old) and three females (56, 35,

and 21 years old) donors and tested negative for HBSAg, HIV 1/2 Ab, HIV-1

RNA, HCV Ab, HCV RNA, and STS. The plasma (stored at < �70�C until

use) was thawed at room temperature and centrifuged at 2000 3 g for 10 min

prior to analysis. The RED assay was conducted in 96-well format using single-

use RED plates (catalog no. 90006, Pierce Biotechnology, Rockford, IL)

according to manufacturer’s instructions. Chemical stock solutions (prepared in

DMSO) were added to the plasma chambers to achieve a final concentration of

10lM. The concentration of DMSO did not exceed 0.5%. The RED plate was

wrapped in aluminum foil and incubated at 37�C at 100 oscillations per minute

for 4 h. After incubation, aliquots were removed and equal volumes of PBS or

plasma were added to aliquots from the plasma or PBS chambers, respectively,

for matrix matching. The samples were diluted with three times the volume of

100% acetonitrile and stored at < �70�C until analytical analysis. The RED

assays were performed in triplicate.

Metabolic clearance assay. The rate of hepatic metabolism of the parent

compound was determined as previously described (Rotroff et al., 2010b) with

slight modification. Chemicals at two concentrations (1 and 10lM) were

incubated over a 4-h period with cryopreserved primary human hepatocytes

(Gibco Life Technologies, Corp.; Durham, NC). The 1lM concentration is

a standard concentration used in metabolic stability assays in the pharmaceutical

industry (Naritomi et al., 2001; Obach, 1999). In addition, both concentrations

fall in the middle of the range of concentrations tested in the ToxCast assays. The

cryopreserved hepatocytes were obtained from two separate pools of ten

individual donors (HuP50 for the initial 35 compound study [Rotroff et al.,

2010b], and HuP2000 for the balance of the Phase 1 ToxCast chemicals). Both

pools were made from five male and five female donors. The HuP50 pool was

made from nine Caucasian donors and one African American donor. The

HuP2000 pool was made from eight Caucasian donors, one African American

donor, and one Hispanic donor. Both pools of hepatocytes were characterized for

metabolism (CYP1A2, CYP2C9, CYP2D6, CYP3A4/5, CYP2C19, ethoxycou-

marin glucuronidation, and ethoxycoumarin sulfation) and viability (Trypan Blue

exclusion), and the values from each lot fell within acceptable ranges compared

with historical quality control limits (Supplementary table 2). The human

hepatocytes were obtained under a protocol that was reviewed and approved by

an Institutional Review Board that operated in accordance with Federal

Regulation for the protection of human research subjects.

Chemical stock solutions (prepared at 0.2 and 2mM in DMSO) were added

to prewarmed (37�C) incubation medium (William’s E Medium containing

0.1lM dexamethasone, 4mM GlutaMAX 15mM HEPES, ITSþ supplement,

and 2 lg/ml gentamicin or 2.5 ml penicillin/streptomycin per 500 ml medium)

in polypropylene tubes to achieve 23 working stock chemical concentrations

of 2 and 20lM using a Multimek Liquid Handler (Beckman Coulter, Brea,

CA). These solutions were then transferred to 96-well polypropylene plates

(0.05 ml per well) and incubated at 37�C and 5% CO2 for 10–30 min prior to

addition of the cells.
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Vials of cryopreserved hepatocytes were thawed, transferred to 50-ml vials

containing the CHRM (Gibco, Life Technologies) hepatocyte thaw medium,

centrifuged at 76 3 g for 6 min at 20�C, then cell pellets were resuspended in

incubation medium (William’s E Medium) to a working density of 1.0 3 106

viable cells/ml as determined by Trypan Blue exclusion. Cells were ‘‘gently’’

(wide bore tips, 0% speed adjustment) added to the incubation plates using

a liquid handler (Multimek) to final cell densities of 0.5 3 106 viable cells/ml

and final chemical concentrations of 1 and 10lM (DMSO concentration did not

exceed 0.5%). Plates were shaken at 300 oscillations per minute in the

incubator until removed at their respective time points (0, 15, 30, 60, 120, and

240 min). Plate contents were then quenched with ice-cold acetonitrile (100 ll),

transferred to polypropylene matrix tubes, and stored at < �70�C until analysis.

A media-only (no cell) negative control and a negative matrix control (boiled

hepatocytes) were included for each chemical. Each sample was run in

triplicate.

Bidirectional permeability (Caco-2) assay. To assess the impact of

bioavailability on the IVIVE of the ToxCast chemical library, a subset of the

chemicals were tested in the bidirectional permeability (Caco-2) assay. Caco-2

cells (passage numbers 65–66; 21–28 days old) were grown to confluence in

Hank’s balanced salt solution (HBSS) on polycarbonate Transwell inserts.

Chemical stock solutions prepared at 10mM in DMSO were administered in

duplicate to the apical (for apical to basolateral assessment, A / B) or

basolateral (for basolateral to apical assessment, B / A) side at pH 7.4 ± 0.2 to

achieve a final concentration of 5lM (DMSO concentration not to exceed

0.8%). Media was collected from the receiver and donor wells 120 min after

chemical addition. The receiver wells contained 1% bovine serum albumin in

HBSS to minimize nonspecific binding of chemical to the plasticware. Percent

recovery and the apparent permeability (Papp) in both directions (apical to

basolateral [Papp A-B] and basolateral to apical [Papp B-A]) were determined.

The quality and integrity of the monolayer batch were assessed by

measurement of transepithelial electrical resistance and by determining the

Papp for control compounds propanolol, atenolol, and lucifer yellow. The

permeability assays were performed at Absorption Systems LP (Exton, PA).

Red blood cell partitioning assay. To assess the impact of red blood cell

partitioning on the IVIVE of the ToxCast chemical library, a subset of the

chemicals were tested in this assay. Reference plasma was isolated from an

aliquot of fresh whole human blood treated with K2EDTA following

centrifugation at 700 3 g for 15 min. Chemical stock solutions prepared at

50mM in DMSO were administered to both whole blood and reference plasma

to achieve a final concentration of 5lM (DMSO concentration not to exceed

0.5%) and incubated with shaking for 60 min at 37�C. Whole blood was then

centrifuged at 700 3 g for 15 min while plasma was stored on ice prior to

addition of acetonitrile. Samples were shaken at RT for 5 min and then

centrifuged at 6000 3 g at 4�C for 15 min prior to measurement of the

compound in the supernatant. Samples were run in duplicate. The KRBC/PL was

determined using the following equation:

KRBC=PL¼ ðIREF PL=IPL�1Þ=Hþ1;

where H, hematocrit; I REF/PL, area ratio of reference plasma spiked with

compound at same concentration as that of the whole blood; and IPL, ¼ the area

ratio of the equilibrating plasma from the whole blood spiked with compound

for testing. Quality of the assay was assessed through the concurrent analysis of

reference compound verapamil.

Chemical analysis by high performance liquid chromatography with

mass spectrometric detection. Samples from the metabolic stability assay

(quenched 1:1 with acetonitrile) were thawed at room temperature, vortexed

briefly, and centrifuged at 4500 3 g for 5 min. Samples were then diluted with

either 0.1% formic acid (FA) in water, for positive mode ionization, or 10mM

ammonium acetate in water, for negative ionization mode. Samples from the

10lM metabolic stability incubations were diluted 1:10, whereas the 1lM

incubations were diluted 1:4. Prior to analysis, samples were spiked with an

internal standard, Isoxaben, (CAS no. 82558-50-7) for positive ion mode, 2,4-

dichlorophenoxyacetic acid (CAS no. 94-75-7) for negative ion mode, and

adjusted through the addition of methanol to contain approximately 20% total

organic content to match the initial chromatographic conditions described

below. Samples were analyzed using an API 3000 triple quadrupole mass

spectrometer (Danaher, Washington, DC) with a PE-200 Perkin Elmer HPLC

system (Perkin Elmer, Waltham, MA). Calibration standards were prepared on

the same day as sample analysis and in a matrix identical to the samples.

Samples from the plasma protein binding assay (quenched 1:1:6,

plasma:PBS:acetonitrile) were thawed at room temperature, vortexed briefly,

and centrifuged at 12,000 3 g for 10 min. All plasma samples were prepared as

outlined above for the 1lM metabolic stability assay samples (i.e., 1:4

dilution).

Chromatographic separation was conducted on a C18 column (Allure C18, 50

3 2.1 mm, 3.0 lm) (Restek, Bellefonte, PA) with a C18 guard column.

Aqueous mobile phases used for these analyses were either 0.1% FA, for

positive ionization, or 10mM ammonium acetate (pH 6.8), for negative

ionization, and methanol for the organic mobile phase. Samples (50-ll

injections) were analyzed using a solvent gradient consisting of the following

steps: (1) 20% organic for 0.5 min; (2) linear gradient ramp to 100% organic

over 4.5 min; (3) maintain 100% organic for 1 min; (4) linear gradient ramp to

20% organic over 0.5 min; and (5) maintain 20% organic for 2 min prior to the

next injection. Total analysis time was 8.5 min per sample. The flow rate used

for this analysis was 200 ll per minute and was introduced into the mass

spectrometer in splitless mode. Mass spectrometry conditions for all

compounds are described in Supplementary table 3.

Chemical analysis by selective ion-monitoring gas chromatography with

mass spectrometric detection. Both metabolic stability assay samples and

protein binding samples were obtained in the same dilutions described in the

high performance liquid chromatography with mass spectrometric (HPLC/MS)

methods above. All samples were thawed at room temperature, vortexed

briefly, and centrifuged at 12,000 3 g for 5 min. Prior to solid phase extraction

(SPE), samples were diluted 1:10 with an aqueous solution containing a known

amount of internal standard (Parathion, CAS no. 56-38-2). Samples were

applied to previously conditioned 96-well C18 SPE plates (cat. no. 186003966;

Waters, Milford, MA). Diluted samples (1.0 ml total volume) were pulled

through the SPE columns using a vacuum manifold, washed once with 500 ll

of deionized water per well, and eluted using 500 ll of HPLC grade methanol

per well. Methanol eluents were collected and transferred to silanized glass

inserts prior to analysis using an Agilent 6890 GC with model 5973 MS

(Agilent Technologies, Santa Clara, CA) in either electron impact ionization

mode or negative chemical ionization mode. Calibration standards were

constructed and prepared on the same day as sample analysis and in a matrix

identical to the samples. Sample data was collected in selective ion monitoring

mode. Specific instrumental parameters for each analyte are provided as

supplementary material (Supplementary table 4).

Chromatographic separation was conducted on 1 ll sample injections using

a Restek Rtx-5MS column (30 m, 0.25 mm ID, 0.25 lm film thickness)

(Restek) in splitless mode. The temperature gradient used in the analysis

consisted of the following steps: (1) initial injection port temperature was

275�C with an initial oven temperature of 125�C; (2) oven temperature

maintained for 0.5 min; (3) oven temperature increased at 30�C per min to

300�C; and (4) oven temperature maintained at 300�C for 2.7 min. Total

analysis time was 9.0 min.

Chemical analysis by HPLC with UV/Vis detection. Samples from both

the metabolic stability assay and the protein binding assay were thawed at room

temperature and briefly vortexed prior to centrifugation at 12,000 3 g for

5 min. Samples were placed in silanized glass inserts and injected onto an

Agilent 1100 HPLC with UV/Vis detector (Agilent Technologies) without any

additional sample work-up. Chromatographic separation was conducted on 50

ll sample injections using a C18 column (Allure C18, 250 3 4.6 mm, 5.0 lm)

(Restek) with a C18 guard column. The mobile phases used for this analysis

were 10mM ammonium acetate (pH 6.8) in water and methanol. Calibration

standards were prepared on the same day as sample analysis and in a matrix
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identical to the samples. The gradient conditions used for this analysis were as

follows: (1) initial conditions consisted of 25% organic for 2 min, (2) linear

gradient ramp to 100% organic over the next 10 min, (3) maintain 100%

organic for 7 min, (4) linear gradient to 25% organic over the next 1.5 min, and

(5) equilibrate column at 25% organic for 1.5 min prior to analysis of the next

sample. Flow rate for the analysis was 1.0 ml/min for a total of 20 min. Samples

were analyzed with a column temperature of 30�C and a UV/Vis absorbance

wavelength of 258 nm. Analyte elution times are provided in the supplementary

materials section (Supplementary table 5).

Plasma protein binding data analysis. To calculate percent of unbound

chemical (Fub), the mean concentration of the test compound in the PBS

chamber (n ¼ 3 replicates) was divided by the mean concentration in the

matched plasma sample (n ¼ 3 replicates) and multiplied by 100. A minimum

measurable Fub was set to 0.005. This value was estimated based on two

standard deviations over the minimum amount of binding detected in a previous

study (Waters et al., 2008) and on practical experience with the RED method. If

the concentration of the chemical in the free fraction was below this value or

below the analytical limits of detection, a default Fub of 0.005 was assumed.

Metabolic clearance data analysis. Metabolic clearance data were plotted

separately in semilog format (log concentration vs. time) with three replicates at

each time point. The disappearance of the chemical over time was analyzed using

linear regression. The concentration data at each time point for each chemical are

provided as Supplementary table 6. Clearance was normalized to cell number.

Considering three replicates at each of the six time points, a standard F-test

(degrees of freedom¼ 1,16; a ¼ 0.10) was used to determine whether the slope of

the line was significantly different from 0. For data sets with measurements that fell

below detection before the 4-h time point, the degrees of freedom were adjusted

accordingly. For chemicals that fell below detection levels before the 4-h time

point and were not statistically significant (p > 0.10), values were interpolated to

determine whether the lack of statistical significance was influenced by data falling

below detection limits. For a small subset of chemicals, liquid-handling errors

resulted in a single time point falling below the detection limit. For these

chemicals, the time point was removed from the analysis and the degrees of

freedom adjusted accordingly. Chemicals that had no statistically significant

change (p > 0.10) were assigned a metabolic clearance of 0. Analysis of the data

from Rotroff et al. (2010b) was similar but varied based on the use of two

replicates and five time points in the assay (degrees of freedom ¼1,8; a ¼ 0.10).

In vitro bioactivity data. The initial phase of the ToxCast program

measured activity of 309 compounds against a set of approximately 500 in vitro

assays. Nine separate technologies were used, including receptor-binding and

enzyme activity assays, cell-based protein and RNA expression assays, real-time

growth measured by electronic impedance, and fluorescent cellular imaging.

Each chemical-assay combination was run in dose response and an AC50 or LEC

value was estimated depending on the range of the dose response data. The

in vitro bioactivity was assumed to be solely the result of the parent compound.

Although two assays used primary hepatocyte cultures with some metabolic

capacity, most of the assays lacked known metabolic activity. A detailed

description of the assays and associated data are provided in earlier publications

(Houck et al., 2009; Huang et al., 2011; Judson et al., 2010; Knight et al., 2009;

Knudsen et al., 2011; Martin et al., 2010; Rotroff et al., 2010a). All data are

available from the ToxCast web site (http:/www.epa.gov/ncct/toxcast).

Estimation of oral equivalents using IVIVE. A simple pharmacokinetic

equation (Wilkinson and Shand, 1975) was used to estimate expected steady-

state blood concentrations. The equation was based on zero-order uptake of

a daily dose from the gut (assuming 100% oral bioavailability) with both renal

and hepatic clearance. The steady-state concentration in the blood is

Css ¼ ko=ððGFR � FubÞ þ ðQl � Fub � Clint=ðQlþ Fub � ClintÞÞÞ;

where ko, input rate (mg/kg/h); Fub, unbound fraction of parent compound in

the plasma; GFR, glomerular filtration rate; Ql, liver blood flow; and Clint,

intrinsic metabolic clearance for first-order conditions of metabolism in liver.

For the glomerular filtration rate, a value of 111 ml/min/1.73 m2 or 6.7 l/h was

used (Rule et al., 2004). For the metabolic clearance, either the 1 or 10lM

value was used depending on which value was closer to the AC50 or LEC

concentration. For several chemicals, the metabolic clearance was only

successfully measured at one of the two test concentrations. In this case, the

measured clearance was used in the Css determination.

Simulations were performed using a dose of 1 mg/kg/day and the Simcyp

software (Simcyp Limited, Sheffield, U.K.). Monte Carlo analysis was

performed within the Simcyp software (Jamei et al., 2009) to simulate

variability across a population of 100 healthy individuals of both sexes from 20

to 50 years of age. A coefficient of variation of 30% was used for intrinsic and

renal clearance. The median, upper, and lower fifth percentiles for the

concentration at steady state (Css) were obtained as output.

In conventional use, pharmacokinetic models are used to relate exposure

concentrations to a blood or tissue concentration. This is typically referred to as

‘‘forward dosimetry.’’ In contrast, the models can also be reversed to relate

blood or tissue concentrations to an exposure concentration, which is referred to

as ‘‘reverse dosimetry.’’ Based on the principal of reverse dosimetry, the

median, upper, and lower fifth percentiles for the Css were used as conversion

factors to generate oral equivalent doses according to the following formula:

Oral equivalent dose ðmg=kg=dayÞ ¼

ToxCast AC50 or LEC ðlMÞ � 1mg=kg=day

CssðlMÞ

In the equation above, the oral equivalent value is linearly related to the in vitro

AC50 or LEC and inversely related to Css. This equation is valid only for first-

order metabolism that is expected at ambient exposure levels. An oral

equivalent value was generated for each chemical and each AC50 or LEC value

across the 500 in vitro assays. Those chemical and assay combinations that did

not show activity (i.e., did not possess an AC50 or LEC value) were not

simulated.

Statistical presentation of oral equivalents data. The oral equivalent

doses derived from the upper 95th percentile Css values were used to provide

a conservative estimate in the analyses. The oral equivalent doses determined

for each chemical-assay combination are presented as box-and-whisker plots

for each chemical with the median displayed as a horizontal line and the ends of

the boxes representing the 25th and 75th percentiles. The whiskers denote those

values that fall either less than or greater than 1.5 times the interquartile range

from the 25th and 75th percentile values, respectively (Tukey, 1977). In those

instances where the lowest or highest value for that chemical-assay

combination does not exceed the whisker, the whisker is set to that value.

Any value beyond the range of the whiskers is designated as an outlier and is

displayed as a black circle.

Evaluation of pharmacokinetic modeling. Published studies of the

human in vivo pharmacokinetics of 2,4-dichlorophenoxyacetic acid (Kohli

et al., 1974; Sauerhoff et al., 1977), bisphenol A (Völkel et al., 2002),

cacodylic acid (Brown et al., 1997; Buchet et al., 1981; El-Masri and Kenyon,

2008), carbaryl (May et al., 1992), fenitrothion (Meaklim et al., 2003), lindane

(Dick et al., 1997), oxytetracycline dihydrate (Green et al., 1976), parathion

(Gentry et al., 2002), perfluorooctane sulfonic acid (PFOS) and perfluoroocta-

noic acid (PFOA) (Loccisano et al., 2010), picloram (Nolan et al., 1984),

thiabendazole (Bapiro et al., 2005), and triclosan (Sandborgh-Englund et al.,

2006) were used to estimate the Css in the plasma in humans exposed to 1 mg/

kg/day.

Estimation of human oral exposure. For most of the chemicals, exposure

estimates were obtained from available EPA Office of Pesticide Programs

documents and Federal Register notices. The majority of the estimates came

from Reregistration Eligibility Documents that contained residue levels and

estimated aggregate exposures from food and drinking water sources organized

by various age groups and subpopulations. For four of the chemicals—

bisphenol A, diethylhexyl phthalate, dimethyl phthalate, and mono-n-butyl

phthalate—exposures were estimated using the urinary concentrations provided

in the U.S. Centers for Disease Control and Prevention’s (CDC) Fourth
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National Report on Human Exposure to Environmental Chemicals (NHANES)

(CDC, 2010). Of the various demographics sampled by NHANES (e.g.,

children 6–11 years, males, Mexican Americans), the demographic with the

highest 95% value (lg/l urine) for the chemical in question was selected to

provide a conservative estimate of exposure. For the selected demographic,

urine outputs (l/day) were determined based on LaKind and colleagues (LaKind

and Naiman, 2008; LaKind et al., 2008) and body weights (kg) were based on

CDC’s National Report on Biochemical Indicators of Diet and Nutrition in the

U.S. Population 1999–2002 (CDC, 2008). These values were then used to

determine the mg/kg/day exposure for each chemical, assuming that individuals

were at steady state. For those chemicals with multiple metabolites (e.g.,

diethylhexyl phthalate and dimethyl phthalate), the metabolite concentrations

have also been incorporated into the parent compound estimate. Whereas the

use of metabolite concentrations to infer parent concentration is inexact because

other metabolites may have been missed and other compounds could produce

these metabolites, this information was incorporated to provide a more

conservative exposure estimate. For two of the chemicals—triclosan and

cacodylic acid—exposure estimates were determined from both Reregistration

Eligibility Documents and NHANES data. For both, the estimate provided by

the former was the most conservative (by 6.1- and 11.2-fold greater,

respectively) and was used as the exposure estimate in our analyses. The

exposure estimates are provided in Supplementary table 7.

RESULTS

Plasma Protein Binding Assay

Measurement of plasma protein binding revealed that most

of the chemicals were highly bound to plasma, with 59% of the

chemicals having a fraction unbound 0–5% (Fig. 1A). Only

7.1% of the chemicals tested had fraction unbound values

greater than 80%, whereas no unbound chemical was detected

for 77 of the chemicals (32%).

Hepatic Metabolic Clearance Assay

The metabolic clearance measurements ranged from 0 to

250.30 and 0 to 234.42 ll/min/106 cells at the 1 and 10lM

concentrations, respectively. Of these chemicals, 82 (34%)

showed either no metabolism or saturation at the 10lM

concentration and 37 (15%) showed either no metabolism or

saturation at both the 1 and 10lM concentrations. Conversely,

202 of the 239 (85%) chemicals displayed clearance in at least

one of the two concentrations. Most (78%) of the chemicals

had no metabolism or had clearance values < 20 ll/min/106

cells (Fig. 1B).

IVIVE Modeling

Of the 239 chemicals analyzed in this study, published

pharmacokinetic information—from which steady-state con-

centrations (Css) values could be determined—was available

for 13. The Css values based on the published models were

compared against those derived using a population-based

IVIVE model across a cohort of 100 healthy individuals where

median Css values were predicted assuming a dose rate of

1 mg/kg/day and using the 1lM metabolic clearance rate

(Table 1). For comparison purposes, two alternative hepatic

clearance assumptions (Wilkinson and Shand, 1975) were

employed: (1) restrictive hepatic clearance using Fub de-

termined experimentally in the plasma protein binding assay

and (2) nonrestrictive hepatic clearance where the Fub was set

to 0.99. In both cases, the renal clearance was based on the

experimentally derived Fub and the GFR. Using the restrictive

hepatic clearance assumption, the IVIVE model predictions

for six chemicals (2,4-dichlorophenoxyacetic acid, bisphenol

A, cacodylic acid, carbaryl, oxytetracycline dihydrate, and

triclosan) were comparable to the Css values derived from

published models. Of the seven remaining chemicals, the

IVIVE model significantly (i.e., by greater than an order of

magnitude) overpredicted the Css values for five chemicals

(fenitrothion, lindane, parathion, picloram, and thiabendazole)

and underpredicted for two chemicals (PFOS and PFOA).

Incorporation of the permeability assay data into the IVIVE

model as a measure of bioavailability increased the predictivity

of the Css determination for two of the 13 chemicals assessed:

oxytetracycline dihydrate and picloram. Incorporation of blood

partitioning assay data into the model had no effect on the Css

values of the chemicals (data not shown). Using the nonrestrictive

FIG. 1. Distributions of the in vitro pharmacokinetic assay data for the 239 ToxCast Phase I chemicals analyzed. Histograms of the (A) percentage of unbound

data from the plasma protein binding measurements and (B) hepatic clearance measurements (includes both the 1 and 10lM concentrations).

DOSIMETRY IN HIGH-THROUGHPUT TOXICITY SCREENS 161

 at E
nvironm

ental Protection A
gency L

ibrary on A
pril 25, 2012

http://toxsci.oxfordjournals.org/
D

ow
nloaded from

 

http://www.toxsci.oxfordjournals.org/lookup/suppl/doi:10.1093/toxsci/kfr254/-/DC1
http://toxsci.oxfordjournals.org/


hepatic clearance assumption, the IVIVE model predictions

for eight of the 13 chemicals (2,4-dichlorophenoxyacetic acid,

bisphenol A, cacodylic acid, carbaryl, fenitrothion, oxytetracy-

cline dihydrate, parathion, and picloram) were comparable to the

published studies, with four of the remaining chemicals under-

predicted (lindane, PFOS, PFOA, and triclosan) and one

overpredicted (thiabendazole). The trend toward overprediction

of Css under the assumption of restrictive hepatic clearance would

lead to a lower and more conservative estimate of the oral

equivalent values. As a result, the model with restrictive hepatic

clearance was used in the broader assessment of Css values across

the 239 chemicals.

It should be noted that published in vivo pharmacokinetic

information does exist for dimethoate (Brown et al., 1997;

Hoffmann and Papendorf, 2006; Tarbah et al., 2007). However,

the data were derived from dimethoate poisoning cases and due

to reported renal toxicity of dimethoate (Mahjoubi-Samet et al.,

2008), the Css value could not be accurately estimated, and data

were not used in the validation comparison.

Due to the inverse relationship between the Css and the oral

equivalent dose, the upper 95th percentile of the Css was used to

obtain a conservative estimate of the lower fifth percentile oral

equivalent dose for each chemical-assay combination with

a measurable AC50 or LEC value (Fig. 2). The lower fifth

percentile oral equivalent dose ranges for each chemical are

summarized as box-and-whisker plots (Figs. 3A–D). Oral

equivalent doses for each chemical-assay combination that

exceed the whiskers are designated as outliers and are

represented by solid black circles. Of the chemicals tested,

fentin hydroxide had the lowest oral equivalent dose range, with

a median of 5.00 ng/kg/day and a minimum of 0.03 ng/kg/day.

Diazoxon had the highest oral equivalent dose range, with

a median of 564.9 mg/kg/day. Importantly, the number of

in vitro ToxCast assays used to generate the box-and-whisker

plots varied with the number of measurable AC50 or LEC values

and ranged from 1 assay for mesosulfuron-methyl to 139 assays

for emamectin benzoate. The complete results from the IVIVE

computational modeling as well as the plasma protein binding

values, metabolic stability values, and the assay AC50 or LEC

values for each chemical are provided in Supplementary table 8.

Estimated Human Oral Exposures

Chronic aggregate human oral exposure estimates were

obtained for 182 of the 239 chemicals (76%). For most

chemicals, oral exposures were estimated for multiple age and

gender-based subpopulations. A comparison of the exposure

estimates with the oral equivalent doses (Figs. 3A–D) revealed

that 18 chemicals (9.9%) possessed human exposure estimates

for the most highly exposed subpopulation that overlapped

with the range of nonoutlier oral equivalent doses. These

chemicals were 2-phenylphenol, acifluorfen, chlorpropham,

cyprodinil, dicamba, dichloran, fenbuconazole, fenhexamid,

fludioxonil, fluroxypyr-meptyl, isoxaben, piperonyl butoxide,

prometon, pyraclostrobin, quinclorac, spiroxamine,

TABLE 1

Comparison of IVIVE Modeling Results with Published PK or PBPK Models

Restrictive hepatic clearance

Nonrestrictive hepatic clearance

(Fub ¼ 0.99)

Chemical

PK- or PBPK-derived

Css (lM)

IVIVE IVIVE þCaco-2a IVIVE IVIVE þCaco-2a

Css
b,c (lM) Css

b,c(lM) Css (lM) Css (lM)

2,4-dichlorophenoxyacetic acid 9.05–90.05 43.27 44.47 43.27 44.47

Bisphenol A < 0.13d 0.35 0.40 0.06 0.07

Cacodylic acid 1.80 3.06 —e 3.06 —e

Carbaryl 0.03 0.07 0.07 0.03 0.03

Fenitrothion 0.03 17.92 19.92 0.10 0.11

Lindane 0.46 13.21 13.99 0.07 0.07

Oxytetracycline dihydrate 0.36 2.00 0.44 2.00 0.44

Parathion 0.17 24.64 27.66 0.14 0.16

Perfluorooctane sulfonic acid 19,990 f 153.23 f 171.51f 153.23 f 171.51 f

Perfluorooctanoic acid 20,120 f 53.16 f 55.93 f 0.40 f 0.40 f

Picloram 0.27 57.63 32.01 0.37 0.19

Thiabendazole 0.45 13.76 15.20 13.76 15.20

Triclosan 2–10 1.56 1.59 0.01 0.01

aIVIVE performed incorporating the bidirectional permeability (Caco-2) assay data into the simulation.
bPredicted using the 1lM metabolic clearance rate.
cCss, concentration at steady state for 1 mg/kg/day dose.
dCss value in Völkel et al. (2002) represented total bisphenol A, of which 99% is glucuronidated. The published value was divided by 100 to estimate the free

concentration for this table.
eBidirectional permeability (Caco-2) assay failed for this chemical.
fPFOS and PFOA undergo active renal resorption (Andersen et al. 2006; Loccisano et al. 2010) and may explain the discrepancy in the listed values.
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tetraconazole, and triclosan. Additional chemicals—

bensulfuron-methyl, ethalfluralin and quinoxyfen—had oral

equivalent dose ranges that were only slightly higher than their

respective human exposure estimates. When compared against

exposure estimates for the general U.S. population, 10 of the 18

chemicals had overlapping oral equivalent doses (5.5% of the

182). In vitro assay endpoints for which the predicted oral

equivalents were lower than the upper estimate of human

exposure are listed in Table 2. Supplementary table 9 contains

Table 2 information along with the specific assay names. Assay

endpoints include prostaglandin E receptor (PTGER2) down-

regulation, urokinase-type plasminogen activator (PLAU) down-

regulation, decreased cell growth kinetics, upregulated expression

of sulfotransferase 2A1 (SULT2A1) and solute carrier organic

anion transporter family member 1B1 (SLCO1B1), and

enzymatic inhibition and change in expression of several

cytochrome P450 (CYP450) isozymes. The number of assays

per chemical that yielded oral equivalent values below the

estimated human exposure ranged from 1 to 7 (Table 2).

To more broadly characterize the differences between the

oral equivalent dose ranges and the human exposure estimates,

activity-to-exposure ratios (AERs) were calculated for each

chemical by dividing the lower whisker in the oral equivalent

dose range (i.e., the most potent in vitro AC50 or LEC) by the

human exposure estimate of either the general U.S. population

(Fig. 4A) or the most highly exposed subpopulation (Fig. 4B).

The AER values were log-normally distributed. The median,

upper, and lower quartiles of the log-normal AER distribution for

the general U.S. population were 123.03, 1122.02, and 11.48,

respectively. The median, upper, and lower quartiles of the log-

normal AER distribution for the most highly exposed sub-

population were 44.69, 478.63, and 6.03, respectively. Of the 182

Phase I chemicals for which exposure estimates were available,

9.9% (18 chemicals) had an AER � 1, with values ranging from

0.0404 for dicamba to 0.9138 for cyprodinil. Five of the 18

chemicals—2-phenyphenol, quinclorac, spiroxamine, tetracona-

zole, and triclosan—possessed an AER < 0.25 (Table 2).

DISCUSSION

The report by the National Research Council ‘‘Toxicity

Testing in the 21st Century’’ (NRC, 2007) has spawned

multiple research efforts in the United States and Europe aimed

toward use of in vitro HTS assays in the toxicological

assessment of environmental chemicals (Abbott, 2009;

Kavlock et al., 2009; Knight, 2008). However, meaningful

incorporation of these in vitro findings into such an assessment

is dependent upon adequate consideration of in vivo pharma-

cokinetics to determine the relevance of these data to the

external and internal doses achieved during human exposure

scenarios (Blaauboer, 2010; Hays and Aylward, 2009). Within

the pharmaceutical industry, IVIVE modeling approaches have

been widely used to assess the preclinical pharmacokinetics of

candidate molecules (Caldwell et al., 2009; De Buck and

Mackie, 2007). In the environmental field, pharmacokinetic

FIG. 2. Flowchart outlining the incorporation of human dosimetry into high-throughput in vitro toxicity testing. Plasma protein binding and metabolic

clearance were measured for each of the ToxCast Phase I chemicals using in vitro assays. The pharmacokinetic data were used to parameterize an IVIVE model.

Monte Carlo simulation using the IVIVE model provided estimates of the variability of the steady-state blood concentration (Css) in a population of healthy

individuals of both sexes from 20 to 50 years old. Using reverse dosimetry, oral doses were then estimated that would result in a steady-state blood concentration

equivalent to the AC50 or LEC value in each of the ToxCast assays. The range of the oral equivalent doses required to achieve the upper 95th percentile Css across

all the in vitro ToxCast assays was represented as a box plot.
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FIG. 3. Comparison of human oral equivalent dose ranges and oral exposure estimates for the ToxCast Phase I chemicals analyzed. The distribution of the oral

equivalent dose ranges required to achieve the upper 95th percentile Css across all the in vitro ToxCast assays for each chemical is depicted as a box-and-whisker

plot. The 239 chemicals are displayed across four panels (A–D), ordered from lowest to highest median oral equivalent dose. Horizontal lines depict the medians,

the lower and upper edges of the boxes represent the 25th and 75th percentiles, and the whiskers represent the range of values 1.5 times the interquartile range

below or above the 25th and 75th percentiles, respectively. In those instances where the lowest or highest value for that chemical-assay combination does not

exceed the whisker, the whisker is set to that value. Human oral exposure estimates were obtained for 182 of the 239 chemicals analyzed. The orange floating
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boxes represent the range of exposure estimates obtained for various age- and gender-based subpopulations. The green circles represent the exposure estimates for

the general U.S. population. Exposure estimates for some of the chemicals fell below the units on the axes and are therefore not shown on the graphs. Chemicals

where any of the exposure estimates fall within the range of predicted oral equivalents are highlighted with arrows.

FIG. 3. Continued.
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models have been used to estimate chemical concentrations in

human biofluids, consistent with reference dose (RfD), or other

exposure guidance values used to interpret biomonitoring data

(Hays et al., 2008; LaKind et al., 2008). By combining

advances in the pharmaceutical and biomonitoring fields,

focused in vitro pharmacokinetic assays and IVIVE modeling

offer a promising approach for the interpretation of in vitro
toxicity HTS data through the estimation of oral equivalent

doses expected to produce blood concentrations in exposed

humans equivalent to in vitro concentrations showing activity

in our various HTS assays.

In this study, in vitro assays were performed on all the

ToxCast Phase I chemicals for which analytical detection

methods were available to estimate two critical determinants of

pharmacokinetics—hepatic metabolic clearance and plasma

protein binding. Eighty-five percent (202 of the 239 chemicals

analyzed in this study) showed significant metabolic clearance

in at least one of the two concentrations tested. The range (0–

250 ll/min/106 cells), distribution and median values obtained

for these environmental chemicals were similar and consistent

with in vitro clearance values derived in the analysis of 50

pharmaceutical compounds (McGinnity et al., 2004). The

results of the plasma protein binding assay indicated that the

majority of the ToxCast Phase I chemicals are highly bound to

plasma proteins.

As described previously (Rotroff et al., 2010b), the results

from the in vitro pharmacokinetic assays were combined with

IVIVE to predict chemical concentration in the blood at steady

state for specific human exposure scenarios. Using reverse

dosimetry, we calculated the oral doses that would result in

a steady-state blood concentration equivalent to the AC50 or

LEC value in each of the ToxCast assays. Due to the large

number of chemicals examined and the high-throughput nature

of the assays, the IVIVE modeling was limited to the oral route

and a set of simplifying assumptions were made. Each

chemical was assumed to have 100% oral bioavailability, and

excretion was limited to hepatic metabolism and glomerular

filtration. These assumptions should generally be conservative

from a human health standpoint because lower absorption or

additional routes of excretion would result in a lower estimate

of the oral equivalent dose required to achieve a specific

plasma Css. One exception would occur if there were active

renal resorption, which would result in a higher plasma Css at

a given dose. Alternatively, high biliary clearance of parent or

enterohepatic recirculation could also play a factor. Second,

our analysis is predicated on the assumption that plasma

concentrations equivalent to in vitro AC50 or LEC values

would produce responses in vivo. The concentration of free

chemical in an in vitro assay that elicits a response may differ

from the assigned AC50 or LEC value due to factors such as

protein-lipid composition of the media and binding of the

chemical to plastics (Blaauboer, 2010). Third, the pharmaco-

kinetics and bioactivity were only evaluated for the parent

compound. No attempt was made to evaluate biological

activities and dosimetry of metabolites. Finally, as in many

other in vitro pharmacology and toxicology studies, the AC50

and LEC values were used as the basis for estimating the oral

equivalent doses. Given the goal of using these assays in

prioritization and risk assessment, other methods such as

benchmark dose analysis (Crump, 1995) may be needed to

estimate the minimum concentration required to observe

a biological effect above that seen in controls.

To evaluate the accuracy of the IVIVE modeling and the

potential impact of the model assumptions, the IVIVE model

predictions were compared with Css values derived from

published pharmacokinetic information for 13 chemicals.

The IVIVE-predicted Css values for six chemicals (2,4-

dichlorophenoxyacetic acid, bisphenol A, cacodylic acid,

carbaryl, oxytetracycline dihydrate, and triclosan) were compa-

rable to Css values based on the published models (i.e., within

one order of magnitude). The IVIVE modeling assumptions

should bias the results toward overprediction (i.e., the

assumption of 100% absorption and 0% extrahepatic metabo-

lism both act to increase Css). For example, the IVIVE-derived

Css values for oxytetracycline dihydrate overpredicted the

published model by 7.8-fold, which can be explained by its

low oral bioavailability (< 10%), documented both by our

permeability assay data and literature findings (Bjorklund and

Bylund, 1991; Nielsen and Gyrd-Hansen, 1996). Importantly,

the incorporation of permeability and red blood cell partitioning

data to assess the impact of bioavailability and blood partitioning

on a subset of the chemicals provided only minimal improve-

ment in the IVIVE predictivity of the Css (Table 1).

Of the seven remaining chemicals that were greater than an

order of magnitude different, the IVIVE model overpredicted

the Css values for five chemicals (fenitrothion, lindane,

parathion, picloram, and thiabendazole) and underpredicted

for two (PFOS and PFOA). An inherent uncertainty exists in

the calculation to determine hepatic clearance in IVIVE that

may partially explain the low concordance for these chemicals.

Restrictive hepatic clearance was assumed in the pharmacoki-

netic modeling, where the on/off kinetics of protein binding are

slow enough to become rate limiting. However, for many

chemicals, hepatic clearance is nonrestrictive, i.e., all chemical,

free and bound, is available for metabolic clearance (i.e., Fub ¼
0.99). To evaluate the impact of these assumptions, the Css

values were calculated using both restrictive and nonrestrictive

hepatic clearance. Although the assumption of nonrestrictive

hepatic clearance improved the concordance within this subset

of chemicals (8/13 vs. 6/13), its use in the broader analysis

across all the chemicals would increase the number of

underpredicted Css values. Triclosan is an example of

a chemical that appears to have restrictive hepatic clearance.

Picloram appears to have nonrestrictive hepatic clearance while

the behavior of lindane appears as an intermediate between the

two clearance assumptions (Table 1). For the two chemicals

where the Css values were significantly underpredicted using

both assumptions—PFOS and PFOA—the discrepancy is
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likely due to active renal resorption which was not incorporated

in the IVIVE model (Andersen et al., 2006; Loccisano et al.,
2010).

To incorporate human variability in the IVIVE modeling,

Monte Carlo simulations were performed based on the

interindividual variability in a population of 100 healthy

individuals of both sexes from 20 to 50 years of age (Rostami-

Hodjegan and Tucker, 2007). The population-based Css values

were then used to generate oral equivalent doses for each

chemical across all the more than 500 ToxCast assays that

possessed a measurable AC50 or LEC value. The oral

equivalent doses returned for the most sensitive fifth percentile

TABLE 2

Chemicals and Corresponding In Vitro Assay Endpoints with Oral Equivalent Doses Lower than the Estimated Human Oral Exposure

Chemical Assay endpoint

AC50 or

LEC (lM)

Oral equivalent

dose (mg/kg/day)a
Human

exposure (mg/kg/day)b
AER

(Or Eq/Hum exp)

2-Phenylphenol PTGER2 downregulation 4.4444 0.056900 0.2500 0.2276

2-Phenylphenol Competitive binding of G protein–coupled

receptor P2RY1

4.9400 0.063300 0.2500 0.2532

Acifluorfen Change in SLCO1B1 expression, 24 h 0.00636 0.000056 0.00013 0.4310

Chlorpropham PLAU downregulation 1.4815 0.002900 0.005 0.5800

Cyprodinil Change in CYP1A2 expression, 48 h 10.474 0.020499 0.0257 0.7976

Cyprodinil Change in CYP2B6 expression, 24 h 11.428 0.022366 0.0257 0.8703

Cyprodinil Change in HMGCS2 expression, 24 h 8.8588 0.017338 0.0257 0.67463

Cyprodinil Change in SULT2A1 expression, 24 h 9.6951 0.018974 0.0257 0.7383

Cyprodinil Change in UGT1A1 expression, 24 h 9.973 0.019518 0.0257 0.7595

Cyprodinil Competitive binding of muscarinic receptor

M2

12 0.023485 0.0257 0.9138

Cyprodinil Competitive binding of muscarinic receptor

M5

9.3 0.018201 0.0257 0.7082

Dicamba Change in SLCO1B1 expression, 24 h 0.0168 0.001200 0.0297 0.0404

Dichloran CYP2A2 inhibition (rat) 0.058 0.00011 0.000375 0.2933

Fenbuconazole Change in cell growth kinetics 0.0468 0.00156 0.00203 0.7685

Fenbuconazole CYP2A2 inhibition (rat) 0.0139 0.00046 0.00203 0.2266

Fenbuconazole CYP2B1 inhibition (rat) 0.0441 0.00147 0.00203 0.7241

Fenhexamid Change in CYP3A4 expression, 48 h 0.01654 0.016547 0.0452 0.3661

Fludioxonil Change in cell growth kinetics 0.04677 0.01808 0.0264 0.6848

Fluroxypyr-meptyl Increased CXCL9 secretion by dermal

fibroblasts

1.4815 0.00498 0.0141 0.3532

Fluroxypyr-meptyl Increased CSF1 secretion by dermal

fibroblasts

1.4815 0.00498 0.0141 0.3532

Fluroxypyr-meptyl Increased CCL2 secretion by keratinocyte/

fibroblasts

1.4815 0.00498 0.0141 0.3532

Fluroxypyr-meptyl Increased CXCL10 secretion by

keratinocyte/fibroblasts

1.4815 0.00498 0.0141 0.3532

Fluroxypyr-meptyl Increased MMP9 secretion by keratinocyte/

fibroblasts

1.4815 0.00498 0.0141 0.3532

Fluroxypyr-meptyl Inhibition of BACE1 activity 3.7100 0.01248 0.0141 0.8851

Isoxaben Change in CYP3A4 expression, 24 h 0.22457 0.00612 0.0083 0.7373

Piperonyl butoxide CYP2J2 inhibition 0.078 0.01607 0.0185 0.869

Prometon Change in cell growth kinetics 0.40738 0.01119 0.016 0.6994

Pyraclostrobin Mitochondrial membrane potential, 1 h 0.0391 0.00755 0.0083 0.9096

Quinclorac Change in cell growth kinetics 0.0468 0.0006 0.0076 0.0789

Spiroxamine Competitive binding of sigma receptor 0.025 0.00032 0.00241 0.1328

Tetraconazole CYP2C19 inhibition 0.0088 0.00015 0.0008 0.1875

Triclosan Change in CYP2B6 expression, 24 h 0.0347 0.01084 0.1350 0.0803

Triclosan Change in cell growth kinetics 0.047 0.0146 0.1350 0.1082

Triclosan Competitive binding of human

norepinephrine transporter

0.314 0.1000 0.1350 0.7403

Note. Endpoints are based on assay findings using human targets unless noted otherwise. PLAU, urokinase-type plasminogen activator; PTGER2, prostaglandin

E receptor.
aOral equivalent dose for the lower fifth percentile of a cohort of 100 healthy individuals of both sexes from 20 to 50 years of age.
bEstimated aggregate human oral exposure from food and drinking water sources for the most highly exposed group or subpopulation.
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of the population represent the amount this subgroup would

need to consume on a daily basis to achieve a steady-state

plasma concentration equivalent to the AC50 or LEC value.

The rank order of the chemicals based on these oral equivalent

doses (Figs. 3A–D) was significantly different from the order

derived based on the AC50 or LEC values alone (Figs. 5A–D),

indicating that incorporation of dosimetric information pro-

vides a necessary context in the interpretation of in vitro
potency data generated in the HTS assays.

A comparison of oral equivalent values obtained from the

ToxCast assay data with the upper limit of estimated human

exposures identified 18 chemicals for which there were

overlapping values. When compared against exposure esti-

mates for the general U.S. population, the number of chemicals

with overlapping oral equivalent doses was reduced to 10. Of

the 18 chemicals that overlapped at the upper limit of human

exposures, most were herbicides or fungicides (Table 3). The

exposure estimates for many of these chemicals were based on

the presence of residues on food crops, in livestock, or in

drinking water. Two chemicals, 2-phenylphenol and triclosan,

have both bactericidal and fungicidal properties and are found

in common household items such as soap, toothpaste

(triclosan), and disinfectant cleaners (2-phenylphenol). One

chemical, piperonyl butoxide, is not a pesticide but serves as

a synergist when combined with other pesticides due to its

ability to inhibit cytochrome P450 enzymes and nonspecific

esterases (Moores et al., 2009).

For nearly all the 18 chemicals for which there were

overlapping oral equivalent doses and human exposure

estimates, any known in vivo effects were extracted from the

standard toxicological studies required for product registration.

The registration studies primarily assess endpoints such as

histopathology, clinical chemistry, and body weight. Few

mechanistic studies have been performed on these chemicals.

A comparison of the non-human in vivo effects with the most

sensitive human in vitro assay endpoints is shown (Table 3).

Among the in vivo effects for these chemicals, the most

common was hepatotoxicity or liver tumors (10/18 chemicals).

Among the in vitro assays, changes in cytochrome P450

activity or expression were observed in 44% (8/18) of the

chemicals. It is important to note that chemically induced

changes in the in vitro assays do not necessarily indicate a toxic

or adverse response but rather indicate a biological perturbation

potentially followed by adaptation and return to homeostasis

or, alternatively, toxicity. Although some of the ToxCast

in vitro assays have been associated with adverse in vivo
responses (Judson et al., 2010; Kleinstreuer et al., 2011; Martin

et al., 2011), all in vitro assays were weighted equally in this

study. The definition of adverse responses based on in vitro
assay results has been a source of significant debate in the

toxicology community (Boekelheide and Andersen, 2010), and

this debate is likely to continue with increased use of in vitro
assays for prioritization and risk assessment.

AERs were determined for each chemical based on the oral

equivalent dose at the lower bound of the range divided by

either the estimated upper limit of human exposure or the

exposure estimate for the general U.S. population (an AER < 1

would therefore indicate exposure sufficient to cause

FIG. 4. Distribution of AERs values for each of the ToxCast Phase I chemicals analyzed. The AER values were calculated by dividing the lower whisker of

the oral equivalent dose range by either the estimated upper limit of human exposure or the exposure estimate for the general U.S. population. An AER < 1

indicates exposures sufficient to cause bioactivity. The vertical dashed line indicates AER ¼ 1. The distribution of AER values were fit to a series of distribution

models including Lognormal, Johnson’s SI, GLog, Weibull, Extreme Value, Gamma, Exponential, Johnson’s Su, and Normal. The Lognormal model had the

lowest Akaike information criterion value. (A) Histogram of AER values using the general U.S. population exposure estimates. (B) Histogram of AER values using

the most highly exposed subpopulation estimates. The median, upper quartile (UQ), and lower quartile (LQ) values of the estimated log-normal distribution were

converted to nontransformed values and are provided above the histograms.
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FIG. 5. Distribution of AC50 and LEC values across the ~500 ToxCast assays for the ToxCast Phase I chemicals analyzed in this study. See Figure 3 for box-

and-whisker format details. The chemicals are presented in the same order as Figures 3A–D to allow comparison of the two sets of figures.
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FIG. 5. Continued.
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bioactivity). Across all chemicals, the AERs derived for the

general U.S. population were log-normally distributed with

50% of the chemicals having an AER > 123.03 and 75%

having an AER > 11.48 (Fig. 4A). The median AER derived

using estimates for the most highly exposed subpopulations

was 44.67, with 75% of the AERs > 6.03 (Fig. 4B). Among the

18 chemicals identified in this study with overlapping oral

equivalent doses and human exposure estimates, the AERs

TABLE 3

Summary of Use Patterns, In Vivo Effects, In Vitro Assay Hits, and the AER Range for Each Chemical with Overlapping Oral

Equivalents and Human Exposure Estimates

Chemical Use pattern In vivo effects Assay endpoint hits AER value/range

2-Phenylphenol Microbicide, bactericide

(household), and fungicide

(citrus, pears)

Bladder carcinogen

(rat); liver carcinogen

(mouse)

PTGER2 downregulation; competitive

binding of G protein–coupled receptor

P2RY1

0.23–0.25

Acifluorfen Diphenyl ether herbicide

(soybeans)

Liver carcinogen

(mouse); kidney lesions

Change in SLCO1B1 expression, 24 h 0.4310

Chlorpropham Herbicide (potatoes) Thyroid toxicity PLAU downregulation 0.5800

Cyprodinil Fungicide (almonds, grapes,

pome, and stone fruits)

Liver and kidney effects Changes in expression of multiple

cytochrome P-450s and UGT1A1;

competitive binding of muscarinic receptors

0.67–0.91

Dicamba Benzoic acid

postemergent herbicide

(broadleaf weeds,

asparagus, corn, and oats)

Reproductive toxicity Change in SLCO1B1 expression, 24 h 0.0404

Dichloran Pre- and post-harvest

fungicide (lettuce, peaches,

and sweet potatoes)

Neuropathology; liver,

kidney, spleen, and

hematologic effects

CYP2A2 inhibition (rat) 0.1846

Fenbuconazole Triazole fungicide (wheat, barley,

apple, and pear)

Thyroid carcinogen;

liver carcinogen

Change in cell growth kinetics; CYP2A2

inhibition (rat); and CYP2B1 inhibition (rat)

0.23–0.77

Fenhexamid Fungicide (grapes,

strawberries, and ornamentals)

Hematologic effects;

adrenal changes

Change in CYP3A4 expression, 48 h 0.3660

Fludioxonil Pyrrole fungicide (citrus,

apple, and root vegetables)

Decrease body weight;

liver, kidney effects

Change in cell growth kinetics 0.6848

Fluroxypyr-meptyl Pyridine herbicide (barley, wheat,

apple, and pear)

Decrease body weight;

kidney effects

Increased CXCL9 secretion by dermal

fibroblasts; increased CSF1 secretion by

dermal fibroblasts; increased CCL2 secretion

by keratinocyte/fibroblasts; increased

CXCL10 secretion by keratinocyte/

fibroblasts; increased MMP9 secretion by

keratinocyte/fibroblasts; and inhibition of

human BACE1 activity

0.35–0.89

Isoxaben Benzamizole herbicide

(nonbearing fruit/nut trees,

and Christmas trees)

Liver effects;

enzyme induction

Change in CYP3A4 expression 0.7284

Piperonyl butoxide Synergist; CYP450 and

nonspecific esterase inhibitor

Hematologic effects and

hepatotoxicity

CYP2J2 inhibition 0.869

Prometon Herbicide (nonfood use);

drinking water contaminant

Decrease maternal

body weight gain

Change in cell growth kinetics 0.6994

Pyraclostrobin Strobilurin fungicide

(strawberries, onions,

and corn)

Neurotoxicity; liver and

kidney effects

Change in mitochondrial membrane potential 0.9096

Quinclorac Quinoline

carboxylic acid

Decrease in

body weight

Change in cell growth kinetics 0.0789

Spiroxamine Foliar fungicide

(grapes cereals,

and bananas)

Neurotoxicity,

liver effects

Competitive binding of sigma receptor 0.1328

Tetraconazole Triazole fungicide Mouse liver

carcinogen

CYP2C19 inhibition 0.1875

Triclosan Bactericide and

fungicide (household items)

Thyroid effects Change in CYP2B6 expression, 24 h; change

in cell growth kinetics; competitive binding

to norepinephrine transporter

0.08–0.74
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ranged from 0.04 to 0.9 (Table 3). It is important to note that

for some chemicals, the AER may be skewed due to the

conservative nature of the human exposure estimate derivation

in the registration documents. For chemicals with limited

residue or exposure information, EPA uses a tiered approach

with the first tier providing the most conservative exposure

estimation. As actual exposure or residue levels are determined,

the exposure estimates are refined.

The transition to a new toxicity testing paradigm that relies

heavily on in vitro HTS assays will require a parallel

investment in characterizing the pharmacokinetics and expo-

sure levels of these chemicals. This parallel effort will add

valuable information on parameters critical to interpreting

biologically relevant exposure scenarios that should yield more

informative prioritization models. The results and approach

outlined in this study are part of that parallel effort and provide

an important bridge between the nominal in vitro assay

concentrations and the human oral equivalent doses required to

achieve those concentrations in the blood. The subsequent

comparison of the oral equivalent doses with human exposure

estimates provides a better basis for informed decisions on

chemical testing priorities and regulatory attention (Blaauboer,

2010; Cohen Hubal et al., 2010). Continued refinement of the

in vitro assays to better reflect in vivo adverse effects and

improvement in the suite of in vitro pharmacokinetic assays

and IVIVE modeling will eventually allow us to move beyond

hazard-based prioritization to risk assessment (Bhattacharya

et al., 2011; Judson et al., 2011).

SUPPLEMENTARY DATA

Supplementary data are available online at http://toxsci.

oxfordjournals.org/.
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Ensuring the Reliability and Relevance of High-Throughput Assays 
A Case Study Testing for Potential Endocrine Activity of Chemicals 
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Background 
Tens of thousands of chemicals are 
currently in commerce, and 
hundreds more are introduced every 
year. To date, only a small fraction 
of chemicals have been fully 
assessed for potential risk. For 
example, EPA’s Endocrine 
Disruption Screening Program 
(EDSP) has thousands of chemicals 
that need to be screened for 
endocrine disruption and could use 
a faster method to prioritize these 
chemicals for additional testing.   
 
There are two major issues with 
current toxicity testing methods that 
limit the ability of scientists to 
assess these chemicals efficiently 
and effectively: 
 
1. Current in vivo (animal) testing 

is expensive, time consuming 
and often uses large numbers 
of animals which has led to a 
backlog of untested chemicals. 
Results from animal testing are 
then extrapolated to evaluate 
dose, species and life stage 
differences which lead to 
uncertainties when assessing 
hazards and risks.  

2. Current whole animal testing 
cannot provide clear 
mechanistic insight into human 
toxicity pathways. However, 
high-throughput in vitro testing 
methods can provide data on 
activities at the human cellular 
level. 

 
The U.S. EPA and its partners have 
developed methods of toxicity 
testing that will help usher chemical 
toxicity testing into the 21st century.  
These testing methods (referred to 
as “Tox21” and Toxicity Forecaster 

“ToxCast”) include high-throughput 

screening (HTS) assays and robotic 
technologies that significantly 
reduce the time, expense and 
resource demands of current 
chemical toxicity testing. Tox21 is 
currently screening approximately 
10,000 chemicals using HTS assays. 
 
A key obstacle to adoption of these 
HTS methods by regulators is the 
need for validation – that is, 
demonstration that the new 
approaches are relevant, reliable and 
fit for the intended purpose. Formal 
validation is needed to make sure 
that the data can stand up to legal 
challenges within regulatory 
processes.  Although they are slow 
and inefficient, current toxicity 
testing methods are accepted by the 
regulated community. In order for 
all stakeholders to accept the usage 
of Tox21 and ToxCast assays to 
help make chemical regulatory 
decisions, these new methods must 
be validated to ensure they are of 
high quality.  
 

Overview 

Perspectives on Validation of High-
Throughput Pathway-Based Assays 
Supporting the 21st Century 
Toxicity Testing Vision by Judson et 
al. describes proposed alterations to 
standard validation practices that 
could be used for HTS assays. 
Alterations are suggested to the 
validation process developed by 
Interagency Coordinating 
Committee on the Validation of 
Alternative Methods (ICCVAM), 
the European Center for the 
Validation of Alternative Methods 
(ECVAM) and the Organization for 
Economic Co-operation and 
Development (OECD). The 
validation process includes defining 
the testing, conducting intra- and 
inter-laboratory testing and defining 
the relevance of the work.   
 
Although it is important to ensure 
the validity of HTS assays, this 
formal validation process is lengthly 
and has can be a barrier to 
innovation.  
 

Fig. 1. Conceptual model of a continuously improving battery of HTS assays to be 
used for prioritization 



It is desirable to develop a 
streamlined validation process to 
evaluate both the relevance and 
reliability of HTS assays. 
“Relevant” means that an assay 
must test some aspect of biology 
that will help assess the safety of a 
chemical. “Reliable” means that the 
assay must produce similar results 
over time, across reagent batches, 
etc.  HTS assay data generally 
provides quantitative read-outs with 
a focused and mechanistically 
simple interpretation. These 
attributes should make evaluation of 
the relevance and reliability of the 
HTS assays, peer review and 
decisions on regulatory acceptance 
relatively straightforward.   
 
Judson et al. presents two ideas that 
would lower the cost and time 
requirements of HTS validation and 
suggests criteria for assay 
evaluation and performance without 
compromising reliability:   
 
1. Eliminating the requirement 

for round-robin cross-
laboratory testing. 

2. Developing a streamlined, 
online peer review process. 

 
The argument for eliminating the 
need for cross-laboratory validation 
is based on three premises. Most 
importantly, with HTS assays one 
can run many positive and negative 
reference chemicals both during the 
validation phase and during routine 
production which provides ongoing 
quality assurance. Secondly, many 
HTS assays are run in laboratories 
with expensive customized, one-of-
a kind equipment that could not be 
replicated elsewhere, making true 
replication of assay protocols 
difficult. Thirdly, for many HTS 
assays, the originating lab has the 
capacity to run all of the world’s 
chemicals to be tested for a 
particular assay, thereby eliminating 
the need to have other labs be 
validated.  
 
Developing an online peer review 
process would simplify review of 
any number of HTS assays because 
all the data would be in a common 
format in a centralized web-
accessible database. Any group 
wishing to propose a new assay for 

use in a regulatory application 
would then have immediate access 
to all existing validation information 
on similar assays, and could submit 
their validation package into the 
central system to be queued up for 
subsequent peer review. This rapid 
and continuous preparation of 
validation documentation would 
facilitate the continuous 
improvement of assays to be used in 
regulatory prioritization [see Fig. 1].  
 
One real world application of using 
HTS data discussed in Judson’s 
paper is using ToxCast and Tox21 
to prioritize chemicals for EPA’s 
Endocrine Disruption Screening 
Program (EDSP). The prioritization 
would determine which of the 
thousands of potential endocrine 
disrupting chemicals are in most 
need of further testing.  
 
Using In Vitro High-Throughput 
Screening Assays to Identify 
Potential Endocrine Disrupting 
Chemicals (Rotroff et al) 
investigated using EPA’s ToxCast 
assays for assessing chemicals for 
estrogen, androgen, steroidogenic 
and thyroid disruption. The study 
used assay data from the 309 
chemicals in ToxCast Phase I and 
data on an additional 23 reference 
chemicals and compared it to results 
from animal toxicity tests. The 
study demonstrates that current 
ToxCast HTS assays can accurately 
identify chemicals with the potential 
to interact with the estrogenic and 
androgenic pathways, with a 
balanced accuracy of over 90%. 
These results suggest that current 
ToxCast assays can accurately 
identify chemicals with potential to 
interact with the estrogenic and 
androgenic pathways, and could 
help prioritize chemicals for EDSP 
T1S assays.  
 
Conclusions  
These two potential alterations to 
standard assay validation practice 
proposed by Judson et al. could 
significantly streamline the 
acceptance criteria for new HTS 
technologies used for prioritization 
applications. The elimination of the 
requirement to do cross-laboratory 
testing already has precedent, while 
the development of an online peer 

review process offers not only 
greater efficiency, but also 
additional transparency relative to 
current practice.  
 
Although both of these 
recommendations might be 
considered controversial due to their 
departure from current validation 
practice, both suggestions merit 
serious consideration given the 
significant advantages offered by 
HTS assays. 
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Abstract 

Toxicity testing is making increased use of in vitro high-throughput screening (HTS) 

assays to supplement, and perhaps eventually replace, animal-based tests. HTS assays 

have the advantage of being able to simultaneously test hundreds to thousands of 

chemicals against multiple biological targets and pathways, and to provide direct 

mechanistic information on chemical action in human cells. Hundreds of HTS assays are 

available, which allow for broad surveys of chemical effects. To date, these assays have 

seen limited use in the regulatory arena, in part because regulatory agencies require that 

new assays undergo a formal validation process. This requirement has made it difficult to 

integrate new assays (HTS or otherwise) into the regulatory process because the 

validation of test methods can take years, is costly, and does not keep pace with rapid 

technological advances. In this paper, we discuss areas where the process of validation 

could be streamlined for HTS assays, while still providing the appropriate basis for 

scientific review. Here, we focus on prioritization applications as opposed to those where 

an agency is making definitive safety or hazard decisions. By prioritization, we mean that 

the HTS assays are used to survey a large collection of chemicals and to identify 

chemicals of greatest concern. These high-concern chemicals would then be tested sooner 

rather than later in standard guideline bioassays. The goal of the proposed streamlined 

validation process is to ensure the reliability and relevance of HTS assays for this type of 

application, and to do so in a timely, cost effective and scalable way. We discuss how 

HTS assays fit into current validation practice, and propose the following practical 

guidelines: (1) follow current validation practice to the extent possible and practical; (2) 

make increased use of reference compounds to better demonstrate assay reliability and 

relevance; (3) deemphasize the need for cross-laboratory testing, and; (4) implement a 

web-based, transparent and expedited peer review process. This paper is not intended to 

be a definitive description of a new approach for validation, nor is it a consensus 

statement that is endorsed by the authors or their institutions. Instead, the goal is to 

suggest ways forward for developing more streamlined and appropriate validation 

processes for HTS assays for prioritization applications, and to promote a broader 

discussion of these ideas.  
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Introduction 

Toxicity testing for human health effects is undergoing a paradigm shift from 

classical laboratory animal studies to in vitro assays that primarily use human cells and 

focus on assessing perturbations to key biological pathways (Nuwaysir, Bittner et al. 

1999; Hamadeh, Bushel et al. 2002; Ballatori, Boyer et al. 2003; Bradbury, Feijtel et al. 

2004; Reynolds 2005; Takeuchi, Matsuda et al. 2006; Dix, Houck et al. 2007; Doull, 

Borzelleca et al. 2007; NRC 2007; Collins, Gray et al. 2008; Gohlke, Thomas et al. 2009; 

Hartung 2009b; Zhou, Chou et al. 2009; Ankley, Bennett et al. 2010; Berg, Yang et al. 

2010; Judson, Houck et al. 2010; Singh, Yang et al. 2010; Stokes and Wind 2010c; 

Stokes and Wind 2010b). This shift is due to two major factors: 1) the recognition that 

current testing methods, which are costly, time consuming, and often use large numbers 

of animals without always providing correspondingly large benefits, are not adequate to 

manage the increasing backlog of largely untested chemicals; 2) the frequent inability of 

current in vivo tests to provide clear mechanistic insight into toxicity pathways, an 

advantage offered by the new types of in vitro assays that are able to directly probe 

human genes, cells, and tissues (NRC 2007; Kavlock, Austin et al. 2009).  

Currently, there are hundreds of in vitro HTS assays, many of which use human 

proteins or cells (primary cells or cell lines) and which are increasingly used in the 

toxicity testing of environmental chemicals and candidate pharmaceuticals. Before these 

HTS assays can be used for making regulatory decisions, however, there needs to be a 

formal process to appropriately evaluate their reliability, relevance and fitness for 

purpose. This is the rationale for test method validation, which is currently required by 

most regulatory bodies for assays used in making regulatory decisions on the safety of 

chemicals (ICCVAM 1997; ICCVAM 2000; ICCVAM 2003; OECD 2005; Birnbaum 

and Stokes 2010). However, the current paradigm for validating new or revised tests for 

potential acceptance by regulatory agencies, while of high quality and ensuring that the 

use of the such tests would provide equivalent or better protection than current 

procedures, is time consuming, low throughput, and expensive. Thus, current processes 

used for test methods proposed for regulatory testing guidelines have not shown 
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themselves to be capable of validating in a timely manner (less than one year) the many 

new HTS assays already in use in the research setting. Note however, that new validation 

approaches using the concept of performance standards have been proposed and used to 

more efficiently validate new innovative assays (Wind and Stokes 2010). Hartung has 

discussed some of the rationale for and issues underlying current practice, especially in 

the context of the validation of alternative methods (Hartung 2007). Leist et al. have 

further considered several important issues that specifically pertain to validation of in 

vitro assays for use in toxicity testing, which are particularly relevant to the current paper 

(Leist, Efremova et al. 2010).  

In general, HTS assays are relatively simple technologically. They can probe 

many specific key events (KE), such as a molecular initiating event (MIE), or an 

intermediate step associated with a pathway that can potentially lead to adverse health 

outcomes. KE (including MIE) are respectively defined in the context of  toxicity 

pathways (NRC 2007), modes of action (MOA) (Sonich-Mullin, Fielder et al. 2001; 

Meek, Bucher et al. 2003; Seed, Carney et al. 2005; Boobis, Doe et al. 2008) and adverse 

outcome pathways (AOP) (Ankley, Bennett et al. 2010). The assays typically are focused 

on a particular target interaction or read-out, and measure endpoints such as the 

expression level or reporter signal of one or more genes, inhibition of enzymatic activity, 

or the binding of a chemical to a single receptor, as well as cellular phenotypes (e.g. 

changes in cell shape and size, cytotoxicity). Elucidating the toxicity MOA of chemicals 

by identifying and documenting the linkage from assay to KE to potential for adversity is 

a main objective in use of these assays. As a consequence, it is also key to evaluating the 

ultimate relevance of an HTS assay with respect to the information it provides. While 

there is not a single accepted definition of HTS, for our purposes a working definition 

could be assays that are run in 96-well plates or higher; assays that are run in 

concentration-response format and yield a quantitative read-out at each concentration; 

and assays that (when run using cells) have simultaneous cytotoxicity measures.  

Other significant advantages of HTS assays include the following.  They scale to 

testing hundreds or thousands of chemicals at a time. The output of an assay is readily 
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quantified, typically as a single response value for each concentration tested in each 

chemical replicate. One can repeatedly test in blinded fashion both reference and test 

chemicals, providing quantitative measures of reproducibility. This, plus examining the 

concentration-response behavior of the reference chemicals relative to data from other 

published assays for the same target or pathway, is the basis for judging the reliability of 

an assay.  

In this paper, we consider the use of HTS assays as tools for chemical 

prioritization as opposed to being replacements for regulatory guideline animal-based 

tests. Under the assumption that only a minority of chemicals will cause any specific 

adverse effect, it will be more health-protective and resource-productive to use HTS 

assay screens to identify the chemicals most likely to cause particular adverse effects 

(and therefore to be positive in more expensive, low-throughput animal-based guideline 

bioassays) and to run these chemicals first in guideline bioassays that measure the effect 

identified as a potential concern. This entire process of identifying these first-in-line 

chemicals using HTS assays is what we mean by “prioritization”, and will be the focus of 

much of our discussion in this paper. (An important note is that a chemical that is 

“negative” in a prioritization assay will not necessarily be negative in the follow-on 

guideline test.) The ability of one or a collection of HTS assays to have reasonable 

sensitivity and specificity for identifying toxic chemicals is the basis for deciding the 

assays’ fitness for purpose, where in this paper the purpose is prioritization, rather than as 

a regulatory guideline test to generate data for definitive safety or hazard decisions. 

A final implication of the comparative simplicity of the HTS assays is that it is 

relatively easy to implement new technologies and to develop new assays (e.g., new 

target; new readout for an old target; new, higher-throughput version of an existing 

assay). If newly introduced assays provide new or enhanced capabilities for mechanistic 

clarity in screening for potential toxicity, it is in the interest of public health to have them 

used as soon as possible in testing of potentially harmful chemicals. 

The remainder of this paper will elaborate on these main points: 
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1. HTS assays provide a new capability for simultaneously testing the ability of 

thousands of chemicals to trigger intermediate  biological or biochemical KE (as 

opposed to observable or apical endpoints) associated with toxicity pathways that 

can lead to adverse health outcomes. 

2. The data from these assays can be used to prioritize which chemicals out of large 

sets of previously untested ones should be subject to further study sooner rather 

than later. 

3. Before using these assays, even for prioritization, their relevance, reliability and 

fitness for purpose should be established and documented. Relevance is related to 

the ability to detect KE with documented links to adverse outcomes. Reliability is 

measured by the ability to reproduce data and to respond appropriately to 

carefully selected reference compounds, either in a qualitative (e.g. 

positive/negative for effect) or quantitative (e.g. relative potency) manner. Fitness 

for purpose is more subjective since it is use-case dependent, but is typically 

established by characterizing the ability of an HTS assay to predict the outcome 

of guideline tests for which prioritization scores are being generated.  

4. It should be possible to develop a streamlined validation process to evaluate the 

relevance, reliability and fitness for purpose for HTS assays. This is largely 

because the data from the HTS assays generally provide quantitative, reproducible 

read-outs with a focused and mechanistically simple interpretation. These 

attributes should make evaluation of the performance of the HTS assays, and 

hence peer review and decisions on acceptance for use by regulatory bodies based 

on the scientific evidence, relatively straightforward.   

5. It is unlikely that any single in vitro assay will ever yield the “perfect” result. 

Even mechanistically similar assays are expected to yield some degree of 

discordance due to the complexities of biological processes and assay-specific 

interference by some test chemicals. Hence multiple assays for critical targets and 

a weight of evidence approach is likely to be needed. Additionally, many 

environmental chemicals are likely to be of low potency, and hence subject to 

variation in hit calling from assay to assay.  
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Each of the above statements is consistent with current thinking about validation 

of tests for chemical toxicity. However, here, we will propose modifications to current 

test method validation practice that are appropriate to, and can facilitate the use of HTS 

assays for prioritization. The two modifications that could have the largest impact on time 

and cost of validation pertain to cross-laboratory testing (or transferability requirements) 

and the peer review process. We will make a case for largely eliminating the requirement 

for cross-laboratory testing as part of the validation process for HTS assays for 

prioritization. In addition, because the output of HTS assays are for the most part easily 

interpreted, quantitative values, we will argue that the standard for regulatory acceptance 

should be commensurate with the focused biological interpretation of the assay and, 

therefore, be no more onerous than typical peer review of a scientific manuscript. Both of 

these propositions are perhaps controversial, so we discuss pros and cons of each.  

 Given the high burden of proof generally required of regulatory review and 

decisions applied to protecting public health, there is some reluctance in the regulatory 

community to even discuss alternative, more flexible validation approaches (Inside EPA 

2010). This is driven partially by the view that anything short of full, lengthy (multi-

year), high-cost validation is an unacceptable compromise on quality. However, adhering 

to this strict standard effectively excludes the use of a large number of currently available 

HTS assays that provide the only practical approach to test thousands of previously 

untested chemicals. One option is to develop a new process that has fewer components 

than the full regulatory guideline study validation standards, and to call it something 

other than validation. We believe that this position has two problems. The first is that 

many statutes governing regulatory testing specifically stipulate that the assays used must 

be “validated” (see discussion below). The other problem is that users need to trust that 

the data yielded by these assays are reliable, relevant and fit for purpose, which is the 

very definition and goal of validation. This paper is not intended to be a definitive 

description of a new validation approach, nor is it a consensus statement that is endorsed 

by the authors or their institutions. Instead, it is meant to stimulate discussion and to 

propose a way forward towards developing a more streamlined validation process to 

accommodate and thereby facilitate the use of HTS assays in addressing some of the 



Submission Version – February 6, 2012 

 

8 

 

major shortfalls of existing testing approaches.    

Use Case: Prioritization based on data from HTS assays 

The focus of subsequent discussion will be on the use of HTS assays for 

prioritization rather than as replacements for regulatory test guidelines, so we begin by 

considering some issues relevant to this use case. One point sometimes made is that 

“prioritization” is not part of “regulation”, so that the tools used for prioritization do not 

need to be validated in the same way as those used for regulation. Regardless of whether 

this is true in the legal sense (see below), decisions are made in the prioritization process 

that ultimately can impact public and environmental health and affect regulatory 

decisions. Whether or not validation is required for prioritization, it is important to have 

confidence in the reliability, relevance and fitness for purpose of the tools being used for 

any purpose, including prioritization. Regulatory screening tests are in fact often used for 

decisions on whether further testing will or should be conducted, or if specific safety or 

hazard conclusions can be made without further testing (Stokes and Wind 2010c; Stokes 

and Wind 2010a; Stokes and Wind 2010b). Information from assays that are validated are 

stronger than information from those that are not validated, and decisions are more 

defensible if informed by results from assays subject to some appropriate validation 

process. It is also possible that as validation data accrue, prioritization tools may be 

demonstrated to be sufficiently predictive so as to be used for definitive regulatory 

screening decisions. 

Screening and prioritization (which are not always distinguished) are explicit 

components of the regulatory process within the United States. For example, the EPA 

Endocrine Disruptor Screening Program (EDSP) (U.S. EPA 2007) uses a tiered testing 

approach in which less complex/expensive, but more sensitive and often less specific, 

tests form the first tier, and more complex/expensive and more definitive tests (definitive 

in terms of characterizing whether an adverse outcome was induced) form the second tier. 

Currently, chemicals are prioritized for inclusion in the EDSP Tier 1 battery (T1S) based 

on production volume, exposure potential or regulatory review schedule (i.e. for 



Submission Version – February 6, 2012 

 

9 

 

scheduled re-registration reviews for food-use pesticide active ingredients), but the EPA 

is moving towards the use of pathway-based in vitro assays for setting priorities of 

chemicals to be tested in T1S (U.S. EPA 2011b). Compounds will be prioritized or 

selected for running in the T1S battery based on the results of HTS assays and in silico 

models. The Toxic Substance Control Act (TSCA) of 1976 (TSCA 1976) explicitly 

includes mention of screening: “The administrator shall coordinate … research … 

directed towards the development of rapid, reliable, and economical screening techniques 

for [toxic] effects of chemical substances…” [15 USC §2610 TSCA §10 (c)]. Under the 

Safe Drinking Water Act (U.S. EPA 1996), the EPA is required to “identify and list 

unregulated contaminants which may require a national drinking water regulation in the 

future. … The EPA uses this list … to prioritize research and data collection efforts.” 

(U.S. EPA 2008). These chemicals are entered into the Candidate Contaminant Lists 

(CCL) developed by the EPA Office of Water. Each of these laws requires the use of 

valid and scientifically supportable data in making regulatory decisions. In the European 

Union, although screening is not a specific requirement in chemicals legislation, REACH 

(Registration, Evaluation, Authorisation and Restriction of Chemical substances) 

(REACH 2006) for example does make provision for identifying and managing 

chemicals of (very) high concern, while the Community Strategy for Endocrine 

Disrupters (COM 1999) outlines actions to target chemicals that may have endocrine 

disrupting properties.       

Whereas “screening” generally applies to all compounds of potential concern 

employing a variety of increasingly complex test methods, prioritization is critical 

because of the large size of the chemical landscape covered under these and other 

regulations – in the order of 100,000 unique substances (Judson, Richard et al. 2009). 

However, from an HTS perspective, this does not pose an insurmountable hurdle. 

Pharmaceutical companies routinely test libraries containing millions of compounds. 

Using this approach, it is possible to develop compound libraries consisting of thousands 

of chemicals of potential concern that could be tested repeatedly in any new assays that 

might be developed as a basis to evaluate new test performance. This process of repeated 

testing of a fixed library is illustrated in Figure 1 and discussed further in the Conclusions 
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section. In subsequent discussion, we assume that such libraries are currently in 

development or will be developed. One validation-related requirement, which will not be 

discussed further here, is that these compound libraries undergo quality control 

procedures to assure that the chemicals being tested are what they purport to be, and are 

stable and sufficiently pure and soluble under the assay test conditions used. 

The scientific rationale for using in vitro HTS assays for prioritization is based on 

the idea that these assays probe key biological events in pathways that have been linked 

to or could lead to toxicity. This idea is well understood in the context of toxicity 

pathways (NRC 2007), MOA (Sonich-Mullin, Fielder et al. 2001; Meek, Bucher et al. 

2003; Seed, Carney et al. 2005) or AOP analysis (Ankley, Bennett et al. 2010). Each of 

these paradigms includes the idea of a MIE, in which a chemical interacts directly with a 

target biomolecule(s). Whereas in vitro HTS assays do not, in general, allow one to 

follow all of the subsequent downstream processes described as part of the MOA, they 

can detect the necessary (initial) step(s). Each KE/MIE triggered by a chemical raises the 

likelihood that a chemical could produce an adverse outcome through the relevant 

pathway, factoring in issues such as ADME, local dosimetry, critical windows of 

sensitivity, genetic susceptibility, and confounding stressors. 

Validation Principles 

 The purpose of a validation process is to evaluate the reliability, relevance and 

fitness for purpose of an assay. EPA, FDA, NIEHS, and other Federal agencies have 

developed definitions and principles for validation and regulatory acceptance of new, 

revised, and alternative methods (ICCVAM 1997; ICCVAM 2003). To frame the 

discussion, we expand the definition of each of these concepts.  

Reliability: To be reliable, an assay must be reproducible, e.g. it must produce 

qualitatively and quantitatively similar results over time, across lots and batches of 

reagents, and between different operators in the same laboratory. In the case where the 

assay is expected to be widely used, a demonstration of reproducibility across labs may 
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also be desirable. ICCVAM defines reliability as the extent that a test or assay can be 

performed reproducibly within and among laboratories over time (ICCVAM 1997). A 

reliable assay will have an acceptably minimal rate of false negative or false positive 

results i.e. chemicals that should interact with the target but give negative results in the 

assay, or chemicals that should not interact with the target but give positive results in the 

assay. In practice, reliability can be evaluated by repeated testing of positive and negative 

reference compounds, and by comparing the results against the expected behavior of 

these compounds. Reliability can also depend on the potency and efficacy of the 

compounds. If a compound has low potency or low efficacy, it may generate more 

variable results. An important point for toxicity testing is the goal of minimizing the false 

negative rate in order to ensure health protective testing. Note that one could argue for 

including the requirement that reference chemicals show the expected behavior in the 

assay under either “reliability” or “relevance”. 

Relevance: Relevance describes the relationship of a test to the effect of interest and 

whether a test is meaningful and useful for a particular purpose (ICCVAM 1997). To be 

relevant, an assay must probe some aspect of biology that will help assess the safety or 

hazard of a chemical, for instance by determining the ability of a chemical to trigger a KE 

in a toxicity pathway. Furthermore, a positive result in the assay should be indicative of 

perturbations to, or interactions with the target or pathway that the assay is designed to 

probe. Data on reference compounds with known activity in relation to a given target or 

pathway can be used to help assess the relevance of the assay. Relevance addresses the 

scientific basis of the test (does the assay measure interaction with a target that is linked 

to adverse outcomes through a pathway?) and the predictive capacity of the test (how 

well does a positive result in the prioritization assay predict a positive result in the more 

complex test whose outcome is the object of the prioritization?). See the fit for purpose 

discussion below (Hartung 2007). 

Fitness for purpose: For a prioritization application, a positive or negative result in a 

single HTS assay does not have to directly predict a corresponding positive or negative 

result in the regulatory guideline bioassay for the corresponding apical endpoint. 
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However, there should be sufficient positive and negative predictive power so that the 

prioritized chemicals are significantly enriched in positives when run in the guideline 

test. Additionally, it may be necessary to employ multiple assays (against the same or 

different targets) with orthogonal readouts to gain sufficient sensitivity and specificity for 

prioritization. As long as each individual assay is sufficiently reliable and relevant that it 

adds to the predictive power of the battery of assays, it can be said to be fit for purpose. 

We will focus our discussion on validating a single HTS assay at a time, but one should 

keep in mind that some HTS assays may be more useful when aggregated with related, 

complementary assays within a battery where deficiencies in one assay can be overcome 

by strengths of another.   

Current validation principles and practice were developed to insure the quality of 

guideline tests and to provide confidence to all stakeholders of the reliability and 

relevance of the resulting data (ICCVAM 1997; OECD 2005). Therefore, to the extent 

possible, it is important to adhere to these well-accepted practices in any alternative, 

streamlined validation framework, and only deviate where there is a clear net benefit. 

Accordingly, we will discuss in some detail current practices and our proposed variants. 

We base our discussion on guidance for the validation process developed by the 

Organization for Economic Co-operation and Development (OECD), which was 

developed using guidance and principles developed by the Interagency Coordinating 

Committee on the Validation of Alternative Methods (ICCVAM), the European Centre 

for the Validation of Alternative Methods to Animal Testing (ECVAM), and other input 

from OECD member countries (OECD 2005). The OECD states that the purpose of  

validation, is “… to determine the performance characteristics, usefulness, and 

limitations of a test method that is under consideration for use in a regulatory context, and 

to determine the extent that the results from the test can be used for hazard identification, 

and to support risk assessments or other health and safety decisions”(OECD 2005). The 

ICCVAM regulatory acceptance criteria (ICCVAM 1997; ICCVAM 2003) and OECD 

guidance provide acceptance criteria that should be met for regulatory adoption of a new 

test (OECD 2005). Some of the OECD criteria include: 
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1. The test has been sufficiently validated 

2. The test provides at least as much scientifically credible information as an 

existing test using fewer animals … 

3. The test improves the safety assessments for man and the environment 

We will spend most of the subsequent discussion on point #1, but it is worth 

considering the other two points, albeit briefly. In vitro, target or pathway-based HTS 

assays provide information not readily available from existing animal-based tests, and do 

not make use of whole animals, thus addressing point #2. Further, because these assays 

are high-throughput and low cost, we can examine large numbers of chemicals 

simultaneously and in multiple assays. For practical reasons, many of these chemicals 

will likely never be evaluated in standard animal-based assays, but by generating new 

data on existing chemicals for which little to no data may exist, these assays directly 

address points #2 and #3. Assuming the data are of high quality, generating new, 

biologically relevant information always has the potential to improve safety assessments 

relative to those informed by little or no data.  

 The OECD validation guidance document (OECD 2005) endeavors to provide 

guidance for developing data and information to address the validation criteria developed 

by ICCVAM (ICCVAM 1997; ICCVAM 2003; Stokes 2007) and the modules in the 

framework developed by ECVAM (Hartung, Bremer et al. 2004). The overall validation 

process traditionally proceeds through 5 stages described in the ICCVAM, OECD, and 

ECVAM documents: 

1. Development 

2. Pre-validation 

3. Validation 

4. Peer Review 

5. Regulatory Acceptance 

During development and pre-validation, the assay is characterized and initial 

optimization is carried out, typically using a set of known reference compounds specific 
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to the assay and its ostensible target, and in HTS mode, perhaps with respect to a larger 

test library. Precisely because of the ability to simultaneously test many chemicals in 

HTS mode, there will likely not be a strong demarcation between development and pre-

validation steps. For HTS assays, guidelines similar to those available at the NIH 

Chemical Genomics Center website 

(http://assay.nih.gov/assay/index.php/Table_of_Contents) can be used for the 

development and pre-validation steps. These guidelines are intended to ensure robust 

statistical performance and include considerations such as evaluating the assay signal 

window, well-to-well variation in the plates, ideal assay operational conditions (such as 

compound treatment time and cell density in the plate), day-to-day reproducibility (such 

as assessed by AC50-correlation of the positive controls across the plates, and consistent 

signal to background window. AC50 is the concentration at which assay activity is at 

50% of maximum.). For in vitro assays, one could define a list of variables that must be 

analyzed and documented as part of the assay characterization and validation process. 

Current validation guidelines required that tests be conducted under GLP (Good 

Laboratory Practice) guidelines. Among other things, these stipulate that a testing 

laboratory demonstrate the purity and stability of the chemical to be tested (Cooper-

Hannan, Harbell et al. 1999).  

 The validation process described by ICCVAM, OECD, and ECVAM consists of 

well-defined stages that typically generate the information needed to evaluate the validity 

of a test method (ICCVAM 1997; ICCVAM 2003; OECD 2005; Stokes 2007). The 

validation step (#3) itself is modular, as outlined in Table 1, below (Hartung, Bremer et 

al. 2004). The points raised in the rest of this paper will generally place the validation 

requirements for our use-case into the context of these modules.  
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Table 1: The OECD Validation Modules 

1. Test definition 
a. Test protocol and SOPs 
b. Definition of positive and negative controls 
c. Definition of endpoint 
d. Definition of prediction model and data interpretation procedure 
e. Explanation of mechanistic basis 
f. Statement of known limitations, e.g. metabolic capacity  
g. Training set of chemicals  
h. Provisional domain of applicability 

2. Within-laboratory variability (reliability) 
a. Assessment of reproducibility of experimental data in same laboratory – 

different operators and different times 
3. Transferability (reliability) 

a. Assessment of reproducibility of experimental data in second laboratory 
(different operator) 

b. Ease of transferability 
4. Between-laboratory variability (reliability) 

a. Assessment of reproducibility of experimental data in 2-4 laboratories 
5. Predictive capacity (relevance) 

a. Assessment of predictive capacity of the prediction model associated with 
the test system using a set of test chemicals as opposed to the training 
chemicals 

b. ECVAM requires performing these predictive tests in at least 3 
laboratories 

6. Applicability domain (relevance) 
a. Definition of chemical classes and/or ranges of test method endpoints for 

which the model makes reliable predictions 
b. Which toxicological endpoints, materials, physico-chemical properties 

7. Performance standards 
a. Definition of reference chemicals that can be used to demonstrate the 

equivalence in performance between a new test and a previously validated 
test 

 

Test Definition: As can be seen from the outline above, this validation module deals 

mostly with description of the test itself, including what the test is designed to measure 
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(addressing issues of relevance) as well as test protocols. For HTS assays, these 

principles can be followed very closely. Test protocols should be carefully documented in 

Standard Operating Procedures (SOPs). The endpoint (e.g., KE) being tested and its 

mechanistic basis should be clearly stated (e.g., binding to a target protein is a KE in a 

documented toxicity pathway). When HTS assays are being validated individually, there 

is no “model”; instead, the HTS assay readout is a simple quantitative value such as 

percent inhibition/activation or fold-change in expression, relative to the negative control. 

The testing is done in concentration-response mode and a potency value such as the 

AC50 calculated. It is important, however, to document the statistical analysis procedures 

for data processing steps such as background subtraction, normalization, curve fitting, 

and hit calling. It is also important to document known limitations of the assay; these are 

often well understood based on the particular target or assay class. For instance, assays 

using fluorescent readouts can give unreliable results for compounds that are themselves 

fluorescent (e.g., azo dyes). With cell-based assays, simultaneous cytotoxicity 

measurements are usually needed because cytotoxicity can confound the target-specific 

readout. Defining the media used is also critical, for instance because the available free 

concentration of the test compound will be a function of serum protein and lipid 

composition of the media. In addition, many assays are run in cell-free conditions or in 

cells that do not have metabolic capacity, so in these cases, only effects of the parent 

compound will be measured. Leist et al. further discuss issues related to the appropriate 

level of description required in a validation package for an in vitro assay (Leist, 

Efremova et al. 2010). 

The ICCVAM and OECD guidance makes several recommendations regarding 

reference chemicals, including that they (ICCVAM 2003) be representative of the range 

of responses and effects that the test is capable of measuring 

1. Have produced consistent results and potency ranking order in relevant reference 

tests 

2. Reflect the accuracy of the reference test 

3. Have well defined chemical structure and purity 
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4. Are readily available 

5. Are not excessively hazardous 

An important consequence of the high-throughput nature of the assays is that 

during validation and testing large numbers of reference chemicals that span a diverse 

range of features and properties can be used. If available, one can use multiple strong, 

moderate, weak, and negative reference compounds for the target, as well as compounds 

that are known to interfere with assays in a variety of ways that could lead to false 

positive or false negative results. Furthermore, because many compounds are run 

simultaneously during actual testing, it is usually possible to run some or all of the 

reference chemicals concurrently with the test compounds to enable real-time quality 

control in a way that is not possible with standard one-chemical-at-a-time tests. This 

provides the ability to better judge assay performance and applicability domain than is 

the case for low-throughput assays. The issue of applicability domain is considered in 

more detail below. 

One confounding issue with selecting the reference compounds and defining the 

expected behavior in a new assay is occasional disagreement within the literature as to 

whether a specific chemical is truly active against a given target. This discordance may 

be due to use of different species, cell types, or in vitro vs. in vivo conditions. Particularly 

for less potent chemicals, reports of activity are often discordant. This can be an issue for 

chemicals that act as partial agonists or antagonists or exhibit different pharmacological 

behaviors in different tissues (e.g. chemicals interacting with alpha and beta estrogen 

receptors). Including such chemicals can still be useful, but caution must be exercised in 

interpretation of the results. This issue of chemicals that give ambiguous or variant results 

in different versions of tests that ostensibly measure interactions with the same target is 

not unique to HTS and can be of use in evaluating the assay.  

Within-laboratory variability: There are many known sources of variability within HTS 

in vitro assays. Some important ones are lot-to-lot reagent variation, stability across 

batches of cells (especially when primary cells are used), multiple tip variation within the 

instrument, and tip carry-over in the compound transferring step. However, none of these 
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are unique to the high-throughput assays described here, so variability characterization 

should be handled as with any other in vitro assay used for regulatory purposes, for 

instance those used in genotoxicity testing or in the EDSP.  

 The U.S. cross-agency Tox21 project provides an extreme example of testing 

within-lab variability for HTS assays [Tice, et al. in preparation]. For this project, the 

NIH Chemical Genomics Center (NCGC) is using their ultra high-throughput robotics 

system to test a large library of environmental and consumer-use chemicals and drugs in 

1536-well format, using a battery of toxicologically-relevant HTS assays. A library of 

approximately 10,000 test samples is being screened, of which more than 1,000 are 

separately sourced (same chemical purchased independently from different sources or 

different lot/batches). In addition, each 1536-well plate being assayed includes the same 

duplicate set of 88 chemicals, derived from a single stock solution for each chemical. 

Finally, all plates will be run in concentration-response format in triplicate in each of the 

assays. The library also contains one or more copies of reference chemicals selected for a 

variety of targets being tested. All of these data will provide ample statistics for assessing 

chemical lot-to-lot variability, plate positional effects, and assay reproducibility within 

and across plates, across runs, and across time. This illustrates the unique ability to have 

robust measurements of assay reliability for HTS assays during both validation and 

production testing.   

Transferability and between-laboratory variability: It is for these validation steps that we 

consider the potential for significant changes to current practice. Running tests during 

validation in multiple laboratories serves two purposes. Firstly, it is often the case that no 

single laboratory has the capacity to handle all of the world’s testing needs, or there are 

other commercial or practical reasons for routing testing orders to multiple laboratories. 

Hence, it is important to know that the results of a test will be consistent across 

independent laboratories (i.e., can the assay be transferred successfully to multiple testing 

facilities). Secondly, by demonstrating that a test can be run in one or more independent 

laboratories and give the same result (within tolerances), one verifies that the protocols 

are adequately described and that there are no subtle (and perhaps unknown) features of 
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the assay that have not been considered and documented. Much of the focus in 

establishing transferability and reproducibility of in vitro assays is related to the 

particulars of the cell model since differences between laboratories often indicate 

weaknesses in cell culturing protocols (e.g. documentation or practice). Clearly, if one is 

to move away from required cross-lab testing, this issue must be dealt with in a 

satisfactory way.  

 The case for not requiring cross-laboratory testing as part of the validation process 

for HTS assays used in prioritization for our proposed use case(s) can be stated briefly as 

follows: 

1. Most of the assays to be used in our envisioned prioritization applications can be 

run for all chemicals of interest in a single laboratory, meaning that, from a purely 

practical standpoint, there is no need to have multiple laboratories demonstrate 

competency in running the assay.  

2. An extensive number of reference chemicals (blinded to laboratory personnel for 

most assays) will be used both during the validation process and concurrently 

during testing. All the test compounds in the wells will also be blinded in all the 

assays during screening using a robotic system. This provides significantly more 

quality assurance and control over the process than is the case in most guideline 

tests. (How large this reference chemical set needs to be is an issue that will 

require significant discussion.) 

3. Some laboratories (e.g., NCGC) use very expensive, customized robotics 

equipment, such that no other laboratory is available that could readily duplicate 

their exact protocol. 

4. Due to the rapid pace of technological development of HTS assays in the 

commercial realm, some of the tests we envision using are proprietary, and so for 

legal and business reasons, replication in other laboratories is unlikely to occur. 

Items #1 and #2 are practical reasons why one might not need to do cross-

laboratory testing, whereas items #3 and #4 are practical reasons why one might not be 

able to do cross-laboratory testing. 
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Addressing point #1, an important aspect of the prioritization approach is that the 

assays are all run in HTS mode. Although there is no formal definition, an assay is 

considered high-throughput if hundreds of chemicals can be run in a minimum of 96 or 

384 well format, and up to 1536 well format, within a limited period of time, usually days 

to weeks. Therefore, a single laboratory can test hundreds to thousands of chemicals in a 

few months. At the higher end, the NCGC is able to simultaneously test a library of 

10,000 chemicals in triplicate at 15 concentrations in a single week, using their 

quantitative HTS (qHTS) platform (Inglese, Auld et al. 2006; Shukla, Huang et al. 2010). 

This high-throughput capability requires the use of a customized and expensive robotic 

infrastructure that is not readily replicated in other laboratories (see discussion of point 

#3 below).  

Point #2 is supported by the fact that, for at least the first set of assays being 

considered for prioritization applications at the EPA, there is an extensive literature on 

both reference chemicals and other assays against the same targets, such as the estrogen 

receptor (ER). As an extreme example, we have compiled literature on in vitro ER assays 

(including from the FDA Endocrine Disruptor Knowledgebase (Ding, Xu et al. 2010)) 

and have found ~100 publications detailing results for ~800 chemicals. This literature 

was also surveyed by the NTP Interagency Center for the Evaluation of Alternative 

Toxicological Methods (NICEATM) while developing a reference chemical set for 

validation of ER assays; they identified 78 possible ER reference compounds (eventually 

reduced to a definitive set of 35) with associated indications of relative strength in 

transactivation assays (ICCVAM 2011). For validation of low-throughput assays, it has 

been infeasible or impractical to run such a large set of chemicals multiple times. 

However, running a large set of reference chemicals, such as this, during HTS assay 

development and validation would pose no particular challenges. Hence, a protocol could 

be developed whereby a large number of strong, moderate and weak positive, along with 

true negative chemicals (based on clear and consistent data from reports in the literature), 

are run in a new HTS assay and the results are compared to reports in the literature, not 

only for similar assays, but also for assays testing other modes of activity (binding, 

transactivation, proliferation, co-factor recruitment).  
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This evaluation process would provide much more information on the behavior of 

the new HTS assay than is available for any of the current low-throughput assays, and 

would concurrently improve our knowledge of reliability, relevance, and domain of 

applicability. This information would be sufficiently robust to obviate the need for direct 

cross-laboratory testing for the new protocol while at the same time providing a sound 

basis for conducting a cross-laboratory study of a manual version of the assay if there 

was a desire to make it widely available. In addition to running the reference chemicals 

during validation, they could also be run concurrently with the test chemicals during 

production testing. This would allow for a level of ongoing quality control that is not 

possible with any low-throughput assay. In summary, we argue for a compromise in 

which no cross-laboratory testing is required during validation, but in- and post-

validation testing of many reference chemicals is required. An argument can be made that 

this strategy is superior in some respects to the current situation for validation of low 

throughput assays in which only a few reference chemicals are evaluated during 

validation, albeit in multiple laboratories, whereas few or none are evaluated during 

production testing. This particular line of reasoning, of course, fails for assays that test 

targets or pathways for which there is no extensive literature background on chemicals 

and assays, and no well characterized set of reference compounds.  

We next address issue #3, having to do with the one-of-a-kind nature of some 

candidate testing laboratories, and use the NCGC as an example. They have implemented 

a complex and expensive robotic system capable of processing up to 300,000 chemicals 

at a time in concentration-response mode in 1536-well plates. Typically, they start with a 

published, precursor test that has been run in small format plates (often 24 or 96-well) 

and then optimize the assay to run in their qHTS format. The optimization process 

frequently involves changing parameters, such as cell number, reagent volumes, 

incubation times and number of handling steps. Typically, the readout is the same type as 

was used in the precursor assay. The goal of the optimization process is to achieve the 

same or better assay performance (in terms of signal-to-noise, variability, etc.) as the 

precursor low-throughput assay. In some cases, the precursor assay has itself been subject 

to validation, including cross-lab testing in the lower-throughput format. Hence, the issue 
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is whether the 1536-well modified protocol assay can be considered the same as the 

precursor assay for validation purposes. If this proposition were accepted, then the case 

could be made that cross-laboratory testing had already been completed (low-throughput 

to high-throughput). If the proposition is rejected, then there are two possible recourses. 

In the first case, the assay validation package could be accepted as is, based on extensive 

use of reference chemicals and comparison to published assays against the same target, as 

just described. A careful review of the completeness of the SOP would also be required, 

as a matter of course. A second approach would be to take the high-throughput protocol 

exactly as specified, and to run it in low-throughput mode with a limited number of 

chemicals using as close to the same protocol as possible, including plate format, cell 

number per well, media concentrations, etc. This is analogous to the requirement by most 

journals that microarray data be replicated by an independent technique. 

Elaborating on point #4, the EPA ToxCast program (Dix, Houck et al. 2007; 

Judson, Houck et al. 2010) is making extensive use of unique, proprietary assays 

developed by companies supporting the pharmaceutical industry. Intellectual property 

considerations restrict the commercial use of these assays to those who have licensed 

them, or to those who pay for testing services from the assay owner or licensee. As a 

policy, OECD will not develop guidelines for patented assays or for assays that have 

proprietary components to avoid a monopoly situation, except in cases where (i) the value 

of the information derived from the assay is perceived as high, (ii) there is no equivalent 

assay in the public domain, and (iii) the preceding validation study has established 

performance standards that can be used by others to develop a similar method. Whatever 

the origin of the assay however, our modified HTS validation approach is applicable for 

both "me too" assays and those that are first-in-class, that explore some new mechanism 

or readout.  

ICCVAM developed guidelines for performance standards that could be used to 

document the basis for the acceptance of test methods with proprietary components, so 

that such methods could be adopted by EPA and other regulatory authorities (ICCVAM 

2003; Stokes, Schechtman et al. 2006; Stokes 2007; Wind and Stokes 2010). OECD test 
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guidelines have now been adopted that are based on a proprietary method and that 

incorporate performance standards (Wind and Stokes 2010). Linge and Hartung have also 

discussed some issues surrounding the validation of proprietary tests in the context of 

OECD and ECVAM guidelines (Linge and Hartung 2007). Firstly, the European 

Commission supports the development and commercialization of proprietary methods for 

obvious economic reasons. Several proprietary tests have been submitted as alternative 

tests in the area of eye irritation and skin corrosivity. Interestingly, these are “black box” 

assays for which detailed protocols were not public, whereas for the assays used in 

ToxCast, most details of the protocols have been published. One concern about 

proprietary tests is that if one of those assays constituted a sole test for some purpose, and 

the company went out of business, that the corresponding testing program would come to 

a halt. Secondly, again if there were a single commercial test for some application, the 

owner of that test would have a monopoly, with the corresponding limits and threats that 

implies. In our proposed prioritization application, tests would often be used in a battery, 

so the disappearance of a single test would not precipitate a crisis, nor would the owner 

of a single test have any particular power to disrupt the overall testing program. Even if a 

proprietary test was considered to provide some unique capability, presumably the 

performance standard would be sufficiently described so as to be replicated in some 

fashion. An interesting point made by Linge and Hartung is that the life of a patent is 

“only” 20 years, so that once the lengthy development and validation process is 

completed, there may not be many years of monopoly control remaining. In contrast, one 

of our goals is to provide a quicker route to validation, so tests could have a longer period 

of patent protection while being used for commercial testing. Ultimately however, the 

shift towards the design of validation studies that deliver generic performance standards 

for classes of assays, rather than validating single methods, will both mitigate the risk of 

a unique assay becoming unavailable and will help facilitate the efficient and cost 

effective development of similar assays that deliver equivalently reliable and relevant 

information but which exploit a variety of techniques and technologies.      

Recently ECVAM has demonstrated the first practical steps in how HTS 

approaches combined with performance standards can actually be used to support the 
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validation of in vitro assays that lend themselves to either manual or automated 

implementation. The motivation is to use HTS upstream of validation to identify 

promising assays and, where possible, to use HTS within a validation study to generate 

data on large sets (10s to 100s) of reference chemicals to explore the predictive capacity 

and applicability domain of an assay. An initial case study (Bouhifd, in press) centered on 

a well known cytotoxicity assay (uptake of neutral red dye by mouse fibroblasts cells 

after 48h exposure to a test chemical), which is the basis of a recently adopted OECD 

guidance on how to estimate starting doses for acute oral systemic toxicity testing in 

rodents (OECD 2010). It was demonstrated how the performance standards developed 

during the original validation study (manual protocol) could be used to implement an 

automated version of the assay that delivered data of an equivalent or higher quality but 

with higher throughput. A subsequent study has dealt with the automation of another 

important class of assay, namely a transcriptional reporter-gene assay, using a protocol 

based on BG1Luc4E2 cells (Rogers and Denison 2000) that is the subject of a draft 

OECD test guideline to identify estrogen receptor agonists and antagonists in vitro. The 

comprehensive performance standards, defined during an inter-lab validation study and 

based on 35 reference chemicals, were used to verify an automated version of the assay 

and demonstrate how the modified experimental design (e.g. titration series across plates 

rather than within a plate) could still satisfy important acceptance criteria laid out in the 

manual protocol. Since this exercise (manuscript in preparation) demonstrates that the 

manual and automated versions of this class of assay can deliver essentially the same 

results, the expectation is that historic data generated manually for an assay can be 

combined with HTS data generated on a single automation platform to provide a 

comprehensive evaluation of assay performance.  

Predictive Capacity (Accuracy): In the context of our use case, we define the predictive 

capacity or accuracy of each assay as its ability to correctly determine whether or not a 

chemical can perturb the target or pathway that the assay is designed to probe. This is 

most directly measured by the performance of the assay against a set of reference 

compounds whose ability to perturb the pathway is well documented. This approach 
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raises an important point concerning the ability to compare different implementations of 

the same basic assay.  

To illustrate this point, consider the case of ER assays. Multiple different assay 

formats are available, including cell-free binding assays; coactivator recruitment assays; 

reporter gene assays using full length and chimeric ER; proliferation assays; variants of 

these assays run using ER from human, rat, mouse and other species; variants of these 

assays run in different cell lines or primary cells; assays run in agonist and antagonist 

mode; and, finally, choices of different assay technologies for each of the assay formats. 

We argue that there is no single perfect assay and no unique “right” answer for testing a 

set of chemicals across these assay types. For the ER example, any assay should show a 

clear response for known ER actives (e.g., 17β-estradiol or Bisphenol A), and should 

show no response for known inactives (e.g. atrazine). However, it is recognized that each 

assay format has its own set of susceptibilities to both false positive and false negative 

results. For example, reporter gene assays using luciferase are prone to false positive 

results by indirect effects on protein stability (Auld, Thorne et al. 2008). Fluorescence-

based assays can be interfered with by compounds with fluorescent emission in the same 

range as the assay signal (Simeonov, Jadhav et al. 2008) or by quenching of the 

excitation or emission wavelengths. In practice, it is difficult to control for each of the 

many possible modes of interference. Thus, a multimodal approach, in which multiple 

orthogonal assays (i.e. assays that test the same pathway but use different technologies) 

probing the same target or related targets associated with the same pathway, are 

employed to ensure a minimal false negative rate. Beyond assay interference issues, there 

are weak actives that may be positive in one assay but not in another, and these help to 

define the relative sensitivity of the assays. Differences in sensitivity may be due to 

technical factors or to differences in the fundamental biology related to the use of 

different cell types and cell-clone-specific stable cell lines.   

 Domain of Applicability: Domain of applicability is a concept originating in the 

Quantitative Structure-Activity Relationship (QSAR) field that has rough parallels in 

assay validation (Jaworska, Nikolova-Jeliazkova et al. 2005). The applicability domain of 
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a QSAR model has been defined as follows by ECVAM (Netzeva, Worth et al. 2005) and 

the OECD (OECD 2004): “The applicability domain of a (Q)SAR model is the response 

and chemical structure space in which the model makes predictions with a given 

reliability”. QSAR models are “trained” and parameterized using a set of chemicals with 

known activities relative to the endpoint being modeled, and model performance is 

evaluated against some validation set, usually consisting of chemicals external to the 

training set. Although, in principle, the model could make predictions for any chemical 

structure for which model parameters can be computed, the reliability of prediction for a 

chemical whose model parameters are “outside” of the training and validation structure 

domain is not well characterized. Therefore, the development and validation model 

parameter space (or some variant, thereof) is typically designated as the domain of 

applicability of the model, and the conservative recommendation is that one should not 

trust predictions on chemicals whose parameters fall outside of this domain.  

For assays (in vitro or in vivo), development and validation are also typically 

carried out on a limited set of chemicals, and there may be reasons to question the 

reliability of test results for chemicals significantly dissimilar to those in the development 

and validation sets. This concept of assay domain of applicability has not been often 

examined in standard assays, because the number of chemicals tested during validation 

has typically been too small. However, for HTS assays, even during the development and 

validation stage, one typically tests many (up to thousands) of chemicals, so domain of 

applicability may be more carefully considered here. One important influence on 

chemical-assay data reliability has to do with whether a chemical (or its close structural 

analogs) can be successfully evaluated in a particular test system, i.e. does the assay 

result accurately reflect the target or pathway interaction of the administered chemical or 

its biotransformation product (the latter in the case of metabolically competent assays). 

For example, chemicals would likely have to be soluble in an aqueous buffer and be 

relatively non-volatile in order to be tested in most HTS formats. As already mentioned, 

chemicals with light emission/absorption activity in the fluorescence detection region of 

the assay (such as dyes) could produce assay interference and false positives. Similarly, 

semi-volatile chemicals could potentially contaminate surrounding plate wells and 
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produce false positives/negatives, and reactive chemicals could decompose upon 

exposure to air or water and produce false positives or negatives. All such chemicals, 

which in principle could be identified based on molecular structure features or 

physicochemical properties (as in QSAR approaches), could be considered to fall outside 

the domain of applicability of an HTS assay operated under a set of standard protocols.  

Additionally, as is the case for QSAR models, the structural and property dimensions of 

the chemicals in the test library define the range of historical application of the assay. 

Hence, chemicals having properties or features that differ significantly from previously 

tested chemicals could be considered to be outside the domain of “past experience” of the 

assay, which could trigger increased scrutiny of the results for these chemicals. 

Performance Standards: Performance standards are principally associated with 

documenting the aspects of a validated test that need to be included in a subsequent “me 

too” test (i.e., assays that are mechanistically and functional similar to the original, 

validated assay) (ICCVAM 2003; Stokes, Schechtman et al. 2006; Stokes 2007; Wind 

and Stokes 2010). These include essential test method components and procedures, a 

minimal set of reference compounds and required accuracy and reliability values that the 

follow-on test would have to meet. Documenting performance standards for HTS assays 

would be no different than for low-throughput assays, so the OECD procedures could be 

followed as written. In the section above on predictive capacity, we discussed different 

versions of a basic assay, but with significant differences in protocol. As an example, 

consider two versions of a basic reporter gene assay, both using the same cell line and 

reporter gene construct, but one being run manually in 24 well plates, and the other being 

run in 1536 well plates using a robotic system. As discussed above, it is not clear whether 

the second assay is a “me too” assay that only needs to meet performance standards 

developed during validation of the former, or whether it is a wholly new assay that would 

require complete validation. One could certainly argue that the underlying assay 

similarities, both functional and operational, are sufficiently compelling to warrant the 

more limited performance standard requirement.  
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Peer Review:  Independent scientific peer review is considered as an essential step for a 

new test method prior to regulatory acceptance. ICCVAM and OECD guidelines provide 

detailed processes for conducting peer review of proposed assays (ICCVAM 1997; 

OECD 2005; Stokes 2007). The formality of the peer review process and the overall 

validation process are related to the desire to be as rigorous and impartial as possible and 

to avoid (even unintentional) bias in validation studies. Typically, independent validation 

of a new test method involves the appointment of a working group comprising external 

experts and/or members of a validation body (e.g. ICCVAM, ECVAM Scientific 

Advisory Committee, etc.). Once the validation study report is completed, then this report 

is subjected to a highly transparent and independent scientific peer review by a panel of 

experts who do not have a financial or other conflict of interest with the test method or 

outcome of the review (ICCVAM 1997; Sailstad, Hattan et al. 2001; Stokes 2007). These 

panels meet in public session, and all materials considered by the panels are also made 

available to the public for review and comment. The opportunity for comments by public 

stakeholders is also provided during the meetings of the peer review panel.  

We believe that the peer review stage is one place where the overall validation 

process can be significantly streamlined for HTS assays, while at the same time 

increasing transparency. This is because the outputs of HTS assays are easily interpreted, 

quantitative read-outs of mechanistically simple interactions.  As a result, objective 

evaluation criteria can be easily formulated, and the performance against these can be 

measured automatically. This makes judging performance more of a quantitative and 

statistical task rather than one requiring significant expert judgment. As previously 

discussed, for each assay, there would be an extensive set of reference chemicals, to the 

extent supported by the literature and existing knowledge, and the evaluation of assay 

performance would be based on the data generated for these chemicals. One also needs to 

have guidance on the minimal information that must be supplied about the conduct of the 

assay, for instance similar to the MIAME (Minimum Information About a Microarray 

Experiment) standards for gene arrays (Brazma, Hingamp et al. 2001). There are a wide 

range of proposed “Minimal Information” standards from which a standard appropriate 

for HTS assay validation could be constructed 
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(http://en.wikipedia.org/wiki/Minimum_Information_Standards). For HTS assays, the 

newly developed BioAssay Ontology (BAO) (Schurer, Vempati et al. 2011; Visser, 

Abeyruwan et al. 2011) could provide a framework for standard descriptions of assays for 

use in our proposed process, and could help guide minimal sets of information to be 

required as part of the assay description. The goal of the peer review would then be to 

assess objective criteria such as: Did the reference compounds yield the expected positive 

or negative responses? Are the efficacy and potency values in line with expectations? 

How well did the assay perform across time and reagent batches, and across chemical 

replicates? Is the assay protocol documented well enough that another group could 

replicate the assay in their lab given the appropriate resources? 

Regarding the selection of reference chemicals, an important use of an outside 

expert group would be in the selection and publication of acceptable reference chemical 

sets for each assay target, similar to the NICEATM effort in relation to ER assays 

(ICCVAM 2011). A peer reviewer requires information on the assay protocols and 

quality procedures in the laboratories, literature or other historical data on the reference 

compounds, and data generated during the testing phases (including concentration-

response curves and analysis of replicates). For the ToxCast and Tox21 projects, all of 

this information is captured electronically in a single database. This type of database 

could be enhanced to manage all of the required validation information, and all of this 

information (except for some potential proprietary information) could be made public 

online. Because all of the data would be in a common format, it would simplify and make 

practical the peer-review of any number of assays. Any group wishing to propose a new 

assay for use in a regulatory prioritization application would then have immediate access 

to all existing validation information on similar assays, and could submit their validation 

package into the central system to be queued up for subsequent peer review. (Recall that 

there is still no consensus on whether “prioritization” is a regulatory activity.) This rapid 

and continuous preparation of validation documentation would facilitate the continuous 

improvement of assays to be used in regulatory prioritization. Other advantages of such 

an online system include capturing electronic records of all validation data and past 
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review documentation, and allowing reviewers to access all information remotely. 

Further peer review could proceed on a continuing basis.  

Despite this clear-cut scenario, it is important to stress that peer review should not 

be set up as a pass-fail test, but should be used to provide valuable feedback. The process 

should encourage outside experts to offer insight and advice on the construction of the 

assay and its performance, and assay developers should be encouraged to incorporate 

suggestions for improvements. Involving an expert peer review group early, even in the 

case of straightforward single endpoint assays, can help achieve the best performing 

assay sooner than would occur otherwise. Peer review should be a constructive process 

that aims to highlight the strengths of the method and to identify limitations that end-

users and regulators should keep in mind when basing decisions on data generated using 

the method.  

Finally, an important issue that must be addressed is who will manage the peer 

review process. Under our proposal, there needs to be centralized databases holding 

validation data, and for the sake of efficiency, some organization needs to coordinate this 

as well as other tasks such as organizing peer reviews (recruiting reviewers, publishing 

guidelines, etc.), publishing results, etc. Organizations that could potentially play this role 

are the U.S. EPA, ICCVAM, ECVAM, and the Japanese Center for the Evaluation of 

Alternative Methods (JaCVAM). 

Regulatory Acceptance:  Our purpose in developing and implementing a validation 

process is to provide regulatory scientists the information they need to decide if an HTS 

assay, or battery of assays, is reliable, relevant and fit for purpose. The primary goal of 

the validation process is regulatory acceptance so that data generated with the assay can 

be used to help assess the safety of chemicals. The analysis presented in this paper is 

driven by the specific need to provide the U.S. EPA and NTP with acceptable tools for 

prioritization applications in cases where we have large numbers of untested chemicals 

and limited mandate to require, or insufficient resources to carry out further testing. The 

most mature plans are for the U.S. EPA’s Endocrine Disruptor Screening Program 

(EDSP), where HTS assays for endocrine pathways (estrogen, androgen, thyroid, and 
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steroidogenesis) will be used in prioritizing which of the thousands of chemicals subject 

to EDSP should have Tier 1 test orders issued first (U.S. EPA 2011a). Clearly, it is in all 

stakeholders’ interest to insure the relevance and reliability of the assays and the 

transparency of the process for generating assay data. The OECD Guidance Document 34 

recommends validation and peer review for assays that will ultimately be incorporated 

into a Test Guideline (TG), recommended by the Working Group of the National 

Coordinators of the Test Guidelines Programme (WNT). The recommendations of the 

WNT are subsequently considered by the Joint Meeting of the Chemicals Committee and 

the Working Party on Chemicals, Pesticides and Biotechnology if found acceptable, and 

were then subsequently accepted by all OECD members under the Mutual Acceptance of 

Data (MAD) agreement. In the European Union, such TGs are often taken up in 

legislation (where relevant), for example in the Test Methods Regulation. They can then 

be referenced in the information requirements for regulatory submissions/registrations, 

under REACH, for example.  

Conclusions 

At its core, validation is about doing good science. For an HTS assay (or 

collection of related assays) to be considered “valid” for a particular use and purpose, it 

needs to have a sound rationale, provide explainable and reproducible results, and be 

documented in a way that a scientist can understand the results and potentially repeat 

them. We have presented an analysis of how HTS in vitro assays could mostly conform 

to standard validation practice, including some issues that are specific to this type of 

assay, and some suggested changes to standard practice. The goal is to develop a 

validation procedure that is as streamlined (fast and inexpensive) as possible, while still 

providing the information that regulators need in terms of relevance, reliability and 

fitness for purpose. ICCVAM also seeks to streamline the validation process and updates 

its guidances periodically to achieve this (Schechtman, Wind et al. 2006). Flexibility is 

also important, and is reflected in the introduction for the ICCVAM interagency 

validation criteria (ICCVAM 1997): “For a new or revised test method to be considered 

validated for regulatory risk assessment purposes, it should generally meet the following 
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criteria (the extent to which these criteria are met will vary with the method and its 

proposed use). However, there needs to be flexibility in assessing a method given its 

purpose and the supporting database.” (ICCVAM 1997). Similarly, the OECD validation 

guidelines state that “Scientific rigor is always required. … However, the level of 

assurance that is appropriate for a specific purpose and type of test varies and should be 

assessed on a case-by-case basis” (OECD 2005). 

We have specifically focused on the use of HTS assays for prioritization, rather 

than replacement of existing in vivo assays. In this use case, the assays are intended to 

provide data on KE in toxicity pathways, which is a level of biological organization that 

is less complex than that typically evaluated in standard, animal-based toxicity assays. 

Whereas these biological activities are thought to underlie certain adverse effects, there is 

no one-to-one matching with adverse outcomes in animals. Therefore, the goal here is not 

to recapitulate in vivo results. Instead, it is to provide a comprehensive enough set of data 

to suggest the possibility of toxicity via a particular set of mechanisms, or to suggest the 

lack of such a possibility. As assays spanning more potential mechanisms of action are 

implemented in HTS format, more of the universe of mechanisms that could underlie 

toxicity will be covered. At some point in the future, as such HTS coverage increases, we 

may reach the point where such assays can be used within a systems biology or modeling 

framework to quantitatively predict in vivo toxicity.  

In line with our stated use case of prioritization, we have proposed two potential 

changes to standard assay validation practice that could significantly streamline the 

acceptance criteria for new HTS technologies, namely elimination of the mandatory 

requirement to do cross-laboratory testing, and the development of a straightforward on-

line peer review process, which offers not only greater efficiency, but also additional 

transparency relative to the current approach when the test methods are not proposed for 

regulatory guidelines, but rather for prioritization. Although both of these 

recommendations might be considered controversial, due to their departure from current 

validation practice, we believe that both merit serious consideration given the significant 

advantages offered by HTS assays.  
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As stated in the introduction, this paper is not intended to be a prescription for a 

new process, but instead to offer some suggestions and to start a conversation about the 

possibility of developing a streamlined validation practice for use of HTS assays as 

prioritization tools. To that end, we offer a set of questions that need to be addressed: 

1. Do assays used for prioritization require validation, i.e. will regulators 

accept their use for prioritization without formal demonstration of 

relevance, reliability and fitness for purpose? 

2. Are HTS versions of existing assays, where there are at least some 

technical changes in the underlying protocol, really new assays? 

3. Is it an acceptable tradeoff to require testing of greater numbers of 

reference chemicals in HTS assays, more than used in traditional assays, 

in exchange for not requiring cross-laboratory testing during validation? 

4. Is this tradeoff more acceptable in a prioritization context, in which the 

assay is not replacing an existing validated test? 

5. Can the peer review of HTS assays proposed for use in prioritization be 

adequately streamlined to largely a review of protocols and quantitative 

results, thus enabling at least a semi-automated review process? 

6. Assuming that some level of transparency is maintained and a set of 

performance standards can be achieved, is there any compelling reason to 

treat proprietary assays differently than non-proprietary ones in the 

validation process? 

7. Given that some proposed changes to the validation process rely on having 

an adequately large number of reference chemicals, how many reference 

chemicals is enough? For how many targets are we likely to have this 

large-enough set of well-characterized reference chemicals? 

8. Given that the ultimate user of the test result is a regulator, how does the 

current or new validation process help that person understand the best use 

of the data generated by the assay? Can we start from these user 

requirements and custom design the assays and their validation 

requirements with that use in mind? 
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It is worth considering the intersection of our proposals on validation practice 

with ideas coming from the area of Evidence-Based Toxicology (EBT) (Hartung 2009a; 

Hartung 2009b). EBT aims to build off of the success of Evidence-Based Medicine 

(EBM). EBM relies on the use of rigorous, unbiased statistically-based meta-analyses of 

extensive preclinical and clinical data to determine best practices for clinicians. EBM has 

3 pillars which are relevant here: (1) method assessment; (2) meta-analysis of studies; 

and (3) causation of health effects. In #1, EBT aims to compare different options to 

determine the toxicity of compounds, which is consistent with our aim to quickly develop 

and evaluate new tests. Under this heading, EBT could help us better understand which 

tests we should be developing, how they will be used, and new questions we might want 

to ask of the method development and validation processes. Items 2 and 3 are relevant to 

the current discussion because we need to know the linkage between a KE and the 

ultimate adverse outcome, forming the basis of our relevance and fitness for purpose 

tasks. In the preceding discussion, we simply assumed that knowledge of a chemical 

interaction with a particular molecular target was sufficient to trigger a pathway with a 

causal linkage to an adverse outcome. However, for each assay-endpoint pair, significant 

study and analysis from the literature will be required to determine these linkages. This 

effort is one subject of the field of systems toxicology, which is closely tied to EBT.  

Finally, we discuss one counter-productive aspect of current assay development, 

validation and acceptance, which is that validated assays tend to become “frozen in time” 

because of the lengthy process and high costs involved. Many of our current guideline 

assays took years to a decade or more to go through this process (and in fact a number of 

the currently used guideline tests were never validated through a formal process), leaving 

us to rely on old technology. For standard in vivo tests, this is understandable and 

necessary due to the complexity and lengthy gestation of such tests. With HTS assays, on 

the other hand, the development time from conception to production in high-throughput 

format can be months. One can then imagine a process in which there is an ongoing 

competition to develop increasingly better assays or more complete batteries of assays to 

assess the ability of chemicals to trigger particular AOPs or impact specified toxicity 

pathways. This could lead to a rolling development-validation-acceptance-use process 
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that is iteratively applied to a large, pre-plated library of chemicals. Figure 1 illustrates 

this iterative process. If we can implement a streamlined process for rigorous, yet 

practical validation of HTS assays, enabling us to employ new HTS technologies in 

almost real-time from when they are developed, we will have made significant progress 

in realizing the promise of 21st century toxicology.  

 

Figure 1: Conceptual model of a continuously improving battery of HTS 

assays to be used for prioritization. A library of chemicals of interest is 

identified. For each MOA of concern, in vitro assays that have been 

identified in a research setting are moved into an HTS platform suitable 

for screening large chemical libraries. These assays are then validated 

based on screening a set of reference chemicals. Validation depends on 

showing that the new assays are reliable (reproducible, giving good 

signal to background, and low well-to-well variation, etc.; and relevant, 
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i.e. the results on the reference chemicals are in accord with what is 

known about their activity in the molecular pathway being probed with 

the assay, and with results in the in vivo definitive test). After validation, 

the full chemical library is tested. Based on what is learned from testing 

the library, and from related scientific studies, additional HTS assays for 

the MOA, or improved versions of the current assays will be introduced 

and those new assays, in turn, will be validated using the reference 

chemicals. Subsequently, the full chemical library will be rescreened. 

“High Evidence” chemicals, i.e. those whose activity in the KE of the 

MOA being probed is strongly supported by the assay data, will be 

recommended to be run in more definitive tests. An approach similar to 

this has been proposed for the U.S. EPA’s EDSP21 approach (U.S. EPA 

2011a).  
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ABSTRACT: We describe a framework for estimating the
human dose at which a chemical significantly alters a biological
pathway in vivo, making use of in vitro assay data and an in vitro-
derived pharmacokinetic model, coupled with estimates of
population variability and uncertainty. The quantity we calcu-
late, the biological pathway altering dose (BPAD), is analogous
to current risk assessment metrics in that it combines dose-
response data with analysis of uncertainty and population
variability to arrive at conservative exposure limits. The analogy
is closest when perturbation of a pathway is a key event in the
mode of action (MOA) leading to a specified adverse outcome.
Because BPADs are derived from relatively inexpensive, high-
throughput screening (HTS) in vitro data, this approach can be
applied to high-throughput risk assessments (HTRA) for
thousands of data-poor environmental chemicals. We envisage
the first step of HTRA to be an assessment of in vitro
concentration-response relationships across biologically im-
portant pathways to derive biological pathway altering concentrations (BPAC). Pharmacokinetic (PK) modeling is then used to
estimate the in vivo doses required to achieve the BPACs in the blood at steady state. Uncertainty and variability are incorporated in
both the BPAC and the PK parameters and then combined to yield a probability distribution for the dose required to perturb the
critical pathway.We finally define the BPADL as the lower confidence bound of this pathway-altering dose. This perspective outlines
a framework for using HTRA to estimate BPAD values; provides examples of the use of this approach, including a comparison of
BPAD values with published dose-response data from in vivo studies; and discusses challenges and alternative formulations.
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’ INTRODUCTION

Chemical risk assessment and risk management require infor-
mation on hazard, dose response, use, and exposure to make
decisions protective of human health and the environment. One
objective of a chemical risk assessment is to identify exposure levels
with a reasonable certainty of no harm. Exposures resulting from
the use of a chemical that are below these estimated levels are
presumed to have a reasonable certainty of no harm1 or to be
without appreciable deleterious effects during a lifetime.2 Hazard-
based limits currently used to inform risk management include
quantities such as the reference dose (RfD) for noncancer effects.
An RfD is generally derived by estimating the lowest human-
relevant point of departure (POD) which may be a NOAEL (no
observed adverse effect level) or BMD (benchmark dose) from a
set of laboratory animal studies, commonly in rodent and non-
rodent species. These are then divided by default factors often in
the range of 100 to 1000 to account for uncertainty in cross-species
extrapolation, possible database deficiencies which might lead to a
failure to identify the most sensitive endpoint, and variability
across human populations and life-stages. Where available, human
data (e.g., from epidemiological studies) is incorporated into
estimates of acceptable exposures.

EPA defines an RfD as representing “... the quantity of a
substance which if absorbed on a daily basis over a lifetime, is not
expected to pose significant risk of adverse health effects.”3

Alternatives to an RfD, used in certain decision contexts, include
allowable daily intake (ADI) and threshold of toxicological
concern (TTC).4 An important component of many risk assess-
ments is the identification of the mode of action (MOA) leading
to the critical effect, which is the adverse effect with the lowest
NOAEL or BMD.5-7 Identifying the MOA is important because
some MOAs are known to operate in model species but not
humans (or vice versa), meaning that the related adverse effect
could be discounted (or would have to be accounted for) when
determining the human RfD. In addition, some MOA (such as
genotoxic carcinogenicity) are assumed to imply no safe thresh-
old dose; therefore, a different risk assessment approach is called
for. An important link between MOA and pathway-based
analyses is the tenet that it is sometimes possible to relate
MOA key events with perturbations of specific pathways.

Current risk assessment approaches for the majority of
chemicals face many challenges,8 including heavy reliance on
data from animal studies. In this perspective, we outline one
possible alternative formulation for determining permissible
exposure levels from in vitro high-throughput screening (HTS)
data and informatic analysis. The resulting information could
serve as a surrogate for acceptable dose levels derived from
animal toxicity studies until such studies are available. Such
formulations are desirable because there are thousands of
environmental chemicals for which animal data is limited or
not available,9 a situation that is unlikely to change in the near
future. Any alternative to the current human health risk assess-
ment approach has to meet several criteria. First, it should be
based on an understanding of the modes or mechanisms leading
to toxicity, specifically in humans. Second, it should yield relevant
dose-response predictions that can be used for setting permis-
sible human exposure levels. Third, it should be at least as health
protective as current approaches without imposing unnecessarily
strict limits on chemical use.

Over the past decade, in vitro toxicity testing approaches have
been widely implemented. In these approaches, chemicals are

evaluated using a single or a battery of in vitro assays that probe
biological pathways relevant to toxicity. In vitro toxicity testing
has been advocated for use in the evaluation of environmental
chemicals10 and is being implemented at the U.S. EPA and NIH
through their ToxCast11,12 and Tox2113,14 programs. The in vitro
toxicity testing approach has several key advantages: (1) the cost
is orders of magnitude less than that for animal testing; (2)
humanmolecular targets and cell systems can be directly studied;
and (3) hundreds or thousands of chemicals can be analyzed in
parallel. Using HTS in vitro methods in hazard assessment
screening would address the question, is there a mechanism
by which a chemical can lead to a particular adverse effect?
Assays are typically run in concentration-response format;
therefore, one can estimate the relative potency (i.e., effective
concentration) of different chemicals to perturb biological
pathways.12

Here, we couple the ability of in vitro assays to quantitatively
characterize the pharmacodynamics (PD) of a chemical in con-
centration-response mode with new high-throughput methods
for estimating the corresponding pharmacokinetics (PK) of a
potential toxicant.15 By combining these two types of information,
we can estimate the external dose that would be required to
perturb a biological pathway. In order to complete the analogy
with standard risk assessment approaches, we need to incorporate
uncertainty and variability into themodel. One can then calculate a
provisional acceptable exposure level at the low end of the
distribution of the pathway-altering dose accounting for uncer-
tainty and variability.Wedefine this value as the biological pathway
altering dose or BPAD. The overall process of estimating the
BPAD we define as high-throughput risk assessment (HTRA).

The goals of this perspective are to outline a framework for
using HTRA to estimate BPAD values; to provide examples of
the use of this approach, including comparisons of BPAD
values with published lowest effect levels (LELs) and no effect
levels (NELs) from animal toxicity studies; and to discuss
challenges and alternative formulations. This perspective
proposes and evaluates a framework for HTRA and identifies
incomplete or unresolved issues, as a first step toward devel-
oping an HTRA model for decision-making. The immediate
goal of HTRA as described here is not to replace standard risk
assessment methods, but instead to provide input into provi-
sional risk assessments for data-poor chemicals. These provi-
sional estimates can then be used to prioritize further study of
specific chemicals and could be updated as this new informa-
tion is collected.

’HTRA FRAMEWORK OUTLINE

Our initial goal is to estimate chemical-specific biological
pathway-altering doses or BPADs. A BPAD is tied to a particular
biological pathway and therefore is analogous to an estimate of a
mechanism or MOA-specific LEL or NEL, with the addition of
uncertainty and population variability estimates. Although we do
not address the equivalent problem of estimating exposure in a
high-throughput manner, we recognize that this metric is of
comparative importance. Here, we simply outline the key points
of the HTRA-BPAD approach, which are illustrated in Figure 1.
Implementation details are given in subsequent sections.
1. HTRA is built around biological pathways whose structure

is derived from a large body of in vitro and in vivo studies. A
number of publicly available biological pathway data-
bases16-18 exist to guide a selection for use in HTRA.
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2. For HTRA, we want to focus on toxicity-related biological
pathways, i.e., those which, when significantly altered by
chemical exposure, are likely to lead to adverse effects
in vivo.10 The distinction between all pathways and toxicity-
related pathways is analogous to the distinctions between
observations leading to NELs and NOAELs in traditional
toxicity testing. An important area of research involves
determining linkages between pathways and adverse ef-
fects. We purposely avoid the term “toxicity pathway”
because there is no real distinction between these and
normal biological pathways. Operationally, one way we
define “toxicity-related pathways” is by finding associations
(either using statistical techniques or from detailed mechanistic
analysis) between the perturbation of a pathway or process and
the development of adverse outcomes.

3. For each pathway, we select a representative set of targets to
probe and develop in vitro assays to measure effects related
to those targets. For the examples given here, these targets
were selected partly by expert judgment and partly by
the availability of off-the-shelf high-throughput assays.
Although assays derived from other species that share
significant sequence similarity at the specific target gene
can also be used, we would primarily focus on human
targets and cells for human risk assessment. Assays can be as
simple as binding to a single protein or as complex as whole
genome microarrays or other genome-scale measurements.

4. All assays must be run in concentration-response format
in order to yield values for the BPAC (biological pathway
altering concentration).

5. It may be necessary to run several assays associated with a
pathway and use a systems-level model to integrate the
resulting PD data for estimating BPAC.19 This model may
need to account for some assays being overly sensitive
(yielding false positives) and some being under-sensitive
(yielding false negatives.) This model should also estimate
the PD-related uncertainties and population variability20

and must characterize the population distribution of the
BPAC and its uncertainty using probability distributions.

6. Population-PK modeling is used to estimate the external
dose through the relevant route of exposure that would lead
to the internal BPAC (dose-to-concentration scaling
function). The PK model must also estimate PK-related
uncertainties and variability, and then yield a probability
distribution for the dose-to-concentration scaling function.
In the case of the examples provided here, an oral dose
leading to the internal BPAC was used.

7. The PD and PK probability distributions are then com-
bined to yield a probability distribution of the dose at which
the chemical would significantly perturb the biological
pathway. We calculate a mean value and confidence inter-
vals from this distribution and set the BPAD to be the lower
dose boundary of the confidence interval.

Figure 1. Schematic of the high-throughput risk assessment (HTRA) process, coupling in vitro assay data quantitatively characterizing the
pharmacodynamics (PD) of a chemical with high-throughput methods for estimating the corresponding pharmacokinetics (PK) of a potential
toxicant. See text for a full description of the HTRA process.
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’BIOLOGICAL PATHWAYS AND THEIR LINKAGE TO
ADVERSE EFFECTS

Biological pathways are a key connection between MOA-
based risk assessment and HTRA when they are mechanistically
linked to key events in toxicity modes of action.21 Pathway-level
perturbations can be assessed by testing chemicals in vitro using a
suite of assays that measure molecular targets and downstream
consequences in the pathway, e.g., binding to key enzymes or
receptors, or differential regulation of downstream genes or
proteins. By running assays in concentration-response format,
one can derive a characteristic concentration (e.g., AC50 or
concentration at which activity is 50% of its maximum) for each
chemical-assay pair. Additionally, in contrast with in vivo stud-
ies, it is possible (at least in selected cases) tomeasure response at
arbitrarily closely spaced concentrations and to measure re-
sponse down to very low concentrations. This eliminates the
need to perform low-dose extrapolation using an assumed
model: the low dose end of the curve is directly measured.
Figure 2 shows examples of concentration-response data, in this
case derived from a pair of estrogen receptor assays.22

In some instances, there may be a direct link known between
an MOA and a corresponding pathway. An example is cholines-
terase inhibition. The in vivo key event is measurable cholines-
terase inhibition in a blood or tissue sample. The in vitro pathway
perturbation is measured by inhibition of cholinesterase activity
in a cell-free or cell-based assay. A more complex example is liver
hypertrophy driven by peroxisome proliferation.23-25 in vivo,
histopathology can clearly detect peroxisome proliferation.
In vitro, numerous assays can measure activity in the underlying
peroxisome proliferator-activating receptor (PPAR) pathway.

’ IN VITRO SCREENING, BIOLOGICAL PATHWAYS,
AND THE BIOLOGICAL PATHWAY-ALTERING CON-
CENTRATION (BPAC)

In the first step of HTRA, we use HTS in vitro assays to
measure the extent of chemical-induced perturbation of a
biological pathway as a function of concentration. As described
above, assays can measure direct binding to key targets, down-
stream changes of specific biomarkers, or cellular consequences
such as cell shape changes or cell death. In some cases, it will be
possible to use a single assay to measure pathway perturbation

(e.g., cholinesterase inhibition), while in others one may need to
integrate over the results of multiple assays. The use of micro-
arrays to estimate pathway perturbation is an alternative or
complementary approach for cases where relatively few chemi-
cals need to be examined.26 HTS-based pathway-based assays
offer an alternative and promising technology for screening
thousands of chemicals in parallel.27

A significant advantage of the current HTS assays is that the
majority can be run against human targets or in human cells. This
eliminates the need for cross-species extrapolation, but still
requires in vitro to in vivo extrapolation. There are many ways
to estimate the BPAC, but it remains a challenge to determine
which is most appropriate. For the illustrative examples pre-
sented below, we used a simple method for estimating the BPAC.
This approach takes the collection of assays that map to pathway
genes or relevant cellular phenotypes and sets the BPAC for the
specified chemical to be the minimum AC50 for any of those
assays (See Figure 2).

Finally, we need to address uncertainty and variability in our
estimate of the BPAC. It is desirable to separately characterize the
population variability of the BPAC and its uncertainty because
risk assessment uses variability and uncertainty information in
different ways. Ideally, population variability information would
be available for this analysis, along with a characterization of the
uncertainty about that variability. For our examples, and as a
suggested default in the absence of an estimate of population
variability, we assumed that the population distribution of the
BPAC is log-normal and that the ratio of the geometric mean (or,
equivalently, the median because of the assumption that the
population distribution is log-normal) to the first percentile of
the population distribution is (10)1/2. This factor is motivated by
partitioning the conventional 10-fold uncertainty factor for
variability among people into equal-sized portions due to phar-
macodynamics and pharmacokinetics. Not all regulatory bodies
use the same partition, and this particular factor is intended for
illustration, not prescription. Alternative approaches to assessing
variability28 have been based on estimates of appropriate var-
iances from collections of human data.

We do not have a statistically rigorous characterization of the
uncertainty about the parameters of this assumed population
distribution, but for illustrative purposes, we assume the loga-
rithm of the population median and log-scale standard deviation

Figure 2. Example concentration-response curves for Bisphenol A in two estrogen receptor assays from the ToxCast program. These assays use
multiplexed reporter gene technology in a trans-activating mode (left) and cis-activating mode (right).22 The y-axis is in units of fold-change.
Determination of the AC50 (denoted by the horizontal bar with error bands) and associated confidence intervals factor into uncertainties in the
estimation of the BPAC.
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are known to within about a factor of 2 (strictly, that the 1st and
99th percentiles of the uncertainty distribution are 4-fold apart
and that the uncertainty distribution is log-normal). Further
work needs to be done to better characterize the variability and
uncertainty of these parameters.

’FROM IN VITRO CONCENTRATION TO IN VIVODOSE:
REVERSE TOXICOKINETICS

This section addresses the task of estimating the in vivo dose
that corresponds to the BPAC. A variety of PK models can be
used to estimate internal concentration from external dose (or
exposure). These models can be reversed to yield the dose
(exposure) corresponding to the BPAC. For the present pur-
pose, we require a method that is general enough to be used
on a large number of chemicals. The most detailed PK models,
usually called physiologically based pharmacokinetic (PBPK)
models,29,30 represent distribution, metabolism, and excretion of
a chemical using multicompartment models that account for
partitioning between multiple organs and tissues. One challenge
to using detailed PBPK models lies in identifying the structure of
the model and the values of the corresponding coefficients for
each chemical. Generating a complete “validated”model can take
years and require the generation of a significant amount of
chemical-specific experimental data.

An alternative to detailed PBPK modeling is to use simpler
models that make conservative assumptions and require a small
number of parameters whose estimates are amenable to high-
throughput data generation. One class of models is purely
computational, where all parameters are computationally gener-
ated, usually through quantitative structure activity relationship
(QSAR) models. These models have been used to estimate body
burden of chemicals that are not metabolized but which
bioaccumulate.31 Here, we focus on an alternative approach
more suitable to chemicals that are largely eliminated through
metabolism and renal excretion, which is called reverse toxico-
kinetics (RTK) or reverse dosimetry.15,32,33 In this approach, we
use a one compartment model and make default assumptions
such as chemicals are eliminated wholly through metabolism and
renal excretion; renal excretion is a function of the glomerular
filtration rate and the fraction of unbound chemical in the blood
(i.e., no active transport); and there is 100% oral absorption.
Using these assumptions in our published RTK analysis,15 we
only required two experimental chemical-specific parameters to
generate an estimate of the plasma concentration of the chemical
at steady state per unit dose. These are the rate of disappearance
of parent via hepatic metabolism (called intrinsic clearance) and
fraction bound (or conversely unbound) to plasma proteins.
Both of these parameters can be measured experimentally in a
relatively high-throughput manner.

The result of this effort is a chemical-specific ratio of the
concentration at steady state (Css) divided by the dose rate (DR),
yielding a concentration-to-dose scaling factor with units
of μM/(mg/kg/day). One simply divides the BPAC by the
Css/DR ratio to calculate the steady-state dose required to yield a
steady-state BPAC. The estimate of the Css/DR ratio implicitly
contains uncertainties; for instance, the assumption of 100% oral
absorption and the assumption that the concentration at the site
of action will equal the concentration in plasma. There are also
uncertainties in the measurements of experimental values for
fraction unbound and intrinsic clearance. Population variability
in PK arises from several factors including genetic differences in

xenobiotic metabolizing enzymes and heterogeneity of liver
mass. The PK software application we use (SimCyp32,33) allows
us to directly include some sources of population variability, but
the current model does not explicitly account for model and
parameter uncertainty.

’FROM ACTIVITY DOSE ESTIMATES TO THE BIOLO-
GICAL PATHWAY-ALTERING DOSE (BPAD): INCOR-
PORATING UNCERTAINTY AND VARIABILITY

Wehave described how to estimate the concentration at which
a biological pathway of interest is activated (BPAC), plus the Css/
DR ratio which scales internal concentrations to oral doses. The
dose that corresponds to the BPAC is simply BPAC/Css/DR.
While this gives a central estimate, we need to account for
uncertainties and variability in each of the estimated values and
their resulting ratio.

Our PD estimates are subject to uncertainty. For the in vitro
assays, we know that there is statistical noise in the data, which
will lead to uncertainties in estimates of the AC50. For some
pathways, there may be important biological activity well below
the AC50, while for other pathways, relevant in vivo effects will
only occur when the assay target is fully activated (or inhibited),
well above the AC50. Assays in some cases will yield false positive
or false negative results due to a variety of assay artifacts which are
not always easy to detect.34 Further, assays currently in use may
not detect the most sensitive signal of pathway activation.

Likewise, the estimates of PK parameters are uncertain. There
are uncertainties in the estimates of the experimental parameters
such as intrinsic clearance and plasma protein binding. Any PK
model will have to make assumptions about the structure of the
model used for a given chemical (e.g., in number and types of
compartments). For instance, our RTK method assumes that
estimated blood concentrations are a good surrogate for the
in vitro media/buffer concentrations in the HTS assays.

There is population variability surrounding PD, for example,
due to the genetic variation of an enzyme or receptor to which
the chemical binds and which then triggers downstream path-
way-based processes. As already mentioned, there is significant
PK population variability, for instance in xenobiotic metabolism,
due to intrinsic genetic variation, and variability due to life stage,
health status, and other factors.

Since we expect population variability, and uncertainty about it,
in both the BPAC andCss/DR, the same will be true for their ratio,
the BPAD. For purposes of hazard characterization, we propose to
set the critical value of the BPAD to correspond to a small
percentile, say p%, of the population distribution of the BPAD
(designated the BPAD100-p because (100- p)% of the population
would exceed that level, and therefore, in some sense p% would be
protected from that level of exposure) and use that level and its
lower 95% confidence bound (BPADL100-p) to characterize a
chronic dose suggested to be of concern. Technically, BPAD100-p

is a permissible exposure level that accounts for population
variability, and BPADL100-p is the permissible exposure level
additionally accounting for uncertainty. For the examples presented
in the next section, we assume the population distribution of the
Css/DR is log-normal, and we estimate the population geometric
standard deviation from the confidence limits. The ratio BPAC/
Css/DR is then also log-normal. As for the BPAC, we presume to
know the parameters of the population distribution of Css/DR (the
geometricmean and standard deviation on the log scale) towithin a
factor of 2.We focus on theBPAD99 and useMonteCarlo sampling
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to generate a confidence interval for the BPAD99, allowing us to
calculate BPADL99.

The center of the BPAD distribution is analogous to an LEL,
although it is explicitly the dose at which one would expect to see
50% of maximal perturbation for the pathway. The BPADL for a
particular pathway is analogous to a NEL (no effect level) divided
by safety factors. The NOAEL from an animal study is the lowest
NEL over all effects that are considered by a particular regulatory
agency to be adverse and relevant. To make an HTRA analogue to
the NOAEL and the NOAEL-related RfD, we need to classify
pathway perturbations as adverse or not. Adversity is an important
issue requiringmore research and eventually policy development to
identify the relevant, adverse minimum BPADL for a chemical or
stressor. Initially, we foresee the primary utility of HTRA in
prioritization of chemicals for targeted testing based on pathway-
derived BPADL values and would do this based on our confidence
that a particular pathway's perturbation is linked to adversity.

’EXAMPLE 1: BISPHENOL A ESTROGENICITY IN VITRO
VS IN VIVO REPRODUCTIVE TOXICITY

As a first example, we consider the estrogenicity of Bisphenol
A (BPA) relative to the reproductive toxicity of BPA.35,36 BPA is
a high production volume (HPV) chemical widely used in
manufacturing polycarbonate plastics and epoxy resins, and
humans appear to be exposed primarily through food packaging
uses.37 This is a useful first illustration of the BPAD approach
because of the direct link between activity at a single molecular
target, the estrogen receptor (ER) ESR1 (formerly known as
ERalpha) that can be measured in vitro, and an in vivo effect
observed in a rat reproductive model. BPA in vitro pharmacology
identifies it as an ER agonist in all six relevant ToxCast assays
(listed in Table 1). If we assume that the molecular key event
leading to positive findings in female rats from the multigenera-
tion reproduction test is due to BPA estrogenicity, then the ER
BPAD should provide an estimate of the corresponding in vivo
LEL and NEL. The ToxCast assays provided six ER agonist or
binding AC50 values ranging from 0.6 to 1.7 μM.12 To calculate a
conservative BPAD, the lowest ToxCast AC50 is selected (0.64
μM for Attagene Factorial cis ERE assay). We then consider
population variability in both the BPAC and the Css/DR, and the
uncertainty about estimates of the population parameters. The
assay results used here are not directly amenable to producing
estimates of population variability; however, it has become
standard practice to quantify variability in the human population
with a 10-fold uncertainty factor, comparing the population
median to a lower quantile (for our purposes, the 1%ile). This
is generally further divided into a PD and PK component.8 For
illustration purposes, we next estimate the PD variability, while
the PK variability is explicitly incorporated in the SimCyp
confidence intervals. For a log-normally distributed variable, this
corresponds to a standard deviation on the log scale of 0.49. The
median of the estimated population distribution of Css/DR is
0.29, with an estimated standard deviation on the log scale of
0.39. The uncertainty of these values is not currently quantified,
but for illustrative purposes, we assume the values are relatively
uncertain, with the coefficient of variation of the uncertainty
distributions at about 36% (corresponding to knowing the value
of the parameter to within about a factor of 2). Monte Carlo
sampling from log-normal distributions around the estimated
population parameters gives a BPAD99 of 0.44 mg/kg/day, with
lower one-sided confidence limit, BPADL99, of 0.16 mg/kg/day.

In vivo, Tyl et al. found diminished female reproductive
performance and decreased ovarian weight in the rat reproduc-
tion test at 500 mg/kg/day and an NEL of 50 mg/kg/day.36 The
NEL is adjusted for uncertainty/variability (NEL/100) to yield a
value of 0.5 mg/kg/day, close to the in vitro ER BPADL99 of 0.16
mg/kg/day.

’EXAMPLE 2: CONAZOLE CAR/PXR ACTIVITY IN VITRO
VS IN VIVO HEPATOTOXICITY

To further illustrate the ideas in the previous sections, we
applied HTRA to a set of conazole fungicides. One concern with
conazoles is that many of them cause a variety of liver toxicities in
rodents, including hypertrophy and tumors.38,39 One pathway
activated by most conazoles, and believed to be involved in these
liver pathologies, is the constitutive androstane receptor/preg-
nane X receptor (CAR/PXR) signaling pathway.40,41 In the
ToxCast project,12 we evaluated 14 conazoles in a large battery
of assays, many of which map to the CAR/PXR pathway.We also
converted in vitro AC50 values from the ToxCast assays
(concentration response) to equivalent in vivo values for humans
using RTK. As described above, we calculated the BPAD
distribution corresponding to the lowest AC50 across the
CAR/PXR-related assays in ToxCast, listed in Table 1. We then
compared the BPAD distribution with liver hypertrophy-related
LEL, NEL, and NEL/100 values derived from rat and mouse
2-year chronic/cancer studies. Liver hypertrophy alone is not
considered an adverse effect that would lead to a LOAEL (lowest
observed adverse effect level) and NOAEL; therefore, in this
case, we used LEL and NEL (lowest and no effect levels,
respectively). Using data from both mouse and rat chronic
studies,42,43 we identified the lowest dose at which either liver
hypertrophy or liver weight increase was observed, yielding the
liver-hypertrophy LEL. We then set the corresponding NEL to
be the dose below the LEL or LEL/10 if the effect was observed
at the lowest dose tested.

The results of this comparison are shown in Figure 3. For each
chemical, we show a box corresponding to the variability-derived
(1%-99%) confidence interval around the median BPAD and
whiskers giving the uncertainty-derived 95% confidence intervals
around the ends of the uncertainty range. The BPADL99 value is
designated with a red circle; the LEL with a blue box; the NEL
with a gray triangle; and NEL/100 with a red triangle. We also
show the estimated exposure levels based on food residues, all of
which are well below the BPAPL99 values. Note that for two
chemicals (iprodione and imazalil), exposure estimates were not
available.

A first observation is that in most cases the BPADL99 is within
a factor of 10 of the NEL/100, which lends confidence to the
use of this approach in more general cases. Using a Kendall
rank-correlation test, we see a significant correlation between
BPADL99 and NEL/100 (p = 0.025). This is of particular interest
given wide uncertainties going into both estimates. Second, in 9
of 14 cases, the BPADL99 is at or below the NEL/100. This
suggests that we can potentially use the BPADL99 to yield a first
order estimate for an upper permissible chronic exposure level
in the absence of animal data.

’DISCUSSION

Here, we have presented a framework to investigate the
application of in vitro pathway-based risk assessment for envir-
onmental chemicals. BPADs are in vitro analogues of in vivo point
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of departure doses. We posit that BPADs could be used to
provide provisional estimates of permissible or acceptable ex-
posure levels for data poor chemicals, upon the basis of discover-
ing which pathways are significantly altered by a chemical and at
what concentration those perturbations occur in vitro, and then
using a PK model to estimate the external dose that would
produce the internal concentration that caused pathway pertur-
bation. Both the PD and PK estimates incorporate uncertainty
and variability and when combined yield a probability distribu-
tion for the pathway-altering dose. The BPAD99 is then

calculated as a lower percentile of this distribution, with emphasis
on its lower one-sided 95% confidence bound, the BPADL99. We
have presented examples where BPADs and animal-based LEL
and NEL values were compared, and these have yielded inter-
esting insights, including the fact that BPAD values tend to be
below or at most a factor of 10 higher than the NEL/100.

HTRA can be compared with the currently used regulatory
testing paradigm for food use pesticides and other chemicals for
which extensive testing is required. (An alternative, and perhaps
more apt comparison is with data requirements for the large

Table 1. Description of ToxCast Assays Used in Examples for ER Activity Related to Reproductive Toxicity and CAR/PXR
Activity Related to Liver Hypertrophy

assay gene description assay description example

ATG_ERa_TRANS ESR1 estrogen receptor 1 [human] transactivation multiplexed reporter gene assay22 ER

ATG_ERE_CIS ESR1 estrogen receptor 1 [human] transactivation multiplexed reporter gene assay22 ER

NCGC_ERalpha_Agonist ESR1 estrogen receptor 1 [human] quantitative hts reporter gene assay27,60 ER

NVS_NR_bER ESR1 estrogen receptor 1 [bovine] cell-free competitive binding assay61 ER

NVS_NR_hER ESR1 estrogen receptor 1 (mutant) [human] cell-free competitive binding assay61 ER

NVS_NR_mERa ESR1 estrogen receptor 1 [mouse] cell-free competitive binding assay61 ER

ATG_CAR_TRANS CAR/NR1I3 nuclear receptor subfamily 1, group I,

member 3, Constitutive androstane receptor [human]

transactivation multiplexed reporter gene assay22 CAR

NVS_NR_hCAR_Antagonist CAR/NR1I3 nuclear receptor subfamily 1, group I,

member 3, Constitutive androstane receptor [human]

cell-free competitive binding assay61 CAR

ATG_PXR_TRANS PXR/NR1I2, nuclear receptor subfamily 1, group I,

member 2, Pregnane-X receptor [human]

transactivation multiplexed reporter gene assay22 PXR

NCGC_PXR_Agonist_human PXR/NR1I2, nuclear receptor subfamily 1, group I,

member 2, Pregnane-X receptor [human]

quantitative hts reporter gene assay27,60 PXR

NVS_NR_hPXR PXR/NR1I2, nuclear receptor subfamily 1, group I,

member 2, Pregnane-X receptor [human]

cell-free competitive binding assay61 PXR

ATG_RXRb_TRANS RXRB - retinoid X receptor, beta [human] transactivation multiplexed reporter gene assay22 CAR/PXR

ATG_RXRa_TRANS RXRA - retinoid X receptor, alpha [human] transactivation multiplexed reporter gene assay22 CAR/PXR

NCGC_RXRa_Agonist RXRA - retinoid X receptor, alpha [human] quantitative hts reporter gene assay27,60 CAR/PXR

CLZD_ABCB1 ABCB1 - ATP-binding cassette, subfamily

B (MDR/TAP), member 1 [human]

gene expression assay in human

hepatocytes (24 and 48 h readouts)62
CAR

CLZD_ABCG2 ABCG2 - ATP-binding cassette, subfamily

G (WHITE), member 2 [human]

gene expression assay in human

hepatocytes (24 and 48 h readouts)62
CAR

CLZD_CYP2B6 CYP2B6 - cytochrome P450, family 2, subfamily B,

polypeptide 6 [human]

gene expression assay in human

hepatocytes (24 and 48 h readouts)62
CAR

CLZD_CYP2C9 CYP2C9 - cytochrome P450, family 2, subfamily C,

polypeptide 9 [human]

gene expression assay in human

hepatocytes (24 and 48 h readouts)62
CAR

CLZD_CYP2C19 CYP2C19 - cytochrome P450, family 2, subfamily C,

polypeptide 19 [human]

gene expression assay in human

hepatocytes (24 and 48 h readouts)62
CAR

CLZD_CYP3A4 CYP3A4 - cytochrome P450, family 3, subfamily A,

polypeptide 4 [human]

gene expression assay in human

hepatocytes (24 and 48 h readouts)62
PXR

CLZD_GSTA2 GSTA2 - glutathione S-transferase alpha [human] gene expression assay in human

hepatocytes (24 and 48 h readouts)62
PXR

CLZD_UGT1A1 UGT1A1 - UDP glucuronosyltransferase 1 family,

polypeptide A1 [human]

gene expression assay in human

hepatocytes (24 and 48 h readouts)62
CAR/PXR

CLZD_SLCO1B1 SLCO1B1 - solute carrier organic anion transporter

family, member 1B1 [human]

gene expression assay in human

hepatocytes (24 and 48 h readouts)62
PXR

CLZD_SULT2A1 SULT2A1 - sulfotransferase family, cytosolic, 2A,

dehydroepiandrosterone (DHEA)-preferring, member

1 [human]

gene expression assay in human

hepatocytes (24 and 48 h readouts)62
CAR/PXR

ATG_HNF4a_TRANS HNF4A - hepatocyte nuclear factor 4, cofactor for

CAR and PXR

quantitative hts reporter gene assay27,60 CAR/PXR

ATG_PBREM_CIS CAR and PXR response element quantitative hts reporter gene assay27,60 CAR/PXR
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number of data poor chemicals.) The traditional testing strategy
uses relatively high-dose animal tests one chemical at a time to
observe what toxic end points occur. These tests provide holistic
evidence of toxicity across many organs and over long time scales,
and are largely hypothesis free (or hypothesis generating). These
tests may then be followed up with more mechanistic studies to
understand the underlying basis of toxicity and to provide
information needed to better inform extrapolation from animal
to human effects and from high doses to typical low doses to
which humans will be exposed. With HTRA, we run hundreds to
thousands of chemicals in parallel, in human-based assays
corresponding to pathways for which there is previous evidence
of linkage with toxicity-related end points. Pathways are probed
one at a time, and an overall HTRA profile is built up from
multiple pathway-based tests.

The basic approach presented here can be extended in a number
of ways, some of which are described below. A recent commentary
by Crump and colleagues44 addressed some of these issues and
pointed out related challenges, in particular with estimating altering
concentrations, performing PK modeling, and treating uncertainty
and variability. One particular issue they raise is the danger of
making the model too complex in order to better mimic the in vivo
situation. We agree with this and emphasize that our goal is not to
replace current testing strategies, but instead to develop a new first
tier testing approach for data poor chemicals. By keeping the
framework relatively simple, the transparency of the approach is
facilitated. This is especially important so that all stakeholders can
evaluate the model. Extending this transparency, we believe that all
data and software used in HTRA should be well documented and
made public.

Defining biological pathways and linking them with adverse
effects is a key concept in the NRC Toxicity Testing in the 21st
Century report.10 The use of toxicity pathways has been widely
discussed over the past few years, yet they remain an ill-defined

concept. One issue is that biological pathways themselves are not
systematically defined, and a second is that there has not been a
concerted effort to organize information linking chemicals,
targets (genes, proteins), biological pathways, and their func-
tionally important modular components, key events, MOA, and
adverse effects. A database linking all of these types of informa-
tion together would allow data mining algorithms to find key
gene/protein networks whose perturbation would be a risk factor
for toxicity. The ToxCast in vitro toxicity testing data, publicly
available via ToxCastDB,43 is an important step in linking
chemicals to the perturbation of biological pathways.11,12 Several
other public databases also contain parts of the puzzle, including
the Comparative Toxicogenomics Database (CTD)45,46 and
PharmGKB,47 which link genes and chemicals; OMIM,48 which
links genes and disease; KEGG17,49 and Pathway Commons,18

which contain gene-pathway information; and the EPA Aggre-
gated Computational Toxicology Resource (ACToR),50,51

DSSTox,52 and ToxRefDB,42,43,53,54 which link chemicals and
adverse effects. An important piece which is lacking is a database
of chemicals and their toxicity MOA. EPA’s ToxCast program is
constructing a database and tools to link all of this data
together,12 but this effort will require help from a much broader
community.

One way to approach this problem is to decide when we can
equate in vitro activity with in vivo adversity. In some cases (which
we call Class 1), the link between in vitro activity and adversity is
clear (e.g., cholinesterase activity). There is a single target which, if
significantly perturbed, can lead directly to undesirable phenotypic
changes. Class 1 could be further subdivided. For instance, Class 1a
would be a pathway that is normally off and gets triggered by an
exogenous agent (e.g., genotoxicity); whereas a Class 1b pathway
would normally be active, but its level ismodulated by an exogenous
agent, and when that is beyond the realm of homeostasis, damage
occurs. Next is an intermediate case (Class 2), where there is an

Figure 3. Comparison of HTRA BPAD distributions with LEL and NEL values for liver hypertrophy from animal studies on the 14 conazole fungicides
in phase 1 of ToxCast. BPADs are calculated as described in the text. For each chemical, the black box gives the population-variability-derived (1%, 99%)
confidence intervals about the median BPAD. The whiskers indicate uncertainty-derived 95% confidence intervals about the extremes of the variability
confidence interval. The BPADL99 is indicated by a red circle; the LEL by a blue box; the NEL by a gray triangle; and the NEL/100 by a red triangle.
Estimated chronic exposure levels from food residues are indicated by vertical red lines. All values are in mg/kg/day.
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association (statistical or otherwise) between perturbations of a
pathway and some disease outcome, but the details and causal
linkage are not clear (e.g., PPARpathway perturbations and potential
linkage with human disease). Finally, there are many other targets
and pathways (Class 3), for which no clear linkage between in vitro
activity and adverse In Vivo outcomes is currently known.

Before we can make widespread use of this type of approach,
there are a number of challenges that need to be addressed, five of
which are discussed below.
Estimating Concentrations at Which Pathways Are Per-

turbed. We use the results of in vitro assays to determine if a
chemical perturbs a pathway and if so, over what concentration
range. Because pathways form complex networks that can
contain feed-forward and feedback loops, we need to probe the
pathway at multiple points because any single assay may miss an
important effect. In addition, all assay technologies yield some
fraction of false positives and negatives so that it is best to probe
pathways using assays from a variety of technologies. These and
other factors need to be considered in order to develop robust
criteria for determining when a pathway of interest is significantly
perturbed, and determining appropriate variability and uncer-
tainty metrics. Our CAR/PXR example is one case where it is
possible to refine the estimate of the BPAC by integrating over all
of the assays that map to the pathway. A recent publication
describes one approach for integrating several nuclear receptor
pathways associated with rodent liver tumors.19 We are investi-
gating a number of other ways to do this, using statistical,
Bayesian methods, pathway-level modeling, and agent-based cell
simulations in “virtual tissues” in our Virtual Liver and Virtual
Embryo projects. Another issue is that some classes of environ-
mental chemicals are not currently amenable to HTS analysis, in
particular, volatile chemicals and small molecular weight chemi-
cals that are not expected to directly interact with cellular
macromolecules in a pharmacologically relevant fashion.
PKModeling of in Vitro Concentration to In VivoDose.We

described one method for estimating the external dose that is
required to yield a specified plasma concentration of a chemical,
but there are other PK modeling approaches that could be used.
Special cases that need to be dealt with include chemicals that
bioaccumulate to a significant extent; chemicals that act acutely
or through effects at peak concentrations; chemicals that cause
toxicity in compartments where there is no full partitioning with
plasma (fetus, brain, testis, and milk); analysis of chemicals for
which active transport is important; and chemicals for which
there is significant nonhepatic metabolism. We incorporate
population variability into our current model in an approximate
way, but uncertainty is not well captured.
Biotransformation and Other Properties in Vitro Systems

Lack.Amajor criticism of using in vitro assays to predict chemical
toxicity is that cells are not tissues, organs or people, i.e. they lack
many of the essential interactions that are required to trigger key
events in anMOA, or which could prevent key events from being
triggered through adaptive responses. Most current HTS assays
do not include the possibility for biotransformation, which
means that we can make statements about the activity of a parent
molecule, but not any potentially more or less toxic metabolites.
Technologies are being developed to address this issue55 but are
not currently robust enough to yield relevant results. Most assays
do not include multiple cell types and therefore do not incorpo-
rate complete paracrine signaling pathways (e.g., those that are
needed for the development of an immune response). There are
a variety of emergent properties that one will only see with

mixtures of cell types, appropriate extracellular matrices, and
three-dimensional geometries. Many cell-based assays are carried
out in immortalized cell lines that have become highly adapted to
growth in vitro and no longer represent their tissue of origin
(although use of primary cells for in vitro assays is being
increasingly used). Cell-based assays are short-term (hours to
days) and cannot be used to directly address the effect of chronic
exposures, for instance through accumulation of mutations. All of
these factors lead to uncertainty in our BPAD estimates and need
to be accounted for in some way.
Relevance of in VitroActivity to In Vivo Toxicity.There are a

variety of issues related to the extrapolation from in vitro to
in vivo activity and in particular, to adversity. These include issues
related to chronic exposures (months or years) in animal studies
as opposed to the hours or days for exposure in the in vitro
systems. Another has to do with life-stage sensitivity. A related set
of issues have to do with adaptive responses which may occur in
the intact animal and over long times, but which are not
manifested in a short-time cell assay. We cannot answer all of
these here, but restate the basic premise of using in vitro assays in
toxicology, namely that for certain disease types, direct perturba-
tion of a target or pathway is a necessary condition for the disease
to occur. This is the basis of the notion that there are key
molecular initiating events in toxicity modes of action.7 Because
these molecular actions are necessary, but not sufficient, in vitro
assays can be overly sensitive in predicting whether a chemical
can lead to adversity, but can give specific information on the
modes of action that could be driven by chemical exposure. In the
ToxCast program, we are using statistical methods to link path-
way-level perturbations with adverse outcomes. This is done by
using in vitro and in vivo toxicity data on common sets of
chemicals in the ToxCast12 and ToxRefDB42,53,54 data sets,
and finding statistical associations. We then follow-up on strong
associations by building a case for biological plausibility by using
external validation data (chemicals not used in the initial
association analysis) and detailed mechanistic information from
the literature. In the case that multiple pathways linked to a given
adverse effect are perturbed by a chemical (generating multiple
BPADs), we would use the lowest one as the starting point for
HTRA, in the same way that the most sensitive adverse end point
seen in an animal study is often used in setting a LOAEL.
Dealing with Uncertainties and Variability. We have al-

ready mentioned the need to better estimate levels of uncertainty
and variability in the modeled PD and PK parameter values. Of
note are recent papers that measure the population variability of
response to chemicals in vitro using a collection of genetically
characterized mouse strains and human cell lines.20,56 There is
additional uncertainty involved in the models themselves that
should be considered and a need to optimize the way the separate
uncertainty and variability distributions are integrated. The work
of Rusyn and co-workers is an example of how one can use in vitro
data derived from testing the HapMap cell lines to assess PD
population variability. One could use their approach to examine
variability, in this case genetic, at the pathway level.20

To conclude, our initial goal is to develop a tool for performing
rapid evaluations of the potential hazard for data poor chemicals
and for setting priorities among those for more detailed testing.
One can envision variants of this approach that make use of
chemical structure combined with in vitro data to estimate risk
across classes of chemicals in the same way that categories are
currently evaluated. It should also be possible to formulate
methods to make first-order estimates of BPADs for mixtures.
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This HTRA approach lends itself to a tiered testing approach
which would not go straight from a finding of high predicted
hazard in HTRA to a recommendation of extensive animal
testing. Furthermore, this HTRA approach is consistent with a
new EPA program advancing the next generation of risk assess-
ment (NexGen) and proposing a tiered approach to risk
assessments.57 In one possible tiered testing approach, a large
set of chemicals would be analyzed using some variant of BPAD-
HTRA. Those with the lowest BPAD values, and which therefore
potentially pose a risk at the lowest exposures, would go into a
second, still in vitro tier. The second tier would first include the
use of more complex and in depth in vitro analysis, using
additional assays in the implicated biological pathways, different
cell types, and possibly model organism tests. Any toxicity-
related data from structural analogues with of the Tier 1
chemicals should also be included. The second tier should also
estimate potential exposures. If the combined, Tier 1-Tier 2
BPADL approaches exposure levels likely to be encountered in
the environment, then the chemical would become a candidate
for even more extensive testing and modeling using in silico,
in vitro, and in vivo approaches.
An alternative track to be followed for chemicals with high

apparent risk in Tier 1,2 is to consider replacements. This would
follow the green chemistry/sustainability approaches being de-
veloped by the EPA.58,59 If there is a functionally equivalent
chemical (from an end-use standpoint) with a significantly
greater BPAD, and no significant sustainability liabilities, then
this analysis could help guide a replacement strategy.
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Abstract

Background: With increasing knowledge about the potential mechanisms underlying cellular functions, it is
becoming feasible to predict the response of biological systems to genetic and environmental perturbations. Due
to the lack of homogeneity in living tissues it is difficult to estimate the physiological effect of chemicals, including
potential toxicity. Here we investigate a biologically motivated model for estimating tissue level responses by
aggregating the behavior of a cell population. We assume that the molecular state of individual cells is
independently governed by discrete non-deterministic signaling mechanisms. This results in noisy but highly
reproducible aggregate level responses that are consistent with experimental data.

Results: We developed an asynchronous threshold Boolean network simulation algorithm to model signal
transduction in a single cell, and then used an ensemble of these models to estimate the aggregate response
across a cell population. Using published data, we derived a putative crosstalk network involving growth factors
and cytokines - i.e., Epidermal Growth Factor, Insulin, Insulin like Growth Factor Type 1, and Tumor Necrosis Factor
a - to describe early signaling events in cell proliferation signal transduction. Reproducibility of the modeling
technique across ensembles of Boolean networks representing cell populations is investigated. Furthermore, we
compare our simulation results to experimental observations of hepatocytes reported in the literature.

Conclusion: A systematic analysis of the results following differential stimulation of this model by growth factors
and cytokines suggests that: (a) using Boolean network ensembles with asynchronous updating provides
biologically plausible noisy individual cellular responses with reproducible mean behavior for large cell populations,
and (b) with sufficient data our model can estimate the response to different concentrations of extracellular
ligands. Our results suggest that this approach is both quantitative, allowing statistical verification and calibration,
and extensible, allowing modification and revision as guided by experimental evidence. The simulation
methodology is part of the US EPA Virtual Liver, which is investigating the effects of everyday contaminants on
living tissues. Future models will incorporate additional crosstalk surrounding proliferation as well as the putative
effects of xenobiotics on these signaling cascades within hepatocytes.

Background
Motivation
Thousands of chemicals are used in commerce and eval-
uating their public health risk remains a challenging
problem [1,2]. Much of our knowledge about mechan-
isms of toxicity is based on evidence from in vivo animal
studies and in vitro experiments, where we can begin to

unravel some of the molecular signaling and transcrip-
tional changes induced via chemical perturbation; how-
ever, there are three main issues in translating these
findings to humans. First, it is often impractical to
design experiments with sufficient power to detect the
subtle effects of very low environmentally relevant expo-
sures [3]. Hence most observations about chemical
effects are at relatively high concentrations that cannot
be easily used to quantify the risk of long-term and low-
dose exposure to complex mixtures of chemicals [4].
Second, since the molecular response to chemicals is
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not always conserved between species [5], the effects
observed in rodents cannot be directly extrapolated from
rodents to humans without additional mechanistic
insight [6]. Third, toxicity is a tissue level phenomenon
arising from the behaviors of heterogeneous cell popula-
tions. Understanding the complex signaling processes
between these different cell types is crucial in determin-
ing toxicity potential. We are building a cell-based tissue
model to estimate the quantitative population-level
effects of chemical exposures [7,8]. Here we describe an
asynchronous threshold Boolean network (BN) approach
to model signal transduction in individual cells and to
estimate tissue level responses using an ensemble of BNs.

Boolean Networks
A BN describes a signaling network as a digital circuit in
which logical elements (proteins or genes) are either
‘ON’ or ‘OFF’. The temporal evolution of the signaling
network is calculated using a set of Boolean functions
(AND, OR, NOT) to model regulatory interactions.
Since they offer a biologically relevant and computation-
ally efficient formalism for analyzing the relationship
between molecular network topology and function, BNs
have been used extensively to simulate the behavior of
cells based on their network activity. Genetic regulatory
networks have been particularly amenable to this form-
alism due to the binary nature of gene activation [9].
The availability of large-scale transcriptional profiles
spurred more recent applications of deterministic [10]
and probabilistic [11] BNs for reconstructing and simu-
lating genetic regulatory networks. Additionally, BNs
have been used for modeling the cell cycle [12-15]; cell
proliferation [16-18]; apoptosis [19]; and cancer [20].
BNs can be used to represent the binary activity of
molecular species across cell populations (in vitro and
in vivo). One of the limitations of BNs is that they can-
not readily estimate continuous functional responses, i.
e., quantitative dose-response, which are fundamentally
important in pharmacology and toxicology.

Cancer Pathways
Liver cancer is a frequent outcome in testing the long-
term effects of chemicals in rodents [21] and often con-
sidered in regulatory decisions [22]. Since the mechan-
isms of carcinogenesis are poorly understood, it is
difficult to translate chemical effects from rodents to
humans. Cancer is believed to arise due to a breakdown
of the homeostatic processes that maintain balance
between cell death and division [23]. Some chemicals
(called mutagens) can alter cell phenotypes by damaging
DNA resulting in harmful mutations that can spur the
activation of oncogenes. Nongenotoxic carcinogens, on
the other hand, can act via insidious mechanisms that
suppress apoptosis or to stimulate cell proliferation.

It has been suggested that nongenotoxic carcinogens
may increase hepatocyte proliferation by perturbing the
crosstalk network regulated by growth factors and cyto-
kines [24]. Crosstalk refers to the sequence of protein
regulation activated by any one growth factor or cyto-
kine ligand overlapping with the sequences of other
ligands, which allows for complex behavior. The pre-
sence of crosstalk allows a cell to behave as a multi-
plexer, integrating multiple signals to select from many
possible outcomes, such as cell cycle initiation and
progression.
A number of computational models have been pro-

posed for simulating cell proliferation [12-18,25], how-
ever, BNs have not been extensively used in modeling
chemical induced toxicity or in hepatic biology. In order
for a chemical to produce a chronic or acute tissue level
effect, there must be some level of perturbed protein
activity in the signal transduction of one or more cells.
We are evaluating BNs for modeling early molecular sig-
naling events in hepatocytes that lead to proliferative
changes, which are key events in carcinogenesis. Hence,
our initial objective is to model some of the normal
cues, i.e. homeostatic processes, that can stimulate
healthy, quiescent hepatocytes (G0) into entering the
cell cycle (G1).
Technological advancements such as flow cytometry

and high content screening have made it possible to
measure protein levels with single cell resolution.
Experimental observations suggest that protein levels
within cells may exhibit a switch-like ‘all’ or ‘nothing’
(’ON’ or ‘OFF’) response - for example, p53 response to
DNA damage [26,27], TNFa stimulation [28,29], MAPK
signaling events [30], and drug treatment [31]. These
types of observations serve as a foundation for the
hypothesis that a Boolean representation is sufficient for
describing the molecular multiplicities of individual cells
in a simulation framework. Next, we assume that the
aggregate activity of molecules across a population of
hundreds, thousands or millions of cells can be used to
estimate tissue level responses.

Key Contributions
Our work is based on two extensions of asynchronous
BNs, which employ a non-deterministic updating
scheme. First, we use threshold functions to calculate
the activation of each protein in our model. This techni-
que has been applied to other systems [32,33], and it
provides a simple representation and adjustable para-
meter for investigating the interactions between signal-
ing molecules. Second, we model an ensemble of BNs to
simulate the quantitative responses of thousands of
cells. As such, we can estimate dose dependent
responses of cell populations. We defined the topology
of the BN semi-automatically using structured
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information about canonical signaling network from a
public pathway repository. Here we describe our initial
results on the reproducibility of asynchronous threshold
Boolean network ensembles and their potential utility
for estimating quantitative time- and concentration-
dependent biological responses.

Results
Cell Signaling Network Construction
We used the Science Signaling database (or STKE)
[34-37] to construct the protein signaling network. The
canonical pathways in the network include: Epidermal
Growth Factor (EGF) signaling, Insulin (INS) signaling,
Insulin like Growth Factor type 1 (IGF-1) signaling, and
Tumor Necrosis Factor alpha (TNFa) signaling. The
number of proteins and molecular interactions in each
of these pathways are summarized in Table 1. We per-
formed several steps to systematically build a crosstalk
network from these canonical pathways. First, we com-
bined all of the proteins and interactions from the four
pathways into one integrated molecular interaction net-
work. After filtering for uniqueness among proteins and
interactions, we produced a non-redundant crosstalk
network with 102 proteins and 150 interactions. Second,
we excluded the proteins and interactions that did not
lead to c-Jun and c-Fos activity, which are important
components in the formation of the activator protein 1
(AP-1) transcription factor complex.
In our initial model, we focused on early signaling

events in cell proliferation and did not consider gene
expression changes which lead to mitosis. Hence, we
assumed that AP-1 formation, encoded as a c-Jun/c-Fos
dimer, is an early marker of cell cycle progression. This
allowed us to further simplify the network by removing
all proteins and interactions that are not on a pathway
from one of the four receptors to either c-Jun or c-Fos.
Furthermore, we manually removed an additional six
proteins with in degree less than 2. We did, however,

leave some proteins with in degree less than two: the
extracellular ligands and their receptors, as well as Rat
Sarcoma (RAS), ribosomal s6 kinase (RSK), v-erb-b2 ery-
throblastic leukemia viral oncogene homolog 2 (ErbB2)
and homolog 3 (ErbB3), Rho GTPase (RHO), p55 gamma
(p55g), Vav proto-oncogene (VAV), c-Jun, mitogen- and
stress-activated protein kinase 2 (MSK2), mitogen acti-
vated protein kinase kinase (MAPKK), phosphoinositide-
dependent kinase 1 (PDK1), and 1,2-Diacylglycerol
(DAG). These molecules are implicated in the EGF sig-
naling pathway, which was simulated and compared to in
vitro data, except p55g which is involved INS pathway.
Finally, we included in the model a molecular species
representing AP-1 transcription factor complex forma-
tion, by adding two additional interactions involving the
c-Jun and c-Fos dimerization. The final biochemical
interaction network contained 46 proteins and 77 inter-
actions. The protein signaling network in Figure 1 was
drawn with Cytoscape [38], an open source tool conveni-
ent for visualizing large scale networks.

Simulating individual cellular responses
We used the biochemical interaction network in Figure
1 to describe the response of an individual hepatocyte
to the growth factors (EGF, IGF-1 and INS) and the
inflammatory cytokine (TNFa). In order to simulate the
dynamics of signal transduction, we translated the bio-
chemical interaction network into a threshold BN. As in
a traditional BN approach, we assumed that: (a) proteins
in the network are described by one of two states, active
(ON) or inactive (OFF) and, (b) interactions result in
either the activation or inhibition of output proteins by
input proteins. Our approach deviates from traditional
BNs in three important ways. First, we replace the logi-
cal operators with an integer summation function that
incorporates an activation threshold. This allows us to
adjust the activating potential of each protein in the net-
work. Second, we employ a nondeterministic, asynchro-
nous updating scheme (see Methods), which can
simulate biological ‘noise’ observed in protein signaling
cascades. Third, we provide a method for using Hill
functions for calibrating the probability of activation for
proteins in the network, which can be calibrated with
concentration-response data.
In our methodology, the signaling network in a single

cell is represented as one asynchronous threshold BN.
Figure 2(A) illustrates the model of an individual cell as
a BN and its discrete dynamic response following treat-
ment with INS. The BN is constructed from the model
shown in Figure 1 (see Methods). The temporal evolu-
tion of protein activity in one BN is visualized as a heat-
map in Figure 2(A) (right panel). The abscissa of the
heatmap shows the simulation time steps (denoted as τ).
At τ = 0 the cell was ‘treated’ with INS by switching the

Table 1 Pathway Information for Building Crosstalk
Model

Pathway Proteins Interactions

Epidermal Growth Factor (EGF) 49 66

Insulin-like Growth Factor Type 1 (IGF-1) 8 7

Tumor Necrosis Factor alpha (TNFa) 24 37

Insulin (INS) 50 65

Merge Four Pathways 102 150

Subgraph: all paths from receptors to c-Jun
or c-Fos

55 89

Final network: remove with in degree = 0 46 77

We combined four pathways from the Science Signaling Database (STKE). The
first four rows of the table show the numbers of proteins and interactions in
each pathway. The last three rows show the numbers of proteins and
interactions as we merge and simplify the network.
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ligand from OFF to ON. Each column in the heatmap
shows the dynamic changes in the state of proteins
(given in the ordinate) at time steps following INS treat-
ment. The simulation continues until (τ = 369) when it
reaches a steady state, which involves the activation of
the AP-1 transcription factor complex. The discrete pro-
file of each protein shows the asynchronous dynamics of
signal transduction through the insulin receptor (IR) in
our crosstalk model (shown in Figure 1). In other
words, Figure 2a depicts a putative sequence of signaling
events that could occur in a single hepatocyte after insu-
lin stimulation. This result is qualitatively concordant
with in vitro observations on AP-1 formation following
insulin treatment [39]. Since the output of a single BN
is binary, however, it is difficult to evaluate the activa-
tion of AP-1 to different concentrations of INS or other
ligands for a single cell.

Simulating cell population responses
In order to estimate the quantitative response to treat-
ments, we assume that cell populations can be modeled

as an ensemble of asynchronous BNs. This allows us to
estimate the dynamic response across a simulated biolo-
gical sample as the aggregate activity of each protein
across thousands of BNs (see Methods). Hence, an
ensemble of BNs can be considered a simulated ‘repli-
cate’ as illustrated in Figure 2(B). We investigated the
response of an ensemble of 1000 asynchronous BNs to
treatment with INS (including the BN depicted in Figure
2(A) until all BNs reached a steady state. The resulting
aggregate activity profiles of IRS, c-Jun, c-Fos, and
ERK1/2 are shown in Figure 2b (right panel). These
trends captured by the simulated BN ensembles appear
similar to experimental data from molecular assays per-
formed on in vivo and in vitro replicates (which contain
a large number of cells). While this requires additional
quantitative and mechanistic evaluation, it is important
to note that such continuous protein activity profiles
cannot be generated using traditional BNs. Before
further evaluation with experimental data we analyzed
the reproducibility of our approach with respect to the
network depicted in Figure 1.

Figure 1 Putative Crosstalk Network for Simulation. The network shows signaling interactions due to extracellular ligands including: EGF, IGF-
1, INS, and TNFa. The pathways share common adapter proteins (e.g., SHC and GRB2) as well as downstream signals (ERK1/2 and c-Fos/c-Jun
activation).
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Reproducibility of Protein Activity Profiles
We systematically evaluated the reproducibility of the
asynchronous BN ensembles of the model shown in Fig-
ure 1 by analyzing their response to different treatment
conditions. For each treatment condition, we simulated
100 replicates with 1000 cells per replicate (i.e., 100,000
cells per treatment condition). Each treatment condition
is defined by combinatorial stimulation of the four
extracellular ligand cues: (i) EGF, TNFa, IGF-1, and INS
combined; (ii) TNFa and INS; (iii) TNFa and IGF-1;
(iv) TNFa and EGF; (v) EGF only; (vi) IGF-1 only; (vii)
INS only; (viii) TNFa only; (ix) and no active extracellu-
lar ligands (the control group). We assumed that each
cell is exposed to enough ligand in order to activate a
sufficient number of receptors for signal propagation.
Hence, for each of the simulated treatment conditions
100% of the cells receive stimulation. Moreover, follow-
ing the logic of Boolean abstraction of protein concen-
tration, we assumed that the ligand is switched ‘ON’ in
every cell upon initialization.

Figure 3(A) shows the dynamic responses of the simu-
lated replicates in the treatment group (i), the combined
stimulation of all extracellular ligands. Each of the 12
plots shows the activity profile for one protein from a
random sampling of eight replicates. Even though the
activity profile of each replicate is noisy, the overall
trend across the eight replicates in the (i) treatment
group appears to be reproducible. To analyze this
further, we calculated the coefficient of variation (CV)
for every treatment group (see Methods). These results
are summarized in the heatmap in Figure 4(A). The
rows of the heatmap correspond to the treatment
groups and the columns to proteins in our model. Each
cell shows the normalized CV across all proteins and
treatment where increasing color saturation signifies
decreasing reproducibility. For instance, the simulated
treatment with all ligands produces highly reproducible
changes in steady state protein activities, whereas there
is considerable variation in the absence of any treat-
ment. Overall, the protein activation across replicates is

Figure 2 Overview of Boolean Network Ensembles. (A) A single synthetic cell as a Boolean network (left) along with discrete dynamic
response of proteins in one simulated cell to INS treatment (right). (B) The aggregate activity profiles of four proteins (right) across 1000
simulated cells (a replicate) in response to INS treatment. The abscissa shows time steps and the simulation terminates when all cells have
reached steady state.
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generally reproducible and well within the range of
actual experiments [40].
In Figure 4(B), we show the distribution of the CV for

the steady state protein activities across all treatment
groups as a box and whisker plot. Similarly, Figure 4(C)
shows the reproducibility across the proteins for each
treatment group. Whereas the heatmap of Figure 4(A)
shows information on the CV per protein per treatment
condition, the plots in Figures 4(B) and 4(C) visualize
the overall behavior of the model across each treatment
condition and protein, respectively. We found that treat-
ment conditions (iii), (vi), (viii) and (ix) - IGF-1 and
TNFa, IGF-1 only, TNFa only, and the untreated con-
trol group - were the least reproducible in comparison
to all other treatment conditions. For the control group,
a possible explanation for the reproducibility result is
that the median activity of proteins in the control group
is very low. As a result, signaling molecules other than
ligands and receptors have a very low probability of
being active at initialization, in order to simulate a back-
ground level of hepatocyte proliferation. This very low
mean value has the effect of inflating the CV. In the
case of IGF-1 or TNFa, the low reproducibility could be
due to the inclusion of fewer reactions than the two
other growth factors (EGF and INS). Hence, stimulating

with IGF-1 or TNFa may not sufficiently stimulate the
individual BNs for the entire ensemble to synchronize in
response to treatment. Similar logic governs the model
reproducibility following combined stimulation with
IGF-1 and TNFa. These results also help to illuminate
the sensitivity of our simulation approach to the topol-
ogy of the signaling network. Importantly, the key end-
point of the model, AP-1 formation, is very reproducible
across all treatment conditions.

Comparison with Experimental Data
We used experimental data on primary hepatocytes in
culture [41] for a preliminary evaluation of our simula-
tion approach and putative crosstalk model. In this
experiment, rat primary hepatocytes were treated with
varying concentrations of EGF and/or TNFa, and then
the proportion of cells entering S phase (DNA Synthesis)
was measured using Bromodeoxyuridine (5’-bromo-2’-
deoxyuridine, BrdU). Although we do not explicitly
model S phase in our network, the formation of the AP-1
transcription factor complex is believed to precede S
phase in cell cycle progression. Hence, we assumed the
formation of AP-1 to be a potential surrogate of S phase
and, therefore, correlated with BrdU incorporation. We
adjusted the probabilities of activation for proteins in our
network in order to closely approximate the levels of
BrdU incorporation in the absence of any treatment
(control group). Further details on the calibration of the
model are described in the Methods section.
We simulated the effects of different treatments on

AP-1 formation.
Figure 5 shows the results of simulating 10 replicates for

each of the treatment conditions including: combined
EGF and TNFa, EGF only and TNFa only. The graphs in
Figure 5 show the predicted activity profile of the AP-1
transcription factor complex across simulation time steps
with the probability of activation for the treatment mole-
cules set to 100%. Next, we simulated the concentration
dependent effects of EGF stimulation. The steady state
levels of AP-1 activity are shown in Figure 6 with the
experimental data on BrdU incorporation for different
treatment conditions. For each treatment condition, we
simulated 100 replicates with 1000 cells per replicate. The
plot in Figure 6 has a solid black line representing the
mean of the fold change of AP-1 activity relative to mean
of the control activity (at steady state) across all replicates.
Based on the replicate data, we also report the 95% confi-
dence interval for each plot – the shaded blue region. The
experimental data from [41] on BrdU incorporation is
shown as points with the standard deviation. The simula-
tion is able to reproduce the experimentally observed
trends in DNA synthesis. As EGF is known to activate the
AP-1 transcription factor complex (as a c-Jun/c-Fos
dimer) in hepatocytes and other cell types [42], this result

Figure 3 Simulated Replicate Protein Activity Profiles. The
protein activity profiles after treatment with all ligands for 1000
simulated cells. The graphs show the time course response of a
subset of proteins in the model including: (A) receptor tyrosine
kinases, (B) select intermediate signaling proteins, and (C) select
transcription factor proteins including c-Fos and c-Jun. For instance,
EGFR shows an initial increase in activity followed by inactivation
due to feedback inhibition, which is consistent with our knowledge
of receptor internalization and ubiquitination. We have not included
similar feedback for the other receptor in the current model.
Similarly, IRS is a hub signaling protein with a number of potential
inhibitors and some of these are represented in our model. The
activation of the MAPKs (ERK1/2) and transcription factors (AKT, c-
Fos, c-Jun) in our simulation highlights the putative signaling
cascade responsible for activating immediate early genes, which is a
key step in cell cycle progression into S phase.
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is consistent with the literature. Finally, the model did not
predict the synergistic effect of EGF and TNFa stimulation
on S phase. We believe this suggests mechanistic limita-
tions in our crosstalk model that could be improved by
incorporating additional mechanistic information about
the downstream interactions between TNFa and EGF
pathways.

Discussion
BNs have been used extensively to model the dynamics
of molecular signaling and genetic regulatory networks.

Because they require the discretization of molecular
activity levels, however, a BN cannot be readily used to
model the continuous concentration- and time-depen-
dent effects of treatments. To address this issue we
extended traditional BNs in three ways. First, we model
the molecular response of an individual cell using a BN.
Hence, we assumed that the average activity of signaling
molecules in individual cells exhibits a switch-like (ON
or OFF) response. Although this may not always be the
case, we believe it is more biologically plausible than a
binary representation of tissue level molecular activities.

Figure 4 Reproducibility of Protein Activities Across Simulated Replicates. (A) The heatmap shows the coefficient of variation for protein
activity (columns) following different treatments (rows). The color intensity increases with decreasing reproducibility. The nine treatments shown
in the rows are (i) EGF, TNFa, IGF-1, and INS combined; (ii) TNFa and INS; (iii) TNFa and IGF-1; (iv) TNFa and EGF; (v) EGF only; (vi) IGF-1 only;
(vii) INS only; (viii) TNFa only; (ix) and no active extracellular ligands (Control). Each cell in the heatmap represents the coefficient of variation for
the activity of one protein across 100 replicates with 1000 cells/replicate (a total of 100,000 Boolean network simulations). (B) The distribution of
CV across each treatment condition. (C) The distribution of CV across each protein.
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Second, we assumed that cellular response to stimula-
tion is nondeterministic. It has been suggested synchro-
nous updating schemes for simulating BNs can produce
spurious attractors that disappear in the presence of
noise [43,44]. An asynchronous updating scheme, on the

other hand, allows for variability (or noise) in cellular
responses: two identical cells with the same initial con-
figurations respond differentially to the same stimulus
over time. Although asynchronous updating is not new
in BNs [44], we define a probability of activation for
each molecular species that is amenable to calibration
and evaluation using experimental data. Third, we simu-
late an ensemble of asynchronous BNs to estimate the
aggregate activity of each molecular species across cell
populations. Our results show that this approach pro-
duces continuous responses similar to experimental
observations from tissues. We believe this opens up new
possibilities for estimating quantitative dose- and time-
dependent responses in toxicology and in disease pro-
gression using knowledge of molecular mechanisms.
For this work, we used this simulation methodology to

analyze the dynamics of a specific biochemical interac-
tion network, which was constructed to investigate early
molecular events surrounding hepatocellular prolifera-
tion. This is important because sustained cell prolifera-
tion is one of the key events in the progression of liver
cancer. We find that (a) our extension of BNs yields
highly reproducible results that have variability conso-
nant with biological data and (b) our pathway-driven
preliminary cytokine and growth factor protein signaling
network is concordant with experimental observations
on DNA synthesis in hepatocytes.
We investigated the effects of protein deletion from

the network. In Additional file 1, we show a heatmap of
these results. From this analysis, we believe our network
is robust to the deletion of single proteins. Additionally,
this information helps illustrate important signaling
nodes in the network. For example, ERK1/2 and JNK
appear to play important roles, since the removal of
these changes the steady state values of other signaling
molecules. To our surprise, the removal of IRS activity
did not have a large effect on the signaling processes
relative to other experimental conditions, even though
the signaling molecule has a high connectivity in the
graph.
A number of formalisms have been used to model the

dynamics of eukaryotic cell cycle initiation/progression.
Tyson and coauthors used ordinary differential equa-
tions (ODEs) to describe key cell division in frog oocytes
[45]. Zielinski and colleagues used fuzzy Boolean logic
to simulate receptor mediated crosstalk preceding cell
proliferation in SKOV3 human epithelial cell line [46].
Similar fuzzy models have been proposed by others [47].
One advantage common to both techniques - i.e., ODEs
and fuzzy logic - is that they can represent continuous
or multivalued treatment concentrations. While these
methods are powerful, they predict the population beha-
vior of molecular species without emphasizing individual
cellular protein activity. Our objective is to model the

Figure 5 AP-1 Activity Response Profiles Across Simulated
Replicates to Different Treatment Conditions. Each replicate line
represents the activity of AP-1 across 1000 simulated cells. There are
three different treatment conditions: (A) EGF only, (B) TNFa only or
(C) EGF and TNFa.

Figure 6 Quantitative Comparison Between Simulation and
Experimental Results. The quantitative comparison of simulated
concentration response data with experimental data on EGF. The
solid line represents the mean steady state fold change of AP-1
activity (relative to control) across 100 replicates with 1000 cells per
replicate, simulated over a range of values from 0 to 25 ng/ml EGF.
The 95% confidence interval across replicates is in blue. The
experimental results of BrdU incorporation are plotted with standard
deviation as points.
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heterogeneous response of cell populations in order to
estimate histological effects due to different treatments,
which necessitates a modeling paradigm with individual
cell clarity.
In order to help unravel the mechanisms of toxicity,

we are compelled to investigate a simulation framework
with a strong emphasis on network topology and
reduced parameter space. ODE-based methods involve
rate constants which are often difficult to quantify. Test-
ing perturbations to systems of ODEs is not always
straightforward with limited data. With BN dynamics,
we lose some resolution of time but significantly reduce
the number of parameters. We believe our technique is
amenable to high throughput modeling of perturbations
over a diverse chemical landscape, where the calibration
of parameters can be limited due to scarce data on large
numbers of environmental chemicals. We hope the
modeling framework proposed will be useful in testing
chemical perturbations from HTS data to generalized
networks on signaling events assessed at the tissue level.
A comparable modeling framework was proposed [18]

which also considered populations of networks. There
are several differences in the modeling approaches. First,
we use a binary representation of protein activity in a
single cell while [18] used a ternary description to cap-
ture the level of protein expression relative to a popula-
tion average under normal conditions. An ON/OFF
representation of protein activity may not always be suf-
ficient (e.g., caspase 8 activity) but it is generally consis-
tent with single cell level observations (e.g. flow
cytometry or high-content screening). The ternary
representation used by [18] is based on western blot
data on individual proteins with a comparison between
treatment and control groups. While a mathematical
transformation could relate one approach to another,
the two techniques use a different abstraction for
describing single cell biology.
Second, there is a subtle distinction between the

abstraction of population level behavior between the
two approaches. The authors of [18] calculated the aver-
age behavior of proteins across a set of BN whereas we
use summation. This allows us to compare dose-depen-
dent differences in potency and efficacy between treat-
ments. Furthermore, it also enables the quantitative
evaluation of population level “up-regulation” or “down-
regulation” between treatment and control groups with-
out using a ternary representation.
Third, the authors of [18] evaluate the effects of

knockouts by maintaining some of the proteins in at
‘control’ or ‘below control’. On the other hand, we con-
sider the effects of dose-dependent perturbations in pro-
tein activities (e.g. extracellular ligands or intracellular
signaling molecules) by using Hill functions to define
probability of activation for certain protein(s) across the

cell population. To our knowledge, no one has used this
approach to incorporate concentration-response data in
a BN modeling framework. The ability to reproduce and
predict concentration-response data is essential for toxi-
cological applications, bridging data from toxicity studies
with systems biology to anticipate adverse outcomes.
We did not consider edge weights as an adjustable

parameter for the model. All edges are weighted equally
(set to 1.0). Modifying the edge weights would change
the dynamics of the simulation. For example, in [48],
the authors use a sigmoid function of the weighted sum
to determine the probability per node in the propagation
of the signal. Their technique offers a unique method
for additional stochasticity to a threshold modeling fra-
mework. Modifying edge weights would require careful
consideration of the updating scheme (describe in Meth-
ods), which would be affected if the edge weights were
allowed to vary throughout simulation.
The thresholds described in the methods section pro-

vide a tunable parameter for investigating the signaling
interactions. Each protein has a threshold value which
defines the biochemical interaction surrounding its
activity - that is, the logic underlying the interaction of
the activating and inhibiting molecules. To illustrate the
effects of modifying the threshold of a molecule in a
network, we provide Figure 7: a truth table for variations
on threshold values. The truth table displays the differ-
ences in the activity of a molecule, P, after one update
(time step), as a function of the input value - the sum of
the states of the inhibiting proteins subtracted from the
sum of the states of the activating proteins - and the
threshold value. Setting the threshold to an integer
value allows for the molecule to maintain its current
state whereas, following the discussion of edge weights,
setting the threshold to a noninteger value will force a
decisions for a (new) value of 0 or 1.
For the crosstalk network model investigated in this

paper, randomly increasing the threshold of a single
molecule from an integer to a noninteger value has little
effect on the steady state levels of AP-1 (results not
shown). These changes can effect the activity profile of
the proteins over time - allowing sustained (threshold =
0.0) or transient activity (0.0 < threshold < 1.0) after acti-
vation, or recapitulating protein lability and potential loss
of signal. For example,in the case of EGF stimulation, the
receptor has negative feedback encoded in the model.
Therefore, increasing the thresholds of proteins down-
stream of EGFR to noninteger values affects the overall
activity profiles of the molecules across time (results not
shown). Increasing thresholds by integer values can have
the same effect as node deletion when the number of
activating (input) molecules is equal to the threshold. In
general, increasing the threshold increases the required
input value for signal propagation.
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There are some important limitations in our approach.
First, the model presented in this work did not consider
any communication between the cells (autocrine or
paracrine signals), or between the cells and the extracel-
lular matrix. Contact inhibition and matrix attachment,
and cell communication are important factors in cell
cycle progression and we are considering their role in a
cell-based model of liver tissues [7]. Second, we also
recognize that the biochemical interaction network we
used in this work is incomplete. Our primary goal was
to develop a flexible modeling approach that can incre-
mentally accommodate additional mechanistic informa-
tion as it becomes available.
The BN used in this work was constructed semi-auto-

matically from a molecular network topology, which was
defined with little manual intervention using curated
information on pathways. In future work we will evaluate
the effects of additional pathways in the crosstalk net-
work, for example, the interleukin protein family as well
as the behavior of mito-inhibitors like Transforming
Growth Factor Beta (TGF-b). For this work, we did not
investigate alternative hypotheses on the signaling
mechanisms of individual hepatocytes. The model devel-
opment in [16] provides a method for investigating sig-
naling differences between cell types. Understanding the
signaling differences between cell types, such as, kinetic
differences, is undoubtedly important in extrapolating
cell line in vitro data to acute/chronic in vivo responses.
Leveraging information from alternate pathway databases

[49-51] should increase the descriptive power of our
model, and is critical to decipher the role of molecular
crosstalk in cellular responses to endogenous ligands and
xenobiotics.
AP-1 is among several transcription factors important

for cell cycle initiation/progression. In the current
model we did not include gene expression regulated by
the activation of transcription factors. Therefore, we
chose AP-1 formation as the surrogate for downstream
events, since it promotes cell cycle progression through
increased expression of proteins, such as cyclin D1 [52],
and antagonizes the function other molecules, such as
p53 and p21 [53]. As we continue to develop this
model, we can incorporate the activity of additional
important transcription factors, such as Nuclear Factor
kappa B (NF-�B) and Forkhead Box (FOX) proteins.
Finally, most BN based approaches cannot directly relate
simulation time steps to physiologic time intervals. This
is an open problem in BN simulation and our approach
is not immune to this issue, but we hope to address this
in future work.
An advantage of asynchronous BN ensembles is that

they can be simulated very rapidly. A single simulated
treatment group (1000 cells/replicate) can be executed
on a computer in minutes, while some of the more
complex simulations, such as the reproducibility investi-
gation (Figure 4) can be simulated on the scale of hours.
However, since each cell is initialized/simulated to
steady state individually, the approach is amenable to
parallelization. We believe this efficiency will allow us to
simultaneously investigate the role of molecular network
topology using background knowledge on quantitative
tissue level responses from experimental data.

Conclusions
Systems biology approaches are vital for efficiently analyz-
ing the effects of environmental contaminants on living
tissues in order to evaluate the potential risk to public
health. We developed asynchronous threshold Boolean
network ensembles for translating mechanisms to in vitro
and in vivo observations on molecular activity. The repro-
ducibility of our modeling framework was evaluated by
systematically analyzing the variability of our predictions
across multiple simulations. We also showed that popula-
tions of hepatocytes can be simulated in this manner to
predict experimentally observed quantitative responses.
We believe that ensembles of Boolean networks can allow
us to probe deeper mechanistic questions about the mode
of action for chronic liver injury. We are testing this mod-
eling approach as part of a broader computational and
experimental effort aimed at estimating the putative effects
of xenobiotics on the human liver by integrating chemical
concentration, molecular pathways, cellular responses, and
the role of cell-cell communication.

Figure 7 Truth Table for Update Scheme. The truth table
illustrates how we calculate the activity of a protein (P) after one
time step δτ+1

P based on the aggregate input (column 1) and
differential threshold values (columns 2 - 7). For example, row 2
shows that the activity of P remains the same as the previous time
step (δτ+1

P = δτ
P) when the aggregate input is 0 and θP = 0, and

δτ
P = 0 for all other threshold values. Similarly, the other row show
of the consequence of varying the threshold for other values for
the aggregate input. Note the distinction between integer and non-
integer choices for the threshold.
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Methods
Threshold Boolean Network
We begin the definition of the cellular model with a
biochemical interaction network as a signed, directed
graph, G(V,E), where V is the set of all vertices (or pro-
teins/molecules) and E is the set of all edges (or reac-
tions). Let v Î V. Then, we define the set of all
predecessors of v:

Pv = {u ∈ V|euv ∈ E} (1)

For each edge euv Î E we have Sign(euv) Î {+,-} where
‘+’ indicates u is involved in the activation of v and ‘-’
indicates u is involved in the inhibition of v. Now we
define Av ⊆ Pv as the set of all activators of v. More for-
mally,

Av = {u ∈ V|euv ∈ Pv ∧ Sign(euv) = +} (2)

Likewise, we define Iv ⊆ Pv as the set of all inhibitors
of v,

Iv = {u ∈ V|euv ∈ Pv ∧ Sign(euv) = −} (3)

Furthermore, we let A =
⋃
v∈V

Av and I =
⋃
v∈V

Iv, and let n

be the number of proteins in the graph. Additionally, we
store the binary vector, �τ = (δτ

v1
, δτ

v2
, ..., δτ

vn
), of the state

(active or inactive) of every vertex at time τ. The state of
a protein is dependent on the states of its predecessors.
Therefore, we define a vector, � = (θv1 , θv2 , ..., θvn ), repre-
senting the threshold of activation for each vertex, a bio-
logically inspired variable guiding the interplay
predecessor vertices and protein activation. For the
model, all thresholds were set to 0.0 with the exception
of AP-1 formation, which is set to θAP-1 Î (1,2). This
modification to the AP-1 threshold reflects the underly-
ing biochemistry in that both c-Jun and c-Fos must be
active for the activation of the AP-1.
Finally, we define the vector � = {φv1 , φv2 , ..., φvn},

which represents the probability of activation for each
protein. For most models/proteins, there is a basal level
of activity. We assume that individual BNs can have dif-
ferent protein activity profiles upon initialization (τ = 0),
which allows for biological variability across the cell
population.
Now, for any direct, signed graph, we formally define

our model as follows:

Cτ = (V, A, I, �τ , �, �) (4)

Temporal Evolution of the Boolean Network
All other components of the model, Cτ, are fixed during
the simulation except for one, Δτ, which is the state

vector for v Î V at a given time step. This value is
determined by using the following threshold based logic:

δτ+1
v =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1,
∑
u∈Av

δu −
∑
u∈Iv

δu > θv

0,
∑
u∈Av

δu −
∑
u∈Iv

δu < θv

δτ
v ,

∑
u∈Av

δu −
∑
u∈Iv

δu = θv

(5)

The steady state protein activity in a BN is expressed
as the following state vector:

�τ = (δτ
v1

, δτ
v2

, ..., δτ
vn

) (6)

Model Calibration
In this model, the probabilities of activation for proteins,
F, are considered a tunable parameter. The probabilities
determine the state of each BN at τ = 0, which influ-
ences the dynamics of protein activation across the
ensemble. We adjusted the values of F in three steps
using experimental data where available. First, we
assumed that in the absence of any treatment (i.e.,
experimental controls) the ligands, receptors, the adap-
tor proteins (GRB2 and SHC), the insulin receptor sub-
strates (IRS and IRS-2), and non-ligand receptors
(ErbB2 and ErbB3) have � = 0.0. Second, the values of
Ffor the remaining proteins in the network were
increased until the predicted activity of AP-1 was close
to the experimental level of BrdU incorporation in the
control group (~1.5% DNA Synthesis [41]). For these
proteins, the probability of activation � = 0.0025 gave
1.49% ± 0.05 of AP-1 formation. Third, we assumed
that the probability of activation of ligands in the model
was related to the experimental concentration of the
ligand. For EGF, we used the Hill function (Equation 8)
to describe the relationship between probability of acti-
vation, �EGF, and treatment concentration (in ng/ml).

φEGF =
Vmax[L]n

(KA)n + [L]n (8)

We used the BrdU concentration response data [41]
to estimate the parameters for Equation 8. In order to
use the Nelder-Mead algorithm to make a maximum
likelihood estimation of Vmax, KA and n, we assumed
that EGF activity corresponds to AP-1 activation.
Although the network was encoded with negative feed-
back for the EGF receptor, representing the internaliza-
tion and ubiquitination of this receptor, we make this
assumption based on the simulation results with �EGF =
1.0 (Figure 5a). The maximum likelihood estimates we
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found are n = 0.7, KA = 5.9ng/ml and Vmax = .28 (prob-
ability of activation).

Simulating Populations of Cells
The ensemble of asynchronous threshold Boolean net-
works at a time step is represented as:

Cτ = {Cτ
1, ..., Cτ

m}
The aggregate activity of each protein across the

ensemble at one time step, denoted as vτ, is calculated
across Cτ, as follows:

vτ =
∑
i=1,m

Cτ
i (9)

Similarly the steady state activity of a protein across
the ensemble is denoted as vT.
Hence, the coefficient of variation of the steady state

protein activity is calculated as follows:

CV(vτ
i ) =

SD(vτ
i )

Mean(vτ
i )

(10)

Implementation and Input Formats
The simulator is implemented in Python and the net-
work model was produced interactively using Cytoscape.
The molecular interaction network topology is defined
in the Cytoscape exported format and protein informa-
tion as well as quantitative parameters can be defined in
the node attributes file (e.g., protein name, probabilities
of activation, and threshold). The Python code as well
as the network model are included (see Additional file 2
and Additional file 3).

Additional material

Additional file 1: Evaluation of Network Behavior for Protein
Knockouts. The heatmap shows the simulation results for deleting
individual proteins from the network. Each cell in the heatmap
represents the mean protein activity at steady state relative to control
across 20 replicates with 100 cells per replicate. The color intensity
indicates the protein (x-axis) behavior at steady state relative to the
baseline simulation (no protein knockout). The y-axis indicates the
protein deletion.

Additional file 2: network_model.zip. The Cytoscape export files for
the crosstalk network model on AP-1 formation. These files are to be
used in conjunction with the python_simulation_code.

Additional file 3: python_simulation_code.zip. The source code to
load the network model and produce the simulation results reported in
the paper. Refer to the README file for instruction.
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Simulating Microdosimetry in a Virtual Hepatic Lobule
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Abstract

The liver plays a key role in removing harmful chemicals from the body and is therefore often the first tissue to suffer
potentially adverse consequences. To protect public health it is necessary to quantitatively estimate the risk of long-term
low dose exposure to environmental pollutants. Animal testing is the primary tool for extrapolating human risk but it is
fraught with uncertainty, necessitating novel alternative approaches. Our goal is to integrate in vitro liver experiments with
agent-based cellular models to simulate a spatially extended hepatic lobule. Here we describe a graphical model of the
sinusoidal network that efficiently simulates portal to centrilobular mass transfer in the hepatic lobule. We analyzed the
effects of vascular topology and metabolism on the cell-level distribution following oral exposure to chemicals. The spatial
distribution of metabolically inactive chemicals was similar across different vascular networks and a baseline well-mixed
compartment. When chemicals were rapidly metabolized, concentration heterogeneity of the parent compound increased
across the vascular network. As a result, our spatially extended lobule generated greater variability in dose-dependent
cellular responses, in this case apoptosis, than were observed in the classical well-mixed liver or in a parallel tubes model.
The mass-balanced graphical approach to modeling the hepatic lobule is computationally efficient for simulating long-term
exposure, modular for incorporating complex cellular interactions, and flexible for dealing with evolving tissues.
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Introduction

As the number of man-made environmental chemicals contin-

ues to grow, there is an urgent need to develop effective tools to

test their potential risk to humans. The number of environmental

chemicals that are produced in substantial quantities now numbers

approximately 10,000 [1]. In order to determine the potential risk

to humans of exposure to these compounds, it is critical to

establish a dose-response curve – the functional dependence of toxic

endpoints, e.g. hepatic lesions, on exposure to that compound.

Traditional long-term animal testing to determine dose-response is

time consuming, expensive, and requires the sacrifice of thousands

of animals without clear relevance to humans. Recognizing this

need for new approaches to toxicity testing [2,3,4], the U.S.

Environmental Protection Agency is conducting ongoing efforts to

collect in vitro data [5] to make inferences about in vivo toxicity in

both test animals [6] and humans [7].

Without appropriate context, in vitro testing is insufficient for

predicting effects in vivo. Context can be established through

informatics, i.e. correlating in vitro data with known in vivo

phenotypes, or modeling efforts in which abstract rules are

hypothesized to determine in vivo outcomes as a function of

variables, some of which may be determined in vitro. Whereas

empirical models describe the available data and are therefore

best limited to interpolation, physiologic models attempt to

describe the underlying biology in sufficient detail to emulate the

true dynamics. Physiologic models generate new hypotheses

which can subsequently be tested to refine the model. Both

informatics and modeling approaches create frameworks without

which there could be little meaningful interpretation of in vitro

data.

Our goal is to establish an in silico model for dose-response that

can be calibrated using in vitro characterizations of chemical effects.

The liver is often the site of initial exposure to hazardous

compounds and their metabolites due to first-pass metabolism of

blood from the gastro-intestinal tract via the hepatic vein. In

mammals the hierarchical structure of the liver terminates in 105

to 106 functional units called lobules [8] first identified by Kiernan

[9]. Each hepatic lobule receives blood from up to six portal triads,

each typically consisting of a hepatic arteriole and a portal venule

in addition to a bile ductule [10]. Blood flows through intervening

spaces between the cells, i.e. sinusoids [11], and drains into the

central vein. Hepatocytes are arranged in plates one to two cells

thick, organized radially around the central vein. A two-

dimensional slice of a hepatic lobule is shown in Figure 1.

Compounds within the blood are exchanged with the hepatocytes

sequentially as blood passes through the sinusoids. The action of

the enzymes within the hepatocytes on compounds produces

metabolites that may be more or less harmful than the parent

compound. Although mechanisms of chronic chemical-induced

injury are not completely understood, it is believed to involve

multiscale molecular and cellular interactions that culminate in

tissue damage.

Tissue dosimetry is traditionally estimated using physiologically-

based pharmacokinetic (PBPK) models. A PBPK model consists of

a system of ordinary differential equations (ODEs) for the

concentration of a compound (or compounds) in different tissues.

Typically some key tissues are treated as separate compartments

PLoS Computational Biology | www.ploscompbiol.org 1 April 2010 | Volume 6 | Issue 4 | e1000756



for which a tissue-specific concentration is calculated, while other

tissues are modeled using aggregate compartments. More

complicated dynamics within a tissue, such as diffusion or

membrane transport, are often modeled with additional sub-

compartments but each sub-compartment is well-mixed. The

equations are parameterized by subject- or species-specific

physiologic parameters such as cardiac output and tissue volumes

as well as compound-specific parameters such as diffusion/

transport rates and tissue-specific plasma to tissue ‘‘partition

coefficients’’ corresponding to the assumption of a rapidly-

established equilibrium between concentration of compound

stored in the tissue and the concentration of compound in the

plasma flowing through the tissue. PBPK models relate the

concentration of compounds inhaled or ingested from the

environment to internal tissue doses [12,13,14].

In addition to the well-mixed approach, the parallel tubes model

of liver function has often been used to calculate in vivo hepatic

metabolism based upon in vitro measures such as intrinsic hepatic

clearance [15,16]. Typically used at steady-state, the parallel tubes

model assumes that each lobule is a tube connecting a portal triad

and central vein, along which concentration varies spatially.

Though in vitro studies typically average over the response of a

many hepatocytes within a well, hepatocyte function is known to

vary significantly in vivo [17], e.g., hepatocytes near the central vein

may express very different levels of enzymes than those nearer to

the portal triad. For this reason the lobule is divided into zones of

approximately similar hepatocyte function depending on location

within the lobule. The heterogeneity between these zones is

thought to arise from gradients in oxygen availability, exposure to

nutrients from the portal venules, and hormone concentration

[18]. Modeling the differences between regions of the lobule

should provide key insights into the differences between phenom-

ena observed in homogenous in vitro conditions and heterogeneous

in vivo reality.

The first multi-compartment geometric model of the liver was

developed by Andersen et al. [19]. In that model there were no

cells, but the concentrations of compounds in different zones of

lobules were modeled continuously and could therefore be coupled

to a PBPK model. Liu et al. [20] have followed a similar sub-

compartment coupled to PBPK approach for modeling zonal

heterogeneity due to transporters and enzymes. Recent approach-

es to simulating the response of the liver include that of Ohno et al.

[21] who coupled independent realizations of a model for cellular

dynamics into a linear array to allow some instances of the model

to be close to the source of nutrients and foreign compounds while

others were further removed. Höhme et al. [22] have developed a

discrete model of the hepatic lobule that considers the biochemical

forces between hepatocytes to simulate recovery following acute

chemical toxicity.

Ierapetritou et al. [18] recently conducted a thorough review of

liver tissue simulation approaches in which they summarize the

previously mentioned approaches as well as higher dimensional

models including fluid dynamics approaches based upon approx-

imations of the Navier-Stokes partial differential equations. Such

approaches are data- and computationally-intensive, especially

given the convoluted and dynamic cellular boundary of the

sinusoidal spaces.

Hunt et al. [23] have taken a unique agent-based approach with

individual hepatocytes represented by agents wherein metabolism

can occur. The environment of the agents is determined using a

hybrid graph and grid approach in which compounds are

represented by objects moving through the lobule. Cell-oriented

agent-based modeling (ABM) of tissues offers a number of unique

advantages [24,25]. First, since cells are the functional units of

tissues, the ABM has more physiologic relevance than a

continuum model. Second, the agent responses can be calibrated

and verified through comparison with actual cells in vitro (or ex vivo).

Third, spatial outcomes from the ABM can be translated to

histopathologic effects such as acute lesions and tumor formation.

While the agent-based strategy is suitable for modeling tissue

responses, the approaches to the liver taken so far have not

provided a framework for estimating tissue dosimetry. Though the

spatial distribution of a compound has previously been modeled,

past approaches have represented compounds as agents that are

Central VeinCentral Vein

SinusoidsSinusoids

ArterioleArteriole

Portal VenulePortal Venule

Figure 1. Hepatic lobules receive nutrient-rich blood from the
gut through the portal venule and oxygen-rich blood from the
lungs through arterioles. Blood flows past sheets of hepatocytes
through the sinusoids and into the central vein. Image adapted from an
original by Amber Goetz, first published in [42].
doi:10.1371/journal.pcbi.1000756.g001

Author Summary

Virtual tissues are emerging as a powerful tool for
computational biology. By encoding known biology into
a simulation of tissue function, gaps in knowledge can be
identified. As a simulation of tissue function, in silico
experiments can be performed inexpensively and rapidly.
There are over 6000 chemicals produced in large quantities
that may be present in our environment, many of which
have not been thoroughly examined for human toxicity.
Traditional toxicity testing is expensive, lengthy, and relies
heavily upon the use of animals. For this reason in vitro
toxicity testing techniques are being developed. However,
techniques are needed to relate in vitro results to in vivo
conditions. The liver is often the first tissue to show signs
of toxicity and therefore a predictive liver toxicity simulator
would be a powerful tool to reduce the financial and
animal cost of toxicity testing. As a first step, we have
developed a model for relating environmental exposure to
cell-level concentrations; a model for virtual tissue
microdosimetry. We identify regimes in which this
approach is equivalent to previous techniques, as well as
regimes where large cell-to-cell variability exists. This
variability should have consequences both for normal
liver function and the onset of injury.

Microdosimetry in a Virtual Hepatic Lobule
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difficult to link to traditional exposure modeling. Due to the spatial

heterogeneity of the hepatic lobule, both molecular and cellular, it

is important to model the microanatomic distribution of chemicals

and to relate this to continuous variation in chemical concentra-

tion resulting from changes in human environmental exposure.

We have implemented a microdosimetry model that relates

whole-body chemical exposures to cell-scale concentrations. Our

objective was to develop the framework for simulating the

microanatomic distribution of various environmental chemicals

in a canonical lobule for extended periods of time ranging from

hours to months. This required an approach that is quantitative,

efficient in computational resources, and sufficiently flexible to

account for anatomic changes (due to chemical insult or other

factors) [26]. First, we approximated the microanatomic architec-

ture of the hepatic vasculature and parenchyma assuming a

discrete topology by a graphical model. This allowed us to

systematically explore the consequences of morphologic changes

on the concentration distribution. Second, we transformed the

sinusoidal elements of the vascular network into a system of

microscopic well-mixed compartments through which material

flow was assumed to be one-dimensional. Third, we connected the

virtual lobule to a PBPK model to relate individual exposure to

microdosimetry. For a range of physiologically relevant morpho-

logic parameters we evaluated the microdosimetry in response to

xenobiotic exposure levels and varying physico-chemical

attributes.

Results

Discrete Graphical Model of Sinusoidal Network
The two dimensional morphologic characteristics of the

mammalian hepatic lobule were represented as a discrete

connectivity graph, in which the edges captured spatial proximity.

The two main anatomic entities considered are hepatocytes, the

parenchymal cells responsible for the metabolism of chemicals,

and vasculature, i.e. sinusoids through which chemicals flow to the

hepatocytes. These are represented by different node types

including: hepatocytes, sinusoidal primitives, arterial and venous

sources, and the central vein, while edges represent connectivity

and spatial proximity between the nodes. Mass transfer through

the sinusoidal network occurs through edges: The edges

connecting vascular nodes transfer material through the sinusoids,

whereas edges between the vascular and cellular nodes exchange

material between the sinusoids and parenchyma.

A simplified geometry of the lobule was defined using the

following morphologic parameters: the number portal triads

(defining the vascular inputs), the branching factor of the sinusoids,

the number of sinusoids entering the central vein, and the sizes of

sinusoids, hepatocytes, and the lobule. The graphical model of the

lobule was constructed algorithmically using these parameters and

visualized spatially (Figure 2). The ‘‘virtual lobules’’ generated in

this manner presented a complex sinusoidal architecture repre-

senting a substantial challenge for estimating the distribution of

xenobiotics and nutrients.

Figure 2. The virtual lobule morphology is constructed
iteratively. First, sinusoids outward from the central vein (i). In
addition to small random variations in the direction of propagation, the
sinusoids branch into two sinusoids pointed away from the central vein
with probability Pbr (ii). Multiple sinusoids are started from the central
vein in an attempt to fill space (iii). Portal ‘‘triads’’ consisting of arterioles
and venules through which blood enters the lobule are added to the
perimeter of the lobule and connected to the vasculature (iv). Finally,
the sinusoids are lined with hepatocytes as space allows (v).
doi:10.1371/journal.pcbi.1000756.g002
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The graphical model of the lobule was generated iteratively

(the algorithm is described in the methods section). The

sinusoidal network was constructed starting with the central vein

and extending radially outwards to the portal region. Beginning

with a node representing the central vein, sinusoid primitives

(nodes) were sequentially appended to form the initial vascula-

ture. Small random variations in the placement and branching of

sinusoidal primitives were used to reconstruct the histologic

appearance of a hepatic lobule. Second, the hepatic arterioles and

portal venules, were placed at the perimeter of the lobule and

connected sinusoidal network. Third, the parenchymal cells were

placed contiguously with the sinusoidal network. Because we

chose to connect the portal venule and arterioles to the central

vein in two dimensions the spatial layout was not completely

space-filling.

The approach described above is flexible, allowing the

generation of diverse lobular topologies through which flows can

be simulated. Five basic morphologies were examined, as depicted

in Figure 3, in which the number of portal triads (more accurately

dyads since bile was neglected), the probability of sinusoid

branching Pbr, and the presence of random noise were all varied.

No random noise or branching and one portal dyad produced a

lobule with a single tube (panel a in Figure 3) that in the limit of

many sinusoidal segments approaches a parallel tubes model. With

multiple portal dyads a classical lobule structure [27] that allows

both direct flow from the portal triads to the central vein and

mixing flow between portal triads is produced (panel b in Figure 3).

A 10% chance of sinusoid branching (panels c and d) produced

nearly space-filling lobule graph while a 5% chance of sinusoid

branching (panel e) did not.

Miller et al. (1979) observed that the branching of sinusoids is

greater near the portal triad than near the central vein [28].

Human lobules have been observed to typically have between

three and six portal triads per lobule [8,10,27], though many

‘‘triads’’ actually consist of dyads missing either an arteriole, bile

duct, or most commonly a portal venule [10]. Given these

observations, we believe that the geometries that include multiple

portal triads and random branching of the sinusoids (panels c, d,

and e) appear qualitatively more physiologic.

Blood Flow in the Sinusoidal Network
Blood circulation through the graphical model of the

vasculature was simulated as a network flow (Figure 4). Because

the sinusoidal diameter is much smaller than hepatocytes [29],

there are a large number of sinusoid primitives in each virtual

lobule. To efficiently solve for the flow, the sinusoid primitives

were aggregated into the following components: ‘‘straight’’ or

linear sequences and ‘‘branch’’ sections where straights meet

and mix. As shown in Figure 5, graph aggregation results in a

smaller graph that preserves the spatial distribution of the

sinusoids. Each aggregated node was assumed to be well-mixed,

that is, each constituent sinusoid primitive i has the same

concentration Cm
i (see Table 1 for a list of all symbols used in

this document).

Mass-balanced flow through the aggregate graph was deter-

mined by solving for the flow across each edge of the sinusoid

graph G(V,E) due to the sources at both the arterial and venous

elements of each portal triad. In general, solving for network flow

from node i to node j across edge Eij requires |E| different weights

Qm
ij (i.e., flow rates). Mass-balance provides only |V| constraints –

one at each node – so additional constraints were needed.

We made use of the hemodynamical equivalent of Ohm’s law

[30,31]:

Q
m
ij~

Pj{Pi

Rij

where Pi is the pressure at node i and the resistance Rij:R was

assumed to have the same value R for all edges. We note that Rij

could be determined using schemes such as the cross-sectional area

of each branch. Hemodynamics provides |E| additional con-

straints, but introduces |V| additional unknown pressures Pi.

Together with mass balance we have |E|+|V| constraints for

|E|+|V| unknowns. This system of equations can be represented

with a matrix and, given source flows and outlet pressure, can be

solved by diagonalization. Since we are not currently interested in

sinusoidal pressure, R and the outlet pressure were taken as one.

This assumption does not effect the quantitative values of Qm
ij since

they depend only on the relatively values of Pi.

As can be seen in Figure 4, randomly generating sinusoids can

lead to dead-end sinusoids for which no flow is predicted. These

sinusoids are removed from the lobule and additional hepatocytes

are added where possible.

To evaluate the appropriateness of these assumptions and the

suitability of the approach to arbitrary graphical structures, we

return to Figure 3, where predictions are made for a rat liver

lobule and compared to measurements made by Komatsu et al.

(1990) for the radial dependence of flow of erythrocytes in the

sinusoids with distance from the central vein. In vivo microscopy

was used by Komatsu et al. to observe the exposed livers of ten

Sprague-Dawley rats and flow was measured in three zones – near

the central vein, near the portal venule, and intermediate [31].

Flow was observed to increase with distance from the portal

venule, presumably as blood from the portal arteriole and other

portal triads mixed in. As can be seen on the left-hand side of

Figure 3, only geometries where random branching is present

(panels c, d, and e), produce profiles with increasing flow as the

central vein is approached. Given the indeterminacy in where flow

was measured relatively to the central vein, it is hard to

determining the precise radial profile of the flow. All geometries

produce mean flow within a factor of two of the measured values,

supporting the approximate appropriateness of this graphical

approach to hemodynamics in the hepatic sinusoids. A list of

simulation parameters used is given in Table 2.

Chemical Distribution in the Sinusoidal Network and
Cells

The final step needed to determine the concentration Cm
i for

each sinusoid i is to find the concentration of compound(s) in the

blood flowing into the liver. Our approach requires the rate and

chemical concentration(s) for blood flow from the gut and the

hepatic arteries. We used a simple PBPK model (Figure 6) with

oral and inhalation routes of exposure (PBPK model parameters

are listed in Table 3). Microdosimetry for each lobule was

determined from the pharmacokinetic exposure model by

assuming an arteriole flow equal to Qm
art = Qliv/Rliv:lob/NPT and

a venule flow Qm
ven = Qgut/Rliv:lob/NPT where Rliv:lob is the ratio

of liver to lobule volume and NPT is the number of portal triads

per central vein. Concentrations within the lobule are determined

by solving

d~CCm

dt
~Q

<
:~CCm{~MM: I

<
:~CCm

where Mi is the summed clearance of all hepatocytes adjacent to

aggregate sinusoid i, and I is the identity matrix. Note that at

steady state the flow can be determined from just the geometry

Microdosimetry in a Virtual Hepatic Lobule
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Figure 3. Five different lobule morphologies were examined. They are: a) one portal triad, no branching or noise, b) six portal triads with
noise and additional sinusoids, c) six portal triads, 10% chance of branching, d) three portal triads with 10% branching, and e) six portal triads with 5%
chance of branching. Though the overall layout (middle column) can be compared qualitatively with physiology, we evaluate these geometries by
comparing the flow (left-hand column) predicted for a rat with in vivo measurements of flow in rat sinusoids (Komatsu et al. (1990) [31]). We also
compare (right-hand column) the radial dependence of concentration at tmax with the prediction for a well-mixed compartment with equivalent
metabolic clearance (heavy dashed line). Comparison of profiles b-e with profile a provides an approximate comparison to a parallel tubes prediction.
The solid line indicates the mean for multiple lobules and sinusoids, while the shading indicates the 95% quantile (variability).
doi:10.1371/journal.pcbi.1000756.g003
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G(V,E) and the metabolism M, in which case Q
<
:~CCm~~MM: I

<
:~CCm and

there is no need to solve for dynamic concentration changes, since

new concentrations can be calculated analytically.

For a completely physiologic, three-dimensional lobule Rliv:lob

would be equal to the number of lobules in the liver –

approximately 106 [32]. We determined Rliv:lob, the ratio of the

total volume of the liver to the total volume of the sinusoidal spaces

and hepatocytes in the simulated lobule, to be approximately 108,

which is roughly 100 times greater than the physiologic value. We

expect a greater value for two reasons: First, many components of

the lobule other than the sinusoidal spaces and hepatocytes, such

as endothelial and stellate cells, extracellular space, and bile ducts,

contribute to the volume of the lobule. Including these additional

components, and therefore increasing the volume of the simulated

lobule, will reduce Rliv:lob. Second, each simulated lobule is

assumed to have a thickness equal to a sinusoidal diameter

(23.5 mm [29]). As is illustrated in Figure 7, many (quasi-)two-

dimensional lobules are needed to fill the same volume (and thus

preserve mass balance) as single three-dimensional lobule. The

difference between Rliv:lob and the actual number of lobules

indicates that 100 simulated lobules are currently needed to fill the

space of a single physiologic lobule.

Using the lobule geometries (given in Figure 3) ensembles of ten

lobules were used for simulating blood flow. For each geometry the

flow was simulated for an oral exposure of 10 mMol total

(equivalent to 0.03 mg per kg body weight for a 200 molecular

weight compound and a 70 kg subject) with an intrinsic hepatic

clearance due to metabolism of 10 mL/min/million hepatocytes.

We compared the average concentration throughout the lobule

SCmT, as predicted by our approach, with the prediction Cliv for a

PBPK model with a well-mixed liver compartment with equivalent

metabolic clearance CL~Rliv:lob

P

i

Mi (i.e. the product of the

clearance per hepatocyte, the total number of hepatocytes in a

lobule, and the effective number of lobules Rliv:lob). It is important

to note that the overall pharmacokinetics depends on the lobule

layout because the effective number of lobules Rliv:lob is

determined by volume alone and therefore the total clearance of

the liver depends on the number of hepatocytes relative to the

volume of the lobule.

Though the overall clearance varied with geometry, the impact

of different geometries on the average concentration in the lobule

was small. As shown in Figure 8, for the assumed metabolism rate

the mean predicted concentration did not vary greatly from what

would be predicted for a more traditional well-mixed compart-

ment. To compare results between geometries the concentrations

were scaled by Cliv predicted for the appropriate CL. We find that

in all cases the predicted average concentration slightly exceeds the

well-mixed PBPK prediction, but that otherwise the pharmaco-

kinetics are very similar.

Plotted on the right-hand side of Figure 3 is the radial-

dependence of concentration on position relative to the central

vein at tmax – the time at which the lobule reaches maximum

average concentration, SCmTmax. In all cases the mean concen-

tration decreased slightly from the portal triads to the central vein

– the predicted concentration was similar to the parallel tubes

model. Thus, the mean predictions were similar to typical

approaches for predicting liver concentrations.

Geometry had a much greater impact on the variability in

predicted concentrations Figure 3. For all the lobules with random

branching great variability was observed at the edges of the lobule,

maximally distant from the central vein. Some regions receive

slightly higher concentrations while other, stagnant regions

received almost none. This supports the idea of considering

sinusoidal topology for estimating changes in the local environ-

ment of a hepatocyte in addition to radial location between the

central vein and the portal triad (i.e. zone I, II, or III). Since there

were not large differences between the predictions for the three

lobules with random branching, we arbitrarily chose to simulate

lobules with six portal triads and 10% chance of branching

CVCV

PTPT

PTPT

b)b)

CVCV

PTPT

PTPT
c)c)

CVCV

PTPT

PTPTa)a)

Figure 4. Sinusoid connectivity was represented with a graph.
Spatial proximity between sinusoids within simulated lobule (a) was
used to generate connectivity graphs (b), which are aggregated (c) in
order to solve for flow from the portal triads to the central vein using
ODEs.
doi:10.1371/journal.pcbi.1000756.g004
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(geometry c in Figure 3) for the remained of the studies in this

paper. A larger ensemble of fifty lobules was generated for these

studies.

Chemical Kinetics
To test whether a continuum approximation (ODEs) was

appropriate for modeling mass transfer in the sinusoidal graph we

estimated the number of molecules at a hepatocyte. If the number

of molecules at higher concentrations is not large enough a

stochastic approach [33] would be preferable. As shown in

Figure 9, the upper bound on the number molecules at a total dose

of 10 mM is was nearly a million molecules per hepatocyte, as

calculated by multiplying the concentration in the sinusoid
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Figure 5. Similar nodes were aggregated to reduce the complexity of the sinusoid connectivity graph.
doi:10.1371/journal.pcbi.1000756.g005

Table 1. List of Symbols.

Symbol Definition

Pbr Sinusoidal Branching Probability

G(V,E) sinusoid graph consisting of vertices (nodes) V and edges E

Qm
ij Micro flow rate (L/h) across from node i to node j

Fi Total flow into node i

Qm
art Micro flow rate (L/h) through each arteriole

Qm
art Micro flow rate (L/h) through each venule

Rliv:lob Ratio of liver to lobule volume

Qgut Flow rate (L/h) through gut tissue

Qliv Flow rate (L/h) of arterial blood into liver

Cm
i Concentration of within aggregate sinusoid i and each constituent

sinusoid

Cliv Concentration for a well-mixed liver compartment

SCmT Concentration averaged over the lobule

SCmTmax Maximum concentration averaged over the lobule

Cm
i,max Maximum concentration within aggregate sinusoid i

tmax Time at which maximum average concentration is reached

doi:10.1371/journal.pcbi.1000756.t001

Table 2. Lobule Simulation Parameters.

Oral dose 10 mMol

Number of Lobules per Ensemble Analyzed 50

Agent-based model steps per Iteration 8

time per iteration 0.2 h

Total hours simulated 5

Number of Portal Triads 6

Number of Sinusoid starts at central vein 6

Sinusoidal Branching Probability Pbr 10%

Radius of Lobule 15 hepatocytes

diameter of hepatocyte 100 mm (assumed)

Thickness of lobule 23.5 mm [29]

Diameter of sinusoid primitive 25 mm [29]

doi:10.1371/journal.pcbi.1000756.t002
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adjacent to each hepatocyte and dividing by the number of

hepatocytes accessing that sinusoid. Though a small fraction of

hepatocytes are exposed to almost no molecules, a continuum

approach appears appropriate.

The maximum concentration in the tissue following a dose is a

commonly used measure of tissue exposure in pharmacokinetics.

For the simulated lobule a local Cm
i,max can be calculated for each

hepatocyte as a result of different sinusoids receiving different

concentrations. Figure 10 shows the distribution of Cm
i,max

experienced by all the hepatocytes in an ensemble of fifty lobules

with intrinsic hepatic metabolic clearance of 10 mL/min/million

hepatocytes. The values have been normalized to the Cmax

predicted for a well-mixed liver with the same overall metabolic

clearance (indicated but the solid line). The peak for the

distribution is in excess of the well-mixed prediction, while the

breadth is quite wide, indicating that at this rate of metabolism

some hepatocytes receive exposures nearly 40% greater than

would be predicted for a well-mixed liver while others receive

almost no exposure.

Ito and Houston [15] summarize a range of intrinsic

metabolism rates including values as low as 1.4 mL/min/million

hepatocytes (caffeine) and as large as 1800 mL/min/million

hepatocytes (propranolol). This wide variability in metabolism

rate has consequences for the variability predicted across the
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Figure 6. A physiologically-based pharmacokinetic model was used to relate oral and inhalation exposure to blood flow into the
liver.
doi:10.1371/journal.pcbi.1000756.g006
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lobule. As shown in Figure 11, the variability in exposure received

by different hepatocytes grows from a few percent to nearly 800%

for a metabolism rate of 1000 mL/min/million hepatocytes. For

rapid metabolism those hepatocytes first exposed to blood from

the portal triad receive eight times the exposure that would be

predicted for a well-mixed liver, while downstream hepatocytes

receive almost no exposure to the parent compound.

Heterogeneity within the lobule is dynamic [34]; a low

metabolism rate may be due to limited distribution of metabolizing

enzymes, while a high rate of metabolism may lead to induction of

enzymes, perhaps heterogeneously. Both of the distributions in

Figure 9 and Figure 10 are broad, indicating that the average

response of the ensemble is not necessarily characteristic of the

response of any one simulated lobule. Given that these and other

variability have been observed, any model of hepatic effect that

depends upon local concentrations, particularly threshold models,

may have a different response for a spatially-extended simulation

than with a well-mixed simulation. The relevance of this

heterogeneity will depend on the parameter regime – for low

metabolism and little variability, the well-mixed approximation is

likely to be sufficient. If large variability is present, e.g. for rapidly

metabolized compounds, it may be crucial to determine which

hepatocytes receive large exposures. This is especially useful for

modeling spatial effects such as the development of lesions in one

region, but not another.

Impact of Microdosimetry on Hepatocellular Responses
We conducted a preliminary analysis of the cellular effects due

to microdosimetry using a simple agent-based model for

hepatocytes. Each agent was defined by a fixed, identical

xenobiotic metabolism rate, and functional states that were

updated at each time step via state transition rules. A simple

approach was used to encode probabilistic state transition rules

conditioned on inputs from the agent environment. Future cellular

models will be able to take better advantage of the freedom to

proliferate and move provided by this approach since flow for a

new arrangement can be determined rapidly by updating the

sinusoid and contact graphs. Here we considered normal

hepatocytes and cell death following exposure to threshold

cytotoxic concentration. The ABM was integrated with the

sinusoidal flow model with each being updated alternately. We

simulated twelve minutes of the flow followed by eight iterations of

the ABM – intended to be sufficiently small time periods for each

model to respond realistically to changes in the other. Experi-

mental verification will be needed to determine the appropriate

time scales.

Given the current cellular model and the predicted increase in

variability with metabolism rate shown in Figure 11, two types of

comparisons were made: a spatially-extended hepatic lobule with

an approximate ‘‘parallel tube’’ model (given by the lobule

geometry in Figure 3a) and variability due to rapid metabolism for

low (1 mL/min/million hepatocytes) and high (1000 mL/min/

million hepatocytes) rates of metabolism. An arbitrary threshold of

chemical concentration has been assumed, above which cell stress

and apoptosis become much more common. Since different

metabolic clearances and lobule geometries lead to different

pharmacokinetics the simulations were normalized by varying the

threshold for enhanced apoptosis – the threshold was set to 110%

of the maximum average lobule concentration predicted for each

configuration.

For a well-mixed lobule, a threshold in excess of maximum

lobule concentration should have no effect. Instead, as shown in

Figure 12 we observed that spatial heterogeneity in toxicant

concentration across the lobule enhanced cell injury before the

chemical was cleared. This effect was not observed in the

approximate parallel tubes model. Enhanced cell death was not

observed at low xenobiotic metabolism rates in the spatially-

extended lobule. Though there is some baseline apoptosis at the

lower metabolism rate, there is roughly five times greater

apoptosis for higher metabolism, i.e. greater variability in

exposure. This suggests that lobular geometry is not solely

responsible for the cell behavior and hepatocyte metabolism is

required for the variability in the cellular response. Variation in

cellular responses is frequently observed [17] and is thus

physiologically relevant. While additional work is required to

evaluate the responses in our model, these findings suggest the

value of spatially extended tissue level models of microcirculation

and cellular dynamics.

Discussion

We have described a microdosimetry model to relate environ-

mental exposures to cellular exposures. This is only a step toward

developing virtual tissues that can predict the in vivo consequences

of chemical exposure based upon in vitro information.

The liver lobule is known to be spatially heterogeneous [18,34].

Zonal differences between central and peripheral hepatocytes

include oxygen availability, hormone concentration, expression of

metabolizing enzymes, (e.g., CYP 3A4), gluconeogenesis, and

glycolysis [18]. One clear conclusion of this modeling work is that

morphology of the liver alone is insufficient to explain the

observed zonation in hepatocyte function or even gradients in

concentration across the lobule. We observed variations that are

driven by the action of hepatocytes, i.e. metabolism, and not by

geometry alone.

A model for a spatially-extended hepatic lobule sets the stage for

investigating emergent behavior in models of hepatocyte function.

If the action of hepatocytes creates spatial variation across the

lobule then any cellular dynamic response that depends on

chemical or nutrient concentration may in turn be altered, which

could be a prelude to zonal patterns of biological functions. More

extreme effects, such as central lobular necrosis, may be due to the

transformation of the compound via metabolism into a more

Table 3. Parameters Used for PBPK Model.

Parameter Value Source

Qcard 336 L/h [43]

Qgut 66 L/h [43]

Qliv 18 L/h [43]

Qgfr 7.5 L/h [43]

Qrest 252 L/h [43]

Bodyweight 70 kg assumed

Lean Fraction of BW 0.7 [19]

Vart, Vven 0.025 L/kg lean bw [19]

Vgut 0.0165 L/kg bw [19]

Vliv 0.035 L/kg lean bw [19]

Vlung 0.27 L [44]

Vrest 0.6 L/kg bw –
(Vart+Vven+Vgut+Vliv+Vlung)

[43]

kad, kinh, Krest:plas, Kliv:plas,
Kgut:plas, Rblood:plas, f

1 assumed

doi:10.1371/journal.pcbi.1000756.t003
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potent compound or zone-dependent variation in sensitivity of the

hepatocytes.

In contrast to the well-stirred model of the liver, the simulated

lobule provides a means of accessing a variety of inter- and

intracellular dynamics. Though the results we obtain are in some

respects similar to previous models, we gain the additional

capability of allowing hepatocyte-specific dosimetry as well as

the potential to alter lobule geometry, e.g. lesions or necrosis, in

response to chemical injury. Since numerical approaches often

allow even large systems of ODEs to be solved much more rapidly

than analogous systems of PDEs [35] and since numerous

algorithms exist for analysis of graphs [36], we believe this

approach is tractable for simulating sub-chronic and chronic

xenobiotic exposure scenarios while preserving mass-balance.

Central VeinCentral Vein

SinusoidsSinusoids

ArteriolesArterioles

Portal Portal VenulesVenules

Figure 7. A physiologic lobule is a three-dimensional polyhedron with a volume between 0.1 and 0.9 mL [8]. Our (quasi-)two-
dimensional simulated lobule is assumed to have a thickness equal to a sinusoidal diameter (23.5 mm [29]). Therefore many identical simulated
lobules in parallel are needed to fill the volume of one physiologic lobule. Blood flow to the simulated lobules is divided by Rliv:lob, the ratio of the
volume of the whole liver to the volume of single lobule.
doi:10.1371/journal.pcbi.1000756.g007
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Because we use a flexible graphical model of tissues, the remaining

micro-anatomic structures (other cell types, extracellular matrix,

bile ducts, etc.) can be included incrementally without significant

changes in our approach.

In contrast to computationally intensive, spatially continuous

approaches such as fluid dynamics, this graph-theoretic approach

has hopefully sacrificed little physiologic detail but gained a great

deal in terms of computational efficiency. Calculating hemodyna-

mical flow on a graph allows rapid determination of flow given

minimal boundary conditions, which will be especially useful for

recalculating flow as morphology changes (e.g. lesion formation) or

as individual sinusoids are temporarily blocked (e.g. Kupffer cells).

A faster dosimetry model allows the focus to center on cellular

phenotypes, which are the key to modeling disease pathogenesis. A

computationally-tractable approach allows for simulating the long

run times associated with sub- and chronic toxicity studies as well

as simulating large populations.

We evaluated our approach to hepatic blood flow in three ways.

First, we qualitatively tuned the appearance of the lobule to match

actual physiology. Second, we compared the predicted pharma-

cokinetics for our spatially-extended lobule with traditional

approaches, finding regimes in which our approach reduced to

the well-mixed liver and the parallel tubes model. Third, we

quantitatively compared the flow predicted for a rat with

observations made in vivo of actual flow. Though all three lines

of evaluations supported our approach, they also all pointed

toward further refinements that may be necessary for simulating

dose-response.

This work addresses the dose portion of the dose-response

curve, allowing assessment of how changes in exposure impact the

hepatic lobule. The greater body of work remains with modeling

response. Sufficiently complex models for hepatocellular dynam-

ics, and eventually models for additional cell types, especially the

Kupffer cells responsible for inflammatory responses, must be

Figure 8. Average concentration throughout lobule for the five morphologies depicted in Figure 3. The ensemble average for all five
lobules is very similar to the well-mixed lobule prediction (indicated by the dashed line) however the different morphologies produce different
whole-liver clearances because the number of hepatocytes as a fraction of the volume of the simulated lobule is geometry-dependent.
doi:10.1371/journal.pcbi.1000756.g008
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developed before we arrive at a useful model for homeostatic liver

function. It remains to be seen whether three-dimensionality or

even a departure from the classical lobule paradigm to simulate

multiple lobules will be needed.

To establish the safety of a compound one ideally finds the

dose-response curve for various toxicity endpoints, so that an

acceptable level of exposure can be determined. Currently the

gold standard of toxicology is animal testing, but the need and

desire for in vitro testing is growing. An in silico model for

predicting dose-response would, at a minimum, provide a screen

for prioritizing compounds that requiring further testing and

perhaps may ultimately be able to predict in vivo consequences for

the large number of compounds for which there is little or no

toxicity data.

The multiscale approach describe here is intended to be fast

and verifiable, and would allow the determination of whether an

observed in vitro response is relevant in vivo. The limitations in

developing a homeostatic model of liver function are not

computational, but biological. Additional data is needed,

especially information on the statistical distribution of lobule

morphology and the determination of cell state in response to

local inputs. This model provides a framework for making use of

two types of readily available data – histopathology slides and in

vitro measures of cell function. In all likelihood direct

comparison to liver toxicology data will be met initially with

more failures than successes, but where we initially fail we will

learn.

Histopathology images have long been used to obtain

information on microanatomic regions, vasculature, individual

cells, cell types, and cell phenotypes from two- and three-

dimensional images. Though traditionally time-intensive, ad-

vances in automated extraction of information from histopa-

Figure 9. The distribution of the number of molecules at each hepatocyte following a total dose of 10 mMol.
doi:10.1371/journal.pcbi.1000756.g009
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thology images are making it possible to analyze these images at

a single cell resolution [37,38,39]. Additionally it is possible to

extract information about the functional state of cells using

cytomorphologic features or molecular markers [40]. Though

cell-scale assay technology is still developing, it will be essential

for fully calibrating and evaluating models such as this in order

to provide simulated in vivo context for the results of in vitro

assays.

True variability in the response of a given hepatocyte is either a

product of independent microdosimetry and cell variability, or is a

function of the two, depending on the degree of correlation. To

determine the significance of a chemical perturbation it is not

enough to understand the cellular dynamics, but also the context

in which those dynamics exist – i.e., microdosimetry.

Methods

Microdosimetry Model of a Lobule
We have implemented a microdosimetry model for relating

whole-body chemical exposures to cell-scale concentrations. The

model is written in the freely available statistical language R,

version 2.8.1 [41].

Generating Sinusoidal Morphology
Given morphologic parameters Nt, the number of portal triads;

Ns, the number of sinusoids per source/sink; Pbranch, the

probability of a sinusoid branching; and Dmax, the size of the

lobule, and calculating hCV is the angle to the central vein, given

current position:

Figure 10. The distribution of maximum concentration experienced by hepatocytes relative to the prediction of a well-mixed PBPK
model (solid line).
doi:10.1371/journal.pcbi.1000756.g010
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1. Place central vein

2. For each of Ns sinusoids:

1. Select initial angle h0
s

2. Place sinusoidal primitive on edge of central vein at h0
s

3. Call the sinusoid placement algorithm (SPA) with hs = h0
s

4. Increment h0
s approximately 2p/Ns

3. For each of Nt portal triads:

1. Select initial angle ht

2. Place a periportal vein at angle ht and distance 0.8*Dmax

3. For each of Ns sinusoids:

1. Select initial angle h0
s = hCV

2. Place a sinusoid primitive on edge of the periportal vein

at h0
s

3. Call SPA with hs = h0
s

4. Increment h0
s approximately 2p/Ns

4. Place an arteriole randomly at the edge of the periportal

vein

5. For each of Ns sinusoids:

1. Select initial angle h0
s = hCV

2. A sinusoid primitive is placed at the edge of the arteriole

at h0
s and the SPA is called with hs = h0

s

3. h0
s is incremented approximately 2p/Ns

Recursive Sinusoid Placement Algorithm (SPA):

Figure 11. The breadth of the distribution of maximum exposure received by individual hepatocytes, i.e. variability in exposure,
grows with the clearance rate. The shaded region indicates the 95% interval.
doi:10.1371/journal.pcbi.1000756.g011
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1. Calculate the potential position of the next sinusoidal primitive

using hs

2. If either the distance from the central vein exceeds Dmax or

the potential location overlaps with a previously placed

sinusoid, then

1. Return

3. If a randomly drawn number [0,1] is less than Pbranch, then

1. Randomly select h’s from the interval [hCV2p/2, hCV+p/2]

2. Call SPA with angle hs = h’s

4. hs is randomly perturbed

5. Call SPA

Reducing the Complexity of the Sinusoidal Graph
The aggregation process is performed using the following

algorithm:

1) All sinusoid primitive nodes are assigned a corresponding

aggregate node (CAN) initially set to NULL

2) For each sinusoid node I adjacent to the central vein, if the

CAN is NULL, then,

a. if the number of sinusoid neighbors Ni
n = 1, a ‘‘dead

end’’ CAN is created,

b. if Ni
n = 2, a ‘‘straight’’ CAN is created

c. if Ni
n.2 a ‘‘branch’’ CAN is created

d. For each neighbor j, If Ni
n = Nj

n then,

i. The CAN for j is set to the CAN for i unless the

CAN is a straight node already consisting of 5

sinusoid primitive nodes

ii. Step 2d is called recursively for node j

3) Repeat step 2 for each arterial and venous source

4) For each branch CAN i,

Figure 12. The predicted number of apoptotic cells, caused by locally exceeding a threshold of 110% of the maximum average liver
concentration, is negligible for a spatially-extended lobule when the metabolism rate is low (lower curve). For a rapidly metabolized
compound (upper curve) variability in exposure causes some apoptosis in the spatially-extended lobule. The shaded region indicates the 95%
interval.
doi:10.1371/journal.pcbi.1000756.g012
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a. For each neighbor j if j is also a branch then CAN i is

absorbed into CAN j

5) For each straight CAN i, if there is now only one neighbor

and that neighbor is a branch CAN, merge i with the

neighbor

6) For each branch CAN i, if there is only one neighbor

convert I into a dead end CAN
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Exposure science empowers sustainable development, disease 
prevention, and risk analysis. It is fundamental to protecting vulner-
able people and ecosystems from environmental dangers. Exposure 
information provides a foundational element for understanding the 
interactions among the environment, genetics, and health. Efficient 
and effective public health policy requires a better understanding 
of key environmental risk factors and a renewed focus on health 
protection and disease prevention. Long-term solutions to improve 
global environmental health require a shift toward sustainable 
design and development. Meeting these fundamental scientific 
challenges will require innovation and transformation of exposure 
science. Ultimately, a cohesive contribution of intellectual and finan-
cial resources will be required from the entire environmental health 
community of scientists, regulators, and policy makers for more 
informed public policy and health protection.
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BACKGROUND
There has recently been unprecedented convergence among leaders 
of several research agencies about the critical role of exposure science 
in public and environmental health protection. Many have incorpo-
rated key exposure considerations into visions and strategies for their 
agencies. The timing is ripe to harness this collective energy, mobilize 
resources, and innovate the field.

In describing his vision for science and research at the US Environ-
mental Protection Agency (EPA), Paul Anastas, the EPA’s science adviser, 
highlights innovation and prevention and supports promotion of a 
“safe by design” approach. This requires a seismic shift to viewing 
challenges in a systems-based way rather than chemical by chemical, 
air toxic by air toxic, or water contaminant by water contaminant 
(Anastas et al., 2010).

Similarly, the National Institute for Occupational Safety and Health 
recently released Prevention Through Design: Plan for the National 
Initiative. These strategies for preventing work-related illnesses by de-
signing occupational hazards out of work environments are important 
steps in addressing challenges posed by the changing nature of work. 
John Howard, director of the agency, notes that prevention through 
design is in many respects a “transformative concept” for the 21st century and that it “views investments in worker safety and health 
as an integral part of business efficiency and quality” (NIOSH, 2010).  This shift in the framework for design, manufacture, and manage-
ment to address principles of sustainability requires holistic consideration of integrated environmental, economic, and social factors.

Linda Birnbaum, director of the National Institute of Environmental Health Sciences (NIEHS), recently made a compelling 
case for the need to increase the understanding of health impacts of low-level exposures to environmental stressors (Kang, 
2010). Emphasizing the institute’s focus on public health and prevention, she highlighted the importance of considering the full 
complexity of the ways in which genetics, epigenetics, and environmental exposures combine to affect health at both the individual 
and the population level across the course of development and even across generations.

Despite the success in sequencing the human genome, underlying causes of common diseases remain elusive. It has become 
evident that elucidating these causes requires commensurate efforts to map markers of environmental exposures and their 
contribution to health and to the onset or exacerbation of disease. In February 2010, the National Academies of Science (NAS) 
organized a workshop, “The Exposome: A Powerful Approach for Evaluating Environmental Exposures and Their Influences on 
Human Disease,” to examine the concept of the exposome (Rappaport and Smith, 2010) and its importance for illuminating the 
etiology of human diseases. This concept involves accounting for the life course of environmental exposures from all sources, includ-
ing lifestyle factors.

This trans-agency and transdiscipline call for an increase in relevant, high-quality exposure information demands a transforma-
tion in exposure science. Creative contributions from scientists with a wide range of expertise are required in order to fulfill the 
vision of understanding the life course of environmental exposure and to provide the evidence base for public health decisions 
regarding environmental health.

mailto:hubal.elaine@epa.gov
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IMPACT AND IMPLICATIONS FOR EXPOSURE SCIENCE
Exposure science fundamentally informs decisions that relate to smart and sustainable design, prevention and mitigation of adverse 
exposures, and, ultimately, health protection. It shifts the focus of public health and clinical medicine from diagnosis and treatment 
to elucidation of cause and prevention. Some of the areas of critical need for exposure information to support the interdependent 
pillars of sustainability, prevention, and risk analysis are examined below.

Sustainability: Sustainable decisions and actions are those that improve the current health of individuals and communities without 
compromising the health and welfare of future generations. Such decisions are supported by comprehensive environmental assess-
ments so that, for example, risk is not merely shifted from water to air or from one population to another. Exposure information is 
required to support this holistic approach to addressing emerging trends and strengthening public health policies.
• What exposure science is required to analyze linked social-environmental systems?
•  How do global pressures on the environment and human health (e.g., development, population growth, climate change) impact 

the potential for exposures to chemical, physical, and biological agents?
• What key exposure metrics are required to evaluate alternatives and ensure safe products and processes across their life cycles?
Prevention: To shift focus from treating to protecting health and preventing disease, we require an advanced understanding of 

the roles of environmental factors in impairing health status and in the etiology of diseases. Environmental factors include the 
full spectrum of biological, physical, chemical, and psychosocial stressors. Innovation in exposure-measurement technologies is 
required to provide rapid, efficient, and effective methods for characterizing these environmental factors (exposures) at all levels of 
biological organization and to supplement traditional biomonitoring.
•  Over the developmental time course, from conception through old age, what is the potential for disease and other adverse 

impacts from exposure to multiple stressors?
•  What key metrics are required to characterize critical aspects of these combinations of stressors, and how are these likely to 

interact and impact susceptibility and response?
• What are the most effective ways to reduce adverse exposures?
Risk analysis: Risk-based decision making calls for strong, science-based exposure analysis. Real-time exposure measurements 

integrated into public health and environmental-surveillance platforms will provide data critical to identifying, managing, and 
mitigating risks to susceptible and vulnerable groups. Reliable prediction of exposures in order to assess and prevent risks requires 
models grounded by measured data spanning the full range of environmental factors. These exposure-analysis tools are essential 
for understanding the current risks of our built, indoor, and workplace environments as well as the potential for risks from emerging 
technologies and products.
• How can emerging methods in molecular biology and advanced sensor technologies be developed to measure exposure?
• What are biologically relevant exposures?
• What exposure measurements and models are required to understand risks of built, indoor, and workplace environments?
•  What is the potential for exposure to and risk from emerging technologies and products such as newly manufactured chemicals, 

engineered nanomaterials, and products of biotechnology?
In light of high-visibility calls for dramatic innovation in exposure science, there is great potential for the NAS committee tasked 

with a major new study cosponsored by the EPA and the NIEHS—Human and Environmental Exposure Science in the 21st Century—
to provide the vision to guide research in our field.

Realizing the promise of exposure science to support public health requires a fundamental cultural shift toward the following:
• Transdiscipline collaborations that provide the linkages between exposure and health sciences
• A suite of scientifically based tools and approaches to support public health decisions
• Policy making based on holistic approaches
• Commitment of resources to transdiscipline long-term research and training
Together, the state of technology and our understanding of biology create fertile opportunities to revolutionize exposure science. 

This transformation is no longer an optional scientific luxury; rather, it is our obligation if we are to enhance the public health pillars to 
support the well-being of our children and future generations.
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ABSTRACT 

The U.S. Environmental Protection Agency is developing chemical screening and 

prioritization programs to evaluate environmental chemicals for potential risk to human health in 

a rapid and efficient manner. As part of these efforts, it is important to catalog available 

information on chemical toxicity and exposure from widely dispersed sources. The main 

objective of this analysis is to define important aspects of the exposure space and to catalog the 

available exposure information for chemicals being considered for analysis as part of the U.S. 

EPA ToxCast™ screening and prioritization program. Publicly available exposure data have 

been extracted into ACToR (Aggregated Computational Toxicology Resource), which combines 

information for hundreds of thousands of chemicals from >600 public sources. We use data from 

ACToR to assess the exposure data landscape for environmental chemicals. Of the roughly 

100,000 chemicals that have at least limited toxicity information available, less than one-fifth 

also have exposure information – and for most of these the information is of limited utility (e.g., 

production volume). Readily accessible data on concentrations in exposure-related media are 

only available for a much smaller fraction.  Among these, the largest number of chemicals is 

measured in water with over 1150 unique compounds, followed by 788 substances measured in 

soil, and 670 in air. These small numbers clearly reflect a focus of resources on those substances 

previously identified as possibly posing a hazard to human health. Exposure to a much broader 

number of chemicals will need to be measured in order to fully realize the envisioned goal of 

using exposure information to guide toxicity testing. 

 

KEY WORDS: Exposure, database, ACToR, risk assessment, environmental chemicals
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ACRONYMS 

ACToR  Aggregated Computational Toxicology Resource 

ATSDR Agency for Toxic Substances and Disease Registry 

BCF  Bioconcentration Factor 

CASRN Chemical Abstract Services Registry Number 

CDC  Centers for Disease Control and Prevention 

DSL Domestic Substances List 

EAFUS  Everything Added to Food in the United States  

ECETOC European Centre for Ecotoxicology and Toxicology of Chemicals 

EPA U.S. Environmental Protection Agency 

EPISuite Estimation Program Interface 

EU  European Union 

FDA  U.S. Food and Drug Administration 

HEDS  Human Exposure Data System  

HPV High Production Volume 

HSDB Hazardous Substances Data Bank 

HUD  U.S. Department of Housing and Urban Development 

IRIS Integrated Risk Information System 

IUR Inventory Update Reporting 

MPV Moderate Production Volume  

NHANES National Health and Nutrition Examination Survey  

NIOSH  U.S. National Institute for Occupational Safety and Health 

NLM National Library of Medicine 
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OSHA U.S. Occupational Safety and Health Administration 

PPD Pesticide Data Program 

REACH Registration, Evaluation, Authorisation and Restriction of Chemicals 

SPIN  Substances in Products in the Nordic Countries database 

TOXNET Toxicology Data Network 

TRA  Targeted Risk Assessment 

TSCA Toxic Substances Control Act 

USDA United States Department of Agriculture  
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1. INTRODUCTION 

The chemical industry has grown rapidly since the middle of the 20th century. Substantial 

investment of capital into research and development and product diversification has produced a 

continuous stream of innovations and a constantly expanding portfolio of products (Murmann, 

2003). Manufactured chemicals have become integrated into nearly all industrial processes, 

building materials, and commercial goods such as furnishings, clothing, electronic equipment, 

cleaning products, and cosmetics (Weschler, 2009; Wilson and Schwarzman, 2009). While the 

contributions of the chemical industry to economic growth and to improvements in life 

expectancy, comfort, and living conditions in industrialized societies are widely recognized, 

there are also concerns about the health consequences of ubiquitous exposure to synthetic 

chemicals (Wilson and Schwarzman, 2009). 

Approximately 8 million chemical substances are commercially available (Chuprina et al., 

2010). Nearly 100,000 chemicals have been inventoried in U.S. commerce. These include about 

82,000 substances regulated under the Toxic Substances Control Act (TSCA) as well as 8600 

food additives, 3400 cosmetic ingredients, 1800 pharmaceuticals, and 1000 pesticide active 

ingredients regulated under other federal statutes. Approximately 30,000 of these substances are 

believed to be in wide commercial use, marketed in volumes above 1 ton per year (Muir and 

Howard, 2006). In 2006, roughly 3500 Moderate Production Volume (MPV) chemicals were 

produced in the U.S. at between 25,000 and 1 million pounds per year (lb y-1), and about 2750 

High Production Volume (HPV) organic chemicals were produced in volumes of greater than 

1 million lb y-1. Chemicals manufactured and used at the same site, for which exposures to 

consumers and the general public are expected to be less than for those that are not site-limited, 
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make up approximately 77 % of the 27 trillion lbs reported in 2006. The majority of the top 

chemicals by volume are produced during the refining of petroleum (EPA, 2008).  

Information regarding the risks posed to human health and the environment from the 

large number of chemicals in commercial use is limited and often inadequate. Although 

relatively few chemicals are thought to pose a significant risk to human health, the hazard and 

exposure data necessary to adequately assess risk are unavailable for the vast majority of 

chemicals in commerce, even among the HPV chemicals (Applegate and Baer, 2006; EPA 1998). 

Of the nearly 10,000 HPV and MPV chemicals, pesticide ingredients, and drinking water 

contaminants considered for the U.S. Environmental Protection Agency (EPA) ToxCast™ 

screening and prioritization program, high-quality toxicology evaluation (e.g., National 

Toxicology Program, Agency for Toxic Substances and Disease Registry (ATSDR), EPA’s 

Integrated Risk Information System (IRIS)) was unavailable for about three-quarters, and even 

limited toxicity information is lacking for one-third (Judson et al., 2009). Little effort has been 

put toward consolidating and evaluating the availability of exposure data. 

Humans may be exposed to chemicals throughout the chemical’s lifecycle, that is, during 

manufacture, distribution, product use, and disposal. The vast majority of chemicals in wide 

commercial use are not measured in environmental media, and their environmental fate and 

potential for human exposure are unknown. Even for those chemicals that have been determined 

to be hazardous, we have limited exposure data, rarely sufficient to estimate exposures for 

specific population subgroups. For the majority of the contaminants of emerging concern, even 

the most basic information regarding the occurrence in the environment is unavailable (Muir and 

Howard, 2006).  
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Recognizing the critical need for exposure information to inform chemical design, 

evaluation and health risk management, the ExpoCast™ program has been initiated by the US 

EPA in collaboration with stakeholders. The aim of the program is to ensure that the required 

exposure science and computational tools are developed and ready to: (1) address global needs 

for rapid characterization of exposure potential arising from the manufacture and use of 

thousands of chemicals, and (2) meet challenges posed by new toxicity testing approaches and 

integrated evaluation strategies. An early focus of this research program is to improve public 

access to exposure information. The objective of this paper is to identify resources useful for 

exposure assessment required to prioritize chemicals in commerce for screening, targeted testing 

and risk assessment. We investigate key aspects of exposure space and review exposure-related 

data resources. We analyze publically available databases housing exposure-related information 

to catalog available exposure data and identify strengths and limitations of exposure data 

available for chemical risk management. 

2. METHODS 

In this article we restrict our analyses to those chemicals collected in ACToR (Aggregated 

Computational Toxicology Resource) (Judson et al., 2008), the comprehensive data management 

system developed by EPA to manage the large-scale datasets of ToxCast™ (http://actor.epa.gov). 

ACToR is comprised of several independent data repositories linked to a common database of 

chemical structures and properties, and to tools for development of predictive toxicology. As 

such, it is a database holding essentially all publicly available information on chemical identity, 

structure, physical–chemical properties, in vitro assay results, and in vivo toxicology data 

(Judson et al., 2009). All chemicals in ACToR have been run through EPA’s EPISuite™ set of 

programs (EPISuite 4.0) to calculate predicted values of a series of physicochemical properties. 
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In particular, bioconcentration factor (BCF) was estimated with BCFBAF v 3.0 using the 

regression-based method, and biodegradation potential with BIOWIN v 4.1 using the “biowin1” 

linear model. Queries of the ACToR database (database version actor_2010q4a, accesses March 

1, 2011) were performed to illustrate the types and amount of exposure data publicly available. 

The ACToR system is implemented in MySQL and can be freely downloaded so that others can 

submit advanced queries or develop custom data-mining applications.   

3. EXPOSURE SPACE 

“Chemical space” is a region defined by a particular choice of descriptors of molecular 

properties (e.g., molecular mass, octanol-water partition coefficient) and the limits placed on 

them. Identification of regions of chemical space that define bioactive molecules has been 

instrumental to drug discovery (Dobson, 2004; Chuprina et al., 2010). To identify relevant 

information for collation and evaluation, key aspects of an analogous “exposure space” 

particularly relevant to risk evaluation and risk management were considered. These included 

physicochemical properties, product characteristics, emissions characteristics, pathways, and 

receptor characteristics. 

3.1 Physicochemical Properties 

Inherent properties of chemicals drive potential for human and ecological exposure in the 

context of a given system. Mackay et al. (2001) argue that chemical substances can be classified 

with respect to exposure potential meaningfully and independently of quantity released to the 

environment according to their persistence, bioaccumulation, and potential for long-range 

atmospheric transport. Persistence, the propensity to remain in the environment for long periods 

of time, and bioaccumulation, accumulation in primary aquatic living organisms via the food 
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chain, were key factors used to conduct screening assessments of substances listed on the 

Canadian Domestic Substances List (DSL) (Meek, 2007). These factors are currently used by 

EPA to evaluate new chemicals before permitting their entry into the marketplace (Moss et al., 

2000), and are important criteria for triggering requirements for exposure characterization under 

Europe’s Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) 

legislation.  

While persistence and bioaccumulation can be determined experimentally in the 

laboratory under highly controlled conditions, they are more often estimated computationally 

using a relatively small number of physicochemical properties (Zachary and Greenway, 2009). 

These estimates and the algorithms on which they are based, however, are not without limitations. 

Indeed, model selection and the assumptions chosen in their application may result in different 

rankings of human exposure potential (MacDonald et al., 2002; Arnot et al., 2010). Chemical 

characteristics of persistent organic pollutants are well established, namely, low water solubility, 

high lipid solubility, semi-volatility, and high molecular mass. Persistence and bioaccumulation 

are useful for assessing exposure via contact with the surrounding natural outdoor environment 

and chronic exposure through certain types of food (fish, for example), but they provide little 

information on exposure in the indoor environment. To date, the effort applied toward the 

identification of physical and chemical properties that most directly influence indoor persistence 

has been modest. Weschler and Nazaroff (2008) identified molecular weight, melting point, 

saturation vapor pressure, Henry’s law constant, water solubility, octanol–water partition 

coefficient, and octanol–air partition coefficient as directly influencing the partitioning and 

transport of semi volatile organic compounds in indoor environments. However, many screening 

models rely only on vapor pressure and product characteristics (ECHA, 2010).  
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3.2 Product Characteristics (Manufacture, Formulation, Use, Lifecycle) 

The general population is typically exposed to chemicals indirectly through the 

environment or directly through use and contact with consumer products. As such, data are 

required to characterize potential for human exposure to a given chemical as a function of 

relevant product characteristics and across the chemical/product lifecycle. Because the vast 

majority of chemicals are not monitored in environmental media, production volume is often the 

primary surrogate by which chemicals are evaluated for potential exposure. Though many legacy 

environmental contaminants were high production volume chemicals, the assumption that human 

exposure is strongly correlated with production volume has been questioned (Muir and Howard, 

2006).  

Direct and indirect exposure to chemicals in products typically exceeds environmental 

exposure, except perhaps for those residing in the vicinity of an emission site (Wormuth et al., 

2007). Health Canada was legislatively mandated to categorize by exposure all chemicals in 

commerce listed on their DSL. The DSL categorization exercise suggested that persistence and 

bioaccumulation potential did not necessarily reflect human exposure and highlighted the 

importance of direct consumer exposure relative to indirect environmental exposure. Specifically, 

use category was identified as an important surrogate for exposure-based prioritization, with use 

profiling proving far more influential than production volume in determining exposure rankings 

(Meek et al., 2007). At a more fundamental level, exposures to chemicals in products are 

commonly thought to be a function of the vapor pressure of the chemical and the characteristics 

and use scenarios associated with the products. For example, the European Centre for 

Ecotoxicology and Toxicology of Chemicals (ECETOC) Targeted Risk Assessment (TRA) 

consumer exposure model approved for Tier 1 exposure estimation under REACH provides 
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scenarios with defaults for contact factors for 46 specific types of products (e.g., furniture spray 

polish) and articles (e.g., plastic toys). The user needs only to provide the vapor pressure of the 

chemical, the concentration of the chemical in the product, the amount of product used per event, 

and the number of events per day (ECHA, 2010). Several other consumer exposure models are 

discussed in Kephalopoulos et al. (2007). Little work has been done to compare results of 

scenario-based modeling to measured concentrations of chemicals in indoor environments. Since 

information on product composition and consumer product use is required as inputs to these 

models, the need for product formulation and product use information has been identified as 

critical for assessing human exposure to chemicals (Wormuth et al., 2007). 

3.3 Emission Characteristics 

A more direct indicator of potential for human exposure than production volume and 

general use classification is emission of the chemical into the system of interest (e.g., the general 

environment). Emission data are required at the relevant scale for exposure analysis. Either a 

compound is released far-field from the receptor individual/population and information on 

environmental fate and transport is required, or the compound is released near-field and 

information on the fate and transport in the immediate (usually indoor) environment is required. 

In either case, data on mass emitted and media into which the chemical is emitted and/or the 

media from which the chemical is available for contact are required (Schneider et al., 2011; 

MacLeod et al., 2011). A lack of information on emission factors during the production of 

chemicals, the downstream use of chemicals in various products, and the emissions from 

products will limit effective evaluation of human exposure (van Leeuwen et al., 1996; Fryer et al., 

2006).  

3.4 Routes and Pathways 



 12

Data on chemical levels in environmental media (e.g., air, dust, water, food) combined 

with information on chemical movement among media provide critical information for 

estimating potential human exposure. While data on chemical levels in biological media (e.g., 

blood, urine, nails) provide a direct indication of human exposure, data on levels in 

environmental media can serve to identify the most effective means for reducing or preventing 

risk by blocking or eliminating exposure pathways. 

3.5 Receptor Characteristics  

Because the ACToR system is chemical specific, the scope of the exposure data 

identified and described within this analysis does not include direct consideration of receptor 

characteristics. Receptor here refers to human beings, not target organs or tissues, and receptor 

characteristics include time-location-activity patterns and contact rates. Other related resources 

focus on exposure factor data including EPA’s Consolidated Human Activity Database 

(McCurdy et al., 2000) and EPA Exposure Factors Handbook (EPA, 2011). However, data 

related to use of specific chemicals in products designed for a vulnerable receptor population 

such as children were explored.  

For this analysis we collated publicly available data to evaluate the data landscape (i.e., 

coverage, or number of chemicals) across these critical aspects of exposure space. A better 

characterization of data across this exposure space will aid in identifying key gaps required to 

augment the often putative surrogates (e.g., production volume) currently being used to represent 

exposure. As additional data sources are further identified and evaluated, the data can be tied 

back to these key aspects of the exposure space. 

4. EXPOSURE DATA RESOURCES 
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 Several sources of exposure-related data are publically available via the internet. Schwela 

and Hakkinen (2004) review websites offering a wide range of human exposure assessment 

information from governmental agencies, environmental organizations, and professional 

societies. The focus is on training materials, guidelines, and tools, rather than on chemical 

concentrations. Patterson et al. (2002) largely align their review along the four components of the 

National Academy of Sciences risk assessment paradigm and cover exposure-related data in two 

pieces: hazard identification and exposure assessment. They describe websites providing 

exposure assessment guidance and models as well as data related to chemical release, 

physicochemical properties, and environmental fate and transport from a broad range of 

organizations. Polifka and Faustman (2002) also present an overview of resources organized 

along the lines of the risk assessment paradigm but targeted towards health care professionals 

concerned with developmental toxicants and their effects. The resources evaluated under 

exposure assessment are related solely to occupational exposures. Felsot (2002) presents a 

comprehensive listing of pesticide databases that, while focused on toxicology, also point the 

reader towards available data on pesticide residue levels in food and drinking water. Stone and 

Delistraty (2010) present an inclusive listing of sources of exposure information in the 

supplemental materials to their article discussing identification of high priority chemicals under 

the Washington State Children's Safe Product Act.  

 Among the most comprehensive of several data aggregators that provide access over the 

internet to exposure-related values is the Hazardous Substances Data Bank (HSDB) on the 

National Library of Medicine (NLM) Toxicology Data Network (TOXNET) (NLM, 2011). The 

HSDB focuses on the toxicology of potentially hazardous chemicals with comprehensive, peer-

reviewed toxicology data for over 5,000 chemicals. It also provides information on human 
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exposure, industrial hygiene, chemical and physical properties, manufacturing and use, and 

environmental fate. All data are abstracted from a core set of reference books, government 

documents, technical reports and selected primary journal literature and are peer-reviewed by a 

committee of experts. Similarly, NLM’s Haz-Map links jobs and hazardous tasks with 

occupational diseases and their symptoms via expert review of publications. 

EPA’s Data Finder (http://www.epa.gov/datafinder/) site indexes EPA data sources and is 

organized by topic: air, climate change, health risks, pollutants and contaminants, waste, and 

water. A chemical specific search returns a list of data sources, each with a basic overview 

including geographic scale and other contextual information. Where available, access is provided 

to the data source, offering access to data in downloadable formats. Another EPA resource is the 

Envirofacts Data Warehouse (http://www.epa.gov/enviro/). It is a single point of access to 

several EPA databases with environmental data for any geographical location in the United 

States (i.e., specific ZIP Code, City or County and State). The website provides information on 

industrial activities that may affect air, water, and land and allows the user to generate maps of 

environmental information, including toxic chemical releases, water discharge permit 

compliance, hazardous waste handling processes, Superfund status, and air emission estimates. 

 EPA’s ACToR information management system contains publically available data on 

chemicals in the environment, including information on hazard, exposure, risk assessment, 

regulations and production. All exposure-related data in ACToR have been organized into 

categories based on the taxonomy presented in Table 1. The relationship among the taxonomy 

categories is displayed in a network diagram in Figure 1, showing the hierarchical relationship 

among the assay categories. All publically available exposure-related data for chemicals listed by 

CAS number that the ACToR team uncovers are brought into the system, but no proprietary data 
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are included. The types of exposure data can be classified into the following categories: (a) 

Production/import volumes and processes, (b) Consumer product ingredients and usage, (c) 

Environmental release, (d) Environmental media concentrations, and (e) Human 

exposure/biological monitoring. The following is a listing of some of the key data sources. The 

list is not meant to be comprehensive, and a complete listing of data sources can be found in the 

“Data Collections” section of ACToR. 

Information on production and import volumes in ACToR includes all non-confidential 

information from the EPA Inventory Update Reporting (IUR) Program, which collects 

screening-level, exposure-related information on chemical substances produced at any single site 

at 25,000 lb or more. Information is also captured, albeit with a lag, from the EPA High 

Production Volume Information System. Efforts are underway to establish a direct link to the EU 

European Substances Information System, and additional production process information can be 

accessed through links provided to the ATSDR Toxicological Profiles.  

Industrial use and product ingredient information comes from, among other sources, the 

U.S. Food and Drug Administration (FDA) Everything Added to Food in the United States 

(EAFUS) inventory, FDA’s Approved Drug Products, and Health Canada’s Substances in 

Cosmetics and Personal Care Products Regulated Under the Food and Drugs Act listing. It 

should be noted that the NLM Household Products Database is not included in ACToR due to 

licensing issues, and several publically accessible databases that link only through product names 

are also excluded; these include SC Johnson’s What’s Inside, Clorox’s Ingredients Inside, and 

the Environmental Working Group’s Skin Deep Cosmetic Safety Database. Efforts are currently 

underway to access Walmart’s online MSDS search engine for information on product 

ingredients and the Substances in Products in the Nordic Countries (SPIN) database 
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(http://www.spin2000.net) for more detailed information on industrial uses and product 

categories of chemicals. 

Environmental release data comes from a number of sources including the EPA’s Toxics 

Release Inventory and National Emissions Inventory, the EPA Pesticide Industry Sales and 

Usage Market Estimates, the Great Lakes Commission Toxic Air Emissions Inventory, and the 

Health Canada National Pollutant Release Inventory. Environmental fate information comes 

from the EPA Toxic Substance Control Act Test Submission Database, EPA Inert Ingredients in 

Pesticide Products tolerance reassessment decisions, the U.S. National Oceanic and Atmospheric 

Administration Pharmaceuticals in the Environment Information for Assessing Risk database, 

and the EPA ECOTOX database. There is a noticeable lack of available data on indoor emissions 

from both building materials and consumer products; such information would be particularly 

useful for assessing direct exposures to compounds formulated into consumer products and 

articles. 

 Sources of measured environmental concentrations include EPA’s National Contaminant 

Occurrence Database for unregulated contaminants in public water systems, EPA AirData for 

ambient air monitoring data, EPA National Air Toxics Assessment for modeled ambient data, 

UN Intergovernmental Panel on Climate Change Greenhouse Gas Inventories, U.S. Department 

of Agriculture (USDA) Pesticide Data Program (PPD) database of pesticide residues in the U.S. 

food supply, summaries of the FDA Total Diet Study market basket survey of contaminants in 

food, EPA Human Exposure Data System (HEDS) for exposure-related media concentrations 

from observational studies, and occupational exposure limits from OSHA and NIOSH. Human 

Exposure Monitoring data includes personal air, dermal, and biomarker values from 
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observational studies contained in EPA HEDS, and biological monitoring from the CDC 

National Health and Nutrition Examination Survey (NHANES) 

5. ANALYSES USING ACToR 

5.1 Exposure and Use Taxonomy 

In order to illustrate the types and amount of exposure data publicly available (Table 1), 

we organized analyses around three classes of chemicals using queries of the ACToR database. 

The first are industrial chemicals covered by the EPA IUR database, combining all chemicals 

that had been on the IUR list in any reporting period from 1986 to the present (14,609 total 

chemicals or unique CASRN). The second list includes chemicals that may be lawfully added to 

food, which is comprised of the substances on the FDA EAFUS list (2,820 chemicals or unique 

CASRN). The third list contains chemicals for which there is concern for exposure to children 

(714 unique chemicals or CASRN), and is derived from a number of studies and lists, including:  

California Air Resources Board Children's School Bus Exposure Study; EPA Voluntary 

Children's Chemical Evaluation Program (VCCEP); EPA Children’s Total Exposure to 

Persistent Pesticides and Other Persistent Organic Pollutants study; German Environmental 

Survey; HUD First National Environmental Health Survey of Child Care Centers; and EPA 

Minnesota Children’s Pesticide Exposure Study. For comparison, we also included a column 

(“Toxicity Data Landscape”) showing the number of chemicals previously evaluated for 

availability of toxicity data. The rows of Table 1 represent major categories in the assay 

taxonomy related to exposure and use categories. Each row lists the number of chemicals with 

data in that category in the ACToR, IUR, Food Use, and Children’s Exposure chemical sets as 

well as those with corresponding toxicity data. The second row of Table 1 presents the highest 
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level of the hazard taxonomy, and the third row presents the overall summary of publicly 

available chemical-specific exposure-related data, the highest level of the Exposure taxonomy 

(Figure 1). There are a total of 21,527 chemicals with some form of exposure-related data. Of 

these, 14,566 are industrial chemicals reported under the IUR at least once since 1986; 2,485 

may be added to food in the U.S.; and 203 have been identified as chemicals of concern to 

children.  

5.2 Chemical Coverage Based on Properties 

 As an example of an analysis of key aspects of exposure space, we have examined two 

physicochemical properties of particular interest, bioaccumulation (quantified by the BCF) and 

biopersistence (quantified by the biodegradation potential) for chemicals allowed in food and 

chemicals previously identified as being of concern for children’s exposure. High values of log 

BCF indicate the potential to bioaccumulate in tissue, and low values of the biodegradation 

potential indicate the potential to be biopersistent. Examining all 5,489 chemicals that have been 

on the IUR since 1986 and for which EPISuite™ was able to calculate these two parameters, we 

find mainly polychlorinated biphenyls (PCBs) and organo-tin compounds of most concern for 

bioaccumulation and persistence, with log BCF>4 and biodegradation potential <0. Among the 

chemicals of concern for children’s exposure in this region are 18 PCBs and two polycyclic 

aromatic compounds. There are no EAFUS compounds meeting both criteria, but several have a 

biodegradation potential <0, mainly cyclic and linear poly-ethers, some of which are surfactants 

or solvents. 

5.3 Historical Survey of Production Volumes  
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The EPA has been tracking production volume through the TSCA IUR since 1986. Every 

4 years, manufacturers have been required to report import and manufacturing volumes of 

chemicals above thresholds (>10,000 lb y-1 per site until 2006, when the threshold was raised to 

25,000 lb). Figure 2 shows the number of chemicals in each volume category in each of the 

reporting years, showing that the categories are relatively stable over time. An exception is the 

significant drop in the number of chemicals under 500K lb from 2002 to 2006; this is principally 

due to the increased reporting threshold, so that the lowest volume chemicals were no longer 

reported. Despite an approximately ten-fold increase in global chemical production volume 

between 1970 and 2010 (IPCS, 2010), the number of medium and high production chemicals has 

stayed remarkably consistent. This suggests that the increase in chemical production is not 

necessarily due to manufacture of a greater number of chemicals each year, but instead due to 

increasing quantities of a relatively constant number of industrial chemicals. Several limitations 

of the IUR data have been identified (Denison, 2009), including that the thresholds for reporting 

apply to individual facilities, that certain categories of chemicals are excluded, and that the 

limited timeframe may not give an accurate picture of general production rates since the 

information applies only to the one year preceding the reporting year. Several limitations have 

been addressed in new reporting requirements implemented for the next cycle.  

5.4 Overlap in Chemical Coverage: from Production Volume to Biomarker 

The number of unique chemicals in ACToR with information on production volume, use 

category, chemical release, and measurement of concentrations in food, water, soil, air, and 

biological fluids is presented in Figure 3. Production volume information is available for 14,591 

chemicals and use categories for approximately 2400 chemicals. Only a much smaller fraction 

has readily accessible measured concentrations in exposure-related media. Water is the medium 
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with the largest number of measured chemicals with over 1150 unique compounds. Measurement 

of chemicals in water is performed routinely by two separate agencies (EPA and U.S. Geological 

Survey), perhaps leading to the relatively large number. Nearly 800 substances have available 

measurements in soil, 720 are measured in food, and 670 are measured in air. Biomarker 

measurements are available for nearly 400 compounds, with over 200 measured in NHANES 

alone. 

Figure 4 presents the overlap among chemicals with production volume information, use 

category, and various exposure media and biomonitoring concentrations (same categories as in 

Figure 3). Of the roughly 21,500 unique chemicals with exposure-related data in ACToR, only 

about 2500 are simultaneously found in more than one category. Less than 700 are found in three 

categories, and about 200-300 are found in either four, five, or six categories. Clearly the 

coverage across different types of exposure-related information is poor. 

5.5 Chemicals of Concern to Children 

Of the chemicals included in ACToR, approximately 700 have been identified as being of 

concern to children (Table 1). Exposure-related information exists for only 185 of these, with 

biomonitoring data available for even fewer. This small number of chemicals in this category 

highlights one important gap in the exposure data landscape – namely a well-documented listing 

of chemicals to which children are routinely exposed, along with the expected exposure 

scenarios or routes.  

6. DISCUSSION 
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Expanding the scientific understanding of human exposure requires that existing human 

exposure data become more easily accessible. This analysis of readily available exposure data, 

spanning across the source-to-dose continuum from production volume to biological markers, 

reveals that for other than production volume and cursory use categories, the number of unique 

chemicals for which we currently have measured exposure-related media concentrations is low. 

This stands in contrast to the number of chemicals with available toxicity information, as a recent 

investigation of environmental chemicals being considered for the EPA ToxCast™ screening and 

prioritization program found 6,551 of 9,912 to have at least limited toxicity summaries available 

(Judson et al., 2009).  

Our analysis addresses numbers of chemicals but does not consider the scale of the 

monitoring efforts. For example, although the number of chemicals for which we have ambient 

air measurements is low, criteria air pollutants (as defined by the Clean Air Act) are measured 

for compliance with the National Ambient Air Quality Standards (often on an hourly basis) by a 

monitoring network of thousands of stations that spans the entire country. Similarly, over 90 

contaminants are regularly measured in some 26,000 public drinking water systems throughout 

the country. The more than 200 environmental chemicals measured in blood, serum, or urine as 

part of NHANES typically have a sample size of about 2000, are nationally representative, and 

are repeated every two years. On the other hand, many contaminants of indoor environments 

measured in proximal exposure media (e.g., house dust, indoor air) in observational exposure 

studies with publically accessible data have been measured only a handful of times with little or 

no attempt at achieving a representative sample of the larger population. The proximal exposure 

measurements in ACToR do not represent all of the exposure measurements available in the 
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scientific literature since at the present time there is no source of curated human exposure 

measurements with broad coverage in chemical and media space. 

Consolidating exposure data into ACToR makes access to chemical-indexed data from 

disparate databases straightforward and allows for improved linkages with toxicity data. The rise 

of informatics, and the creation of increasingly advanced bioinformatics tools, is driving ever 

more sophisticated data analysis. The type of consolidation described herein facilitates an 

application of environmental informatics tools to exposure data. Application of large-scale, 

multidimensional analysis of the collocated toxicology and exposure data holds the promise of 

uncovering heretofore unrecognized environmental determinants of disease. It would also allow 

for establishing linkages with product usage data. The establishment of standards for the 

reporting and representation of exposure-related data would likely accelerate and broaden these 

efforts. 

 Advancements in standards for reporting and the representation of exposure-related 

information would also serve to facilitate data sharing, thereby widening the breadth of available 

exposure data. Exposure data standards would also reduce the ambiguity that impedes the 

understanding of human exposure by the broader science community. At a time when hand-

interpretation of data is giving way to the era of automated interrogation of databases, 

standardization will facilitate linkages with other fields. Efforts, such as ACToR, to catalog and 

link the varied sources of exposure data hold great promise in supporting much needed predictive 

models for screening chemicals based on exposure. 

In evaluating the data landscape, we were able to identify some of the strengths and 

limitations of the exposure data available for chemical risk assessment. The results suggest that 
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currently available exposure data are insufficient to provide the evidence base required to inform 

risk assessment and public health decision making. In this analysis of the 547,088 substances 

catalogued in the ACToR database, exposure information is readily available for only a small 

fraction. Even with new publically accessible data systems constantly being added with each new 

ACToR release, the total number of unique chemicals with exposure information is not expected 

to increase substantially, as we believe we are close to exhausting the world of large exposure-

related datasets. Nonetheless, we are optimistic that efforts such as this will be useful in the 

development of exposure-based approaches for prioritizing chemicals for risk assessment.  

Furthermore, if enacted, proposed reform of U.S. legislation regulating potentially toxic 

chemicals (EPA, 2009a) would likely require chemical manufacturers to provide a minimum set 

of data, including more detailed data on exposure potential, for large numbers of chemicals. Such 

data requirements hold the promise of greatly expanding the universe of chemicals for which 

useful exposure-related information exists. 
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Table 1: Mapping of chemicals to exposure taxonomy categories. Number of chemicals with 
exposure-related information and in categories of particular interest. 
 

CATEGORY 1  ACToR  IUR  FOOD USE 
CHILDREN'S 
EXPOSURE 

TOXICITY 
DATA 

LANDSCAPE 

Total  547088 14609 2820  714 17347

Hazard  108443 10891 2605  196 13062

Exposure  21527 14566 2485  203 16138

Exposure; Biomonitoring  390 106 177  143 242

Exposure; Chemical Release  1737 898 802  140 1599

Exposure; Chemical Release; Accidental  155 133 52  10 154

Exposure; Chemical Release; Media; Air  225 180 112  59 225

Exposure; Environmental Fate  7023 3333 1179  163 4101

Exposure; Group; Age  1870 695 462  194 1057

Exposure; Group; Age; Adult  51 6 50  19 44

Exposure; Group; Age; Child  1868 695 460  194 1055

Exposure; Group; Ecological  872 155 484  65 597

Exposure; Group; Vulnerable Population  256 181 79  54 207

Exposure; Media  3716 1385 1923  201 2464

Exposure; Media; Air  670 434 349  161 622

Exposure; Media; Air; Ambient  43 42 20  13 43

Exposure; Media; Air; Residential  69 65 29  40 65

Exposure; Media; Air; Residential; Indoor  67 64 28  38 64

Exposure; Media; Air; Residential; Outdoor  28 27 16  28 27

Exposure; Media; Air; Residential; Personal  33 31 19  33 31
Exposure; Media; Air; Residential; Personal;
 In Transit  17 16 11  17 16

Exposure; Media; Biosolids  43 18 21  10 21

Exposure; Media; Sediment  166 76 131  106 139

Exposure; Media; Soil  788 396 390  160 673

Exposure; Media; Surfaces  36 4 34  36 34

Exposure; Media; Water  1153 484 473  134 783

Exposure; Media; Water; Drinking  299 122 125  63 179

Exposure; Media; Water; Ground  608 316 315  103 532

Exposure; Media; Water; Surface  188 85 130  59 152

Exposure; Media; Water; Waste  90 44 51  18 56

Exposure; Production  15635 14553 1330  150 14954

Exposure; Production; Disposal  813 465 357  102 740

Exposure; Production; Export  832 352 81  26 383
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CATEGORY 1  ACToR  IUR  FOOD USE 
CHILDREN'S 
EXPOSURE 

TOXICITY 
DATA 

LANDSCAPE 

Exposure; Production; Import  36 32 7  2 32

Exposure; Production; Site  6200 6200 833  68 6200

Exposure; Production; Transport  677 437 325  94 663

Exposure; Production; Volume  14591 14551 1133  90 14554

Exposure; Source  6927 6403 1237  137 6848

Exposure; Source; Agricultural  541 177 404  58 492

Exposure; Source; Industrial  639 429 313  81 630

Exposure; Source; Residential  27 2 24  27 23

Exposure; Source; Workplace  6297 6266 865  69 6279

Use Category  7587 2416 2093  174 3810

Use Category; Consumer  3483 955 565  55 1156

Use Category; Consumer; Children  1732 698 362  85 983

Use Category; Consumer; Cosmetics  185 73 23  0 85

Use Category; Consumer; Fabrics, Textiles  117 112 37  6 114

Use Category; Consumer; Pharmaceutical  2446 324 307  21 379

Use Category; Consumer; Soaps and detergents 173 154 68  1 158

Use Category; Food  2466 904 1713  146 1658

Use Category; Food Contact  21 11 21  0 13

Use Category; Occupational  1234 988 469  77 1107

Use Category; Pesticides  3320 1200 1748  150 2378
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Figure 2: Production over time of MPV and HPV chemicals based on 1986-2006 IUR by 
volume category. 
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Figure 3: Number of unique chemicals by data type in ACToR. 
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Figure 4: Number of chemicals for which one or more taxonomy categories of exposure-related 
information are available in ACToR. A chemical can be tied to a maximum of eight categories: 
five categories with measured concentrations (air, soil, food, water, biomonitoring) and three 
categories of exposure surrogates (production volume, use category and chemical release). 
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Abstract: Computational toxicology combines data from high-throughput test methods, 

chemical structure analyses and other biological domains (e.g., genes, proteins, cells, 

tissues) with the goals of predicting and understanding the underlying mechanistic causes 

of chemical toxicity and for predicting toxicity of new chemicals and products. A key 

feature of such approaches is their reliance on knowledge extracted from large collections 

of data and data sets in computable formats. The U.S. Environmental Protection Agency 

(EPA) has developed a large data resource called ACToR (Aggregated Computational 

Toxicology Resource) to support these data-intensive efforts. ACToR comprises four main 

repositories: core ACToR (chemical identifiers and structures, and summary data on hazard, 

exposure, use, and other domains), ToxRefDB (Toxicity Reference Database, a 

compilation of detailed in vivo toxicity data from guideline studies), ExpoCastDB  
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(detailed human exposure data from observational studies of selected chemicals), and 

ToxCastDB (data from high-throughput screening programs, including links to underlying 

biological information related to genes and pathways). The EPA DSSTox (Distributed 

Structure-Searchable Toxicity) program provides expert-reviewed chemical structures and 

associated information for these and other high-interest public inventories. Overall, the 

ACToR system contains information on about 400,000 chemicals from 1100 different 

sources. The entire system is built using open source tools and is freely available to 

download. This review describes the organization of the data repository and provides 

selected examples of use cases.  

Keywords: computational toxicology; database; hazard; exposure; high-throughput 

screening; ACToR; ToxCastDB; ExpoCastDB; ToxRefDB; DSSTox 
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1. Introduction 

Historically, information related to the effects of environmental chemicals has been widely 

distributed across numerous databases and sources. The task of consolidating these data resources was 

complicated by the diversity of non-standardized systems developed over the past 40 years of 

toxicology studies, ranging from online databases to compilations of individual electronic (and 

sometimes paper) documents. Previously, gathering all relevant information on a chemical required the 

search of tens to hundreds of sources and then manual compilation of the resulting data. To address 

this issue, ACToR (Aggregated Computational Toxicology Resource) was developed as a consolidated, 

searchable (by CASRN, name, chemical structure) collection of data on environmental chemicals. 

ACToR is available via the Internet and includes chemical identifiers and structures, physicochemical 

values, in vitro assay data and in vivo toxicology data, and source information and link-outs. 

Chemicals include but are not limited to those of interest to environmental scientists and regulators. In 

addition to information on environmental chemicals, data on pharmaceutical compounds is included 

because of the interaction between environmental and pharmaceutical toxicologists, both of whom are 

developing new methods for predicting human toxicity from in vitro and computational approaches. 

These approaches are heavily dependent on extensive data sets for building and validating models.  

ACToR is currently being used to address three major goals: (1) making information on the health 

effects and exposure potential for environmental chemicals readily accessible; (2) characterizing gaps 

in knowledge of the toxicology of environmental chemicals; and (3) providing a resource for  

model-building to fill data gaps in environmental health risk information. ACToR has brought together 

data from sources whose identity and location are not widely known, or where data was not readily 

accessible in searchable or computable form. Of particular note are data from animal studies of 

pesticides that were previously publicly unavailable [1]. In addition, little toxicology information is 

available for many environmental chemicals, creating an environmental chemical “data gap” [2]. 

ACToR has been used to carry out a characterization of the data gap by compiling toxicology data on 

major classes of environmental chemicals, including those considered high and medium production 

volume chemicals, or those produced at more than 25K pounds/year, as defined under the Toxic 

Substances Control Act. From this analysis, we found that only about 25% of the most widely used 

environmental chemicals have significant toxicology data [3]. Computational toxicology, which uses a 

combination of in vitro data, chemical information, and computer modeling to predict chemical 

toxicity, represents a significant new approach to predicting human health risk for environmental 

chemicals. The U.S. Environmental Protection Agency (EPA) ToxCast screening and prioritization 

program [4] is a major effort in this area and was the driver for the development of ACToR. 

Descriptions of the use of ACToR in ToxCast are available elsewhere [3,5]. 

2. The Databases 

2.1. Overall Organization 

The ACToR system is comprised of four large interacting databases that share tables describing 

chemical identity and structure, but that maintain separate schemas for managing domain-dependent 

data on the chemicals. All of the databases are implemented in MySQL (http://www.mysql.com/), a 
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freely available database system that can run on multiple platforms, including Linux, Windows and 

Mac. The MySQL databases can be freely downloaded so that other groups can develop custom  

data-mining applications using our data. In order to make the databases as portable as possible, we 

have largely used default database settings with the MyISAM database engine. The applications have 

acceptable performance despite using no significant tuning and containing tens of millions of  

data points. 

Figure 1 schematically illustrates the overall organization of the databases and their link to the 

DSSTox system. We have largely adopted the PubChem [6] model for describing chemicals, using the 

concepts of source-dependent “substance” and source-independent “compound”. A substance can be 

thought of as the chemical in the bottle, or physical sample that is actually tested A substance can have 

various identifiers, including one or more names, a Chemical Abstracts Services Registry Number 

(CASRN), a supplier, a purity value, etc., and is usually uniquely associated with a source. Each 

chemical may have numerous substance records. For example, there are many individual benzene 

substance records in the database, one for each experiment (or database) that produced (or reported) 

data on benzene. In contrast, there will be only one compound record, or structure representation in the 

database. A compound is the idealized representation of the structure of the chemical, which is the 

same for all of the substances to which it is linked. Hence, there will be one compound record in the 

database for benzene and all of the individual source-specific substance records will be linked to it.  

Though the PubChem model was used for several aspects of ACToR, there are differences. 

PubChem is a public, user-depositor, structure-centric database whose primary mission is to store and 

aggregate bioassay data associated with chemical substances at the compound (or structure) level. In 

contrast, ACToR is concerned with aggregating publicly available data for a broader set of chemicals, 

including formulations, defined mixtures and complex mixtures. The latter includes ill-defined 

substances such as milk, mica, walnut shells, and molasses that are incorporated into commercial and 

industrial products and must be captured in the database despite having no well-defined structure. 

Therefore, we have explicitly added a layer termed “generic chemical”, which is typically defined by a 

CASRN, where available, and a preferred name. Additionally, if a chemical can be represented by a 

well-defined structure (e.g., benzene), it will have a compound (or structure) record linked to it and 

will additionally have one or more linked substance records. In contrast to PubChem, ACToR 

currently uses CASRN (or a generic chemical identifier when CASRN is unavailable), as a primary 

key since most of the toxicology and exposure literature and databases use this as a unique identifier. 

Use of CASRN (or the generic chemical identifier) allows us to aggregate over a broad range of data 

sources, even when chemical structures are not available. 

As shown in Figure 1, each of the databases uses the same set of database tables describing 

substance, compounds and generic chemicals, carrying the main chemical IDs and chemical structure 

linkages. In practice, these tables are duplicated and periodically synchronized to allow the different 

databases to operate independently, and yet pull from the latest list of curated chemical structures.  

The DSSTox project is coordinated with ACToR to ensure that the chemicals associated with the 

major EPA projects published within ACToR are correctly and consistently annotated by name, 

CASRN and chemical structure. Public data sources are replete with examples of incorrectly  

identified chemicals (incorrect or insufficiently precise names, incorrectly assigned CASRN and 

incomplete representations or explicit errors in structure). DSSTox has adopted strict information 
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quality review standards and manually curates all of the chemical information assigned to substances 

used in the research efforts feeding the ToxRefDB, ToxCastDB and ExpoCastDB databases, in 

addition to producing QSAR-ready datasets for a variety of other public inventories pertaining to 

environmental toxicity.  

Because data within ACToR is consolidated from hundreds of different sources, we have 

constructed several workflows that map raw data from individual sources into a small number of 

standard flat file formats. These files are then loaded into the appropriate database tables. Each new 

version of each of the databases is created by reloading all of the data into an empty set of tables. The 

data manipulation software is written in several languages, including Perl, Python, Java and R. 

Figure 1. Organization of the databases. ACToR and the affiliated EPA databases shown 

use the same chemical identity and structure tables, fed by the DSSTox project (at left). 

Content from external data sources are fed into the ACToR database after filtering and 

formatting (bottom), with structures provided by PubChem if not available in DSSTox.  

 

All of the described databases are accessible through the web at http://actor.epa.gov. Each of the 

main components can be accessed separately through tabs at the top of the page, and these interfaces 

allow browsing and searching capabilities. The current ACToR web site has limited search and 

modeling capabilities. However, since the data are fully downloadable in standard table format, users 

can readily employ a variety of public and in-house analysis tools. As will be described later, we are 
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moving towards a more flexible, web-services architecture that will allow for the construction of a 

richer set of search and analysis utilities based on the back-end data.  

Subsequent sections will provide more detail on the data organizational model and the major 

component databases within ACToR. The ACToR web site provides schema diagrams for each 

database, along with the ability to download some component databases or the complete ACToR 

database in MySQL format. Finally, the web interface code can be freely downloaded so that the 

complete ACToR system can be implemented locally. 

2.2. ACToR 

The goal of the core ACToR (Aggregated Computational Toxicology Resource) database and web 

site is to aggregate all publicly available information on chemicals in the environment, with a focus on 

information that pertains to toxicology and risk assessment. Given this lofty goal and the heterogeneity 

of “data”, we developed a simple and robust database schema to store information using a general 

concept of an “assay”. Essentially an assay is defined as a flat representation of data on a set of 

chemicals which can be organized into a table where the rows are chemicals and the columns can be 

any computed, tabulated, or measured attributes of the chemical. Employing this overarching 

definition of “assay”, each column is an “assay component” and each cell of the table is an “assay 

result”. In turn, each data source to which the assay results are linked is termed a “data collection”, 

which typically provides information that is then mapped to the substance, compound, and generic 

chemical and assay table entries. The “A” in ACToR indicates the aggregation of information at the 

level of the generic chemical, i.e., from all substances and data collections mapping to a particular 

CASRN. Note that we include some substances without CASRN, and in those cases, a generic 

chemical identifier is assigned in place of the CASRN of the form “NOCAS_(…)”.  

Because assays within ACToR are so heterogeneous, a further organization was required, which 

was implemented using a hierarchical set of assay categories. Figure 2 illustrates the basic assay 

taxonomy using the high-level concepts of Inherent Chemical Properties (ICP), Hazard, Exposure, Use 

Category, and Risk Management. These categories are used to label and organize the content of the 

data, whereas two other high level categories that pertain to the nature of the data capture and storage 

in ACToR (Capture Level and Data Level) are metadata concepts. Capture Level distinguishes cases 

where chemical data can be imported in tabular format from cases where ACToR simply stores a URL 

to a web-accessible data set or text report on the chemical. Data Level indicates whether the data is 

“primary” (i.e., taken from the original source), “secondary” (i.e., compiled from primary sources by 

others) or “annotation” (more descriptive information rather than data). An example of an “annotation” 

assay is a link to a Wikipedia article on the chemical that provides general descriptive information. It is 

important to stress that the data model used within ACToR is approximate, is not unique (i.e., other 

organizational data models could be applied), is tailored to the categories of information sought for 

constructing toxicity risk assessments, and was built for the practical purposes of organizing and 

locating heterogeneous data to allow it to be meaningfully aggregated.  

ICP describes properties that are inherent to the chemical and its structure, typically independent of 

biological target interactions, or that can be predicted using chemical structure models (QSARs). 

Examples of the former are molecular weight and boiling point, whereas examples of the latter are 
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bioaccumulation potential or octanol water partition coefficient. “Hazard” largely describes data that 

are associated directly or indirectly with toxicology experiments. An example of the former would be a 

data collection of experimental results compiled from the literature such as provided by the 

Carcinogenic Potency Database [7] (a secondary source). An example of the latter would be an IRIS 

(Integrated Risk Information System) [8] or IARC (International Agency for Research on Cancer) [9] 

category or recommendation that considers a large body of experimental data in the literature. The 

experimental source may be an in vivo or in vitro experiment and the high-level phenotype being 

investigated may be carcinogenicity, developmental toxicity, etc.  

Figure 2. Illustration of assay categories used in ACToR. Assays (data sets) are put into 

one or more categories in this hierarchy to allow users to select only certain relevant types 

of data. This table shows the top level of this category hierarchy. 

 

Because of its central role in the study of chemical toxicity, we list below the complete hazard 

category hierarchy employed within ACToR: 

 Hazard  

 Hazard; Experimental Source  

 Hazard; Experimental Source; In Vitro; (Biochemical, Cell Based)  

 Hazard; Experimental Source; In Vivo; (Study Listing, Case Reports, Epidemiology)  
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 Hazard; Experimental Source; In Silico 

 Hazard; Readout; (Genomics, HTS, HCS, Pathology) 

 Hazard; Phenotype; (AcuteTox, Allergy, SubchronicTox, ChronicTox, Carcinogenicity, Genetox, 

Mutagenicity, DevTox, ReproTox, NeuroTox, DevNeuroTox, ImmunoTox, DermalTox, 

PhotoTox, HepatoTox, Endocrine, CardioTox, EcoTox, FoodSafe, ToxOther)  

 Hazard; Summary Call; (MOA, ToxGuides) 

 Hazard; Group; Age; (Fetus, Child, Juvenile, Adult) 

 Hazard; Group; (Individual, Species) 

Exposure categories are employed to facilitate consolidation of key exposure metrics. These include 

data describing exposure sources (industrial releases, consumer product use, etc.), environmental fate, 

chemical levels in environmental and biological media (indoor air, soil, drinking water, urine, serum, 

etc.), and exposure route (inhalation, dermal, absorption, ingestion). Use categories are employed to 

indicate how the chemicals are typically used within industry and the commercial realm (e.g., 

pesticides, pharmaceuticals, surfactants), which is useful information for exposure models. Finally, 

risk management categories carry information that pertains to expert judgment-based evaluation and 

perceptions of risk, such as derived safe exposure limits, thresholds of toxicological concern, etc.  

Given the broadly diverse and overlapping nature of the data resources within ACToR, a given  

data set or assay may fall into multiple categories. For example, the EPA IRIS assessments, which 

review a large amount of data to provide route-specific reference doses (e.g., oral, inhalation) or 

weight-of-evidence calls (carcinogenicity), are categorized as follows: 

 Capture Level; (Tabular and URL Report) 

 Data Level; Secondary; Peer Reviewed 

 Hazard; Experimental Source; In Vivo 

 Hazard; Group; Human 

 Hazard; Phenotype; (AcuteTox, Carcinogenicity, ChronicTox, …) 

 Risk Management; Limit; Environmental 

Data sources in ACToR include the U.S. EPA, Centers for Disease Control (CDC), U.S. Food and 

Drug Administration (FDA), National Institutes of Health (NIH), State agencies, corresponding 

government agencies in Canada, Europe and Japan, universities, the World Health Organization (WHO) 

and non-governmental organizations (NGOs). We have incorporated all chemicals and related assay 

data from PubChem for which CASRN could be extracted. The December 2011 release of the database 

contains information on approximately 1.7M substances, 280K chemical structures, 400K generic 

chemicals, 2730 assays and 16M individual data points from 1101 data collections. 

The web-accessible version of ACToR provides several methods to browse or search for data. The 

most common approach is to search for data on a single chemical by name or CASRN through a search 

box on the main page. Alternatively, a chemical structure search can be submitted using integrated 

tools from ChemAxon [10], where the search converts a drawn structure to SMILES and searches 

against SMILES representations of compounds that have been normalized using OpenBabel 

(http://openbabel.org/). A successful search will return one or more generic chemicals with assigned 

structures, with an indication of whether ACToR has information on the chemical for several key 

hazard phenotypes and exposure. Figure 3 shows a screenshot of the first few chemicals that are 
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returned for the query “butyldithiocarbamate”. The second chemical on the list has some data on all of 

the key phenotypes and exposure, whereas the last one on the list only has some generic hazard data. It 

is important to note that a red box in this view simply indicates that data linking the chemical and an 

assay associated with carcinogenicity, etc. is available, not that the chemical is a carcinogen. 

By selecting the “details” link to the left of the chemical structure, a user is presented with headers 

leading to a listing of the full data captured within ACToR. As an example, a portion of the data for 

Zinc dibutyldithiocarbamate is shown in Figure 4. The top section lists some of the overall Hazard data 

sets including data from the EPA, the EU, Health Canada and the National Library of Medicine. By 

selecting the “+” sign next to a data set, a user can access successive layers of detail pertaining to 

actual data and/or URLs linking to the data source.  

Figure 3. Screen shot from the ACToR web site for the high level view of data available 

for a set of chemicals. The view shows the chemical structure, name and CASRN, plus an 

indication of the types of data available for the chemical. In particular, we call out key 

phenotype categories (See Figure 2) and exposure. A red box in a column indicates that the 

database contains data for that chemical-category combination, and not that (for instance) 

the chemical causes cancer. 

 

Figure 4. Screen shot of a portion of the ACToR data for Zinc dibutyldithiocarbamate 

 



Int. J. Mol. Sci. 2012, 13             

 

 

1814

In addition to searching by chemical, one can select links on the main ACToR page to view all of 

the data collections and can browse assays by the type of toxicity phenotypes or other categories to 

which they are linked. 

2.3. ToxRefDB 

ToxRefDB (Toxicity Reference Database) aims to capture traditional animal toxicity studies across 

a variety of study types and endpoints, including short-term and long-term systemic toxicity, cancer, 

reproductive toxicity, and developmental toxicity [1,11,12]. The ToxRefDB project initially focused 

on capturing previously unpublished high quality regulatory guideline studies required for chemical 

safety evaluation by the EPA. The study submissions were reviewed by the EPA’s Office of Pesticide 

Programs (OPP) and results consolidated into Data Evaluations Records (DER), which are the primary 

data source for ToxRefDB. Study results from these DER, as well as other high quality publically 

available studies, have been manually curated into ToxRefDB’s relational database model. The 

relational data database for ToxRefDB ensures data integrity by forcing specific vocabulary is used 

across all major ToxRefDB fields. The ToxRefDB relational format follows the following logic: a 

chemical can have many studies performed, each study can have multiple treatment groups (male and 

female, low-, mid-, and high-dose), and each treatment group can observe many effects. ToxRefDB 

has subsequently been integrated into the ACToR system, primarily through generic chemical linkages 

(i.e., CASRN) and is available as a searchable database (http://actor.epa.gov/toxrefdb). ToxRefDB was 

designed to capture detailed study design, dosing, and treatment-related effect information. In addition 

to the relational design of the database, controlled and standardized vocabularies were used for the vast 

majority of fields to ensure the uniformity of the manually curated and entered legacy toxicity 

information. The current publically released version of ToxRefDB has study and chemical effect 

information on 474 chemicals, primarily pesticides due to their consistent and large data coverage of 

chronic, cancer, reproductive and developmental studies. The “Basic Info” page on the ToxRefDB 

website contains summary information about the database and the associated manuscripts. Importantly, 

the manuscripts release supplemental files with aggregated and detailed endpoints across the full 

ToxRefDB chemical library. These “flattened” endpoint files (i.e., flat tabular listings) have been 

directly incorporated into the ToxCastDB system for predictive modeling exercises. The “Basic Info” 

page also provides information on the current database and chemical coverage counts for each study 

type (Table 1). 

Table 1. Study and chemical counts from the ToxRefDB website. 

Summary statistics 
Study Count 1978 
Chemical Count 474 
Combined Chronic/Cancer Rat 324 
Combined Chronic/Cancer Mouse 324 
Multigeneration Reproductive Rat 352 
Prenatal Developmental Rat 365 
Prenatal Developmental Rabbit 331 
Subchronic Rodent 302 
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The “Home” page of ToxRefDB, similar to that of all ACToR system databases, allows the user to 

search by generic chemical. As an example, the key word “azole” was used to search all 474 chemicals 

in ToxRefDB, by both their assigned chemical name and all synonyms, and resulted in the return of  

46 chemicals (Figure 5). The red boxes indicate whether or not a study is available in ToxRefDB for 

the particular study type. A ”Generic Chemical Page” is displayed, as shown in the ACToR website; 

however, when accessing the ToxRefDB portion of ACToR, only chemicals with traditional toxicity 

data captured in ToxRefDB can be viewed. Under the “Toxicology Data” heading, all ToxRefDB data 

is displayed in a three-tiered structure. The first tier contains the study design information, including 

data quality, species and strain, dose administration, study type and citation information. The second 

tier contains treatment group and dosing information, while the third tier indicates the  

treatment-related effects observed at the various dose levels. The study information is available for 

viewing, but, due to the amount of detailed information stored within each tier, the system does not 

currently allow for detailed filtering of the data. However, a full download of the ToxRefDB data is 

available for each chemical as a csv file, enabling further analysis and viewing options. 

Figure 5. Screen shot from the ToxRefDB web site for the high level view of data 

available for a set of chemicals across the various available study types. This view is 

similar to the summary for ACToR (Figure 3), except that it indicates they standard types 

of studies for which the chemical has data in ToxRefDB.  
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Figure 6. Screen shot from the ToxRefDB web site of the Endpoint search page with the 

search criteria and additional field information to be included. 

 

The primary search tool currently available within the ToxRefDB system is located in the “Search 

By Endpoint” tab. The page allows the user to select, from the standardized effect vocabulary, the 

exact search criteria of interest as well as the additional field information to be displayed (Figure 6). 

The results of searching, for example “Chronic/Cancer Rat Liver Neoplastic Pathology” returns the 

lowest effect level (LEL) in mg/kg/day dose that represents the lowest dose at which a treatment-related 

change in the selected effect or effects was observed (Figure 7). Each row from the returned search 

represents a unique study in ToxRefDB, with the low and high dose tested (LDT and HDT) provided 

for reference. If multiple effects are selected, a single LEL is returned which aggregates all selected 

effects with a primary goal of providing the field of predictive toxicology a tool for rapidly defining 

endpoints across a large chemical library. The endpoint search tool can also be used for researchers 

interested in delineating a set of reference chemicals with positive and negative outcomes for a 

particular effect or in vivo endpoint. 

Figure 7. Screen shot from the ToxRefDB web site of the Endpoint search page with the 

results of the search displayed. 
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2.4. ToxCastDB 

ToxCast is an EPA program that is generating high-throughput screening (HTS) data on thousands 

of chemicals across hundreds of in vitro assays [4,13]. The goal of the program is to use computational 

approaches to build predictive models of in vivo toxicity using in vitro HTS data and associated 

chemical and biological data. ToxCastDB was designed to capture all the data from ToxCast, related 

data generation efforts, and associated annotations. The upper level annotation and organization of 

summary in vitro HTS assay data within ToxCastDB is common to all other ACToR databases, i.e., 
these data fit well into the basic ACToR assay table structure. However, because the ToxCast HTS 

assays are all run in concentration-response mode, ToxCastDB must additionally capture these 

individual data points. DSSTox is providing structure annotations and chemical sample details for 

ToxCast; hence, a MySQL version of the ToxCast DSSTox data is included here. Chemical sample 

details include testing-related information pertaining to source, lot/batch, supplier-reported purity and 

summary analytical QC data.  

ToxCastDB also includes annotation data that link ToxCast HTS assays to genes, pathways and 

diseases. Most of the ToxCast HTS assays test for the interaction of chemicals with specific protein 

targets or assess the effects of chemicals on RNA or protein expression levels, and this knowledge is 

used to establish linkages with genes (i.e., what gene or associated protein does the assay measure 

chemical effects on), most of which are of human origin. ToxCastDB incorporates basic gene 

information (Entrez gene id, symbol and name), and pathway-to-gene mapping from KEGG [14], 

WikiPathways [15], Ingenuity Pathway Systems (Ingenuity Systems, Inc, Redwood City CA), Pathway 

Commons [16] and REACTOME [17]. Chemical-gene information from the Comparative 

Toxicogenomics Database (CTD [18,19]) and gene-disease information from Online Mendelian 

Inheritance of Man (OMIM [20]) is also integrated. 

The current web interface for ToxCastDB is found at http://actor.epa.gov/actor/faces/ 

ToxCastDB/Home.jsp. This is a simplified version of the main ACToR web site that includes a search 

by name and CASRN, browsing by data collection and chemicals, and a view giving the links between 

assays and genes. The chemical-specific page shows the quantitative AC50 data (concentration at 50% 

of maximum activity) for those assays in which the chemical was positive. Also included are summary 

LEL values (lowest effective level) from ToxRefDB, which are the in vivo doses (analogous to an  

in vitro LEC, or lowest effective concentration) at which specified phenotypes were observed in animal 

experiments for the same chemical. The combination of in vitro and in vivo data across chemical sets is 

being used to develop predictive models of toxicity, described in the application section below.  

The current version of ToxCastDB (toxminer_v17) contains data on the 309 ToxCast Phase I 

chemicals, tested in 594 in vitro assay endpoints (across 9 diverse assay technology platforms). The 

database is to be regularly updated with new data from subsequent phases, as well as data from several 

related projects using ToxCast assays. In order to handle this growth, a formal workflow has been 

developed to handle the immense volume of data generated across the diverse suite of ToxCast assays. 

This workflow uses collections of scripts to prepare, analyze, and consolidate data into standardized 

results for ACToR dissemination and use in modeling efforts. The formalization of this process into a 

sustainable workflow means that ToxCast results can be reliably reproduced from raw data as “best 

practices” for analysis evolve with new developments in related fields.  
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2.5. ExpoCastDB 

A critical need for risk assessment is the development of robust analytical approaches that use 

human exposure data, product use information, and modeled human behavior (e.g., activity patterns to 

systematically prioritize chemicals based on potential for exposure. Exposure can be modulated by 

chemical properties, uses throughout the product lifecycle, and by individual and population 

characteristics (e.g., lifestage and culture). To meet these needs, the EPA has developed the ExpoCast 

program in collaboration with internal and external partners and other stakeholders [21]. The goal of 

this research initiative is to develop novel approaches and metrics to screen and evaluate chemicals 

based on potential for biologically-relevant human exposures; i.e., exposures that can be associated 

with key events in a disease process. Combining information from ToxCast with information from 

ExpoCast will support risk assessment and decision making for improved public health. The ExpoCast 

research program is fostering development of exposure science to: (1) inform chemical prioritization; 

(2) improve understanding of system response to chemical perturbations resulting from environmental 

exposures and how these translate to relevant biological changes at the individual and  

population levels; and (3) link information on potential toxicity of environmental contaminants to  

real-world health outcomes. An early focus of this research program is to improve public access to 

exposure information.  
ExpoCastDB was developed to improve access to human exposure data from observational studies, 

including those funded by the EPA National Exposure Research Laboratory measuring potential 

exposure to environmental chemicals. Similar to the previously discussed repositories, ExpoCastDB is 

integrated into the ACToR system through generic chemical linkages and is available as a searchable 

database (http://actor.epa.gov/actor/faces/ExpoCastDB/Home.jsp). Controlled vocabularies are used to 

facilitate searching and analyses across datasets and to encourage standardized reporting of 

observational exposure information. ExpoCastDB provides a separate interface within ACToR to 

facilitate linkage of exposure measurement data with data on toxicity, environmental fate, chemical 

manufacturing and usage, ToxCast HTS results, etc. The ExpoCastDB conceptual data model is 

designed to capture key information for characterizing exposure, details of study design, and metadata 

associated with sample analysis.  

ExpoCastDB consolidates measurements of chemicals of interest in environmental and biological 

media collected from homes and child care centers. Data currently include the amounts of these 

chemicals found in food, drinking water, air, dust, indoor surfaces and urine. The domains of data 

implemented in the database are listed on the “Basic Info” page of ExpoCastDB and include chemical 

concentration measure, sample, study, location, medium and subject. The current publically released 

version of ExpoCastDB includes data for 99 unique chemicals primarily consisting of active  

ingredients in pesticide products. Chemical concentrations measured in samples collected for three 

observational studies are included: the American Healthy Homes Survey (AHHS) [22], the First 

National Environmental Health Survey of Child Care Centers (CCC) [23], and the Children’s Total 

Exposure to Persistent Pesticides and Other Persistent Organic Pollutants (both CTEPP NC and 

CTEPP OH) [24] studies.  

In ExpoCastDB, chemical concentration data are organized by study, chemical and media type. 

General information about the individual studies as well as study-specific data can be accessed through 
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the Study List page. Links are provided to descriptive statistics on chemical concentration (median 

method detection limit, max, mean, standard deviation, geometric mean, geometric standard deviation, 

and 25th and 75th percentile) for each of the chemicals in each medium sampled. The entire set of 

hierarchical data (extracted from the database) from each individual study is available for download 

from this page. Descriptive statistics can also be directly accessed for individual chemicals through the 

Chemical List page, or for individual exposure medium through the Media List page. For example, 

descriptive statistics for chloropyrifos concentrations in different media from all three studies can be 

accessed on the Chemical List page (Figure 9). The primary search tool currently available within the 

ExpoCastDB system is located on the Home page where information can be obtained by entering the 

chemical name or CASRN.  

Future implementations of ExpoCastDB will include other data domains, such as laboratory 

methods used to detect a chemical, sampling method, sources, etc. Also, chemical exposure data from 

other studies will continue to be added to ExpoCastDB to improve access to extant exposure 

measurements. We plan to provide data visualization capabilities (e.g., scatter plots, probability plots, 

goodness-of-fit), and allow users to combine chemical concentration data from the same media across 

studies to obtain summary statistics and estimate distributional parameters. Further, exposure-related 

information on nanomaterials (e.g., particle number concentrations detected in air in occupational 

settings) [25] can be housed in ExpoCastDB as it becomes available. 

Figure 9. ExpoCastDB descriptive statistic chemical concentration results in different 

media for chloropyrifos.  

 

2.6. DSSTox 

DSSTox (Distributed Structure-Searchable Toxicity [26,27], http://www.epa.gov/ncct/dsstox) is a 

separate database effort from ACToR, focused on publishing expert curated,, standardized chemical 



Int. J. Mol. Sci. 2012, 13             

 

 

1821

structure-data files (SDF) associated with high-interest environmental toxicity data sets. A DSSTox 

structure-data inventory file consists of two parts: (1) DSSTox standard chemical information fields 

(including a molfile, SMILES, InChI, IUPAC names, molecular weight, Formula, name, CASRN, CID 

(compound ID) and GSID (generic substance ID); and (2) source-specific summary data fields 

contained within an individual DSSTox inventory (e.g., CPDBAS contains fields pertaining to tumor 

findings for rodent species for over 1500 generic substances from the Berkeley Carcinogenic Potency 

Database—CPDB [7]). DSSTox applies stringent quality review criteria to the accurate representation 

of chemical structures (including explicit treatment of stereochemistry, counter ions, complex forms, 

etc.) and test substances in association with toxicity data. In particular, careful attention is paid to 

ensuring accurate correspondence of chemical structure to CASRN and chemical name. General 

DSSTox quality review procedures are documented at http://www.epa.gov/ncct/dsstox/Chemical 

InfQAProcedures.html and also in association with each published data file (in on-line documentation 

and downloadable log files). In the case of published chemical lists associated with toxicity data where 

original sample information (Source/lot/batch) is unavailable, such procedures focus primarily on 

ensuring consistency of various chemical identifiers (e.g., chemical name, CASRN and chemical 

structure) utilizing multiple public and commercial sources of information (e.g., ACD Labs Dictionary, 

National Library or Medicine’s ChemID Plus, CAS SciFinder). Chemical structures are confirmed by 

consensus of 3 trusted public sources, if possible (or CAS SciFinder, if the structure assignment to 

CAS is in question), and rendered in 2D format with accurate stereochemistry by an experienced PhD 

organic chemist curator. In the case of chemical inventories where original supplier documentation is 

published and publicly available (such as for ToxCast chemicals), review of Supplier documentation, 

Certificates of Analysis and Material Safety Data Sheets are consulted for more precise chemical 

identity verification (e.g., hydrate or salt form, CAS, purity, etc.).  

The DSSTox Master chemical inventory—comprised of standard chemical information fields for all 

generic substances – currently contains in excess of 15K generic substances and 13K unique structures 

spanning more than 15 published inventories. The full DSSTox chemical inventory comprises an 

expert-curated subset of the full structure collection contained within ACToR. ACToR incorporates all 

published DSSTox inventories along with associated DSSTox Source content, including summary 

toxicity data associated with published studies or public databases (such as CPDB), where available. In 

addition, DSSTox provides both generic chemical structure annotation and chemical data management 

for each of the EPA project databases within ACToR. For ToxCast and Tox21 [28–30] programs, this 

includes tracking details of actual test samples (e.g., supplier, lot, batch, purity, analytical chemistry 

results, etc.), for more than 8000 chemicals. Given the high level of quality control applied to DSSTox 

content, ACToR considers DSSTox structural information in association with CASRN to be primary, 

overriding other potentially conflicting structural assignments from other public sources (e.g., 

PubChem). However, since DSSTox structures are unavailable for a large portion of ACToR’s overall 

data inventory (i.e., compounds pertaining to many EPA and external public inventories), chemical 

structures from depositors to PubChem, in association with CASRN and name assignments, are used 

where available. Structures not available through DSSTox or ChemID vary considerably in accuracy 

within PubChem, based on the depositor source (not indicated in ACToR), so should be viewed as  

less reliable.  
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ACToR conveys the DSSTox origin of content in several ways. On each chemical data page, a 

chemical structure image is accompanied by an explicit Source label indicating “DSSTox”, where 

applicable. Similarly, DSSTox inventories (the full Master file, as well as sub-inventories) are labeled 

as “data collections” within ACToR (e.g., the name “NTP BSI Genetox Index” is listed under the 

Generic Chemical “Genetic Toxicity” heading, and clicking on “Details” is shown associated with the 

Data Collection: DSSTox NTPBSI). Finally, DSSTox Source-specific Record IDs (RIDs) for 

individual chemical records, which are uniquely assigned to the listing of unique generic substances 

(DSSTox_GSID) within every DSSTox inventory, are unique chemical identifiers for tracking and 

aggregating assay data within ToxCastDB. Both the DSSTox CID (structure/compound ID) and 

DSSTox RID are reported for ToxCast chemicals within ACToR (as Source Name CID and Source 

Name SID, respectively).  

Although DSSTox content is fully incorporated within ACToR, the DSSTox project has a different 

primary focus of providing high quality chemical structure information and summary toxicity values in 

support of structure-based predictive toxicology. Hence, each public DSSTox inventory file (as well as 

the full DSSTox Master generic chemical information content) is published with extensive curation 

and documentation, and is publicly available for download from the DSSTox website in either SDF 

(mol file) or MS Excel formats. Finally, an important distinction of the ACToR and DSSTox databases 

is that the former aggregates on the basis of CASRN or generic substance ID, whereas the latter is 

primarily concerned with accurate chemical structural representation for a generic substance ID (or 

CASRN, where available). Hence, DSSTox does not publish chemical name synonyms or related (or 

discontinued) CASRN. ACToR aggregates information on the basis of CASRN, but where CASRN are 

mis-assigned or where different CASRN are assigned to closely-related compounds, the linkage of the 

CASRN to chemical structure within ACToR allows for effective chemical analog retrieval and  

data aggregation.  

The DSSTox inventory is expanding to fill the needs of the growing EPA Computational 

Toxicology programs (ToxCast, ToxRefDB, Tox21, ExpoCast), as well as to register and standardize 

other high quality public structure inventories within and outside of EPA (e.g., EPA ECOTOX, and 

FDA CFSAN chemicals). Future goals will be to use DSSTox structure inventories and associated data 

to enhance the structure search and cheminformatics capabilities delivered by ACToR.  

2.7. Curation 

Data curation is an important activity for all of the databases. Some information on curation has 

been given in the individual sections, but here we summarize. For the core of ACToR, we largely 

accept data “as is” from the individual sources through spot checking. Since no data manipulations 

occur, the only potential errors happen during file reformatting. We do check CASRN and reject data 

for chemicals with invalid CASRN (i.e., failing check digit verification). ToxRefDB uses extensive 

curation of the data because the input process involves manual extraction of quantitative data from text 

reports. QC steps include manual partial or complete reviews of data sets both inside the EPA and by 

chemical registrants. DSSTox hand curates all CASRN and chemical structures, applying expert 

review, consulting multiple public sources, and in cases where identity is in question, consulting the 

commercial CAS registry. As previously mentioned, the DSSTox project also curates the identity of all 
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chemical samples used in the ToxCast program, which involves manual review of primary supplier 

documentation, such as Certificates of Analysis. ExpoCastDB currently takes quantitative values from 

source files and reformats, like ACToR. However a full automated check for data correctness against 

the source data is performed.  

3. Applications 

3.1. ACToR Application 

ACToR has been used to assess the data gaps for particular inventories of chemicals, determining 

the types of detailed analyses currently possible and aiding in the prioritizing of data generation 

moving forward. As an example of this type of application, ACToR was queried to locate the fraction 

of chemicals in a targeted inventory that had specified categories of exposure data from any source. 

The targeted inventory consisted of all chemicals (~8700 total chemicals) that were pesticide actives or 

inert ingredients, or potential water contaminants (the EPA Candidate Contaminant List (CCL) 

Universe). This particular target inventory is subject to the EPA Endocrine Disruptor Screening 

Program (EDSP) [31]. Figure 10 summarizes the results of the query in terms of the fraction of the 

inventory having any potentially relevant data. Approximately 40% of these chemicals have some 

workplace exposure data, whereas only a few have the corresponding residential exposure data. 

Production volume data is available for >80% of compounds in the target inventory, indicating that 

most of these are manufactured or imported in relatively large quantities [32]. 

Figure 10. Summary of fraction of chemicals in the targeted inventory having exposure 

data by exposure category. 
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3.2. ToxRefDB Application 

ToxRefDB has been applied to multiple problem types, including retrospective and prospective 

questions. The application of ToxRefDB for prospective research efforts is discussed under the 

applications of ToxCastDB. Retrospectively, ToxRefDB has been used to assess the impact of specific 

traditional toxicity endpoints and parameters on the safety regulation of chemicals. For example, 

traditional toxicity testing for reproductive toxicity potential has relied heavily on the rat  

two-generation reproductive toxicity study. However, the importance of the second generation has 

come into question. An extended one-generation protocol has been proposed [33] that would only 

produce a second generation when triggered, would require far fewer animals, and would derive more 

toxicological and kinetic information from each animal used. To assess the impact of the second 

generation on risk assessment, ToxRefDB was used as the primary data source to systematically 

evaluate the question, relying on the highly standardized vocabulary and relational format of 

ToxRefDB. The results of the analysis indicate that the second generation does not greatly impact the 

interpretation of the reproductive study from a risk assessment perspective [34]. The two-generation 

retrospective analysis demonstrated the ability of ToxRefDB to provide a systematic review of 

traditional toxicity studies. Additional retrospective analyses are underway, including the relative 

impact and importance of running two species (both rat and rabbit) in prenatal developmental  

toxicity studies. 

ToxRefDB also stores no-observed and lowest-observed adverse effect levels (NOAEL and 

LOAEL) for studies reviewed by EPA and used in the chemical registration process. Threshold of 

Toxicological Concern (TTC) [35] is an approach that uses NOAEL/LOAEL distributions and 

chemical structure characteristics to establish safe exposure levels for chemicals with limited to no 

toxicity information. ToxRefDB is currently being applied to TTC approaches in numerous venues, 

including assessing the applicability of the standard TTC to antimicrobial pesticide products and the 

refinement of TTC approaches for specific chemical classes. In the example of the antimicrobial TTC 

study, all available toxicity study information on antimicrobials is being collected and entered into 

ToxRefDB. Antimicrobial pesticides typically have less available toxicity data compared to 

conventional pesticides and, thus, underscore the need for alternative safety assessment approaches. 

With the full food-use antimicrobial traditional toxicology dataset available in a standardized and 

relational format, detailed analysis of the NOAEL/LOAEL distributions across study type, endpoint 

categories and structural classes can be obtained and compared to other TTC analyses. If found to be 

similar, then all or a portion of non-food-use antimicrobials could be evaluated using a TTC approach.  

3.3. ToxCastDB Application 

A major goal of the ToxCast project is to use a combination of in vitro and in vivo data, along with 

associated chemical, biological and mechanistic information, where available, to build predictive 

toxicology models. One approach starts by calculating statistical associations between in vitro targets 

(assays) and a particular toxicity in vivo endpoint. For example, the set of chemicals with associated rat 

liver tumor testing data from ToxRefDB was evaluated in relation to ToxCast HTS assay data for 

approximately 240 chemicals. Both the in vivo endpoint and the HTS assay results were first 
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dichotomized, i.e., summarized into two categories, i.e., the chemical causes or does not cause liver 

tumors, and for each ToxCast assay, the chemical produces a “hit” (positive) or does not produce a hit 

(negative). From this array of binary results, in vivo vs. in vitro for a series of chemicals, an odds ratio 

can be calculated. For instance, chemicals that are androgen receptor antagonists as measured by an 

assay from the NIH Chemical Genomics Center, have a 5.4-fold higher odds of being rat liver 

carcinogens than chemicals that were negative in this assay (95% confidence interval is 1.9 to 15) 

Assays for which this odds ratio is computed to be large (i.e., chemicals hitting this assay are found to 

have a much higher than chance odds of causing liver tumors) lead us to form hypotheses of the form: 

chemical perturbations of the gene or pathway probed by the assay increases the risk that the chemical 

will initiate or promote tumors. Next steps in the analysis workflow include building multivariate 

models that combine many individually predictive assays for the given endpoint, and forward 

validation of the model with chemicals not included in the initial training data set. Being able to access 

gene and pathway information directly linked to assay data from within the database enables a user to 

construct queries that can shed light on (for instance) whether assays linked to a particular endpoint 

probe a single key pathway or multiple pathways. Additionally, we can link directly to the literature on 

the predictive genes and pathways via Entrez URLs provided in the ToxCastDB web pages. 

We have published examples of these analyses covering carcinogenicity and developmental 

reproductive toxicity. Judson et al. [13] used the simple univariate analysis described above to show 

that, within the ToxCast Phase I chemical set (which comprises mostly pesticide active ingredients), 

perturbations to several pathways were significantly associated with liver preneoplastic and neoplastic 

lesions. One target class includes the peroxisome proliferators-activated receptors (PPAR) alpha and 

gamma pathways. The link between PPAR signaling perturbations and liver tumors in rodents is  

well-documented, but our example shows how such associations can be independently “discovered” 

using this computational approach, providing a proof-of-principle. The approach, as such, can be 

characterized as “chemical epidemiology”. In a second example, Kleinstreuer et al. [36] have derived a 

signature (i.e., an association of a portion of an in vitro profile to an in vivo response) to predict 

whether a chemical could be a vascular disruptor during early embryonic development. The 

consequence of this behavior would be to disrupt (among other things) limb development. This 

analysis once again compared the ToxCast Phase I in vitro data with data from ToxRefDB for prenatal 

development toxicity studies in rats and rabbits. The particular pathways found to be associated with 

vascular disruption included inflammatory chemokine signaling, the vascular endothelial growth factor 

pathway, and the plasminogen activating system, all of which have documented or clearly rationalized 

potential mechanistic ties to the endpoint under study. In a third example, Martin et al. [37] built a 

multi-variate model of reproductive toxicity in rodents. In this case, the endpoint is a composite of 

male and female effects on fertility and reproductive fitness. The resulting predictive model includes 

assay-related terms for PPARA and PPARG signaling, estrogen and androgen receptor activity, 

activity against the Pregnane-X receptor (PXR) and generalized activity against liver CYP450 

enzymes and GPCRs. This quantitative classification model of an endpoint that has defied previous 

modeling attempts due to its biological and testing complexity and data scarcity, produced a significant 

balanced accuracy (average of sensitivity and specificity) in a cross-validation test of 74%. Finally, 

Sipes et al. [38] have built a model that predicts developmental toxicity endpoints such as cleft palate 

and urogenital defects in rat and rabbit. Chemical targets and corresponding assays associated with 
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these endpoints include the retinoic acid receptor (RAR), interleukins IL1a and IL8, and the 

transforming growth factor beta (TGFβ). Furthermore, there is an interesting link between the cancer 

and the developmental ToxCast models. Expression of the chemokine CCL2 is known to be associated 

with vasculogenesis. In our models, we see increased CCL2 expression associated with cancer 

progression, while decreased expression is associated with a variety of developmental defects.  

3.4. ExpoCastDB Application 

ExpoCastDB is the latest EPA effort to address the decades-old call to increase access to human 

exposure data in order to support exposure modeling and advance public health through improved 

management of chemical risks [39,40]. Whereas considerable progress already has been achieved in 

making data from observational human exposure measurement studies (including datasets, study 

design documents, and metadata) available to the public through the Human Exposure Database 

System (HEDS, http://www.epa.gov/heds), it is the consolidation of exposure data into ACToR that 

allows for improved linkages with toxicity databases. ExpoCastDB can be used to obtain input 

distributions for probabilistic human exposure models and to answer a variety of questions about the 

occurrence of chemicals in the microenvironments in which humans exist. Probabilistic human 

exposure models are increasingly being used in the exposure and risk assessment process [41] but have 

tremendous input data requirements, including distributional parameters for the chemicals of interest in 

relevant exposure media. As described above, ExpoCastDB offers straightforward access to relevant 

distributional parameters (e.g., geometric mean and geometric standard deviation) in multiple exposure 

media for several commonly encountered chemicals, often from multiple studies.  

The occurrence of chemicals within studies may be investigated with ExpoCastDB. For example, 

simple questions that can be addressed include: How frequently was a particular pesticide (e.g., 

esfenvalerate) detected in the nationwide AHHS study? Of the chemicals measured in CTEPP, which 

chemicals are found at the highest concentrations in indoor air? What is the distribution (or range) of 

malathion levels measured in wipe samples in CCC? Comparisons may also be made across studies. 

For example: How does the average permethrin loading differ between the homes in AHHS and the 

daycares in CCC? In addition, more challenging questions may be addressed by downloading the 

individual sample-level structured data, such as: What level of co-occurrence among environmental 

phenols (such as bisphenol A) would be expected in indoor environments based on data from CTEPP? 

The results obtained in response to questions such as the examples given above may then be used in 

conjunction with readily available algorithms [42] and exposure factors [43] to produce quick 

deterministic estimates of the uptake resulting from exposure to specific chemicals. 

By providing the capability to mine data across multiple studies and a range of chemicals, 

ExpoCastDB is also intended to facilitate knowledge-driven hypothesis development. Currently, 

analysis is being conducted to relate chemical properties with the distribution of contaminants in 

different media as measured in the indoor environment. Efforts are currently being made to facilitate 

acquisition of exposure data, beginning with data from previous EPA studies. Efforts are also 

underway to acquire data from partners within the Federal government and among the larger exposure 

science community. 
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4. Future Directions and Conclusions 

The ACToR system is a large and growing repository of data on chemicals in the environment. The 

main components of ACToR contain information on chemical identity and structure, in vivo toxicology 

experiments, in vitro screening, and exposure. We have described the structure of the databases, the 

types of data included and how it is organized and annotated, plus some specific applications.  

A known limitation of ACToR, presently, is its primary reliance on CASRN for aggregation of 

chemical and assay information, since chemical structures are most often unavailable for many public 

inventories of interest. Hence, such data aggregation is limited to the particular chemical (or CASRN) 

of interest. However, improving both the quality and breadth of the chemical structure annotations 

within ACToR is viewed as a priority. With chemical structures comes the ability to aggregate 

information more broadly on the basis of chemical similarity using a variety of potentially useful 

metrics (e.g., toxicity structure alerts, reactivity features, calculated properties, structure fingerprints, 

etc.). Use of the concepts of chemical analogy and “read-across”, in turn, comprise an important 

strategy for addressing the problem of data gaps. Such similarity metrics are being developed and will 

be incorporated into future versions of ACToR to enable a user to view information across a chemical 

group or class.  

ACToR currently has a large user community who access the data either through the web interfaces 

or by downloading all or parts of the database and building custom applications. A common and 

understandable criticism of the system is that it provides too much information, much of it not 

necessarily relevant to the task at hand. To address this issue, we are beginning a major new effort to 

create the infrastructure to build so-called “decision-support dashboards” or dashboards for short.  

A dashboard is conceptually simply a web page that provides a user or decision maker the data that 

they need to do the job at hand, and only that data. Because there are many different types of decisions, 

and a correspondingly large number of decision makers, one needs a flexible system to quickly 

construct custom dashboards. This effort will use web services that can take generic queries in the 

form of URLs, and then return the results as XML (Extended Markup Language). This can then be 

coupled with java-based toolkits, which allow rapid development of complete dashboards. An 

important aspect to the dashboards will be the assay categories described above. This will allow 

decision makers to (for instance) automatically only select data that is primary and peer-reviewed.  

Another powerful approach we are beginning to incorporate into the ACToR system is 

knowledgebase tools. A knowledgebase is essentially a database plus an ontology that allows a rich 

and flexible description of entities and their relationships. This then allows for the use of all the tools 

developed as part of semantic web technology [44]. One promise of knowledgebase technologies is the 

ability to integrate heterogeneous data (and the ACToR databases are an extreme example of this) and 

to discover new facts or trends or connections.  

Finally, we are working with other groups in the U.S., Europe and elsewhere to integrate ACToR 

with other similar databases. Any one database (or data warehouse) cannot hope to hold all relevant 

chemical or toxicology data, and different groups will design their database and user interfaces to meet 

variant use cases. Coordinating these databases or other sources of information will enhance all users’ 

searches. However, it is important in a world of limited resources to make sure that all of these public 

data resources make as much use of one another as possible. All these efforts contribute to the goal of 



Int. J. Mol. Sci. 2012, 13             

 

 

1828

ensuring maximal transparency and ease of public access to important data on the large number of 

chemicals in the environment.  
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Multigeneration reproduction studies are used to characterize

parental and offspring systemic toxicity, as well as reproductive

toxicity of pesticides, industrial chemicals and pharmaceuticals.

Results from 329 multigeneration studies on 316 chemicals have

been digitized into standardized and structured toxicity data

within the Toxicity Reference Database (ToxRefDB). An initial

assessment of data quality and consistency was performed prior to

profiling these environmental chemicals based on reproductive

toxicity and associated toxicity endpoints. The pattern of toxicity

across 75 effects for all 316 chemicals provided sets of chemicals

with similar in vivo toxicity for future predictive modeling.

Comparative analysis across the 329 studies identified chemicals

with sensitive reproductive effects, based on comparisons to

chronic and subchronic toxicity studies, as did the cross-

generational comparisons within the multigeneration study. The

general pattern of toxicity across all chemicals and the more

focused comparative analyses identified 19 parental, offspring and

reproductive effects with a high enough incidence to serve as

targets for predictive modeling that will eventually serve as

a chemical prioritization tool spanning reproductive toxicities.

These toxicity endpoints included specific reproductive perfor-

mance indices, male and female reproductive organ pathologies,

offspring viability, growth and maturation, and parental systemic

toxicities. Capturing this reproductive toxicity data in ToxRefDB

supports ongoing retrospective analyses, test guideline revisions,

and computational toxicology research.

Key Words: pesticides; relational database; reproductive

toxicity; toxicity profiling.

The U.S. Environmental Protection Agency (EPA) and other

regulatory agencies are investigating novel approaches for

predicting chemical toxicity, with the goal of rapidly screening

the thousands of environmental chemicals with limited toxicity

data (U.S. EPA, 2009). Building predictive models of chemical

toxicity requires high-quality in vivo toxicity data, in order to

develop and validate new in vitro and in silico approaches. In

support of EPA’s ToxCast predictive toxicology effort (Dix

et al., 2007), we have developed the Toxicity Reference

Database (ToxRefDB) for capturing information from in vivo
toxicity studies. ToxRefDB includes endpoints from multiple

study types, including chronic rat and mouse carcinogenicity

2-year bioassays that have been previously reported and made

publicly available (http://www.epa.gov/ncct/toxrefdb/) (Martin

et al., 2009). ToxRefDB is being used to build computational

models linking whole animal toxicity, and specific tissue and

cellular phenotypes, to specific chemical-biological interactions

detected by cellular, genomic and biochemical in vitro assays.

The in vivo toxicity data captured in ToxRefDB is facilitating

a transition to the National Research Council’s vision for

‘‘Toxicity Testing in the 21st century: A Vision and a Strategy’’

(Collins et al., 2008; NRC, 2007), by linking toxicity endpoints

from animal studies to molecular targets and pathways relevant

to humans.

The multigeneration study data entered into ToxRefDB

provides anchoring in vivo reproductive toxicity data for the

EPA ToxCast research program (http://www.epa.gov/ncct/

toxcast/). Within the ToxCast program, bioactivity profiles

for hundreds of environmental chemicals are being derived

from hundreds of in vitro assays (Dix et al., 2007; Houck and

Kavlock, 2008). Phase I of ToxCast is focused on chemicals

with known in vivo toxicity data, supporting the development

of in vitro data signatures predictive of these in vivo outcomes

(Kavlock et al., 2008). It is worth noting that for environmental

chemicals, unlike pharmaceuticals, quantitative in vivo toxicity

data is essentially restricted to animal species. Nearly all of the

ToxCast Phase I chemicals are food-use pesticide active

ingredients that have undergone numerous mammalian toxicity

tests, including guideline multigeneration studies. This highly

standardized dataset provided in ToxRefDB facilitates profiling

ToxCast Phase I chemical toxicity based on parental, offspring
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and reproductive effects. It was hypothesized that, through the

use of ToxRefDB, key effects from the 329 multigeneration

reproduction studies would characterize the reproductive

toxicity potential of the 316 chemicals, and further differentiate

the chemicals and effects with regards to generational and life-

stage sensitivities. Subsequently, the well-characterized re-

productive effects could be used to phenotypically anchor

predictive toxicity models.

Traditional toxicity testing for the risk assessment of

environmental compounds or groups of compounds can cost

millions of dollars and take years of effort. Since 1970, EPA

has accumulated a vast store of high-quality regulatory toxicity

information on hundreds of compounds, most of which has

been inaccessible to computational analyses. The curation and

structuring of this chemical toxicity information into Tox-

RefDB has created a valuable resource for both retrospective

and prospective toxicological studies (Martin et al., 2009). In

addition to the chronic/cancer rat and cancer mouse studies

(Martin et al., 2009) and multigeneration studies reported here,

we are also extracting developmental toxicity studies in the rat

and rabbit. The multigeneration reproductive toxicity data

set—studies used by EPA in the pesticide registration process

to assess the performance and integrity of the male and female

reproductive systems (U.S. EPA, 1996) include assessment of

gonadal function, the estrous cycle, mating behavior, concep-

tion, gestation, parturition, lactation, weaning, and on the growth

and development of the offspring. The multigeneration study

also provides information about the effects of the test substance

on neonatal morbidity, mortality, target organs in the offspring,

and data on prenatal and postnatal developmental toxicity.

Two historical test guidelines have been used for the

multigeneration studies in ToxRefDB. Multigeneration studies

according to the 1982 Reproductive and Fertility Effects

guideline (U.S. EPA, 1982) on over 700 chemicals have been

conducted and submitted to EPA. Multigeneration studies

according to the newer 1998 guideline (U.S. EPA, 1998) on

over 90 chemicals have been conducted and submitted,

including 40 studies extracted into ToxRefDB. Information

on data submissions to EPA was drawn from the Office of

Pesticide Programs (OPP) Information Network—the OPPIN

database (http://www.epa.gov/pesticides/). The 1998 guideline

was harmonized by EPA’s Office of Pollution Prevention &

Toxic Substances (OPPTS; http://www.epa.gov/opptsfrs/home/

guidelin.htm) to meet testing requirements of the EPA’s Office

of Pollution Prevention and Toxics and OPP, as well as

international guidelines published by the Organization for

Economic Cooperation and Development. Both of these

guidelines call for a two-generation study in which continu-

ously treated male and female rats are mated to produce first

generation offspring, and in turn the adult offspring are mated

to produce a second generation. Continuing refinement of these

test guidelines has been proposed (Cooper et al., 2006), and

ToxRefDB is being used to test hypotheses concerning the

validity of these refinements.

MATERIALS AND METHODS

Data characteristics. Reviews of registrant-submitted multigeneration

reproductive toxicity studies, known as Data Evaluation Records (DER), were

collected for roughly 300 chemicals from EPA’s OPP. File types of DER

include TIFF, Microsoft Word, Word Perfect and PDF formats, some of which

are not directly text-readable. Approximately 500 multigeneration reproductive

toxicity DER were reviewed, and based on data quality a subset of 329 was

selected for curation into ToxRefDB. The first portion of the DER outlines the

test substance, purity, lot/batch numbers, MRID (Master Record Identification),

study citation, OPPTS test guideline (U.S. EPA, 1982, 1998) and reviewers of

the study. The executive summary captures all of the basic study design

information, including species and strain, doses, number of animals per

treatment group and any deficiencies in study protocol. All dose levels were

stored in ToxRefDB as ‘‘mg/kg/day’’ and, where possible, recorded or

calculated from food consumption data as an average over the entire dosing

period. The executive summary also describes treatment-related effects

observed at various dose levels in the study. The body of the DER provides

detailed test material and animal information, and full dose response data in text

and tables for all measured and observed endpoints. All treatment-related

effects were captured for each study in ToxRefDB.

Multigeneration study DER contain all the information necessary to infer

lowest effect level (LEL) values for all treatment-related effects that were

statistically or biologically significant. Typically, the DER also designated

‘‘critical’’ effects for each study, and lowest observed adverse effect level

(LOAEL) and no observed adverse effect level (NOAEL) for each study. If

provided by the DER, ToxRefDB captured these study-level NOAEL, LOAEL,

and critical effect data. However, it is important to note that the critical effects

used to establish NOAEL, LOAEL, and a reference dose (RfD) for

a conventional chemical pesticide active, and to make regulatory risk

assessment and management decisions, are based on a toxicological review

of multiple studies across many study types.

Treatment-related effects were further identified as either a ‘‘Parental,’’

‘‘Offspring,’’ or ‘‘Reproductive’’ effect. Consistent with DER, ‘‘Parental’’

endpoints were defined as systemic toxicity observed in the male or female

adult parents, and exclude effects directly related to reproduction (e.g.,

reproductive organ toxicity). ‘‘Offspring’’ endpoints were defined as systemic

toxicity observed in the preweaning and juvenile animals, and exclude birthing

indices up to postnatal day (PND) 4 (e.g., litter size and live birth index).

‘‘Reproductive’’ endpoints were defined as observed effects on the reproductive

performance or capacity of the animals and included all reproductive organ

toxicities, effects on estrous cyclicity, sperm parameters, fertility, and mating,

and prenatal and early postnatal viability.

A small number of ToxCast Phase I chemicals were not pesticide active

chemicals, such as some perfluorinated compounds and phthalates. Though

DER and pesticide registration studies were not available for these chemicals,

there was often high-quality, standardized reproductive toxicity studies

available from the National Toxicology Program, peer-reviewed literature, or

other sources. When data from such studies were available, it was crated into

ToxRefDB consistent with information taken from DER.

Data model and quality control. The relational data model for ToxRefDB

was previously described (Martin et al., 2009) in a diagram showing the data

model and field-level. A Data Entry Tool was developed for database

population, including a controlled vocabulary for reproductive and other test

data (available for download at http://www.epa.gov/ncct/toxrefdb/). Additional

data entry and quality control procedures for ToxRefDB are described in

Martin et al. (2009), and on the ToxRefDB homepage.

Full descriptions of the available data and conclusions as to the potential for

the pesticides to cause harm to humans or the environment, risk mitigation

measures, and the regulation of pesticides can be found at U.S. EPA’s OPP

websites: http://www.epa.gov/pesticides/regulating/index.htm; http://www.epa.

gov/pesticides/reregistration/status.htm; http://www.epa.gov/oppsrrd1/registration_

review/; http://www.epa.gov/oppsrrd1/reregistration/index.htm. The study-level

critical effects captured in ToxRefDB and taken from individual DER and studies
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cannot be related directly to regulatory determinations or Reds without additional

information and analysis.

Data output and analysis. The structured toxicity information stored

within ToxRefDB can be extracted in various formats utilizing SQL queries.

For the purpose of providing computable outputs, that is, quantitative outputs

amenable to statistical analysis, a consistent data output was used. The cross-

tabulated data output consisted of rows of chemical information (e.g., Chemical

Abstracts Service Registry Number, chemical name), by columns of toxicity

endpoints with the value entered being the lowest dose at which the endpoint

was observed (i.e., LEL) in ‘‘mg/kg/day.’’ Even though NOAEL/LOAEL

values for each study’s ‘‘Parental,’’ ‘‘Offspring,’’ or ‘‘Reproductive’’ effect can

be queried from the database, the current analyses for ToxCast only utilized

LEL. Log-transformed potency values were derived using -log2 of LEL. A

constant value of 12 was then added to zero-center the data allowing for zero to

represent no observed effect. Therefore, a value of 1 would be equivalent to an

effect at 2048 mg/kg/day and 18 would be equivalent to 0.015625 mg/kg/day.

The log-transformed values are predominantly used in the current analysis.

However, mill molar concentrations (mol/kg/day) were calculated for each

endpoint using the molecular weight of tested chemical and the LEL in mg/kg/

day. These data tables are available on the ToxRefDB homepage: http://

www.epa.gov/ncct/toxrefdb/. It should be noted, however, that potency does

not necessarily equate to risk because this analysis does not take into

consideration levels of exposure, a key element in the determination of risk.

Moreover, the potency of a compound in this analysis does not represent that

the endpoints identified in the multigeneration toxicity study are the most

sensitive in the database or for that matter the most appropriate for the exposure

scenarios being evaluated.

Hierarchical clustering across all the chemicals and effects was carried out

based on log-transformed potency values. Effects were selected based on an

occurrence in five or more chemicals, which was level shown to have minimal

predictive capability based on a simulation study performed by Judson et al.
(2008a). The clustering analysis, implemented in R version 2.6.1 (Ithaca and

Gentleman, 1996), used Pearson’s dissimilarity as the distance measure for both

chemicals and effects and Ward’s method for linkage (Ward, 1963). The

chemicals were divided into six groups based on the percent of explained

variance (Thorn dike, 1953). The weight for each effect in deriving the

chemical groupings was calculated as the ratio of the number of positives

within the chemical grouping over the number of positives out of the chemical

grouping.

RESULTS

Summary Characterization of Multigeneration Study Results

This analysis focused on reproduction-related endpoints

culled from 329 multigeneration rat studies on 316 unique

chemicals entered into ToxRefDB. The vast majority of studies

(294 of 329) were performed using a two-generation protocol.

There were seven one-generation studies, for which four were

supplementary studies to longer-term two- or three-generation

studies. Of the 28 three-generation studies, only first and

second generation effects were used in subsequent analyses,

whereas third generation effects were excluded. In total, there

were 11 chemicals with more than one study in this dataset.

Four chemicals had an additional study run to satisfy study

guideline requirements. Two chemicals had an additional study

to test at additional dose levels. Five chemicals had two studies

performed at similar dose levels and the conclusions between

each pair of studies were similar.

Across all studies and treatment groups 12,230 treatment-

related effects were observed, corresponding to 458 different,

unique types of effects. Each effect was tagged with specific

endpoint category, life-stage, and generational information.

The distribution of treatment-related effects and positive

chemicals across life-stage and generation provide insight into

the sensitivities of specific classes of endpoints (Table 1).

Parental effects were associated with 275 of the 316 chemicals

for both the P1 and F1 generation, whereas reproductive effects

were associated with only 100 or 129 chemicals in the P1 and

F1 generations, respectively. Besides more chemicals, there

were 73% more adult reproductive effects in the F1 generation,

than in the P1. A similar number of chemicals and offspring

effects were observed in the F1 and F2 generation. The relative

generational sensitivity among reproductive effects compared

to offspring effects prompted us to investigate the patterns of

specific reproductive and offspring toxicities across all

chemicals.

Patterns of Reproductive Toxicity

Identification of chemical groups with similar reproductive

toxicity profiles was achieved by hierarchical clustering of 75

target-level effects (Fig. 1). These were defined as target-level

effects because specific descriptive terms were aggregated to

the target organ (i.e., liver) or measured index (e.g., lactation

index), rather than all possible outcomes for each target

(hypertrophy, hyperplasia, degeneration, etc.). Six groups of

chemicals were identified based methods described above in

the Methods section. Each chemical grouping was described by

the effects that most heavily weighted the formation of the

chemical groupings in Figure 1 and does not mean that every

TABLE 1

Distribution of Chemicals and Effects Across Life-Stage,

Endpoint Category and Generation for 316 Chemicals in

ToxRefDB with a Multigeneration Reproductive Study

Life stage Adult Adult Juvenile

Endpoint category Parentalc Reproductived Offspringe

Generation P1 275a (2935)b 100 (376)

F1 275 (3265) 129 (648) 255 (2274)

F2 247 (1979)

aNumber of chemicals with at least one effect observed at specified life-

stage, endpoint category and generation.
bNumber of effects observed at specified life-stage, endpoint category, and

generation.
cParental endpoints include adult body weight, mortality, clinical signs, and

target-organ weight and pathology effects.
dReproductive endpoints include reproductive organ weight and pathology

and reproductive indices (e.g., fertility, mating, live birth index).
eOffspring endpoints include pup weight, offspring survival (e.g., viability

and lactation index), and juvenile target-organ weight and pathology, and

pubertal delay (e.g., PPS and VO) effects.
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chemical in the group causes the endpoint. Group 1 consists of

the 14 chemicals with no observed toxicities across the 75

effects in this analysis. Group 2 contains 115 chemicals for

which general systemic toxicities are driving the formation of

the group. Interestingly, this chemical grouping is also heavily

weighted with endpoints relating to sperm counts and

morphology, endocrine-related organ pathologies and weight

changes, and delays in sexual maturation. Of the 115

chemicals, all five phthalate compounds are found in this

group. Group 3 contains 63 chemicals with limited toxicity for

which parental and offspring body weight changes are driving

the formation of the chemical group. Group 4 formation is

heavily weighted with cholinesterase inhibition effects and is

comprised of 12 organophosphorus compounds. Groups 5 and

6 contain 48 and 64 chemicals, respectively, and the formation

of these groupings were heavily weighted with reproductive

toxicity endpoints, including testicular and epididymal pathol-

ogies in group 5 and decrements in offspring viability and

survival in group 6.

The complete listing of chemical groupings and endpoint

weights are available for download from the ToxRefDB

homepage (http://www.epa.gov/ncct/toxrefdb/). This analysis

clearly segmented the chemicals into distinct classes based on

their profile of systemic and reproductive toxicities. This

analysis also guides endpoint selection process by highlighting

groups of related chemicals or endpoints based on the entire

profile of toxicological activity rather than a single outcome.

Many of the associations between endpoints or chemicals were

expected, but others were not. For instance, reproductive

performance, reproductive organ and offspring viability effects

were segregated slightly from each other and to a greater extent

from parental systemic effects and even delays in sexual

maturation.

Comparative Analysis with Chronic and Subchronic Systemic
Toxicity

Parental, reproductive, and offspring potencies (i.e., inverse

log-transformed LEL) from the multigeneration studies were

compared to potency values for systemic toxicity from 2-year

chronic and 90-day subchronic studies in the rat (Fig. 2). For

this comparison, data were available in ToxRefDB for 254

chemicals tested in both multigeneration and 2-year chronic

studies, and 207 chemicals tested in both multigeneration and

90-day subchronic studies. The potency values compared

rarely correspond to the same treatment-related effect across

study type. For the majority of chemicals, potency values

between the multigeneration, chronic and subchronic studies

were comparable, with a general linear relationship falling

within ten-fold of each other. However, for four chemicals

(bisphenol A, deltamethrin, flucycloxuron, flufenpyr-ethyl) that

caused parental or reproductive effects in the multigeneration

study, there was no systemic toxicity observed in either the

chronic or subchronic studies. For another five chemicals

(cyprodinil, diethyltoluamide, difenoconazole, ethametsulfuron

methyl, thiamethoxam) potencies for the most sensitive

multigeneration endpoints were more than 10-fold greater than

FIG. 1. Two-way hierarchical clustering of 75 treatment-related effects from multigeneration reproduction tests on 316 chemicals in ToxRefDB. Six chemical

groups were identified based on their patterns of reproductive toxicity. Each chemical group description is derived from the mostly heavily weighted endpoints (see

Results and http://www.epa.gov/ncct/toxrefdb/ for details) and does not mean that every chemical in the group causes the endpoint.

184 MARTIN ET AL.

 at E
PA

-R
T

P M
ain L

ibrary on A
pril 25, 2012

http://toxsci.oxfordjournals.org/
D

ow
nloaded from

 

http://www.epa.gov/ncct/toxrefdb/
http://www.epa.gov/ncct/toxrefdb/
http://toxsci.oxfordjournals.org/


for the most sensitive effects in chronic studies. Of these five

chemicals only thiamethoxam was more potent based solely on

reproductive endpoints, that is, testicular atrophy. Decreasing

the threshold from 10-fold to a 2-fold increase in potency

resulted in 37, 7, and 20 chemicals more potent for parental,

reproductive, or offspring endpoints, respectively. Of the seven

chemicals identified as twofold more potent reproductive

toxicants, no reproductive organ toxicity was observed in the

rat chronic/cancer or subchronic studies for these chemicals—

the multigeneration test detected reproductive toxicity that

FIG. 2. Parental, reproductive, and offspring LELs (inverse log transformed) from multigeneration rat studies were compared to systemic LEL from chronic/

cancer and subchronic rat studies for 254 and 207 chemicals, respectively. Points within gold lines indicate less than twofold difference between multigeneration

and chronic studies. Points within orange lines indicate less than 10-fold difference between multigeneration and chronic studies. ‘‘NE’’ stands for not established.
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could have been missed in chronic or subchronic studies.

Under the conditions of the 2-year chronic studies, the vast

majority of chemicals observed effects at lower doses than in

the multigeneration reproductive study. However, even in these

cases, the multigeneration test often identified selective

reproductive toxicants and endpoints not detected in the

chronic study.

Comparative Analysis of Parental, Reproductive, and
Offspring Endpoints

Chemicals with increased potency in the second generation

were identified by comparing P1 and F1, or F1 and F2 LEL

across parental, reproductive and offspring endpoint categories

for 316 chemicals (Fig. 3). Specific second generation effects

(i.e., F1 parental or reproductive, F2 offspring) not observed in

the first generation (i.e., P1 parental or reproductive, F1

offspring), or sensitive effects occurring at a lower LEL in the

second generation are provided for all 316 chemicals on the

ToxRefDB homepage (http://www.epa.gov/ncct/toxrefdb/).

For parental effects, 15 chemicals had specific effects in the

F1 versus P1, and another 48 were more sensitive in the F1

versus P1 based upon at least a twofold difference in LEL.

For reproductive toxicity endpoints, 52 chemicals had

specific effects in the F1 versus P1, and another 14 were more

sensitive in the F1 versus P1 based upon at least a twofold

difference in LEL. For offspring toxicity endpoints, 14

chemicals had specific effects in the F2 versus F1, and another

28 were more sensitive in the F2 versus F1 based upon at least

a twofold difference in LEL. Across reproductive and offspring

effects, a total of 94 chemicals displayed specificity or

sensitivity in the second generation. However, the F1 re-

productive or F2 offspring LEL was the most sensitive LEL

across all endpoint categories for only 16 of these 94 chemicals

(Table 2). Of the 16 second generation sensitive chemicals as

determined by specific LEL, only three of these chemicals had

reproductive or offspring LOAEL based on critical effects that

required mating of the F1 adults or were observed in the F2

offspring. Of these three, only fenarimol effects on F2 litter size

determined the chronic reference dose in the risk assessment.

This analysis in ToxRefDB has identified a subset of reference

chemicals for ToxCast predictive modeling that may be more

specific or potent reproductive toxicants. However, it is

important to note that these ToxRefDB values are LEL for

all treatment-related effects, and are in only a small minority of

cases critical effects being used for determination of NOAEL/

LOAEL.

Selected Multigeneration Study Endpoints for Predictive
Modeling

Figure 4 presents the incidence and distribution by

generation of effects on reproductive performance, reproduc-

tive organs, offspring viability, and parental systemic toxicities

selected as anchoring endpoints for ToxCast predictive

FIG. 3. Comparing LELs across generation and endpoint category. Points

within dark orange lines indicate less than twofold difference between

generations. Points within light orange lines indicate less than 10-fold

difference between generations. ‘‘NE’’ stands for not established.
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modeling. Toxicity profiles from multigeneration studies on

316 chemicals were based on a diverse set of 19 selected

effects or effect aggregations distributed in various combina-

tions across the P1, F1, and F2 generations. A detailed table

listing all 19 of these endpoints for the 316 chemicals,

including endpoint descriptions and various transformations of

LEL values, is available for download from the ToxRefDB

homepage (http://www.epa.gov/ncct/toxrefdb/).

These 19 highly prevalent effects identified treatment-related

changes to reproductive performance including fertility,

mating, gestational interval, implantations, litter size, and live

birth index demonstrated effects at different stages of the

reproductive cycle. Besides effects of many chemicals on

offspring viability at PND4 and PND21 (viability and lactation

indices, respectively), pubertal delays were also recorded for

some chemicals. Pubertal delays were not part of the ToxCast

modeling dataset because only a small subset of chemicals and

studies assessed these endpoints. Effects on reproductive

performance and offspring viability were observed in 110

(35%) and 108 (34%) of the 316 tested chemicals, respectively.

Effects on reproductive organs, both organ weight and

pathology, were observed in 98 (31%) of the chemicals with

roughly 50% of those chemicals causing the effect only in the

second generation (F1 adult). Of the 98 chemicals, 31 caused

both male and female reproductive organ effects, 43 male only,

and 24 female only. Systemic target organ weight and

pathology endpoints were also selected, including the liver,

kidney and spleen, along with the endocrine-related adrenal,

pituitary, and thyroid glands.

The fairly restricted set of 19 effects characterized 151 of the

152 chemicals that demonstrated any reproductive toxicity.

Additionally, these 19 effects identified 229 of the 269

chemicals that caused any offspring toxicity. The remaining

40 chemicals not identified were predominantly affecting pup

weight only. This supports the hypothesis that we can extract

a small finite set of key reproductive effects from this dataset

for use in developing robust predictive signatures in the future

stages of ToxCast research as a prioritization tool spanning

reproductive toxicity.

DISCUSSION

ToxRefDB is being developed with several applications in

mind. One is to provide in vivo toxicity effects as targets for

ToxCast predictive models. In this fashion, ToxCast can be

established as a cost-effective rapid approach for screening and

prioritizing a large number of chemicals for further toxicolog-

ical testing (Dix et al., 2007). Using data from high-throughput

screening (HTS) bioassays developed in the pharmaceutical

industry, ToxCast is building computational models to forecast

the potential toxicity of chemicals. These hazard predictions

should provide EPA regulatory programs with science based

information helpful in prioritizing chemicals for more detailed

TABLE 2

Sixteen Chemicals with the Most Sensitive LELs from F1 Reproductive or F2 Offspring Toxicities

LEL (mg/kg/day)

Parental Reproductive Offspring

Chemical name P1 F1 P1 F1 F1 F2 F1 reproductive/F2 offspring sensitive effect

2,4-DB 112 NE 112 NE 112 25 Kidney dilationb

Azoxystrobin 165 165 NE NE 165 32.3 Pup and liver weight changesb

Bromuconazole 141 141 141 NE 141 15.5 Liver weight changesb

Carbaryl 92.4 92.4 NE 92.4 92.4 31.3 Offspring viabilitya,b

Chlorethoxyfos NE 0.78 NE NE 0.6 0.3 Pup weight decreaseb

Clethodim 263 263 51 1 NE NE Prostate and seminal vesicle weight

Desmedipham 20 20 NE 110 20 4 Liver and kidney weight changesb

Dicyclohexyl phthalate 402 89.9 NE 17.8 457 457 Prostate weight decreasea

Epoxiconazole 31.9 22.1 22.1 22.1 22.1 0.85 Offspring viabilityb

Fenarimol NE NE NE 1.2 NE NE Litter size decreasea,b

Mepiquat chloride 499 575 499 575 575 48.6 Eye opening delayb

Propetamphos 2.8 7.1 5.5 0.3 5.5 5.5 Litter size decreaseb

Stannane, tributylchloro- NE 6.25 NE 0.25 1.25 0.25 Pup, testis, and epididymis weight changesa

TCMTB NE NE NE NE NE 38.4 Pup weight decreasea,b

Thiamethoxam 61.3 61.3 NE 1.84 158 158 Testicular atrophya

Triclosan 50 150 NE NE 150 15 Pup weight decreaseb

Note. Underline ¼ parental, reproductive, or offspring LOAEL (study-level LOAEL). NE ¼ not established (no observed effects).
aStudy-level critical effect (F1 reproductive or F2 offspring).
bF1 mating required.
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toxicological evaluations, and therefore lead to using fewer

animal tests. Target chemicals for such prioritization include

pesticidal inerts, antimicrobials, and the many industrial

chemicals with limited toxicity information (Judson et al.,
2008c). ToxCast is currently in the proof-of-concept phase,

wherein over 300 chemicals have been assayed in over 500

different HTS bioassays, creating bioactivity profiles being

used to derive signatures predicting the known toxicity for

these chemicals (Judson et al., 2009).

The Phase I chemicals are primarily conventional pesticide

actives that have been extensively evaluated using traditional

mammalian toxicity testing, and hence have known properties

representative of a number of toxicity outcomes (e.g.,

reproductive toxicity). Thus a critical component of ToxCast

is ToxRefDB, which is being populated with data from OPP for

pesticide active chemicals and being extracted from the

evaluations on these studies conducted by OPP scientists.

Comparable toxicity data from other toxicity sources (e.g.,

National Toxicology Program) are also being captured in

ToxRefDB. A broader and more diverse set of complementary

data on thousands of chemicals is being captured in EPA’s

Aggregated Computational Toxicology Resource (http://actor.

epa.gov/actor; Judson et al., 2008b). Although pesticide

toxicity data currently predominates in ToxRefDB, the

database is being expanded to a broader range of chemicals,

both by category and use.

The underlying data represented in ToxRefDB has been

evaluated by EPA in prior pesticide registration decisions, and

the presence of effects in high-dose animal studies do not

translate directly into significant human risk stemming from

registered uses of the pesticide. One major issue to note is that

the current analysis of ToxRefDB is not limited to just the

critical effects leading to regulatory determinations of LOAEL

and NOAEL. In addition, it should be noted that the EPA uses

animal toxicology studies, like those entered into ToxRefDB,

as well as other sources of information such as effects on

wildlife populations, mechanisms of action, use patterns,

environmental fate and persistence, food residue levels, and

FIG. 4. Incidence and distribution, by generation, of the 19 endpoints selected for predictive modeling, including reproductive, offspring, and systemic

toxicity endpoints from the rat multigeneration reproduction study (see Results and http://www.epa.gov/ncct/toxrefdb/ for details). The light gray bar indicates

chemicals observing the endpoint only in the first generation, either P1 adult or F1 juvenile. The medium gray bar indicates chemicals observing the endpoint in

both first and second generation treatment groups. The dark gray bar indicates chemicals observing the endpoint only in the second generation, either F1 adult or

F2 juvenile.
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human exposure potential in its determinations to register

pesticides, and to establish acceptable levels of pesticide

residues for uses in the United States (http://www.epa.gov/

pesticides/).

The toxicity data in ToxRefDB (www.epa.gov/ncct/toxrefdb)

and the HTS data generated in ToxCast (www.epa.gov/ncct/

toxcast) is being made publicly available through EPA

websites. The first component of ToxRefDB was recently

published (Martin et al., 2009), presenting endpoints to be used

for predictive modeling from two-year rodent bioassays on 310

chemicals. The analysis and release of developmental toxicity

endpoints on 383 chemicals from ToxRefDB will also provide

key endpoints to be used for predictive modeling (Knudsen,

2009). Multigeneration reproduction study data for 316

chemicals was entered into ToxRefDB making the vast library

of legacy data computable for the first time. The pattern of

reproductive toxicity across these chemicals resulted in group-

ings of similar chemicals that could be used to match up with

HTS bioactivity profiles. In the meantime, the analysis

corroborated the distinction between parental, offspring and

reproductive effects in downstream analyses based on the

distribution of endpoints across the chemical groups.

All 12,230 effects in the multigeneration study dataset were

placed into three major classes of effects; parental, reproductive

and offspring. The LEL for each class or category of effects

were used to identify sensitive or specific reproductive

toxicants based on comparisons to chronic and subchronic

study data and cross-generational comparisons within the

multigeneration reproductive test. In general, chemical expo-

sures under conditions of the multigeneration reproduction

study were less sensitive than under the conditions of the

2-year chronic study and comparable to the 90-day subchronic

study. The analysis did, however, identify a subset of 94

chemicals with sensitive or specific reproductive or offspring

toxicities when compared to systemic effects under longer

continuous exposure periods. Additional future analyses

comparing, for instance, maternal and fetal toxicity from

developmental toxicity studies (Knudsen, 2009) to parental and

offspring toxicity from reproductive toxicity studies, will

provide additional insight into the role of developmental

exposures in the manifestation of specific toxicities.

Similar insight can be gleaned from comparing endpoints

occurring at a lower dose or only in the second generation, that

is, second generation sensitive or specific effects, respectively.

Effects that occur in the first generation and are not

corroborated in the second generation can be questioned as

to its toxicological relevance. Conversely, effects with

consistent increases in second generation sensitivity or

specificity might reflect the need for reproductive or de-

velopmental exposure to occur. Comparisons across these

broad classes of endpoints honed in on specific effects for

which to characterize the chemical set. The primary set of

effects selected as anchoring endpoints for ToxCast predictive

modeling were reproductive indices, offspring viability, and

male and female reproductive organ effects, along with a set of

parental systemic organ toxicities.

The current study focused on providing endpoints for

predictive modeling as part of the ToxCast research program

(Dix et al., 2007), but also began to address the importance of

specific study design parameters, including differences across

generation, life-stage and various classes of endpoints. It has

recently been suggested that the reproductive test guidelines for

agrichemicals could be refined to make the second generation

optional based on results seen in the first generation (Cooper

et al., 2006). Consistent with results from Janer et al. (2007),

the current analysis of this ToxRefDB dataset supports the

hypothesis that the second, F2 generation in these 329 studies

would rarely impact either the qualitative or quantitative

evaluations of these studies. Of the sixteen second generation

sensitive chemicals, carbaryl, fenarimol, and TCMTB observed

second generation effects that would have required F1 mating.

However, of these three chemicals only fenarimol effects on F2

litter size determined the chronic reference dose determination

(U.S. EPA, 2006, 2007a,b). Additional analysis will be per-

formed on this dataset in collaboration with OPP and other

international chemical regulatory agencies to expound upon the

role of these and other study design parameters with respect to

chemical regulation and potential guideline study design

changes. For instance, 53 of the 73 chemicals proposed for

screening in the Endocrine Disruptor Screening Program (EDSP;

http://www.epa.gov/endo/pubs/prioritysetting/draftlist.htm) have

multigeneration studies entered into ToxRefDB. Where avail-

able, multigeneration study data for the remaining chemicals are

now being entered into ToxRefDB. A focused analysis of the

EDSP chemical set to assess the ability of the current and

previous guidelines to identify reproductive effects related to

endocrine disruption would be just one example of the utility

of ToxRefDB (Kavlock et al., 2009). The use of ToxRefDB to

address many research and regulatory science questions re-

garding in vivo mammalian toxicity not only provides trans-

parency, but also assists in guiding the next set of questions.

The diverse utility of ToxRefDB as a reference database for

research applications such as ToxCast demonstrates the power

of curating toxicity information into a relational database. In

the current analysis on the multigeneration reproductive

toxicity test, six chemical sets were derived and subsequently

nineteen specific endpoints were identified to serve anchoring

endpoints for eventual predictive modeling. These endpoints

are further defined by life-stage or generation, and fully

characterize the reproductive toxicity potential of the 316 in

this study. Capturing this reproductive toxicity data in

ToxRefDB supports ongoing retrospective analyses, test

guideline revisions, and computational toxicology research.

SUPPLEMENTARY DATA

Supplementary data are available online at http://toxsci.

oxfordjournals.org/.
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a b s t r a c t

As the primary source for regulatory developmental toxicity information, prenatal studies characterize
maternal effects and fetal endpoints including malformations, resorptions, and fetal weight reduction.
Results from 383 rat and 368 rabbit prenatal studies on 387 chemicals, mostly pesticides, were entered
into the U.S. Environmental Protection Agency’s (EPA) Toxicity Reference Database (ToxRefDB) using
harmonized terminology. An initial assessment of these data was performed with the goal of profiling
environmental chemicals based on maternal and fetal endpoints for anchoring in vitro data provided in the
EPA’s ToxCastTM research program. Using 30 years worth of standard prenatal studies, maternal and fetal
effects were culled from the database and analyzed by target-description fields and lowest effect levels
(LELs). Focusing on inter-species comparison, the complexity of fetal target organ response to maternal
dosing with environmental chemicals during the period of major organogenesis revealed hierarchical
relationships. Of 283 chemicals tested in both species, 53 chemicals (18.7%) had LELs on development
(dLEL) that were either specific, with no maternal toxicity (mLEL), or sensitive (dLEL < mLEL) to expo-
sure in one species or another. The primary expressions of developmental toxicity in pregnant rats were
fetal weight reduction, skeletal variations and abnormalities, and fetal urogenital defects. General preg-

nancy/fetal losses were over-represented in the rabbit as were structural malformations to the visceral
body wall and CNS. Based upon administered doses, there was a clear hierarchy to the sensitivity and
specificity of dLELs in comparing species, with rat development being more sensitive with regards to the
number of endpoints affected and the number of active chemicals. Many of these relationships are con-
sistent with previous database studies of developmental toxicology, indicating that they are driven by the
biology of the test species. This novel data model provides an important public resource for cross-scale

unde
modeling and predictive
Abbreviations: DER, data evaluation record; LEL, lowest effect level (cLEL, cat-
gorical, dLEL, developmental, mLEL, maternal); LOAEL, lowest observed adverse
ffect level; LTD, lowest tested dose; NEL, no effect level; NOAEL, no observed adverse
ffect level; NTP, National Toxicology Program, NIH/NIEHS; OPP, Office of Pesticide
rograms, US EPA; OPPTS, Office of Prevention, Pesticides and Toxic Substances, US
PA; ToxRefDB, toxicity reference database; ToxRefDB prenatal, prenatal develop-
ental toxicity studies in ToxRefDB; US EPA, United States Environmental Protection
gency.
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rstanding of developmental processes and toxicities.
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1. Introduction

Technologies for in vitro assay and high-throughput screening
(HTS) are providing information-rich datasets that can be used
to classify and understand how different cells and tissues react
to the chemical landscape [1–3]. With vast amounts of HTS data
now accumulating, there is a pressing need for data-mining tools
and text-analytical methods that enable an integrative analysis and
cross-scale modeling of the mechanistic data, and for public data
models that structure toxicity data into computable formats for
predictive modeling of chemical toxicity. This has important impli-
cations for chemical screening and prioritization of the thousands of

untested chemicals for which a traditional animal testing paradigm
is costly in terms of fiscal resources, laboratory animal resources,
and time [4].

Developmental toxicity refers to adverse effects produced by
an exposure prior to conception, or during pregnancy and child-

http://www.sciencedirect.com/science/journal/08906238
http://www.elsevier.com/locate/reprotox
mailto:knudsen.thomas@epa.gov
dx.doi.org/10.1016/j.reprotox.2009.03.016
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ood. Standard practice for assessing disruptions in embryogenesis
nvolves testing pregnant laboratory animals of two species,
ypically rats and rabbits, exposed during the period of major
rganogenesis and evaluated just prior to term along with mon-
toring maternal status throughout pregnancy. Under this design
he major manifestations of developmental toxicity may express as
ne or more of a number of possible endpoints such as intrauterine
eath, fetal growth retardation, structural variations and abnormal-

ties [5,6]. Predictive modeling of developmental toxicity requires a
omputational framework that can integrate mechanistic data with
igh-quality toxicity data from in vivo studies.

EPA’s Toxicity Reference Database (ToxRefDB) has been imple-
ented with animal-based toxicity data from chronic/cancer rat

nd cancer mouse studies [7], multi-generation reproduction rat
tudies [8], and prenatal developmental toxicity studies in rats and
abbits (described here). The data has been manually entered from
ource documents representing EPA’s Office of Pesticide Programs
OPP) reviews of registrant-submitted guideline studies known
s Data Evaluation Records (DERs). The initial build of ToxRefDB
ntered these data for 387 chemicals that include 280 chemicals
ithin Phase-I of EPA’s ToxCastTM research program [4]. Here we
escribe the implementation of ToxRefDB for prenatal developmen-
al toxicity studies. Experimental protocols in general follow EPA
ealth Effects Test Guidelines OPPTS 870.3700 [9] or the preceding
PP 83-3 guideline [10], and are similar to the OECD guideline for
renatal developmental toxicity testing [11].

Databases of birth defect registries [12,13], developmental toxi-
ology literature (http://rsi.ilsi.org/Projects/devtoxsar.htm) [14,15],
nd animal studies (http://ntp.niehs.nih.gov/) [6,16] have generally
ooked to identify relationships within classes of toxic agents, devel-
pmental outcomes, test species and human populations (see [17]).
oxRefDB represents the first large-scale implementation of its kind
or profiling the activity of environmental chemicals based on a
omprehensive analysis of source data for a broad range of end-
oints relevant to EPA risk assessments, including developmental
oxicity.

The present study describes the initial build of ToxRefDB for
renatal developmental toxicity studies (herein referred to as
oxRefDB prenatal). Through this implementation, a detailed anal-
sis is possible to link observational relationships within classes
f toxic agents and developmental outcomes in rats and rabbits.
ather than an exhaustive analysis of chemical-endpoint linkages,
he present study was designed to identify and evaluate key hier-
rchical relationships that represent the primary determinants of
evelopmental toxicity. Focusing on inter-species comparison, the
tudy goals were to evaluate: (1) the complexity of fetal target organ
esponse to maternal dosing with environmental chemicals dur-
ng the period of major organogenesis, e.g., how many times target
ndpoints were affected by chemical; (2) the relative sensitivity
nd specificity of maternal and fetal parameters in comparing these
esponses between rat and rabbit test species; and (3) how many
imes each chemical was counted by target endpoint, e.g., how

any chemicals in the set produce a certain effect. Profiling devel-
pmental toxicity in this manner has revealed a number of findings
hat are consistent with previous database studies of developmen-
al toxicology, some that differ with those studies, and some novel
elationships. The novel data model reported here is envisaged to
rovide an important public resource for mechanistic modeling and
redictive understanding of developmental processes and toxici-
ies.
. Implementation and methods

.1. Data sources

The initial build of ToxRefDB [7] indexed 4618 DERs of different study types
chronic/cancer, sub-chronic, reproductive, developmental) and test species (mostly
xicology 28 (2009) 209–219

rat, mouse, and rabbit). The DERs were from EPA’s Office of Pesticide Programs
(OPP) within the Office of Prevention, Pesticides and Toxic Substances (OPPTS).
Source DERs consisted of 3775 printed documents optically scanned to *.tiff files;
837 WordPerfect documents; and 6 documents in other electronic file formats.
Each DER was indexed by filename convention of Pesticide Chemical (PC) Code,
Master Record Identification (MRID) number, study type identification number
(based on most relevant 870 series OPPTS harmonized health effect guidelines),
species code, and review identification number and version code [7,8]. Informa-
tion on chemical identity and structure was provided by the EPA DSSTox program
(www.epa.gov/ncct/dsstox/index.html). The work described here specifically covers
a subset of 1318 DERs indexed for ‘prenatal developmental toxicity’ denoted by the
filename extension 3700, and subsequently referred to here as ToxRefDB prenatal.

2.2. Source vocabulary

The use of standardized nomenclature is essential for ToxRefDB operations. An
internationally harmonized terminology for developmental toxicology was estab-
lished in 1997 by the International Federation of Teratology Societies (IFTS) [18].
A subsequent series of workshops on terminology development eliminated certain
ambiguities and established working definitions for malformations and variations
[19–21]. The DevTox lexicon was downloaded from www.DevTox.org. An enhanced
annotation system was used by ToxRefDB in which 895 terms from the harmonized
nomenclature was joined with standardized terms from the OECD-OPPTS vocabu-
lary [11] to generate a thesaurus of 988 non-redundant terms that apply to maternal
and developmental endpoints. In the enhanced system, ‘description’ annotates the
particular apical endpoint or phenotype (observation) and ‘target’ annotates coarse
regional anatomy (localization). The description-target fields represent the basic
observational effects entered into ToxRefDB prenatal.

2.3. Data entry and quality assurance

The data entry tool was developed in Microsoft Access® and implemented using
an open source MySQLTM platform [7]. The relational model took inputs from ToxML
[22] and included metrics for data integrity, quality, updateability, and standardiza-
tion. Quality control (QC) consisted of 100% cross-checking of studies, systematic
updates of ToxRefDB to ensure consistency across the studies, expert review of data
outputs, and external review by registrants. All data entered into ToxRefDB have
undergone cross-checking, which entailed a second person validating each entered
value based on the source information (primarily DERs). Systematic quality control
involved querying the database for potential inconsistencies (e.g., fetal effects being
assigned to the maternal treatment group) along with updating vocabularies and
related records [7].

2.4. Source information

The 1318 DERs for prenatal developmental studies encompassed 4896 dose
groups. Doses were expressed as mg/kg-d where available since the studies were
conducted via gavage. Endpoint parameters entered as ‘adult’ included maternal
body weight gain, food and water consumption, fertility and pregnancy, and other
general maternal effects. Parameters entered as ‘fetal’ included fetal weight reduc-
tion, skeletal variations, malformations and other pathologies. Due to the two
annotation systems used to enter data into ToxRefDB (DevTox.org and OECD-OPPTS)
different expressions of fetal wastage cross-reference maternal and conceptal fea-
tures. For that reason, the present analysis lumped all expressions of fetal wastage,
including pre-implantation loss, implantation failure, resorptions, fetal death, preg-
nancy loss as a maternal feature under the category of ‘pregnancy-related losses’.
Any maternal or fetal outcome tagged as a ‘critical effect’ in ToxRefDB was reported in
the DER to have occurred at the minimum dose for which any specific effect or group
of effects had been observed (LEL, Lowest Effect Level); the next lowest dose being
the NEL (No Effect Level). Although some of these dose levels may represent the
NOAEL and LOAEL (No Observed Adverse Effect Level, and Lowest Observed Adverse
Effect Level) used for risk assessment purposes across different study types, the ter-
minology used here (NEL, LEL) is intended specifically to rank chemical endpoints
and endpoint-combinations on maternal and fetal parameters. As such, these terms
are used without regulatory implications.

2.5. ToxRefDB data extraction

Relational data were expressed using specific SQLTM queries and global data
dump to a sortable data grid having rows of exposure conditions and columns of
input/output criteria. Input source information included details on study design such
as unique study identifier (MRID), chemical CAS registry number (CASRN), route of
administration, exposure window, and dose level (mg/kg-d). Output endpoint effects
included details on evaluation criteria such as the biological compartment (adult,

fetus), type of effects (developmental, systemic), their localization and phenotype
(target, description), and any LEL noted (maternal mLEL, or developmental dLEL).
Because ToxRefDB entered data for description-target effects individually when
more than one effect may have occurred within the same fetus or litter, the data
grid replicated rows if more than one treatment-related effect was entered for the
same dose group in a particular study.

http://rsi.ilsi.org/Projects/devtoxsar.htm
http://ntp.niehs.nih.gov/
http://www.epa.gov/ncct/dsstox/index.html
http://www.devtox.org/
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Table 1
Summary statistics for prenatal developmental toxicity studies entered into ToxRefDB (December 31, 2008).

ToxRefDB prenatala Rat Rabbit Ratiof Normalizedg Species biash

A. Input source information
Number of studies entered (MRID) 383 368 1.04 0.00

> Studies passing acceptability criteriab 357 325 1.10 0.08

Number of chemicals represented (CASRN) 372 320 1.16 0.16

Number of dose groups (mg/kg-d) representedc 2469 2327 1.06 0.03
> Dose groups by oral administrationd 2463 2307 1.07 0.04

B. Output endpoint effects
Number of dose-effect groups recordede 5592 4749 1.18 0.15

> Maternal endpoint effects (pregnancy) 2429 2462 0.99 −0.10 Rabbit
� Reduced maternal weight gain 596 482 1.24 0.23
� Resorptions/fetal loss 262 498 0.53 −1.00 Rabbit

> Fetal endpoint effects (developmental) 1588 716 2.22 1.06 Rat
� Fetal weight reduction 182 95 1.92 0.86 Rat
� Developmental defects 1383 611 2.26 1.09 Rat

a Denotes prenatal developmental toxicity studies.
b Acceptable guideline pre-1998, acceptable guideline post-1998, acceptable non-guideline.
c Adult and fetal evaluation in the same study counts as separate dose groups.
d Includes gavage, intubation, feed; residual routes of administration were dermal, subcutaneous, or not indicated.
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(gavage, intubation, feed).
Information about dosing interval (start, finish, duration) is sum-

marized schematically in Fig. 1. This plots the exposure design in
ToxRefDB prenatal based on cumulative start and completion dates

Fig. 1. Exposure design summarized for all dose groups entered into ToxRefDB pre-
natal developmental toxicity studies. Gestational period for rat and rabbit mapped by
gestation days (GD) from fertilization (GD 0) through usual parturition, GD 21–22
in rat and GD 30–32 in rabbit. The gray shaded histogram graphs the cumulative
number of dosing groups across DERs for rat (2469) and rabbit (2327). The fuzzy
exposure window across ToxRefDB is indicated by the most frequent start and finish
Total number of endpoint effects for mother, fetus or pups recorded across all d
f Rat to rabbit ratio.
g Inputs normalized to studies entered and outputs normalized to dose groups (m
h Rule for species bias = normalized ratio falls outside the range −0.02 < ratio < +0

.6. Data analysis and visualization

Associations for exposure–effect and effect–effect were built across dose groups
or all prenatal developmental studies. Summary statistics for each treatment-
elated effect extracted from ToxRefDB was based on target-description entity and
ts higher level classification by embryological system. Dose values in mg/kg-d were
sed to calculate potency for each chemical in rat and/or rabbit at the maternal,
evelopmental, and categorical LEL. For consistency the data transformation rule
sed here was the same one applied in the chronic/cancer and multi-generation
eproduction studies [7,8]: LEL mg/kg-d extracted when available for maternal and
evelopmental effects, else blank; compute −log2(LEL mg/kg-d), else zero (LTD
resent) or blank; and add constant = 12 to scale the data between ∼0.0 (very low
EL) and ∼20 (very high LEL). Unsupervised two-way hierarchical clustering used
earson’s dissimilarity measure for both chemicals and effects. This analysis used
ard’s method for linkage [23] and the agglomerative clustering method and was

mplemented in R version 2.6.1 [24]. Clusters of chemicals were identified based on
distance height cutoff of four.

. Results

.1. Input source information

Table 1A summarizes several fields of input source informa-
ion for ToxRefDB prenatal. With few exceptions (<2% DERs) the
nformation entered derived from studies that evaluated chem-
cal effects in pregnant rats or rabbits. The number of studies
ntered by MRID was 383 for rat and 368 for rabbit, with the few
xceptions being mouse, hamster and other species. Due to the pre-
ominance of rat and rabbit studies we focus here on these two
pecies. OPP acceptability criteria [10] designated 79.1% studies
s acceptable/guideline (pre-1998); 5.5% as acceptable/guideline
post-1998); 6.3% as acceptable/non-guideline; 3.5% with deficient
valuation; and 5.6% as unacceptable. No attempt was made to re-
valuate the acceptability or deficiencies of the studies relative to
he different guidelines; as such, the results for all studies were
onsidered as presented in DERs.

The number of chemicals by CASRN represented across rat
r rabbit studies was 387. About 280 of these overlap with 320

oxCastTM phase-I chemicals; therefore, a number of chemicals
ntered into ToxRefDB prenatal are not currently represented in
oxCastTM and some ToxCastTM chemicals cannot draw on ToxRefDB
or direct information on developmental effects. Although the preg-
ant female was the usual exposure unit for these studies we
oups.

d) represented and log2-transformed.
sed on 95% confidence interval on the mean.

emphasize total number of dose groups (mg/kg-d) counted across
chemicals: 2469 for rat studies and 2307 for rabbit studies (Table 1).
As such, dose groups are replicated in adult and fetal evaluations
for the same study. The usual (>97.7%) route of exposure was oral
days for dosing (e.g., GD 6–17 in rat and GD 6–20 in rabbit). Superimposed is the
period of dosing for ICH 4.1.3 Segment II study covering primitive streak formation
through palatal closure. The shaded arrowhead denotes the usual time of evaluation
in guideline rat (GD 20) and rabbit (GD 29) studies. A few ToxRefDB studies extended
into the postnatal period for rats (postnatal day 3, line) and rabbits (postnatal day
42, not indicated).
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Table 2
Distribution of developmental effects across ToxRefDB dose groups.

ToxRefDB prenatal Rat Rabbit Ratiob Normalizedc Species biasd

Number of dose groups (mg/kg-d) represented 2469 2327 1.06 –

Dose-effect groups with fetal (developmental) effectsa 1404 709 1.98 0.90
Skeletal defects 956 366 2.61 1.30

> Appendicular 185 77 2.40 1.18
> Axial 640 241 2.66 1.32
> Cranial 126 48 2.63 1.31

Orofacial defects 41 18 2.28 1.10
> Cleft lip/cleft palate 19 5 3.80 1.84

Neurosensory defects 28 22 1.27 0.26 Rabbit
> Brain 15 13 1.15 0.12 Rabbit
> Optic 13 9 1.44 0.45 Rabbit

Cardiovascular defects 8 10 0.80 −0.41 Rabbit
> Heart 6 5 1.20 0.18 Rabbit
> Major vessels 2 5 0.40 −1.41 Rabbit

Urogenital defects 86 5 17.20 4.02 Rat
> Renal 42 2 21.00 4.31 Rat
> Ureter 40 2 20.00 4.24 Rat
> Genital 4 1 4.00 1.92 (Rat)

Other visceral defects (splanchnic) 16 23 0.70 −0.61 Rabbit
Body wall defects (somatic) 53 14 3.79 1.84
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Description-target terms for developmental effects (DevTox) integrated by syste
b Rat to rabbit ratio.
c Normalized to number of dose groups (mg/kg-d) represented and log2-transfor
d Rule for species bias = normalized ratio falls outside the range 0.60 < ratio < 1.91

f oral dosing across gestation in 2469 dose groups for the rat and
327 dose groups for the rabbit. In general, the dosing period for
ECD guidelines coincided with the ICH 4.1.3 Segment II study
uidelines to cover major events in morphogenesis and organogen-
sis for these species; however, a number of studies in rabbit had an
arlier onset than these guidelines and in both species a minority
f studies extended treatment to near term or postnatal days.

.2. Output endpoint effects

Table 1B summarizes several fields of treatment-related effects.
hese are sorted by adult and fetal compartments (Table 1B). The
ndpoint effects recorded for the pregnant dam or doe included
eneral maternal parameters, food and water consumption, and
ody weight gain as well as pregnancy-related indicators such as

ncreased resorptions and fetal wastage (pre- /post-implantation
osses, resorptions, intrauterine deaths). Fetal endpoints included
etal weight reduction, structural abnormalities or variations, and
eneral fetal pathology. A small number of newborn observations
re not considered here. It should also be noted that the post-
reatment gestational interval was relatively longer in rabbits than
ats (Fig. 1); hence, any treatment-related effects that might have
een reversible or associated with developmental delay are more

ikely to be detected in rats.
Summarizing endpoint effects by dose group is a logical way to

rray the response between rat and rabbit across a large number
f conditions. In this approach, each endpoint effect is linked to
discrete condition (dose, chemical, species). Counting the num-
er of effect-condition linkages in a class or subclass of endpoints
rovides a qualitative measure of that response by its representa-
ion across the chemical spectrum. It is important to recognize that
oxRefDB data entry tracks individual target-description entities
or each discrete condition. As such, this read-out can artificially

mplify or de-emphasize specific classes of endpoints. ToxRefDB
egistered 5592 effect-condition linkages in rat (average 2.3 effects
er non-zero dose group) and 4749 effect-linkages in rabbit (aver-
ge 2.0 effects per non-zero dose group). Aggregating these effects
nto higher level classifications revealed obvious species differ-
ased ontology.

on 95% confidence interval on the mean.

ences in the representation of endpoints sorted by adult and fetal
compartment (Table 1B). Using a simple rule to compute over-
representation, resorptions and fetal losses were more prevalent
in rabbit, and fetal weight reduction and developmental defects in
the rat. A species bias could arise from complex factors such as bio-
logical variation in embryology, differences in maternal behavior
or physiology, sensitivity to various xenobiotic disturbances, or the
time between dosing and evaluation.

3.3. Developmental defects

To gain deeper insight into the species response we next exam-
ined the spectrum of developmental (fetal) effects across all studies.
Individual effect-condition linkages were counted for 988 features
in the enhanced DevTox thesaurus. This iterated 1404 and 709
developmental (fetal) effects across dose groups in rat and rab-
bit, respectively and covered 293 of 988 (29.7%) target-description
terms. Representation of individual effects and their occurrences
in ToxRefDB is dependent on the nature of the embryological sys-
tems from which the observation was originally made. Skeletal
defects, for example, are highly represented in part because most
bone elements are entered into the database as individual targets
(vertebrae, ribs, femur and so forth) and then further annotated
by a range of elementary descriptions (absent, incomplete ossifi-
cation, misshapen, bent and so forth). Other systems with isolated
occurrences of malformation such as the heart, brain or eye have
relatively low representation in part because they are annotated as
individual targets.

Given this caveat, we aggregated defects into specific embry-
ological systems and focused on this representation across species
(Table 2). Cross-species differences exist for some effects or groups
of effects aggregated by target system. Although we did not analyze
each skeletal element by abnormality or variation, aggregating the

individual occurrences into regional anatomy showed a similar dis-
tribution of response across species (axial > appendicular > cranial).
For regional orofacial defects (palate, jaw, hyoid) we find over-
representation of cleft palate in the rat. Urogenital defects (renal,
ureter, reproductive) are also highly over-represented in rat and
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Table 3
Distribution of LEL effects across ToxRefDB dose groups.

ToxRefDB prenatal Rat Rabbit Ratio Normalizeda Species biasb

Dose-effect groups at mLEL or dLEL (total effects) 1711 1363 1.26 –

Dose-effect groups at mLEL (maternal) 996 1013 0.98 −0.36 Rabbit
Maternal body weight gain 976 991 0.98 −0.36 Rabbit
Maternal-pregnancy losses 28 115 0.24 −2.37 Rabbit
Embryo-fetal losses 45 91 0.49 −1.35 Rabbit

Dose-effect groups at dLEL (fetal) 715 350 1.62 0.70
Fetal weight reduction 95 57 1.32 0.40

Variations and abnormalities 609 288 1.68 0.75
> Skeletal defects 492 189 2.07 1.05 Rat

> Appendicular 97 36 2.14 1.10 Rat
> Axial 320 120 2.12 1.08 Rat
> Cranial 66 25 2.10 1.07 Rat

> Urogenital defects 34 4 6.75 2.75 Rat
> Renal 17 2 6.75 2.75 Rat
> Ureter 10 2 3.97 1.99 Rat
> Genital 7 0 >5.56 >2.47 Rat

> Orofacial defects 20 11 1.44 0.53
> Cleft lip / cleft palate 10 2 3.97 1.99 Rat

> Neurosensory defects 6 11 0.43 −1.21 Rabbit
> Brain 4 8 0.40 −1.33 Rabbit
> Eye 2 3 0.53 −0.92 Rabbit

> Cardiovascular defects 4 7 0.45 −1.14 Rabbit
> Heart 2 3 0.53 −0.92 Rabbit
> Major vessels 2 4 0.40 −1.33 Rabbit

> Other visceral defects (splanchnic) 3 10 0.24 −2.07 Rabbit
> Body wall defects (somatic) 9 0 >7.14 >2.84 Rat
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a Normalized to number of dose groups with critical effects and log2-transforme
b Rule for species bias = normalized ratio falls outside the range −0.26 < ratio < 0.8

omatic body wall defects (e.g., umbilical hernia, diaphragmatic
ernia) nearly so. In contrast, neurosensory defects (brain, eye),
ardiovascular defects (heart, great vessels) and defects of the
planchnic body wall (abdominal and thoracic viscera) are over-
epresented in rabbit (Table 2). Incomplete ossification and missing
keletal elements are the most frequent observational terms in both
pecies (not shown).

Would a similar discordance follow endpoint effects limited to the
LEL? We looked at the defects that occurred at the LEL for any
ffect versus all effects no matter what dose (above). ToxRefDB iter-
ted dLEL effects in 609 and 288 effect-conditions for rat and rabbit
etuses, respectively and covered 212 of 988 (21.5%) description-
arget terms. LELs were recorded for 202 of 383 (52.7%) chemicals
ested in rat (3.2 effects per chemical on average) and 193 of 368
52.4%) chemicals tested in rabbit (2.3 effects per chemical on aver-
ge). Although total occurrence of effects or groups of effects was
redictably lower at the dLEL than when all dose groups are con-
idered, the species dissymmetry was evident (Table 3). Similar
o the analysis noted above, skeletal defects, cleft palate, urogen-
tal defects, and somatic body wall defects predominated in the
at, whereas neurosensory defects, defects of the cardiovascular
ystem and splanchnic (visceral body wall) defects sided toward
abbit. Effects on maternal body weight gain and fetal weight reduc-
ion were species-neutral although maternal-pregnancy losses and
mbryo-fetal losses were more evident in rabbits (Table 3). We may
onclude from these findings that patterns of effects seen at the LEL
re also manifested at higher doses.
.4. Developmental activity

Profiling chemicals by developmental toxicity is an important
utput from ToxRefDB; however, this analysis must consider that
evelopmental effects may not be the most sensitive endpoint in
d on 95% confidence interval on the mean.

the database. For example, any particular chemical may be highly
ranked based on dLEL but express an even lower NOAEL/LOAEL in
other types of studies. Capacity for developmental activity does
not necessarily indicate that the endpoint identified in a prena-
tal study is the most sensitive endpoint in the database of for that
matter the most appropriate for the exposure scenarios being eval-
uated. Furthermore, developmental activity does not necessarily
equate to risk since this analysis does not take into considera-
tion exposure to the human population, a key element in the
determination of risk. To evaluate the developmental activity of
chemical responses, we applied a rules-based approach adapted
from ToxRefDB chronic/cancer and multi-generation reproduc-
tion studies [7,8]. A chemical response was ranked by LEL dose
level for mLEL and dLEL effects using the value, �, represent-
ing −log2(mg/kg-d) computed for each chemical, median-centered
and scaled (e.g., � = 1.0 when LEL = 2048 mg/kg-d and � = 18.0
when LEL = 0.015625 mg/kg-d). This derived parameter (�) was
useful as a general metric for representing chemical activity
in a computable form, based on the administered dose at the
LEL. Fig. 2 correlates mLEL and dLEL for within- and between-
species; 283 chemicals had computable � based on mLEL and
dLEL. This implies any sort of treatment-related effect whether
developmental or not. We generally considered correlations inside
2-fold as concordant within studies (maternal versus fetal) and
10-fold between studies (rat versus rabbit). The correlation
ranged slightly toward the maternal field in rabbits (Fig. 2).
For a subset of chemicals, however, the LEL effects were sensi-
tive or specific for developmental endpoints and are described

below.

Which chemicals had LEL effects that were developmentally spe-
cific? A response was considered ‘specific’ for developmental
toxicity if an effect or class of effects was recorded at the dLEL
(� ≥ 2.0) without maternal toxicity. Benomyl, for example, was
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ig. 2. Chemical potency for maternal and developmental toxicity. Maternal and d
nd rabbit for 386 distinct chemicals. Data were graphed between studies to correlat
anel), as well as within studies to compare maternal and developmental LELs for

ines indicate less than 2-fold difference and points within orange lines indicate les

agged for specific developmental toxicity in the rat because
LEL = 62.5 mg/kg-d (� = 6.03) without maternal effects. Overall
his rule flagged 16 unique chemicals of 283 chemicals tested
5.7%) in both species. In 11 of the 16 instances, the chemical pro-
uced maternal toxicity in the other test species. Benomyl had
o maternal toxicity in the rat but mLEL = 180 mg/kg-d in the rab-
it.

Which chemicals had LEL effects that were developmentally sen-
itive? A response was considered ‘sensitive’ for developmental
oxicity if the dLEL dose for any fetal endpoint was lower than the
orresponding mLEL for the chemical within a species. Prodiamine,
or example, was flagged for developmental sensitivity in the rat
ecause dLEL = 100 mg/kg-d (� = 5.36) versus mLEL = 300 mg/kg-d
� = 3.77). Overall this rule flagged 38 of 283 chemicals (13.4%)
n rat (30) or rabbit (11). Only 4 of them matched between
pecies (dLEL < mLEL) whereas 16 produced the opposite response
dLEL > mLEL) across species. Prodiamine showed greater potency
oward maternal effects in the rabbit (mLEL = 100 mg/kg-d).

In total: 53 of 283 chemicals (18.7%) had critical effects on
evelopment that were either specific (no maternal toxicity) or

ensitive (dLEL < mLEL) to exposure in one species or another; in
3 cases a �-value was computed for maternal and developmental
ffects in both species (see Table 4). The complete list of m/d-LEL
nd �-values for all ToxRefDB chemicals can be downloaded from
ttp://www.epa.gov/ncct/toxrefdb/.
mental lowest effect levels (LELs) extracted from ToxRefDB were compared for rat
nd rabbit studies for maternal LEL (top left panel) and developmental LEL (top right
dies (lower left panel) and rabbit studies (lower right panel). Points within amber
10-fold difference. NE, not established due to lack of observation of effects.

3.5. Chemical-phenotype linkages

Linkage classification clustered the LEL effects from 283 chem-
icals utilizing maternal and developmental potency scores (�), as
well as categorical LELs (cLEL) registered for each class of develop-
mental effect. Hierarchical clustering is shown in Fig. 3. The primary
division segmented 90 chemicals based on maternal toxicity. This
grouping included chemicals with high � scores for reduced mater-
nal body weight gain, pregnancy-related losses and resorptions.
Distinct responses in rabbit and rat further grouped these 90 chem-
icals into subclasses of 40 and 50 chemicals, respectively. There
were 9 chemicals without maternal or fetal effects. All remaining
chemicals shared relatively high �(dLEL) scores: 80 chemicals pos-
itive for developmental toxicity in the rat, 50 chemicals positive
in the rabbit, and 54 chemicals with developmental toxicity across
species.

How well do the different endpoint effects align with develop-
mental potency? Most chemicals with higher �(dLEL) scores had
high �(mLEL) scores as well. The overlap between chemicals in
these clusters and the 43 chemicals flagged for developmental

activity is given in Table 4. Whereas reduction in maternal body
weight correlated with �(mLEL), fetal weight reduction correlated
with �(dLEL). We did not observe any correlation between weight
changes in the pregnant mother and developing fetus at term for
either species. It is clear from Fig. 3 that a second level of clustering is

http://www.epa.gov/ncct/toxrefdb/
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Table 4
Chemicals (rat and rabbit data) tagged for developmental sensitivity or specificity.

CAS no. Chemical name RAT (mg/kg-d) RABBIT (mg/kg-d) RAT (�) RABBIT (�)

mLEL dLEL mLEL dLEL MAT DEV MAT DEV

CLUSTER-80 developmental toxicity in rat (subcluster of 17 chemicals)
34256-82-1 Acetochlor 600 150 2.77 4.77 0.00 0.00
17804-35-2 Benomyl 62.5 180 180 0.00 6.03 4.51 4.51
3691-35-8 Chlorophacinone 0.1 0.0125 0.025 0.025 15.32 18.32 17.32 17.32
120116-88-3 Cyazofamid 1000 0.00 2.03 0.00 0.00
83657-24-3 Diniconazole 20 1 7.68 12.00 0.00 0.00
131341-86-1 Fludioxonil 1000 100 100 2.03 5.36 5.36 0.00
103361-09-7 Flumioxazin 30 10 3000 7.09 8.68 0.45 0.00
361377-29-9 Fluoxastrobin 1000 300 400 2.03 3.77 3.36 0.00
85509-19-9 Flusilazole 50 0.4 35 35 6.36 13.32 6.87 6.87
93-65-2 MCPP acid 125 75 0.00 5.03 5.77 0.00
76738-62-0 Paclobutrazol 40 125 125 0.00 6.68 5.03 5.03
86209-51-0 Primisulfuron-methyl 500 300 0.00 3.03 3.77 0.00
29091-21-2 Prodiamine 300 100 100 3.77 5.36 5.36 0.00
28434-00-6 S-Bioallethrin 195 50 300 4.39 6.36 3.77 0.00
148477-71-8 Spirodiclofen 1000 300 0.00 2.03 3.77 0.00
149979-41-9 Tepraloxydim 360 120 180 3.51 5.09 4.51 0.00
55219-65-3 Triadimenol 15 5 125 8.09 9.68 5.03 0.00

CLUSTER-54 developmental toxicity in rats and rabbits (subcluster of 17 chemicals)
1912-24-9 Atrazine 25 5 75 75 7.36 9.68 5.77 5.77
57966-95-7 Cymoxanil 75 25 8 5.77 7.36 0.00 9.00
85-00-7 Diquat dibromide 4 40 3 1 10.00 6.68 10.42 12.00
79241-46-6 Fluazifop-P-butyl 300 5 50 50 3.77 9.68 6.36 6.36
79622-59-6 Fluazinam 250 50 7 4 4.03 6.36 9.19 10.00
117337-19-6 Fluthiacet-methyl 1000 0.00 0.00 0.00 2.03
79983-71-4 Hexaconazole 250 2.5 100 50 4.03 10.68 5.36 6.36
36734-19-7 Iprodione 200 60 200 0.00 4.36 6.09 4.36
16484-77-8 Mecoprop-P 50 100 50 20 6.36 5.36 6.36 7.68
141112-29-0 Isoxaflutole 500 100 100 5 3.03 5.36 5.36 9.68
2212-67-1 Molinate 140 35 200 200 4.87 6.87 4.36 4.36
123312-89-0 Pymetrozine 100 30 75 75 5.36 7.09 5.77 5.77
118134-30-8 Spiroxamine 100 10 80 80 5.36 8.68 5.68 5.68
4151-50-2 Sulfluramid 3.3 13.3 3 0.3 10.28 8.27 10.42 13.74
111988-49-9 Thiacloprid 50 10 10 10 6.36 8.68 8.68 8.68
210631-68-8 Topramezone 100 100 50 5.36 5.36 0.00 6.36
87820-88-0 Tralkoxydim 200 3 100 100 4.36 10.42 5.36 5.36

CLUSTER-50 developmental toxicity in rabbits (subcluster of 9 chemicals)
61-82-5 3-Aminotriazole 1000 80 80 0.00 2.03 5.68 5.68
99607-70-2 AA 5-C-8-Q* 400 400 300 60 3.36 3.36 3.77 6.09
33629-47-9 Butralin 1250 500 135 45 1.71 3.03 4.92 6.51
82697-71-0 Clofencet 1000 500 500 0.00 2.03 3.03 3.03
94361-06-5 Cyproconazole 12 12 50 10 8.42 8.42 6.36 8.68
142-59-6 EBC* 75 7.5 32.8 2.62 5.77 9.09 6.96 10.61
82-68-8 Quintozene 750 125 250 0.00 2.45 5.03 4.03
43121-43-3 Triadimefon 25 50 120 50 7.36 6.36 5.09 6.36
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99119-58-9 Trifloxysulfuron-sodium 1000 1000

* Abbreviations: EBC: ethylenebisdithiocarbamate, disodium; AA 5-C-8-Q: acetic
lusters correspond to chemical numbers in Fig. 3. Blank cells mean no effects repo

atterned by �(cLEL) scores for fetal weight reduction and skeletal
efects. The �(cLEL) for embryonic-fetal loss was linked between
pecies although based on critical effect counts this endpoint
as over-represented in rabbits. The strongest correlated variables

mong embryonic targets overall were rat appendicular-cranial
keleton (correlation coefficient = 0.811) and rat kidney–ureter (cor-
elation = 0.843). Fig. 4 plots the chemical counts for each endpoint
ariable at the dLEL and across all dose groups, dLEL or higher. As can
e seen the dLEL is sufficient to pick up categorical effects for most
ut not all chemicals within each test species. A perhaps interesting
ssociation is the over-representation of somatic body wall defects
n rats and of splanchnic (visceral) body wall defects in rabbit.

. Discussion
Mining 30 years worth of guideline animal studies using
oxRefDB classified chemical-phenotype relationships for hun-
reds of chemicals and endpoints related to pregnancy outcome.
he process of gathering, curating, and integrating these data con-
50 100 2.03 2.03 4.03 5.36

{(5-chloro-8-quinolinyl)oxy}-,1-methylhexyl ester; potency score � = −log2(LEL);

stitutes a considerable effort that now for the first time provides a
common data model for mining the prenatal developmental tox-
icity of environmental chemicals. This repurposes study reviews
from their original use in regulatory toxicology decisions to a novel
use to anchor high-throughput screening assays in ToxCastTM [4].
ToxRefDB derives maternal and fetal data comprehensively from
reviews of prenatal studies on pregnant animals. The present imple-
mentation captured data on 387 environmental chemicals, mostly
pesticides, from 751 studies in pregnant rats or rabbits. This imple-
mentation adds to the considerable body of reference toxicity data
for these chemicals for chronic/cancer rodent endpoints [7] and
multi-generation reproduction rat endpoints [8].

Focusing on inter-species comparison, the complexity of fetal
target organ response to maternal dosing with environmental

chemicals during the period of major organogenesis revealed hier-
archical relationships. There was a clear hierarchy to the sensitivity
and specificity of maternal and fetal LELs in comparing responses
between chemicals and inter-species, with rats being more sensi-
tive to developmental effects than rabbits. The dependence of any
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Fig. 3. Hierarchical relationship of ToxRefDB chemicals to developmental effects. Chemicals (columns) by effects (rows) for 283 chemicals with potency scores (�) in rat (A,
dark green) and rabbit (C, light green). Clustering by Pearson’s and Ward linkage; color intensity represents potency score. Variables are maternal LEL (mLEL), developmental
LEL (dLEL), and categorical LELs. Other effects classes are grouped by system: cardiovascular (CV), general (GN), neurosensory (NS), orofacial (OF), pregnancy-related (PR),
skeletal (SK), trunk (TR) and urogenital (UG). Abbreviations for specific effects targets: reduced maternal body weight gain (MBW), fetal weight reduction (FWR), maternal-
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regnancy losses (PRL), embryo-fetal losses (RES), general fetal pathology (GRL); s
ip/palate (CLP), altered jaw / hyoid bone (JWH); defects of the fetal brain (BRN)
bnormal splanchnic viscera (SPL); heart (HRT) and major vessels (VAS).

EL on the study design is clearly a matter of choice by the orig-
nal investigators. These dose selections may not have been ideal,
ut merely reflect practice over the era in which the studies were
erformed. The primary factors underlying developmental toxicity
ere fetal weight reduction, skeletal variations and abnormalities,

nd fetal urogenital defects in rats, and general pregnancy/fetal
osses and structural malformations to the visceral body wall and
NS in rabbits. Many aspects were consistent with other database
tudies indicating the key relationships are likely driven by the
iology of test species.

.1. Chemical activity

The spectrum of chemical activity based on the administered
ose was primarily resolved by the relative values of the mLEL
nd fetal dLEL dosages. Reduced maternal body weight gain dur-
ng gestation and fetal weight reduction were the most common
ndpoints. Weight changes would have been expected to underlie
etermination of the mLEL and dLEL for a large number of chem-

cal structures. This was evident for fetal weight reduction and
he dLEL although neither weight change correlated with mLEL. A
ecent study [16] examined general relationships between maternal

nd fetal toxicity using a dataset of 56 rat, 46 mouse and 25 rab-
it studies compiled from the National Toxicology Program (NTP).
hat study found weight changes to be the primary factors in deter-
ining levels of maternal and fetal toxicity and noted that the

egree of association between maternal and fetal weight changes
l defects - axial (AXL), appendicular (APP), cranial (CRN); orofacial defects - cleft
e (EYE); renal (REN), ureteric (URT), genital (GEN); body wall defects (SOM) and

followed the rank order: mouse (91% concordance, P < 0.001) > rat
(41%, P < 0.01) > rabbit (24%, not significant). They attributed the
inter-species difference to time lapse between dosing and evalu-
ation (mouse < rat < rabbit) and amount of time that the fetus has
to recover [16]. Although guideline study designs used to build
ToxRefDB prenatal had the same inter-species time lapse, there was
no correlation between doses that caused maternal and fetal weight
changes (correlation coefficient < 0.01) in spite of a modest inter-
species correlation for mLELs (correlation coefficient = 0.59). Data
localizing maternal body weight changes to specific gestational
stages may improve the correlation [16]; however, this informa-
tion cannot be obtained from the current build of ToxRefDB which
has term body weight information only.

The subset of 387 ToxRefDB chemicals perturbing fetal weight
was much higher in rats (35.7%) than rabbits (19.2%). Consistent
with that finding, a high incidence of fetal weight reduction was the
lone endpoint effect in defining fetal LOAELs for ≥71% NTP rodent
studies [16]. Although the fraction of ToxRefDB chemicals that pro-
duced fetal weight change at the dLEL (71.2%) was also consistent
with NTP rat studies, the high incidence of fetal weight changes
also holds for the rabbit (86.9%). This contrasts with the NTP study
where fewer than half of the rabbit studies where a fetal LOAEL was

determined involved fetal weight reduction [16]. Due to the preva-
lence of pesticides for the initial build of ToxRefDB, it may be that
these are more bioactive chemicals than the many industrial types
of chemicals that NTP tested. Another disparate finding is the minor
subset of ToxRefDB chemicals that produced fetal weight change as
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Fig. 4. Percentage of chemical counts distributed across phenotype classes. Each phenotype is plotted by a normalized bar that shows the %-distribution of the response
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n each species. Hatched area (dLEL) relative to solid area (cLEL) indicates the num
lotted from left to right and rabbit studies from right to left on the same scale. Tot
bbreviated as in Fig. 3.

he sole determinant of the dLEL (∼6% versus ∼70%). Collectively,
hese data support the notion that fetal weight reduction is a key
arameter in profiling developmental toxicity [16]. At the same time
he data suggest that for a substantial number of environmental
hemicals the fetal weight change correlates more strongly with
alformations than maternal weight change. Indeed, reductions in

etal weight in absence of maternal weight change have been found
n several NTP chemicals that are ‘preferentially toxic to both the
eveloping embryo and the fetus’ [16].

On the basis of mLEL and dLEL a subset of ToxRefDB chemicals
howed increased sensitivity or specificity of the developing fetus
s compared to the pregnant mother (dLEL < mLEL) or in one species
ersus another. This list included 53 of 387 chemicals (13.7%) with
ata in rat or rabbit, and 43 of 283 chemicals (15.2%) where data
xisted in both species. Although these chemicals provide inter-
sting prototypes for mechanistic study, a number of them were
ctive only at very high doses as defined on an mg/kg-d basis. The
roportions are slightly higher than observed in the NTP data anal-
sis, which reported adverse effects in the fetus at lower doses of
xposure as compared to the mother in 5/62 (8.1%) cases across
at–rabbit studies; however, that study also noted adverse fetal
ffects and overt maternal toxicity at the same dose level in 19/62
30.6%) rat–rabbit studies [16]. Further analysis is needed to learn
f there were any developmental effects that were always occurring
nly in the presence of a specific form and/or severity of maternal
oxicity.

Across the 43 chemicals flagged for developmental sensitivity or
pecificity, only a subset of cases had fetal weight effects. Apart from

he consistencies with NTP studies [16], the role of maternal under-
utrition as a primary determinant of fetal weight at term could
ot be substantiated through ToxRefDB profiling of primarily pes-
icidal chemicals for developmental toxicity. The broader analysis
ith 387 chemicals on 751 studies suggests a chemical-phenotype
f chemical counts at the dLEL relative to any dose, dLEL or higher. Rat studies are
mical hits are listed aside each species bar. Effects (19) and classes of effects (8) are

association with specific variations or malformations that is direct
(mechanism) versus indirect (maternal) factors, especially in preg-
nant rats.

4.2. Phenotype representation

In current practice, the guideline prenatal developmental tox-
icity studies are used to identify NOAELs and LOAELs based on
maternal and fetal endpoints, rather than to estimate specific
developmental phenotypes in humans [25]. Analysis of chemical
counts for most developmental endpoints in ToxRefDB captured the
majority of actives at the dLEL and many of the toxicants altered
development at doses near the mLEL. The inter-relationships of
developmental toxicity endpoints may, however, provide useful
information that can be mined from guideline studies [16,26,27].
A comprehensive weight-of-evidence model for reproductive and
developmental toxicity hazard identification has been constructed
by the U.S. Food and Drug Administration (FDA) to predict toxic-
ities based on quantitative structure-activity relationship (QSAR)
across large blocks of chemicals and chemical classes [15]. That
database derives secondary data for many chemicals (2000) and
studies (10,000). In contrast, ToxRefDB structures data from origi-
nal guideline studies. This enables profiling developmental toxicity
from high-quality source data annotated by internationally harmo-
nized target-description effects [18].

Most if not all of the 988 possible DevTox endpoints might
be expected from a survey of 751 source studies observed; how-
ever, only 29.7% of these terms were represented in the initial

build of ToxRefDB. This proved to be sufficient to classify targets
into individual defect ‘categories’ and then analyze their distribu-
tion by chemical count by species. Skeletal defects, in correlation
with fetal weight reduction in rats were the strongest factors pro-
filing developmental toxicity. Incomplete ossification and missing
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one elements are easily recognized in fetal evaluation protocols.
t is therefore not surprising to see these common findings over-
epresented in the ToxRefDB source data and to have the response
mplified by aggregating individual skeletal elements by system. On
he other hand, some relatively common defects such as hypospa-
ias and ocular colobomata may have been under-represented in
oxRefDB. These phenotypes may be difficult to detect in a fetal
at, or their under-representation may very well indicate that these
ndpoints are not associated with the pesticides evaluated here;
ence, the need for a multi-generational study. Finally, the extent
o which low-frequency malformations induced by exposure are
aptured as being present in ToxRefDB has not been examined here.

Mapping the aggregation of less frequent defects to the tar-
et organ can improve the statistical power of representation
nalysis [12,13,15]. For ToxRefDB, the aggregation of fundamental
evTox observations revealed chemical effects on 19 generalized

arget classes and 8 higher level embryonic systems. Although
he percentage of active chemicals was low for individual cate-
ories of defects and observations (skeletal changes excluded), a
arge number of environmental chemicals had significant findings
mong the 19 categories. Similarly, results from the QSAR repro-
ox database [15] showed the majority of agent-induced structural
efects could be aggregated into a relatively small number (11) of
efects categories. For both databases the major class of malfor-
ations included cleft palate, CNS, craniofacial, eye, skeletal and

rogenital defects. Therefore, specific defects in addition to fetal
eight changes contribute to the phenotype spectrum for profiling

he developmental toxicity of agents in general and environmen-
al chemicals in particular. Because the phenotype spectrum is
ell-represented at the dLEL, and because the percentage of active

hemicals becomes only slightly broader at high-dose levels, we
peculate that chemical profiling for developmental toxicity has its
trongest predictive value of specific fetal target systems at the dLEL.
t is axiomatic that a dLEL assignment in ToxRefDB was dependent
n the sensitivity of anatomical methods used to identify a fetal
hange. This implies an underlying biology leading to apical end-
oints that can serve as an in vivo anchor to the bioactivity profiles
enerated in HTS in vitro and QSAR models [28].

.3. Inter-species concordance

Although many environmental chemicals had significant find-
ngs among the 19 categories of effects, the percentage of actives
or individual categories varied between species. The stronger
esponse of rats in terms of skeletal defects, fetal weight reduc-
ion and urogenital defects perhaps reflects an underlying biological
usceptibility to the chemical, or may be simply explained by
uances in the examination techniques. Of particular importance

s the longer period between exposure and evaluation that can
llow rabbit fetuses more time to recover from transitory delays
han might be detected in the rat fetus [14]. Incomplete ossification
r fetal weight reduction, for example, may be less evident in the
abbit due to a longer recovery interval.

On the other hand, study design factors are less compelling
xplanations for some of the ToxRefDB findings. Rat renal defects
nd resorptions in rabbits, for example, may be more directly
rincipled on species differences. FDA’s weight-of-evidence QSAR
atabase concluded from among 936 chemicals that the rabbit
as about 6-fold less susceptible than rat to chemicals causing

etal dysmorphogenesis [13]. Results from ToxRefDB indicate that
nter-species differences depend on the target organ since some

ndpoints were over-represented in percentages for rabbits. Since
abbit is noted as having more developmental variations than rat
t follows that more uncertainty can be anticipated in assessing
reatment-related malformations in this species; however, the His-
orical Control Database [29] did not reveal an inter-species bias for
xicology 28 (2009) 209–219

either renal defects (rat) or eye defects (rabbit). This further implies
an underlying biology for ToxRefDB endpoints.

The importance of placental differences between rat and rab-
bit embryos as a potential reason for inter-species differences has
been emphasized [30]. Development of the chorioallantoic placenta
is precocious in rabbit versus rat; consequently, visceral yolk sac
expansion occurs relatively late in rabbits and the volume of exo-
coelomic fluid is much higher than in rat gestation. These factors
may influence the transport and concentration of chemical reach-
ing the embryo at critical times during organogenesis, which in turn
may account for some of the inter-species differences in suscep-
tibility. Because unique attributes of placentation in rabbits more
than rats closely resemble the human condition [30], testing in both
species has implications in estimating human risk [6].

Not all inter-species findings were consistent between ToxRefDB
and the weight-of-evidence QSAR database. A higher percentage of
ToxRefDB chemicals with significant activity on fetal death param-
eters in the rabbit, and the higher percentage of chemicals with
greater fetal weight reduction in the rat, were not noted in the QSAR
training set [15]. Again, ToxRefDB chemicals are likely to be more
bioactive in general because they are compiled of many pesticides.
Analysis of data for 54 potential developmental toxicants and 73
substances considered to be teratogenic in the rabbit and not the
rat showed generally similar sensitivity between species, although
for some chemicals the rat is more sensitive and others the rabbit
study is more sensitive [25]. Those authors suggested that differ-
ences between rat and rabbit studies in terms of classification of
developmental toxicity may reflect consequences of maternal toxi-
city between the species, rather than direct developmental toxicity
[31].

Aside from a relatively longer gestational period and the higher
frequency of developmental variation in rabbits, the doe is less tol-
erant of chemical treatment than the rat dam [15]. Clearly, some
ToxRefDB chemicals showing developmental activity in rats pro-
duced maternal toxicity in rabbits at the same (dLEL) dose level.
Among 91 substances with teratogenicity information reviewed [6]
a lack of concordance between rat and rabbit was observed in 18
of 91 (20%) compounds tested in both species. Chemical profiling
of 283 ToxRefDB chemicals with an evaluation of developmental
toxicity in both species identified clusters of about 130 chemicals
with developmental effects in either species alone; however, chem-
icals may have multiple effects on maternal and fetal parameters
and the interaction between mother-conceptus may differ across
species and chemicals. Selection of rabbit as a test species is primar-
ily driven by historical interest in thalidomide-induced limb defects
observed in humans, monkeys and rabbits, but not rats [32].

The present study shows that specific developmental effects
differ between species, and we know this to be true for the
comparison with the human condition as experience with some
chemicals shows [32]. The added value of rabbit studies for prena-
tal developmental toxicity evaluation has been recently questioned
based on NOAEL comparison and developmental outcomes [25]
and the weight-of-evidence QSAR database finding “no evidence
of trans-species tissue specific dysmorphogenic findings” [15]. Ret-
rospective analysis of several hundred pharmaceuticals tested in
both rodent and non-rodent species for general toxicological end-
points showed an overall 71% concordance with true positives in
human populations; concordance was lower when non-rodents
(63%) and rodents (43%) were considered separately [33]. For devel-
opmental toxicity, rat studies alone predicted teratogenicity in
61% of chemicals that showed teratogenicity in rat, mouse or rab-

bit, whereas a rat study and a rabbit study together identified
teratogenicity in 100% of these chemicals [6]. Taking the devel-
opmental toxicity alone, without regarding maternal toxicity as
strictly causal and without extrapolating the nature of effects equiv-
alently between species, the question remains open whether the rat
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s the only in vivo model would not detect almost all developmental
oxicants.

.4. Conclusion

Results from analysis of 387 chemicals in the EPA ToxRefDB
upport the value of a traditional two species paradigm for
dentification of developmental toxicity. Manifestations of direct
mechanism-based) developmental toxicity with or without indi-
ect (maternal-mediated) effects underscore the need for improved
ethods of assessing the dynamical relationship between devel-

pmental processes and maternal health status. In the future,
ata from alternative methods and HTS in vitro assays that enable

pathway-based risk assessment’ may increase confidence in test-
ng strategies while limiting required animal testing [1,34]. For this
o occur, public data models are needed that structure conventional
n vivo toxicity data into computable forms. ToxRefDB provides
uch a novel data model for relational assessment of source data
rom guideline (in vivo) prenatal developmental toxicity studies.

e envisage high value in these animal studies to anchor cross-
cale modeling and predictive understanding of developmental
rocesses and toxicities [17].
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Research

The U.S. Environmental Protection Agency 
(EPA) and other regulatory agencies are inves
tigating novel approaches to predict chemical 
toxicity, with the major goals being to enable 
the rapid screening of thousands of chemi
cals that have not previously been character
ized, to increase mechanistic understanding of 
chemical toxicity, and to reduce the number 
of animals required for toxicity testing. All of 
these goals initially require highquality in vivo 
toxicity data in order to test and validate these 
new approaches. To support U.S. EPA’s 
ToxCast effort (Dix et al. 2007), we have 
created the structured and curated Toxicity 
Reference Database (ToxRefDB) to tabulate 
information from guideline in vivo toxicity 
studies. ToxRefDB and related databases will 
help support computational analysis and mod
eling of the links from molecular interactions 
through cellular and organ phenotypes all the 
way to wholeanimal toxicity. This transfor
mation of existing toxicity data will facilitate a 
transition to the National Research Council’s 
(NRC) vision for Toxicity Testing in the 21st 
Century (Collins et al. 2008; NRC 2007). The 
NRC envisions a focus on toxicity pathways 
that will link molecular assays to toxicity out
comes in humans and ecological species.

Traditional toxicity testing for risk assess
ment of single compounds or limited groups 

of compounds can cost millions of dollars 
per chemical and years of effort. Since 1970, 
the U.S. EPA has accumulated a vast store of 
highquality regulatory toxicity information 
on thousands of compounds, most of which 
has been inaccessible for computational analy
ses. The curation and structuring of chemical 
toxicity information into the readily accessible 
ToxRefDB have created a valuable resource for 
both retrospective and prospective toxicologic 
studies. ToxRefDB initially focused on captur
ing developmental rat and rabbit, multigenera
tion reproduction rat, and chronic/cancer rat 
and cancer mouse studies. In addition to the 
data model, we developed a detailed toxicity
based controlled vocabulary for all the study 
types spanning clinical chemistry, pathology, 
reproductive, and developmental effects.

An important initial application of 
ToxRefDB is to provide anchoring of in vivo 
toxicity data for the U.S. EPA’s ToxCast 
research program, which has been designed to 
address the agency’s needs for chemical prior
itization by using stateoftheart approaches 
in highthroughput screening (HTS) and 
toxicogenomics (U.S. EPA 2008b). Nearly 
all of the ToxCast phase I chemicals are food
use pesticide active ingredients that have 
undergone a full suite of mammalian toxic
ity tests, creating an unparalleled reference 

set of toxicologic information. The complete 
and highly standardized data set provided by 
ToxRefDB facilitates analysis of the ToxCast 
phase I chemicals across chemical, study type, 
species, target organ, and effect. Additionally, 
ToxRefDB serves as a model for other efforts 
to capture quantitative, tabular toxicology 
data from legacy and new studies and to make 
these data useful for crosschemical computa
tional toxicology analysis.

Methods
Data characteristics. We collected reviews 
of registrantsubmitted toxicity studies, 
known as data evaluation records (DERs), for 
roughly 400 chemicals from the U.S. EPA’s 
Office of Pesticide Programs (OPP) within 
the Office of Pollution Prevention and Toxic 
Substances (OPPTS). The file types of the 
DERs include TIFF, Microsoft Word, Word 
Perfect, and PDF formats, some of which are 
not directly textreadable. We indexed every 
DER file based on a file name convention 
that consisted of the pesticide chemical (PC) 
code, study identification number (MRID), 
study type identification number [based on 
870 series OPPTS harmonized health effect 
guidelines (U.S. EPA 1996)], species code, 
review identification number (TXR), and a 
review version code. The latter code identi
fied the review as a primary review, secondary 
review, supplemental review, updated execu
tive summary, or a deficient review. 

For the initial build of ToxRefDB, we 
collected and indexed a total of 4,620 DERs 
from OPP. These included five types of studies 
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Background: Thirty years of pesticide registration toxicity data have been historically stored as 
hardcopy and scanned documents by the U.S. Environmental Protection Agency (EPA). A signifi-
cant portion of these data have now been processed into standardized and structured toxicity data 
within the EPA’s Toxicity Reference Database (ToxRefDB), including chronic, cancer, develop-
mental, and reproductive studies from laboratory animals. These data are now accessible and mine-
able within ToxRefDB and are serving as a primary source of validation for U.S. EPA’s ToxCast 
research program in predictive toxicology.

oBjectives: We profiled in vivo toxicities across 310 chemicals as a model application of 
ToxRefDB, meeting the need for detailed anchoring end points for development of ToxCast predic-
tive signatures.

Methods: Using query and structured data-mining approaches, we generated toxicity profiles from 
ToxRefDB based on long-term rodent bioassays. These chronic/cancer data were analyzed for suit-
ability as anchoring end points based on incidence, target organ, severity, potency, and significance.

results: Under conditions of the bioassays, we observed pathologies for 273 of 310 chemicals, with 
greater preponderance (> 90%) occurring in the liver, kidney, thyroid, lung, testis, and spleen. We 
observed proliferative lesions for 225 chemicals, and 167 chemicals caused progression to cancer-
related pathologies.

conclusions: Based on incidence, severity, and potency, we selected 26 primarily tissue-specific 
pathology end points to uniformly classify the 310 chemicals. The resulting toxicity profile classifi-
cations demonstrate the utility of structuring legacy toxicity information and facilitating the com-
putation of these data within ToxRefDB for ToxCast and other applications.

key words: cancer, chronic toxicity, pesticides, relational database, toxicity profile. Environ Health 
Perspect 117:392–399 (2009). doi:10.1289/ehp.0800074 available via http://dx.doi.org/  [Online 
20 October 2008]
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from a variety of species: developmental in rat 
and rabbit, reproductive in rat, subchronic in 
mouse and rat, and chronic or cancer in rat 
and mouse. Approximately 1,000 DERs pro
vided chronic and cancer data, and we selected 
a subset of these for curation into the data
base to yield data on 310 unique chemicals: 
rat chronic/cancer studies on 283 chemicals, 
and mouse cancer studies on 267 chemicals. 
Each study assessed a single technicalgrade 
chemical’s toxicity potential in a single species 
and study type. The first portion of the DER 
outlines the test substance, purity, lot/batch 
numbers, MRID, study citation, OPPTS test 
guideline, and reviewers of the study. The 
execu tive summary captures all of the basic 
study design information, including species 
and strain, doses, number of animals per 
treatment group, and any deficiencies in study 
protocol. 

Dose levels are listed in parts per million 
and through food consumption and body 
weight calculation or standard conversion 
as milligrams per kilogram body weight per 
day. Where possible, dose levels were listed as 
milli grams per kilogram body weight per day 
in ToxRefDB. The executive summary also 
describes adverse effects observed at all dose 
levels in the study. No observed adverse effect 
level (NOAEL) and lowest observed adverse 
effect level (LOAEL) are established based 
on adverse effects. The adverse effects used to 
derive NOAEL and LOAEL are referred to 
as “critical effects” in this article, regardless of 
their role in establishing reference dose levels 
in regulatory determinations for a chemical. 

The body of the DERs provides detailed 
test material, animal information, and full 
dose–response data in text and tables for a 
variety of “effect types”, including mortality, 
clinical signs, clinical chemistry, hematology, 
urinalysis, gross pathology, nonneoplastic 
pathology, and neoplastic pathology. For each 
effect type, we also specified an “effect target” 
(e.g., liver as target organ) and “effect descrip
tion” (e.g., hypertrophy).

ToxCast phase I chemicals also included 
nonpesticidal chemicals such as perfluorinated 
compounds, phthalates, and other industrial 
chemicals. Although DERs and pesticide regis
tration studies were not available for these 
chemicals, there were often highquality and 
standardized chronic and other types of toxicity 
studies available from the National Toxicology 
Program, peerreviewed literature, or other 
sources. We organized and evaluated data from 
these study reports and publications consistent 
with the information from the DERs.

Information on chemical identity and 
structure was provided by the U.S. EPA 
DSSTox (Distributed StructureSearchable 
Toxicity) program (U.S. EPA 2007). 
ToxRefDB outputs are linked to informa
tion from other sources through the U.S. EPA 

ACToR (Aggregated Computat ional 
Toxicology Resource) database (Judson et al. 
2008b; U.S. EPA 2008a). ACToR will also 
serve as the primary portal for public access to 
ToxRefDB and related outputs. ACToR stores 
the HTS data being generated by the ToxCast 
program and will link these HTS data with 
traditional toxicity data from ToxRefDB and 
other sources.

Relational model. In the development of 
ToxRefDB, a relational model approach was 
taken with input from other toxicity data
base standards, including ToxML (Yang et al. 
2006). The resulting data model is semi
hierarchical in nature: a single compound can 
be tested in multiple studies, each study can 
contain multiple treatment groups, and mul
tiple effects can be observed in each treatment 
group. The data model is organized from a 
chemicalcentric viewpoint to allow data inte
gration and exchange with other data sources 
and to facilitate the linkage of the reference 
toxicity information to chemicalspecific data 
generated using in vitro technologies (i.e., 
ToxCast). The relational model was then 
implemented into a table structure with estab
lished relationships that ensure data integ
rity, update ability, and standardization [see 
Supplemental Material, Figure 1 (http://www.
ehponline.org/ members/2008/0800074/
suppl.pdf].

Development of a toxicity-based controlled 
vocabulary. The development of a controlled 
vocabulary within ToxRefDB was neces
sary for the standardization of data captured 
across various studies and study types per
formed over roughly 30 years. The nonredun
dant list of terms across various information 
domains provided data integrity and search
ability. We based study type terminology on 
the unique study types harmonized by the 
Organisation for Economic Cooperation and 
Development and the OPPTS (U.S. EPA 
1996). Specificstandardized terminology for 
study design was established for species/strain, 
method/route of administration, and units for 
dose and dosing duration. Treatment group
related vocabularies were developed to estab
lish the generation, gender, and dosing period.

A primary goal in evaluating the registrant 
submitted toxicity studies is to establish 
NOAEL and LOAEL values for a variety of 
categorical end points, including systemic, off
spring, maternal, parental, developmental, and 
reproductive toxicity across the various study 
types. These categorical end points are captured 
and normalized across studies for each effect 
responsible for deriving the NOAEL/LOAEL.

The development of a toxicologic effect 
vocabulary was approached in a domain 
specific manner. For example, we derived 
clinical pathology terms from OPPTS guide
lines and collected clinical pathology labo
ra tories and organ pathology terms from 

various public resources, including the 
National Toxicology Program’s Pathology 
Code Tables (2007). The vocabulary under
went further standardization by mapping 
all synonymous terms to a single nonre
dundant value. We took a taxonomical 
approach for establishing the finalized effect 
vocabulary based on a threetiered hierarchi
cal model, with the effect type at the top, 
followed by effect target and then effect 
description. Examples of effect type include 
clinical chemistry, hematology, urinalysis, 
body weight, mortality, gross pathology, 
nonneoplastic pathology, neoplastic pathol
ogy, and developmental and reproductive 
effects. Subclasses of these types include spe
cific target organs (e.g., liver, lung, spleen) or 
measured analytes (e.g., alanine aminotrans
ferase, aspartate aminotransferase, choles
terol). The specific combinations of effect 
type and target are then further subclassed 
based on a nonredundant descriptive term 
(e.g., increase, decrease, hypertrophy, atro
phy). For organ pathology terms, each target 
organ has a set of regions, zones, and cell 
types that characterize the site of toxicity. 
The full effect vocabulary is available on the 
ToxRefDB home page (U.S. EPA 2008c).

Data input. The ToxRefDB Data Entry 
Tool was developed with Microsoft Access 
providing the user interface for all initial data 
input and is also available at the ToxRefDB 
home page (U.S. EPA 2008c). After the initial 
quality control (QC) steps discussed below, 
the data are migrated to ToxRefDB, which is 
implemented using the opensource MySQL 
platform. Data entry followed a series of pro
tocols outlined in the ToxRefDB Standard 
Operating Procedure (SOP) documents that 
define mapping of toxicologic information 
to standardized fields, use of a standardized 
vocabulary, and extraction of biologically and 
statistically significant treatmentrelated effects.

Data QC and management. QC con
sisted of 100% crosschecking of studies, 
systematic updates of ToxRefDB to ensure 
consistency across the studies, expert review 
of data outputs, and external review by stake
holders. All data entered into ToxRefDB have 
undergone crosschecking, which entailed a 
second person validating each entered value 
based on the source information (primarily 
DERs). Systematic QC involved querying the 
database for potential inconsistencies (e.g., 
maleonly effects being assigned to female 
treatment groups, or systemic LOAEL being 
set at multiple dose levels) along with updat
ing vocabularies and related records. Expert 
review was performed on data outputs of the 
chronic/cancer rat or mouse studies, includ
ing all of the end points captured in the data 
tables of this publication. In addition to inter
nal QC, an ongoing process allowing stake
holders the opportunity to review ToxRefDB 
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records is in place. The companies or regis
trants that sponsor the data or support the 
registration of the chemical are reviewing the 
accuracy of the data relative to DERs and 
other risk assessment documents. To date, 
studies on 235 chemicals have been reviewed 
by registrants, and comments from these 
reviews indicate greater than 99% accuracy 
in capturing treatmentrelated effects from 
DERs. The stakeholder review process has 
facilitated additional information from addi
tional studies, DERs, and other risk assess
ment documents to be collected and entered 
into ToxRefDB.

Data output and analysis. The structured 
toxicity information stored within ToxRefDB 
can be extracted in various formats using 
MySQL queries. For the purpose of provid
ing computable outputs, that is, quantita
tive outputs amenable to statistical analysis, 
we used a consistent data output. The cross
tabulated data output consisted of rows of 
chemical information (e.g., CAS registry 
number and chemical name) and columns 
of end points or effects, with the cross sec
tion being the lowest dose at which the effect 
or end point was observed, that is, lowest 
effect level (LEL) in mg/kg/day. Even though 
NOAEL/LOAEL values can be queried from 

the database, the current analysis uses LELs, 
which do not reflect the NOAEL/LOAEL 
regulatory determinations derived from 
the studies and refer only to the minimum 
dose at which a specific effect or group of 
effects occurs. We used administered dose 
levels rather than molar concentrations to 
represent the chemically induced effects and 
end points, because of uncertainties in the 
pharmacokinetics linking administered dose 
to tissue concentrations reinforcing the fact 
that molecular weight alone cannot substi
tute for dosimetry. Additional transformation 
of the dosing information was performed, 
including logbased and binning methods for 
potency. For example, we developed a bin
ning method for illustrating relative potency 
to provide information into the sensitivity of 
the end point from the perspective of treat
ment dose. To derive nonarbitrary dosing 
intervals, LEL for body weight changes were 
analyzed and separated into equivalent quin
tile bins (data not shown). The resulting bins, 
≤ 15, ≤ 50, ≤ 150, ≤ 500, and > 500 mg/kg/
day, were then applied to all end points. For 
instance, a chemical that caused liver hyper
trophy at 5 mg/kg/day would be assigned a 5, 
at 25 mg/kg/day a 4, and so on. If the effect 
was not observed, then a zero was assigned. 

Additionally, logtransformed potency values 
were derived using –log2 of LEL. We used 
log2 to reflect the minimal dose spacing, that 
is, doubling, typically used for in vivo toxi
cology studies. A constant value of 12 was 
then added to zerocenter the data, allow
ing for zero to represent no observed effect. 
Therefore, a value of 1 would be equivalent 
to an effect at 2,048 mg/kg/day and 18 would 
be equivalent to 0.015625 mg/kg/day. The 
resulting data formats are highly amenable to 
statistical data analysis, including descriptive 
and predictive datamining algorithms.

We carried out unsupervised twoway hier
archical clustering across all chemicals of all 
effects with incidence greater than 5, as well as 
selected end points, based on logtransformed 
potency values using Pearson’s dissimilarity 
measure for both chemicals and effects. This 
analysis used Ward’s method for linkage (Ward 
1963) and the agglomerative clustering method 
as implemented in the Partek Discovery Suite 
(Partek Inc., St. Louis, MO). In order to assess 
statistically significant species concordance 
across different effects, a permutation study 
was carried out. For each effect, the associa
tion between chemical and effect for the cor
responding rat and mouse study was randomly 
permuted 1,000 times. We recorded the cross
species concordance for all simulations (per
mutations) and compared it with the observed 
concordance, thus giving an estimate of the 
concordance due purely to chance. Analyses 
were carried out using R version 2.6.1 (Ihaka 
and Gentleman 1996).

An initial 10% incidence cutoff was used 
to filter out individual and groups of effects 
for potential use in predictive modeling. This 
cutoff was chosen following the results of a 
related simulation study that demonstrated 
high levels of sensitivity and specificity for 
various machine learning methods on data 
with at least a 10% hit rate for predicted end 
points (Judson et al. 2008a). For other appli
cations, it may be useful to add less frequently 
occurring effects and end points.

Results
Summary profiles of the ToxRefDB chronic/
cancer data set. To date, ToxRefDB has 
captured in vivo mammalian toxicity study 
information from DERs for 411 conventional 
pesticide active ingredients. This present 
analysis focuses on the systemic toxicity and 
cancer end points culled from chronic/cancer 
rat or mouse studies on 310 of the chemicals 
entered into ToxRefDB. ToxRefDB enabled 
analysis to be performed along toxicologically 
related axes, including by chemical, study 
type, species, and effect. Study duration, dos
ing methods, data quality, guideline adher
ence, and sex were additional parameters for 
data filtering. In looking across all chronic/
cancer rat and mouse studies, we assigned 

Table 1. Summary statistics for chronic/cancer rat and mouse studies entered into ToxRefDB. 

  No. of Treatment Treatment groups  Critical
Study Chemicals studies groups with effects Effectsa effectsb

Total chronic/cancer 310 577 7,340 3,082 19,537 3,119
Rat 283 298 4,228 1,721 12,215 1,816
Mouse 267 279 3,059 1,344  7,416 1,303
aTotal number of effect type, target, and description combinations assigned to any treatment group. bEffects that are cri-
teria for establishing the study-specific NOAEL/LOAEL.

Figure 1. Unsupervised two-way hierarchical clustering of 207 effects in rat (A) and 112 effects in 
mouse (B) with incidence > 5, for 310 chemicals with chronic/cancer toxicity data in ToxRefDB. Specific 
clusters or classes based on associated toxicities are indicated by the color-coded chemical dendrogram: 
seven clusters for rat, and six for mouse.
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19,537 effects to 3,082 different treatment 
groups in a total of 577 studies on 310 chemi
cals (Table 1). Effects are a combination of 
study type, species, effect type, effect target, 
and effect description for a given chemical, 
for example, chronic/cancer, rat, neoplastic 
pathology, liver, and adenoma. Across the 
19,537 effects, 1,135 unique effects were 
observed, of which 484 were deemed criti
cal effects, that is, criteria for establishing 
NOAEL/LOAEL, in at least a single study.

The ToxRefDB chronic/cancer data set on 
310 chemicals contained approximately 20,000 
observed effects in rat or mouse studies. We 
achieved a highlevel view of a subset of these 
data, and the relationships among chemical, 
effect, and potency, by unsupervised twoway 
hierarchical clustering of 207 rat (Figure 1A) 
and 112 mouse (Figure 1B) effects. For the 
rat, the 283 chemicals separated into seven dis
tinct clusters or classes of the chemicals based 
on these toxicity profiles. Approximately 70 
chemicals formed a cluster with an overall low 
incidence of toxicity, whereas the remaining 
chemicals displayed a unique set of toxicologic 
properties. More than 80 chemicals clustered 
as hepatotoxicants, and a subset of these also 
caused thyroid toxicity. Ten of the 15 conazole 
fungicides analyzed were in this hepatoxicity 
cluster. Clusters of chemicals exhibiting kid
ney, spleen/anemia, or testicular toxicities were 
not enriched for a specific chemical structural 
class. Cholinesterase inhibitors clustered sepa
rately from other chemicals and were enriched 
for organophosphates. In mouse, the 267 
chemicals included clusters of cholinesterase 
inhibitors, spleen/anemia toxicants, and hepa
totoxicants comparable with that observed for 
rat. Of the 112 total effects clustered in the 

mouse, 28 of these were liver toxicities, dem
onstrating the predominance of the liver as a 
target organ in the mouse. The unsupervised 
clustering of rat and mouse effects identified 
concentrations of effects and chemicals that 
were emphasized in subsequent, expertdriven 
approaches to chemical classification.

Toxicity-based classification of chemi-
cals. The distribution of effects across effect 
types (Figure 2A) revealed that nonneoplastic 
pathologies dominate determination of sys
temic NOAEL/LOAEL, demonstrating the 
potential importance of this class of effects 
or end points to chemical regulation. The 
percentage of chemicals positive for an end 
point in both rat and mouse, over the total 
positive for the same end point in only the 
rat or mouse, was defined as “species concor
dance.” Species concordance for nonneoplastic 
pathology was 68%. Of the 167 chemicals 
that caused neoplastic lesions in rat or mouse 
chronic/cancer studies, 35% caused neoplastic 
lesions in both rat and mouse. We observed 
one or more pathologies in 273 of the 310 
chemicals. The incidence of pathologic 
response, analyzed by target organ and species, 
was used to identify target organs for further 
investigation (Figure 2B). More than 90% of 
those 273 chemicals caused pathologies in the 
liver, kidney, thyroid, lung, testis, or spleen.

Whereas individual effects relating to 
highly detailed pathologic outcomes would 
provide classifications with the highest bio
logical specificity, the limitations of classifying 
chemicals based solely on specific individ
ual effects was apparent early in the analysis 
of ToxRefDB data. Only 11 specific, indi
vidual pathologic effects were observed for 
more than 10% of the chemicals (Table 2). 

Liver hypertrophy is the only common effect 
across both species based on a 10% inci
dence cutoff. In addition to low incidences 
of detailed pathologic effects, biases based on 
study design and pathology nomenclature 
limited the overall ability to compare chemi
cal toxicities when we used individual effects. 
Grouping or aggregating related or nearsyn
onymous terms, such as liver adenoma, com
bined adenoma/carcinoma, and carcinoma, 
resulted in more informative and statistically 
powerful sets of effects. Thus, the limitations 
of classifying chemicals based solely on spe
cific individual effects were addressed by cre
ating biologically related groupings of effects.

Grouping tumor end points and extending 
to include proliferative lesions. This aggre
gative approach was illustrated by creating 
groups of neoplastic end points and the exten
sion of these groups to include nonneoplastic 
proliferative lesions. The aggregation of neo
plastic effects for each target organ resulted 
in an increase in the number of useful group
ings beyond the individual mouse liver tumor 
effects shown in Table 2. However, the end 
points were still limited to mouse liver and rat 
thyroid neo plasia, based on an initial > 10% 
incidence cutoff. Associating the neoplastic 
end points with proliferative lesions increased 
the number of target organs to include liver, 
kidney, thyroid, lung, and testes. In general, 
only neoplastic lesions are considered indica
tive of rodent carcinogenicity. However, 
including nonneoplastic proliferative lesions 
provides a conservative model for assessing 
and predicting rodent tumorigenic poten
tial, based on the assumption that prolonged 
proliferative response leads to eventual tumor 
formation. A simulation study was performed 
to assess whether the concordance between rat 
and mouse effects occurred at a rate greater 
than chance across neoplastic and prolifera
tive classifications. Extending tumori genicity 
groupings to include proliferative lesions 
significantly increased species concordance 
across numerous target organs, including the 
liver and kidney [see Supplemental Material, 

Figure 2. ToxRefDB chronic/cancer incidence data summarized by effect type (A) and by target organ 
pathology (B) for 310 chemicals with rat or mouse studies. Blue bars, total percentage of chemicals with 
that observed effect; black bars, percentage of chemicals for which that effect was used to derive systemic 
NOAEL/LOAEL levels.
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Table 2. Pathology observed for > 10% of ToxRefDB 
chemicals in chronic/cancer rat and mouse studies.

  Percent 
Target organ Effect observed

Rat 
 Liver Hypertrophy 25
 Kidney Nephropathy 14
 Liver Vacuolization 12
 Thyroid Adenoma 11 
 Thyroid Hyperplasia 11
Mouse
 Liver Hypertrophy 25
 Liver Adenoma 21
 Liver Necrosis 16
 Liver Adenoma/carcinoma combined 14
 Liver Pigmentation 14
 Liver Carcinoma 12
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Figure 2 (http://www.ehponline.org/ members/ 
2008/0800074/suppl.pdf)].

Mapping of toxicity end points to a can-
cer progression schema. Relationships between 
effects and the relative severity of those effects 
are not inherent to the database structure. 
Figure 3A presents a conceptualization of the 
end point progression schema in which chemi
cals were scored from 0 to 5 for each target 
organ, based on the severity of the effect, rang
ing from no observed pathology (0) to neoplas
tic lesions (5). Endpoint progression scoring 
reduced the possible chemical classifications 
to a single ordinal score (i.e., scores 0–5) for 
each target organ. Figure 3B presents the dis
tribution of endpoint progression scores for 
rat and mouse, liver and kidney. Examples 
of the impact of this scoring system include 
resmethrin, which caused treatmentrelated 
increases in a preneoplastic lesion (i.e., hyper
plastic nodules) in the liver without progressing 
to a tumor. In contrast, metaldehyde caused 
treatmentrelated increases in liver tumors but 
was not identified as causing any preneoplas
tic lesions, even though preneoplastic lesions 
can be assumed to have occurred as a precur
sor event to liver tumor formation. Using the 
endpoint progression scoring system allowed 
reasonable comparison of these two chemicals, 
if desired, by linking the preneoplastic score 
of 4 for resmethrin, to the neoplastic score of 
5 for metaldehyde, along the continuum of 
endpoint progression. The incidence of liver 
pathology between rats and mice was com
parable when we grouped endpoint progres
sion scores. More than 50% of the chemicals 
tested resulted in a range of nonneoplastic to 

neoplastic lesions (i.e., scores 2–5). However, 
the relative severity for liver pathologic pro
gression in mice was higher than in rats: 25 
chemicals caused rat liver tumors, whereas 80 
chemicals caused mouse liver tumors.

Selected end points for predictive mod-
eling. In addition to end points specific to 
various target organs, chemicals were classi
fied with respect to multigender, multisite, 
or multispecies tumorigenicity (Table 3). Of 
the 310 chemicals in the chronic/cancer data 
set for which 240 chemicals were tested in 
both species, 167 chemicals were classified 
as tumorigens; 109 of those chemicals were 
multi gender, multisite, or multispecies tumori
gens. Of the 283 chemicals tested in the rat, 
42 chemicals were classified as multigender 
and multisite tumorigens. Of 267 chemicals 
tested in the mouse, 57 and 25 chemicals were 
classified as multigender and multisite tumori
gens, respectively. Of the 240 chemicals tested 
in both species, 49 chemicals were classified as 
multispecies tumorigens. The distribution of 
relative potency values indicated that the rat 
was commonly more sensitive than the mouse 
for multigender and multisite tumorigenicity. 
In the rat, 38% of the multi gender and 45% 
of the multisite incidences were at ≤ 50 mg/
kg/day (i.e., relative potency values of 4–5), 
compared with 23% and 28% in the mouse. 
Conversely, 39% multigender and 28% multi
site tumorigenicity occurred in the mouse at 
> 500 mg/kg/day (i.e., relative potency value 
1), compared with 17% and 10% in the rat. 
Multispecies tumori genicity was not achieved 
at doses ≤ 15 mg/kg/day, and 41% of inci
dences occurred at > 500 mg/kg/day.

Unsupervised and expertdriven approaches 
to endpoint selection and subsequent chemical 
classification yielded near identical sets of target 
organs from which to select specific effects or 
aggregated effects. Based on incidence, severity, 
potency, and significance, 25 end points from 
chronic/cancer rat and mouse studies were 
selected for subsequent ToxCast predictive 
modeling (Figure 4A). The addition of multi
species tumorigens raised the total to 26 end 
points, each caused by 20 or more chemicals. 
Besides the multispecies tumorigen end point, 
16 of the end points were from rat studies 
and 9 end points were from mouse. The same 
four end points were characterized in both rat 
and mouse liver, affording direct comparisons 
across species for tumors, proliferative lesions, 
apoptosis/necrosis, and hypertrophy. The only 
other frequent target organ common to both 
species was the kidney. Frequent ratspecific 
target organs included thyroid, testis, and 
spleen, whereas the only target organ specific to 
mouse was the lung. Unsupervised hierarchical 
clustering of the 16 rat end points (Figure 4B) 
and the 9 mouse end points (Figure 4C) dis
played the relative distribution of the selected 
end points and chemicals. Of the 283 chemi
cals with a rat chronic/cancer study, 218 were 
positive in at least one of the selected end 
points, whereas 155 of 276 chemicals with a 
mouse cancer study were positive in at least 
one selected end point. Rat and mouse end 
points clustered primarily by target organ, with 
distinct clusters of thyroid, spleen, kidney, and 
liver toxicants in the rat. The high incidence of 
liver tumorigens in the mouse drives chemical 
groupings. However, chemicals causing or not 
causing liver hypertrophy and necrosis appear 
to segregate into two large groups of liver toxi
cants. In both species, the selected chronic/can
cer end points represent the robust patterns of 
toxicologicresponse shown in Figure 2A and B. 
A full listing of the chronic/cancer end points 
derived from ToxRefDB for ToxCast predic
tive modeling, with their associated LELs, 
logtransformed potency, and relative potency 
values, are available on the ToxRefDB home 
page (U.S. EPA 2008c).

Discussion
Advancing alternative testing methods for 
assessing chemical safety requires an informed 
transition from the current toxicity testing to 
systems that are higher throughput, more pre
dictive, and not as dependent on the extensive 
use of animals. To support this transition, 
we created ToxRefDB to capture a rich set 
of existing in vivo laboratory animal toxicity 
data on a group of environmentally relevant, 
wellstudied chemicals. Pesticide active ingre
dients have comprehensive toxicity profiles 
that are opportune data sets for creating a 
bridge from in vivo to in vitro toxicology. 
ToxRefDB digitizes and stores toxicity data 

Figure 3. (A) ToxRefDB systemic toxicity and cancer outcomes represented along an end-point progression 
continuum. This schema was used to derive a severity score for each chemical based on the maximum 
value within a target organ. (B) Based on end-point progression, 310 chemicals were scored for liver and 
kidney pathology in rat and mouse chronic/cancer studies. Clinical chemistry used in this analysis is limited 
to target-organ–specific analytes (e.g., alanine aminotransferase for liver, and urea nitrogen for kidney).
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in a structured and searchable format, and 
using structured data mining methods makes 
these data a computable resource for predic
tive toxicology efforts such as the U.S. EPA’s 
ToxCast program (U.S. EPA 2008b).

Individual toxicity effects based on unique 
type, target, and description yielded only a small 
number of in vivo end points across a significant 
number of chemicals supportive of robust pre
dictive modeling. However, grouping effects by 
effect type and target often collapsed hundreds 

of individual effects into a single end point, 
common to dozens of chemicals. The goal was 
to strike a balance between maintaining biologi
cal specificity across a group of related effects 
while increasing total incidence for effects 
across a critical mass of chemicals. For example, 
extending tumor end points to include prolif
erative lesions increased not only total incidence 
but also species concordance and thus increased 
confidence in characterizing a chemical’s poten
tial toxicity. Grouping proliferative lesions 

also addressed other potential factors, such as 
changes in pathology nomenclature over time 
(Wolf and Mann 2005) and reporting incon
sistencies. Deriving end points based on groups 
of effects yielded organ and speciesspecific 
end points in the liver, kidney, thyroid, testis, 
spleen, and lung in rats or mice with a high 
enough incidence across ToxRefDB chemicals 
to support predictive modeling.

Another approach for addressing the 
limitations of profiling chemicals based on 

 Rat Mouse 
Chemical Multigender Multisite Multigender Multisite Multispecies

Carbaryl 2 2 1 1 2
Dipropyl 1 1 1 1 1
 isocinchomeronate
Fentin 5 5 4   4
Dazomet 5 5 3   4
Clodinafop-propargyl 4 4 4   4
Lactofen 3 3 5   4
Dimethoate   5 4 4 4
Malathion 4 4 1   1
Diuron 4 3   1 1
Dacthal 2 2 1   1
Isoxaflutole 2 2 1   1
Spirodiclofen 2 2 1   1
Diclofop-methyl 4 4     4
Cinmethylin   3 3   3
Imazalil   3 3   3
Nitrapyrin     3 3 3
Propoxur 2 2     2
Daminozide     2 1 2
Thiacloprid 4 4     1
Vinclozolin 3 4     1
Di(2-ethylhexyl)phthalate 1   1   1
Folpet   5 1   1
MGK (octacide 264)   2 1   1
Iprodione     1 1 1
Cacodylic acid 5       3
Propyzamide   4     3
Oxadiazon     5   3
Resmethrin 2       2
Pyrithiobac-sodium 1       2
Bentazone   2     2
Fluthiacet-methyl     5   2
Metaldehyde     2   2
Triflusulfuron-methyl     2   2
Fludioxonil       2 2
Prodiamine 1       1
Tepraloxydim   2     1
Clofencet-potassium   1     1
Isoxaben     1   1
Pymetrozine     1   1
Topramezone     1   1
Triadimefon     1   1
Oryzalin 4 4      
Simazine 4 4      
Tebufenpyrad 4 4      
Dichloran 3 3      
Dimethenamid 3 3      
Prosulfuron 3 3      
Acetochlor 3 2      
Ametryn 2 3      
Oxytetracycline HCl 1 1      
Bifenthrin     5 5  
Disulfoton     5 5  
Metam-sodium     4 5  
Quizalofop-ethyl     4 4  

 Rat Mouse 
Chemical Multigender Multisite Multigender Multisite Multispecies

Tribufos     3 4  
Amitraz     3 3  
Fenoxycarb     3 3  
Spiroxamine     3 3  
Tefluthrin     3 3  
Permethrin     2 2  
Trifloxystrobin     2 2  
Chloridazon     1 1  
Triforine     1 1  
Dichlorvos 5 5 N N N
Pyraclostrobin 5 5 N N N
Alachlor 4 3 N N N
Captan N N 3 3 N
Maneb N N 2 2 N
Azafenidin         4
Lindane         4
Fluazinam         3
Paclobutrazol         3
Acephate         2
Linuron         2
Propanil         2
Triasulfuron         1
Fipronil 4        
Thiabendazole 3        
Boscalid 2        
Pendimethalin 2        
Pyrimethanil 2        
5,5-Dimethylhydantoin 1        
Cyazofamid 1        
Chloropicrin   5      
Fenamiphos   5      
Molinate   5      
Chlorpyrifos-methyl   4      
Fluoxastrobin   1      
Fenitrothion     5    
Cyproconazole     4    
Prochloraz     4    
Thiamethoxam     3    
Bispyribac-sodium     2    
Piperonyl butoxide     2    
Propiconazole     2    
Acifluorfen-sodium     1    
Difenoconazole     1    
Primisulfuron-methyl     1    
Pyraflufen-ethyl     1    
Thiodicarb     1    
Fenoxaprop-ethyl       4  
Buprofezin       2  
Propargite 4   N N N
Dichlobenil 2   N N N
Quintozene 2   N N N
Tralkoxydim   3 N N N
Benomyl N N 3   N
Cloprop N N 2   N
Thiophanate-methyl N N 1   N

Relative potency: 5, ≤ 15 mg/kg/day; 4, ≤ 50 mg/kg/day; 3, ≤ 150 mg/kg/day; 2, ≤ 500 mg/kg/day; 1, > 500 mg/kg/day; N, not assessed (no study available).

Table 3. Multigender, multisite, and multispecies tumorigens in ToxRefDB.
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individual toxicity effects was to compare the 
severity of these effects across a continuum of 
pathophysiology. Because the progression to 
cancer (Hanahan and Weinberg 2000) and 
organspecific progression to tumori genicity 
(Cohen and Arnold 2008) have been well 
characterized, we created a fivepoint sever
ity scoring system to encode this. Using this 
approach, ToxRefDB provides a quantitative 
value associated with the key events in the 
progression to tumor formation and cancer. 
Incorporating additional information on the 
severity of in vivo effects in ToxRefDB may 
be fruitful in future modeling and predictive 
toxi cology efforts. Additional data not cur
rently in ToxRefDB, including incidence data, 
would have to be added for more detailed 
dose–response analyses and assessment of the 
magnitude of change for specific effects.

Because many of the tumors caused by 
chemical exposure in ToxRefDB occur at 
high doses that are many orders of magnitude 
removed from potential human exposures, it 
is useful to also consider multigender, multi
site, and multispecies tumorigenicity in the 
course of evaluating chemicals. Current U.S. 
EPA cancer risk assessments use multisite and 
multispecies tumorigenicity as indicators of 
increased significance for tumor findings (U.S. 
EPA 2005). Thus, the tumorigenic end points 
selected for ToxCast predictive modeling 
included multigender, multisite, and multi
species tumorigens. Additional analyses of 

these multiplicities in the tumorigenicity data 
of ToxRefDB are under way, with the goal of 
improving hazard assessments, chronic/cancer 
study protocols, and future data requirements.

Success in predicting targetorgan–specific 
effects in ToxCast will depend on numerous 
factors, including the target, species, and dose 
response of the effects that are being predicted. 
In the present analysis of ToxRefDB, we iden
tified effects in the liver, kidney, thyroid, tes
tis, spleen, and lung in rats or mice that we 
will now attempt to predict using in vitro data 
from ToxCast. Because species concordance 
of the in vivo effects in ToxRefDB was fairly 
limited, success in predicting speciesspecific 
versus multispecies effects will be an interest
ing outcome of ToxCast. The dose responses 
for selected end points are also provided by 
ToxRefDB, including logtransformed 
potency values conducive to computational 
analysis, and relative potency values that facili
tate comparisons across chemicals and end 
points. These quantitative data should facili
tate development of new in vitro and in silico 
methods to predict in vivo chemical toxicity.

Although numerous studies have evalu
ated the use of biochemical, cellbased, and 
genomic assays to build predictive models of 
toxicity, these efforts have usually been lim
ited to only a partial view of the complex biol
ogy underlying tissue, organ, or wholeanimal 
toxicity. By probing such a broad spectrum of 
biology in the hundreds of ToxCast assays, the  

“toxicity signatures” will be optimally pre
dictive and representative of a broad range 
of in vivo toxicity end points. A variety of 
statistical techniques and machine learning 
approaches will be used to mine this com
plex data set for toxicity signatures with high 
sensitivity and specificity. These include 
linear discriminant analysis, support vector 
machines, and neural networks. In addition 
to these automated approaches, more hypoth
esisdriven, biologically based signatures will 
assist in filling the large gap between molecu
lar and phenotypic end points. It is expected 
that assays of multiple types, probing multiple 
pathways, will be required to predict in vivo 
toxicity across a wide range of chemicals—
this is the approach taken within ToxCast 
and ToxRefDB.

ToxRefDB continues to develop, add
ing toxicity end points from additional study 
types, including multigeneration reproductive 
and prenatal developmental tests, for predictive 
modeling in the ToxCast research program. 
Besides expanding toxicity coverage to other 
study types, ToxRefDB will expand in chemi
cal coverage to include more non pesticide 
chemicals. As each of these ToxRefDB data 
sets pass through U.S. EPA quality and clear
ance processes, they will be made publicly 
available through peerreviewed publications, 
ToxRefDB home page, and ACToR. The con
tents of the entire database will be viewable and 
searchable in the future through a Webbased 

Figure 4. (A) The 16 rat and 9 mouse ToxRefDB end points from chronic/cancer studies selected for ToxCast predictive modeling. Two-way hierarchical clustering 
of the rat (B) and mouse (C) end points based on log-transformed potency values. Dose and potency values for all chemicals relative to these 25 end points are 
provided on the ToxRefDB home page (U.S. EPA 2008c).
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query tool located on the ToxRefDB website 
(U.S. EPA 2008c).

ToxRefDB offers unparalleled amounts 
of legacy toxicity information on environ
mental chemicals captured in a structured 
format, providing a platform for repeated and 
updated chemical characterizations. Creating 
the ability to search and filter across 30 years’ 
worth of toxicity data required extensive 
amounts of data normalization, annotation, 
and curation and was made possible through 
the development of a robust standardized 
vocabulary for the fields and data elements 
within ToxRefDB. In the present study, we 
used chronic toxicity data in ToxRefDB to 
derive toxicity profiles for the ToxCast phase I 
chemicals, yielding a set of toxicitybased and 
predictable end points. In future applications 
of ToxRefDB, researchers, risk assessors, and 
regulators will use the database for retrospec
tive and modeling projects looking across a 
large landscape of chemical and toxicity space.
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PUBLIC DATABASES SUPPORTING COMPUTATIONAL TOXICOLOGY
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A major goal of the emerging field of computational toxicology is the development of screening-
level models that predict potential toxicity of chemicals from a combination of mechanistic in
vitro assay data and chemical structure descriptors. In order to build these models, researchers
need quantitative in vitro and ideally in vivo data for large numbers of chemicals for common
sets of assays and endpoints. A number of groups are compiling such data sets into publicly
available web-based databases. This article (1) reviews some of the underlying challenges to
the development of the databases, (2) describes key technologies used (relational databases,
ontologies, and knowledgebases), and (3) summarizes several major database efforts that are
widely used in the computational toxicology field.

Computational toxicology is an emerging
interdisciplinary field that aims to combine in
vitro assay data and/or chemical structure
descriptors with computational approaches to
model, understand, and predict the toxicity of
environmental chemicals and pharmaceuticals.
The need for these new methods is driven by
the realization that there are thousands of
environmental chemicals without associated
toxicity data suitable for estimating potential
risk to humans (Judson et al., 2009). Filling this
data gap with current testing methods would
be difficult because of the huge expense of
the relevant animal-based studies and the
movement away from mammalian in vivo
tests based on animal welfare considerations.
A further driver is that animal tests often do
not provide the necessary molecular mecha-
nism information required to understand
how to extrapolate to predictions of human
toxicity risk.

At one end of the spectrum of computa-
tional toxicology approaches are a set of
bottom-up models that bring together infor-
mation on molecular pathways, cell–cell
interactions, and tissue morphology to create

“virtual tissues” (Viceconti, et al., 2008).
These tissue models simulate the workings of
normal systems as well as the effects of chem-
ical perturbations to molecular pathways. At
the other end of the spectrum are purely sta-
tistical methods that look for correlations
between easily measured in vitro assays or cal-
culated chemical descriptors and in vivo end-
points. Correlation methods are trained and
qualified on chemicals for which in vivo data
are available and are then used to make pre-
dictions on new chemicals for which the rele-
vant animal data do not exist. Eventually
these models may be accurate enough to be
used directly in risk assessments, but current
plans confine their use to prioritization efforts,
in which “model-positive” chemicals are pri-
oritized for further, targeted testing. This com-
bination of prioritization based on screening
assays followed by more detailed targeted
testing is the basic approach advocated in the
U.S. National Research Council (NRC) report
Toxicity Testing in the 21st Century: A Vision
and a Strategy (NRC 2007).

To develop predictive models of in vivo
toxicity based on in vitro or in silico inputs,
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large, high-quality collections of animal data
are required for training and qualification.
Currently, much of the world’s in vivo animal
testing data is widely dispersed, mostly in the
open literature or in text documents at govern-
mental agencies, and therefore is unavailable
for direct use in modeling. This is driving the
development of databases that are designed
for use in building computational models. The
main requirement for such databases is that
quantitative and text data are organized in
tabular or “computable” forms, which often
requires manual data extraction from scientific
papers or other text reports. The types of com-
puting one can do with data include both
modeling and statistical computations on
numeric data, but also concept-based comput-
ing, for instance, finding statistically significant
co-occurrences between particular gene
names and diseases in published papers. To do
such text-mining computations efficiently, the
relevant terms had to have been extracted
from the original text documents and tabu-
lated. The term computable is used throughout
this article to distinguish databases in which all
data are tabulated in a searchable structure, as
opposed to where the information only resides
in text reports that are designed for a human
reader. This requirement holds for both the in
vivo and in vitro inputs to a model. Because
there is an interest in chemically induced toxic-
ity, another requirement is that all of the data
needs to be carefully associated with the
chemicals that were tested. Ambiguity in
chemical identity (due to variant chemical
names, Chemical Abstracts Service registry
numbers [CASRN], or the presence of signifi-
cant impurities) has turned out to be a surpris-
ing issue in a number of data collection
efforts. The specification of chemical structure
is increasingly being used to provide mean-
ingful and unambiguous chemical identifiers
such as InChI, as well as to provide linkages
among diverse data compilations. In addition,
computable representations of chemical
structures, e.g., as SMILES or mol files, are
obviously required as inputs for quantitative
structure–activity relationship (QSAR) predic-
tion methods.

Online accessible relational databases
provide a practical method to store and orga-
nize all of the data and metadata required to
support modeling efforts and to make such
data available to a wide audience of investiga-
tors. Partly because of the interdisciplinary
expertise needed to create online, comput-
able toxicity databases, these resources have
only recently become available. A develop-
ment team needs expertise in toxicology,
chemistry, database design and maintenance,
database curation, and design of terminology
sets or ontologies. Once the system is
designed, data entry is carried out by (typi-
cally) manually extracting data from written
reports, followed by a quality control stage.
An important issue with data extraction is the
need to have common vocabularies onto
which one can map data from text reports
from multiple laboratories, reports that were
perhaps written decades apart. Consider this
example of three synonymous terms that are
found in the literature on chemically induced
thyroid lesions in mice: “thyroid C-cell ade-
noma,” “adenoma, parafollicular cell,” and
“tumor c-cell benign” (Pathbase 2009). A data-
base needs to recognize that these are syn-
onyms and combine data accordingly. This is
done by using controlled vocabularies or
ontologies, both of which are described later
in this article. A related concept, also discussed
later, is that of a knowledgebase, which is a
database combined with ontology information
to allow automated knowledge extraction from
the data.

There are literally hundreds of collections
of data relevant to the toxicity of environmen-
tal chemicals, but in most cases these are not
directly useful for predictive toxicity modeling
efforts. This article focuses on data collections
or databases that are being built to aid in quan-
titative toxicity prediction, often through
extraction of quantitative data from other
sources. The rest of the article is divided into
three sections: an introduction to the key tech-
nologies of databases, ontologies, and knowl-
edgebases; descriptions of several databases
that are useful for predictive toxicology; and a
brief summary.
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220 R. JUDSON

DATABASES, ONTOLOGIES, 
AND KNOWLEDGEBASES

Predictive toxicology requires, first and
foremost, that suitable in vivo endpoints, per-
haps consisting of a pattern of measures or
effect(s) collected in the course of an in vivo
experiment, be defined to serve as meaningful
targets for prediction efforts. The goal is then to
predict these in vivo endpoints using combina-
tions of chemical descriptors and/or mechanis-
tic in vitro assay data. To do this type of pattern
finding, all of the data needs to be compiled
into standardized computable formats for
which relational databases and knowledge-
bases provide ideal frameworks. This section is
not intended to provide an in-depth presenta-
tion of database technology or the full com-
plexity required of a production computational
toxicology database. Rather, the goal is to
introduce the major concepts, presented in the
context of a simple example relevant to com-
putational toxicology research. The large pro-
duction databases described in later sections
typically contain 5 to 10 times the number of
tables shown here. Nonetheless, this example
includes most of the high-level information
types found in many widely used toxicology
databases.

To illustrate the concept of a relational
database, a simplified version of a database
design is shown in Figure 1. The example cap-
tures many of the necessary components for
organizing information from complementary in
vivo and in vitro studies, although with many
details excluded. Four major ideas are tables,
columns, relationships, and controlled vocabu-
laries. Each of the blocks in the diagram repre-
sents a table, which has a name and a series of
columns. A useful analogy is that each table is
similar to an Excel worksheet with rows that
are instances (chemicals, studies, etc.) and col-
umns that hold specific types of values for the
instances (names, protocols, etc.). For instance,
the study table has columns labeled study_ID,
study_typeID, name, and protocol. The col-
umn study_ID is the “primary key,” which
means that it is a unique value in the table
(there is only one row with any given value of

study ID) and it will be used to link with other
tables. The name and protocol columns con-
tain free text for the study name and some
descriptive information about how the study is
conducted. In the real situation, there would
be additional tables containing detailed infor-
mation on the study protocol. The type of
study is not described directly, but instead uses
a relationship to the study_type table, with the
link made through the “key” study_typeID.
This relationship enables an important facility
of relational databases, which is the use of
“controlled vocabularies.” To illustrate, one
might want to query the database for informa-
tion on 2-year chronic studies in rats. If each
study entered its own, potentially variant ver-
sion of this type (“Chronic rat 2-year” vs. “2-
year chronic/cancer bioassay in rats”), search-
ing would be difficult. To avoid this problem,
controlled vocabulary tables, such as study_type,
are prepopulated with agreed-upon standard
names for the types of studies, and when a new
study is entered into the database, only these
standardized names are allowed to be used.

To continue with the example, a study typ-
ically will have one or more dose groups, each
with a particular species and strain, information
for which is contained in another predefined
controlled vocabulary table, species_strain,
which prevents, for example, one study from
recording the animals as “Sprague-Dawley
Rats” (or Sprague-Dolly Rats, as they are some-
times mischaracterized) and another as “rats,
SD.” For each dose group, a number of end-
points can be observed, for which there needs
to be a complex set of defined vocabulary
tables, which I will return to below. The
dose_group_endpoint table contains two
fields of note, one of which is the data column
that would link to animal-by-animal details, if
available. The other important column is
examined, which takes on values “examined,”
“not examined,” or “not reported.” In many
animal studies, it may be unclear from the tex-
tual report whether a missing observation (no
liver tumors recorded) arises because the
pathologists looked for tumors and found
none, or failed to examine for tumors. By
including this column, one can distinguish
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PUBLIC DATABASES AND COMPUTATIONAL TOXICOLOGY 221

between the cases where (1) the phenotype
was looked for, (2) the phenotype was
intentionally not looked for, or (3) the case
where one does not know. This field helps
distinguish a negative finding from missing
data. In a production database capturing full

animal-level data from in vivo studies, the
organization of the in vivo tables is of course
much more complicated than shown in this
example.

Below the dose_group table are chemical
tables that capture detailed information on the

FIGURE 1. Example database schema for capturing in vivo and in vitro data on test chemicals. Pink tables contain information on the test
substance and its corresponding generic chemical; green tables contain information on the in vivo study; and blue tables contain infor-
mation on the in vitro assays. Production databases designed to manage this type of information typically contain many times this num-
ber of tables.
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222 R. JUDSON

chemical tested, as well as synonyms and
chemical structure. The substance table cap-
tures information on the test substance,
which can differ from the idealized chemical
one wants to study, here captured in the
generic_chemical table. The chemical_
synonym table is similar to a controlled vocab-
ulary table, but addresses the reality that most
chemicals have multiple synonyms and, hence,
it is useful to be able to search on any of these.
The chemical_structure table captures a
unique molecular structure, where possible,
for the generic chemical, because this will be a
stepping-off point for structure–activity rela-
tionship (SAR) inferences or quantitative struc-
ture–activity relationship (QSAR) calculations.
This table also contains a “fingerprint” repre-
sentation of the chemical structure, which can
be used for automated chemical-structure ana-
log searching. To the right of the chemical
tables are simplified tables for capturing defini-
tions of in vitro assays, including links to the
identity of a gene that could be the target of
the assays. Gene information, in turn, can
be used to build links to pathways and toxicity
modes and mechanisms of action. The
substance_in_vitro_assay table holds the
quantitative data from the in vitro screen. Here
are shown fields to capture the potency (e.g.,
an IC50 concentration value) and efficacy (e.g.,
percent inhibition). The full concentration-
response information is stored in a separate
table. The summary parameters from curve-fit-
ting the concentration response data are
explicitly stored because most curve-fitting
procedures used to generate these parameters
are not 100% automated, but instead require
manual input, for instance, to mask outlier
points.

Once data are entered into the database,
one can write flexible queries using SQL
(Structured Query Language). As an example,
the SQL command is specified to retrieve the
names and CASRN of chemicals for which liver
tumors were observed in rats, along with the
respective doses. Although this looks (and per-
haps is) complicated, it illustrates how one
links together all of the collected types of infor-
mation in a structured way. Each term in the

query is of the form table_name.column_
name. Entries in different tables are joined
together using the corresponding keys or ID
columns.

SELECT substance.name, substance.CASRN,
dose_group.dose

FROM substance, dose_group, species_strain,
dose_group_endpoint, endpoint, end
point_type, endpoint_target, endpoint_
description

WHERE dose_group.substanceID = sub-
stance.substanceID

AND dose_group.speciesID = species_ strain.
speciesID

AND dose_group.endpointID = endpoint.
endpointID

AND endpoint.endpoint_typeID = endpoint_
type.endpoint_typeID

AND endpoint.endpoint_targetID = endpoint_
target.endpoint_targetID

AND endpoint.endpoint_descriptionID =
endpoint_description.endpoint_descri
ptionID

AND species_strain.species=’rat’
AND endpoint_type.name=’histopathology’
AND endpoint_target.name=’liver’
AND endpoint_description.name =’tumor’

The organization of the vast array of poten-
tial observations and endpoints associated with
an in vivo toxicology experiment motivates the
development and incorporation of ontologies
(Smith et al., 2007), which help organize data
according to inherently meaningful hierarchi-
cal relationships, some common across and
others particular to the type of toxicological
study. For instance, the liver contains multiple
lobes, each lobe contains multiple lobules, and
each lobule contains multiple cell types. Here
there is a set of “objects” and the objects are
related through the “contains” relationship,
also called the “part of” relationship. Other
types of relationships are “is a” (a hepatocyte is
a cell, a liver is an organ), “is equivalent to” or
“is equal to” or “synonym” (a tumor is equiva-
lent to a neoplastic lesion). Ontologies provide
a structured organizational mapping of objects
and their relationships and serve two important
practical purposes. First, they allow us to ask
questions of the sort “list all chemicals that
cause hepatic tumors” by going to the detailed
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PUBLIC DATABASES AND COMPUTATIONAL TOXICOLOGY 223

effect information and finding all effects that
satisfy the relationship “is a hepatic tumor.”
Second, ontologies allow us to map all of the
possible and varied synonyms that are used to
record observations onto a set of common,
controlled terms. This is especially critical
because much of the in vivo data being cap-
tured in databases comes from a wide variety
of sources (literature, guideline study reports,
etc.) run at multiple laboratories over many
decades. Many ontologies were developed in
the biomedical area and are being standard-
ized through Open Biomedical Ontologies
(OBO), which is available at the OBO Foundry
(Smith, et al., 2007). The following is an exam-
ple of two entries from the Mouse Pathology
Ontology (MPATH) (http://www.pathbase.net)
for types of liver tumors.

[Term]
id: MPATH:353
name: hepatocellular adenoma
def: “Benign neoplasm derived

from hepatocytes”
synonym: “hepatic adenoma,

benign, liver cell tumor,
benign”

synonym: “hepatoma, benign”
synonym: “nodule type A”
is_a: MPATH:352 ! hepatic tumor
is_a: MPATH:270 ! adenoma

[Term]
id: MPATH:357
name: hepatocellular carcinoma
def: “Malignant tumor derived

from hepatocytes”
synonym: “carcinoma, trabecular”
synonym: “carcinoma, trabecular

(liver)”
synonym: “hepatoma, malignant”
synonym: “nodule type B”
is_a: MPATH:352 ! hepatic tumor
is_a: MPATH:549 ! carcinoma

Each term has a unique ID, a name and defini-
tion, one or more synonyms, and a set of “is a”
relationships. Many of the toxicology databases
discussed in this article make use of standard-
ized ontologies. Returning to Figure 1, the tables
containing detailed endpoint information can be

used to capture ontology information relevant
to toxicology observations. One ontology spe-
cifically related to chemical toxicology is
ToxML (Richard et al., 2008), which is devel-
oping controlled vocabularies in areas such as
genetic toxicity, carcinogenicity, developmen-
tal toxicity, neurotoxicity, and chronic toxicity.

In simple terms, a knowledgebase is a
database that has organized all of the data in
terms of ontologies and has a query language
that exploits this type of information. The orga-
nization of the information can be significantly
different from the standard relational format.
For instance, it would be possible to reduce
the database in Figure 1 to three tables, one to
hold “objects,” one for relationships between
objects, and one to hold “qualifiers” for rela-
tionships. For instance “chemical,” “diethyl-
hexyl phthalate,” “DEHP,” and “liver tumor”
could all be listed in the object table. The rela-
tionship table could have items including
“DEHP=diethylhexyl phthalate” (where “=”
stands for synonym), “DEHP is a chemical,”
and “DEHP causes liver tumor” (Martin et al.,
2009). This last relationship needs to be “qual-
ified,” for instance, with the terms “in rats” and
“at doses >600 mg/kg/day” and “according to
study XYZ.” The database design could look
like Figure 2, although to capture the full range
of qualifiers, a more complex table structure
would be required.

Specialized computer languages have been
developed to mine knowledgebases by taking
advantage of the object–relationship–qualifier
structure. A commonly used environment for
building knowledgebases is Protégé, developed
at Stanford University (http://protege.stanford.
edu/index.html). Because the data structures
for knowledgebases are so simple, it is possible
to construct flat file representations that can be
easily shared.

One important application of the knowl-
edgebase framework is automated knowledge
extraction from the open literature, or litera-
ture mining. A number of groups have built
systems for developing inferences about chem-
ical toxicology by automatically extracting rela-
tionships from PubMed. As an example, one
would first define the ontology of all chemicals
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224 R. JUDSON

(names and synonyms, potentially using MESH
identifiers from the National Library of Medicine
[http://www.gopubmed.org/web/gopubmed]),
diseases (for instance, using one or more of the
ontologies from OBO), and a set of relation-
ship key words (e.g., “causes”). All chemicals,
disease terms, and abstracts (as a block of text)
are entered into the object table. Each abstract
is parsed to see whether it contains any of the
chemical or disease keywords and these rela-
tionships are entered, for instance, as [“abstract
1234” contains “DEHP”] or [“abstract 1234”
contains “liver tumor”], but using the equiva-
lent objectID keys. So far, this is equivalent to
the procedure where one searches PubMed
for a set of keywords, producing a list of
abstracts to be scanned. The next step is to also
extract the relationship keywords and filter
abstracts so that sensible linkages are produced
(“DEHP” “causes” “liver tumors”). One website
that uses this procedure is goPubMed (http://

www.gopubmed.org/web/gopubmed). Some
approaches require that objects and keywords
be within a certain number of words of one
another in the abstract to be counted, or be in
the proper order (e.g., causes . . . tumors vs.
tumor . . . causes), both of which reduce the
number of false positive associations. Statistical
tests can also be applied to filter out false asso-
ciations, for instance, requiring that any associ-
ation to be deemed significant must occur in a
specified minimum number of abstracts. The
website PubGene (http://www.pubgene.org)
uses this approach to find networks of genes
significantly associated with diseases based on
combining gene and disease ontologies (Jenssen
et al., 2001, 2009). Figure 3 shows an example of
a discovered network of genes related to one
another and to cancer, based on co-citations,
starting from a query for the genes PPARA (per-
oxisome proliferator activating receptor alpha),
PPARG (peroxisome proliferator activating
receptor gamma), CCL2 (chemokine (C-C motif)
ligand 2), and AR (androgen receptor), which
are associated with chemically induced liver
tumors using data from in vitro screens (Judson,
et al., 2009). One value-added result of this
analysis is the identification of other genes that
co-occur in the literature with the query genes,
and that are then candidates for follow-up in
vitro screening.

EXAMPLES

This section describes example data sources
that are currently being used to support com-
putational toxicology research. These cover the
three major domains of in vivo toxicology, in
vitro assays, and chemical structure and iden-
tity. All are online and available for searching
and downloading of data and most provide
tabular data that is directly usable for model-
ing. The data sources are summarized in Table 1.
These examples are not exhaustive (Yang,
et al., 2006; Judson, et al., 2008), but do illus-
trate of the range of databases that are avail-
able. The data sources are organized into three
categories: online databases containing in vivo
toxicology data; online databases containing in
vitro data or molecular-level data from animal

FIGURE 2. Simple database schema to hold information in a
knowledgebase. 
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PUBLIC DATABASES AND COMPUTATIONAL TOXICOLOGY 225

experiments, on chemicals of toxicological
interest; and online knowledgebase ontology
information relevant to toxicology research.

Online Databases Containing In Vivo 
Toxicology Data

ACToR (Aggregated Computational Toxi-
cology Resource) (Judson, et al., 2008) is a
super-aggregator of data concerning chemicals
of environmental interest. This database links
information on over 400 source databases and
data sets based on chemical identity. The
“Data Collections” web page within ACToR is
a comprehensive list of data sets related to
environmental chemical toxicology. The data-
base is modeled after PubChem (see later dis-
cussion) with substances, compounds, and
bioassays, although the definition of bioassay is
much more general. Included in the ACToR
repository are chemical inventories and, where

available, data from PubChem, DSSTox,
National Toxicology Program (NTP), TOXNET,
U.S. Environmental Protection Agency (EPA)
ECOTOX, DrugBank, HPVIS, ToxRefDB, and
CPDB, so it can serve as a jumping-off point to
get to these and other databases of interest for
toxicologists. Currently, one can download
individual data sets related to toxicology,
although many of these are simply links of
URLs to source text reports. Data on chemicals
can be searched for by name, CASRN, and
chemical structure. The entire ACToR database
can be downloaded for local analysis.

CPDB (Carcinogenic Potency Database)
(Gold, et al., 2001) is a compilation of data on
chemical carcinogens compiled from National
Toxicology Program (NTP) reports and the
open literature. CPDB contains detailed study
data from long-term cancer/chronic studies on
1547 chemicals and includes information on

FIGURE 3. A network of genes associated with cancer, discovered by the search engine PubGene, based on simultaneous association
with query genes PPARA, PPARG, AR, and CCL2, which have been shown to be associated with chemicals that cause rodent liver
tumors. Blue lines indicate associations directly related to the query and gray lines those that are significantly associated with the query
terms. The PubGene interface lets one automatically extract the papers responsible for each link. Additionally, links between nodes
(genes and diseases) can be statistically filtered, which in this case has been set to a high threshold. 
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226 R. JUDSON

species, strain, and gender; experimental pro-
tocol; dose (mg/kg/day); and results in terms of
types and targets of tumors. The results are
summarized in terms of a carcinogenic
potency TD-50, which is the dose that induces
tumors in half of the study animals.

DSSTox (Distributed Structure-Searchable
Toxicity) (Richard & Williams, 2003; Richard et
al, 2006; 2008a, 2008b, Russom et al., 2008)
is focused on the creation of standardized,
chemical structure annotated data files, and
publishes downloadable tabular files contain-
ing toxicity data and external data linkages for
chemical inventories and datasets pertaining to
environmental toxicology. Several DSSTox
data files contain quantitative summary in vitro
and in vivo data on chemicals of environmental
concern. Data are extracted from several
important databases, including the U.S. EPA
IRIS (Integrated Risk Information System) and
CPDB (Carcinogenic Potency Database) (Gold
2008), and other data files provide chemical
structure linkages to online in vivo data
resources, such as the NTP (National Toxicol-
ogy Program). One unique aspect of the DSS-
Tox project is that all chemical information is
expert curated and uniformly applied so that the
one can be confident that data from different

studies linked to a particular chemical are
properly comparable. Other external data sets
that are structure-linked are the U.S. EPA High
Production Volume Information System (HPV-
IS), the National Center for Biotechnology
Information (NCBI) Gene Expression Omnibus
(GEO), the European Bioinformatics Institute
(EBI) ArrayExpress, and the EPA ToxCast
project (Dix et al., 2007; U.S. EPA 2008). Each
of the data sets can be downloaded in a flat-
file format to allow direct computation. The
full collection of published data files is search-
able online based on chemical structure or
name, and is fully incorporated into U.S. EPA
ACToR and PubChem.

DrugBank (Wishart et al., 2006, 2008) is a
comprehensive database of information on
pharmaceutical compounds including toxicity/
side effects and molecular targets. This infor-
mation is relevant to the study of environmen-
tal chemicals because for most of those, no
information on human toxicity is available,
whereas it is for pharmaceuticals. Many in
vitro studies of environmental chemicals
include drugs as reference compounds, and
the corresponding data are used to help
understand the human relevance of the data
for the test chemicals.

TABLE 1. Summary of Data Source Described in the Text

Source URL Tabular/computable
Chemical structure 
searchable

Database/knowledgebase/
ontology

ACToR http://actor.epa.gov Some data are tabular Yes Database of databases
CPDB http://potency.berkeley.edu Yes Yes (via DSSTox) Database
DSSTox http://www.epa.gov/ncct/dsstox Yes Yes Database
DrugBank http://www.drugbank.ca Yes No Database
EPA ECOTOX http://cfpub.epa.gov/ecotox Yes No Database
HPVIS http://www.epa.gov/hpvis Yes No Database
NTP http://ntp.niehs.nih.gov No (but future version will 

be via download)
Yes (via DSSTox) Database

TOXNET http://toxnet.nlm.nih.gov/
index.html

Yes (via download of data) No Database portal

ToxRefDB http://www.epa.gov/NCCT/
toxrefdb

Yes No Database

CEBS http://cebs.niehs.nih.gov Yes Yes (via DSSTox) Knowledgebase
PubChem http://pubchem.ncbi.nlm. 

nih.gov
Yes Yes Database

CTD http://ctd.mdibl.org Yes No Knowledgebase
OBO Foundry http://www.obofoundry.org Not applicable Not applicable Ontology compilation
GO3R http://www.go3r.org Yes Not applicable Knowledgebase
GOPubMed http://www.gopubmed.org/

web/gopubmed
Yes Not applicable Knowledgebase
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PUBLIC DATABASES AND COMPUTATIONAL TOXICOLOGY 227

EPA ECOTOX (EPA Ecotoxicology Data-
base) (Russom 2002) is a large U.S. EPA data-
base of effects of chemicals on ecological
species (animal and plants), as opposed to
humans or model organisms used to infer
human health effects. Information in the data-
base is tabular and quantitative and is manu-
ally extracted and curated from the open
literature and other text reports. Information is
available on >8000 chemicals. Data can be
searched by chemical, species, or effect, and
tabular reports are produced that can be
downloaded and used in modeling efforts. The
entire database can also be downloaded.

HPVIS (U.S. EPA High Production Volume
Information System) holds data on chemical
properties and toxicology submitted to the
U.S. EPA as part of regulatory determinations
on high-production-volume (HPV) chemicals,
which are chemicals manufactured or
imported in amounts of >1 million lb/year.
Data are tabular, searchable, and download-
able in directly computable formats. The
HPVIS web site provides an easy query inter-
face to produce custom data sets. For instance,
one can produce a report on the 5421 in vitro
genotoxicity studies in the database. Data sub-
mission requirements for HPV chemicals are
relatively limited, so more complex endpoints
such as cancer are less well represented than
genotoxicity.

NTP (National Toxicology Program) is a
U.S. government program that runs guideline
studies on chemicals of toxicological concern.
The NTP database contains the results of these
studies, and is searchable by chemical, but
detailed experimental study results are pre-
sented on its web site mainly as text reports.
Study reports are available on more than 2500
chemicals, the largest proportion of which
have information on genotoxicity only. The
next largest category is 2-year chronic cancer
studies, available for over 500 chemicals.
Overall, it is the largest repository of publicly
available, consistently run guideline rodent in
vivo studies. As the public Web interface is cur-
rently implemented, the NTP database has lim-
ited capabilities to extract tables of data for
cross-chemical meta-analyses, but quantitative

tabular data have been extracted by several
commercial and public groups, including Lead-
Scope, VITIC, and CPDB efforts, among others.
The underlying database is structured in a
computable format, and the NTP is now beta-
testing a chemocentric database schema
including all detailed data to individual obser-
vation level. These data will be made available
in XML format.

TOXNET (National Library of Medicine
[NLM] Toxicology Data Network) is a compila-
tion of 13 toxicology-related databases main-
tained by the NLM, along with the chemical
structure/identity database ChemIDplus, which
also provides links to a number of non-NLM
data sources. Most of the data are in the form
of text reports. TOXNET includes several com-
prehensive databases curated from the open
literature, including HDSB (Hazardous Sub-
stances Database, information on general
chemical hazard for about 5000 chemicals)
and CCRIS (Chemical Carcinogenesis Research
Information System, carcinogenicity and mutage-
nicity information on about 8000 chemicals). By
signing a license agreement with NLM, one
can download large portions of the TOXNET
database.

ToxRefDB (Toxicity Reference Database)
(Knudsen et al., 2009; Martin et al., 2009a,
2009b) was developed by the U.S. EPA to
store data from guideline in vivo animal toxic-
ity studies. The initial focus has been on pop-
ulating ToxRefDB with pesticide registration
toxicity data that have been historically stored
as hard-copy and scanned documents by U.S.
EPA. A significant portion of these data has
now been processed into ToxRefDB in a stan-
dardized and structured format, in relational
data tables with controlled vocabulary, to the
level of dose-treatment group. ToxRefDB cur-
rently includes chronic, cancer, subchronic,
developmental, and reproductive studies for
multiple species (rat, mouse, rabbit) enumer-
ating thousands of discreet effects for hun-
dreds of chemicals, most of which are
pesticide active ingredients. This database is
serving as a rich source of legacy data for ret-
rospective analysis. In addition, a primary
research application of ToxRefDB is to
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228 R. JUDSON

provide toxicity endpoints as the target of
predictive modeling efforts with in vitro data
being provided by the U.S. EPA ToxCast pro-
gram. Currently, the ToxRefDB data can be
downloaded as a set of flat files, but a search-
able Web interface is also available to enable
relational searching of the full database con-
tent. In addition, summarized ToxRefDB end-
points will be separately published as DSSTox
files and incorporated into ACToR and Pub-
Chem for use in predictive modeling.

Online Databases Containing In Vitro 
Data or Molecular-Level Data 
from Animal Experiments, on Chemicals 
of Toxicological Interest

CEBS (Chemical Effects in Biological Systems)
(Waters et al., 2008; Fostel et al., 2005, 2007)
captures detailed animal-level information on
studies for which complex, quantitative results
data are available. The types of data include
detailed treatment protocols, histopathology
and even raw genomic microarray results.
CEBS is the only database listed here that
makes animal level data easily accessible to a
public user. All others provide at most group-
level summaries. Currently CEBS has informa-
tion on the action of 132 chemicals, derived
from 34 studies in mice, rats, and Caenorhab-
ditis elegans. Data are searchable by study and
subject characteristics and can be extracted
and downloaded.

PubChem (http://pubchem.ncbi.nlm.nih.gov)
is part of the NCBI Entrez system linking many
domains of biological information. Specifically,
PubChem is organized into three domains:
substance (chemical identity), compound
(chemical structure), and bioassay (primarily in
vitro screening data). Data can be searched or
browsed along any of those domains and a
variety of data sets can be created and down-
loaded. Currently, there are more than 1700
unique assays covering varying subsets of 25
million unique chemical structures in the data-
base. Assays include cytotoxicity, activity against
specific molecular targets (e.g., enzymes and
receptors), and other cellular phenotypes. The
entire database can be downloaded for inclu-
sion in other systems.

CTD (Comparative Toxicogenomics Data-
base) (Mattingly et al., 2006; Davis et al.,
2009; Gohlke et al., 2009) is a knowledgebase
combining information on three classes of
interactions: chemical–disease, chemical–
gene, and gene–disease. All information is
taken from the open literature and is hand-
curated to insure data quality. Information is
also mapped onto standard ontologies to allow
knowledge extraction. The database contains
“direct” information (for instance, DEHP is
directly associated with the gene PPARA because
the two are discussed together in multiple
papers, and DEHP is also directly associated
with liver neoplasms based upon literature ref-
erences). Indirect, inferred relationships are
also created through assertions of the type
“gene A is associated with disease B because
gene A has a curated interaction with chemical
C, and chemical C has a direct relationship
with disease B.” In all cases, links to the rele-
vant literature are provided. Data can be
searched in a variety of ways to create custom
reports, and the database as a whole can be
downloaded.

Online Knowledgebases/Ontology 
Information Relevant to Toxicology 
Research

OBO Foundry (The Open Biomedical
Ontologies) (Smith et al., 2007) was described
earlier as a source of ontologies developed for
biomedical research. All ontologies are com-
piled in standard formats and are available for
downloading. The organizers of OBO describe
their effort as “a collaborative experiment
involving developers of science-based ontolo-
gies who are establishing a set of principles for
ontology development with the goal of creat-
ing a suite of orthogonal interoperable refer-
ence ontologies in the biomedical domain.”
Ontologies are organized around organisms,
types of disease, and descriptions of anatomy,
an example of which is the Uber Anatomy
Ontology or Uberon.

GO3R/GOPubMed are knowledgebases
that allow ontology-based searching of the
PubMed database. This is a more powerful way
to filter the large number of possible results
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one can get from a standard PubMed search.
Go3R is designed to target papers describing
animal studies on environmental chemicals, to
make sure that investigators do not unknow-
ingly rerun studies that are already available in
the literature, in line with the 3R principles
(Refine, Reduce, Replace) (Balls 2009).

SUMMARY

This article described the rationale for and
design of databases being developed for use in
computational toxicology research. A number
of databases and knowledgebases are compil-
ing high-quality data on environmental chemi-
cals from in vitro and in vivo experiments in
formats that allow for cross-chemical model-
ing. Key issues that these efforts have had to
contend with are extraction of quantitative
data into tabular, computable formats, and the
mapping of data from multiple sources onto
standard terms, using predefined vocabularies
or ontologies. Each of the database develop-
ment teams has had to make design choices
that involve compromises between complete-
ness and comprehensiveness, and curated
(e.g., CTD) versus unfiltered content (PubChem).
For instance, the CEBS database contains
detailed information down to the individual
animal level, including whole genome microar-
ray data, but is limited to 132 chemicals. At the
other end, the ACToR database contains infor-
mation on >500,000 chemicals, but much of
that is highly summarized, and no curation,
beyond what is provided by the original
sources of the data, is provided. CTD is com-
pletely hand curated and has much broader
chemical coverage than CEBS, but contains only
summary information on genes and diseases.

These last comments point to the largest
challenge facing database developers, namely,
the desire of users to have more and more
detailed information on more and more chem-
icals. On the in vitro side, data are increasingly
being generated in a uniform way across large
sets of chemicals, and the results are inherently
quantitative. The U.S. EPA ToxCast project (Dix
et al., 2007; Judson et al., 2010) and the U.S.
government Tox21 collaborative (Kavlock et al.,

2009; Collins et al., 2008) efforts are screening
thousands of chemicals in large numbers of
biochemical and cell-based assays and making
the data publicly available. On the in vivo side,
efforts are underway to combine automatic
text mining to perform a first-pass extraction of
quantitative data, with manual quality review
on the backend. The ToxRefDB team at the
U.S. EPA is experimenting with this approach,
where it is possible to compare the results of
automated text mining with previously hand-
compiled data. The initial results are promis-
ing, but this is a special case because the data
source is a set of reports that have a relatively
uniform format, unlike papers from the open
literature. Another technology option that is
being widely discussed is the use of wikis. In
this case, globally researchers could hand-
curate literature with which they are familiar
and extract the relevant quantitative data. This
would spread out the effort of manual extrac-
tion into many hands, but would require cen-
tral management to insure the use of
appropriate ontologies and to impose a level of
quality control.

In summary, toxicology databases, knowl-
edgebases, and ontologies are critical tools for
the emerging field of computational toxicol-
ogy. This article described several important
and well-developed examples of these infor-
mation sources, but it is possible that a large
number of these may become more widely
available and useful for researchers in the com-
ing few years.
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Abstract   
 

Thousands of untested chemicals in the environment require efficient characterization of 

carcinogenic potential in humans. A proposed solution for this data gap is rapid testing of 

chemicals using in vitro high-throughput screening (HTS) assays for targets in pathways 

linked to disease processes. The HTS data would then be incorporated into models for 

priority-setting and further testing. We describe a model for predicting rodent 

carcinogenicity that is based on HTS data from 292 chemicals tested in 672 assays 

mapping to 455 genes. All data come from the EPA ToxCast project. The model was 

trained on a subset of chemicals with in vivo rodent carcinogenicity data in the Toxicity 

Reference Database (ToxRefDB), and validated against an external test set with in vivo 

data not in ToxRefDB but available from other sources. Individual HTS assays strongly 

associated with particular types of rodent cancers in ToxRefDB were linked to genes, 

pathways and hallmark processes documented to be involved in tumor biology and cancer 

progression. Rodent liver cancer endpoints were linked to well-documented pathways 

such as PPAR signaling and TP53 and novel targets such as PDE5A and PLAUR. Genes 

associated with rodent thyroid tumors and belonging to cancer hallmark pathways were 

found to be linked to human thyroid tumors and autoimmune thyroid disease. A model 

was developed in which these genes/pathways function as hypothetical enhancers or 

promoters of rat thyroid tumors, acting secondary to the required key initiating event of 

thyroid hormone disruption. A simple scoring function was generated to identify 

chemicals with significant in vitro evidence that was predictive of in vivo carcinogenicity 

in different tissues and organs. This scoring function was applied to an external test set 

and successfully (p=0.024) differentiated between chemicals classified as 

“possible”/“probable”/“likely” human carcinogens by EPA’s Office of Pesticide 

Programs and those designated as “not likely” or with “evidence of non-carcinogenicity”.    
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Introduction 
 

Predicting the potential carcinogenicity of the thousands of chemicals to which 

humans are exposed presents a significant challenge, especially in the case of non-

genotoxic carcinogens. Long-term animal studies are typically used to determine a 

chemical’s carcinogenic potential, and follow-up studies to determine the mode of action. 

However, it is impractical to apply this testing strategy to tens of thousands of existing 

chemicals due to cost and time restraints. In vitro high-throughput screening (HTS) 

approaches are being developed to prioritize chemicals for targeted testing programs [1-

5]. Given the multi-factorial etiology of cancer and the large numbers of chemicals with 

unknown cancer potential that need to be evaluated, there is a need for more efficient 

screening beginning with predictive in vitro methods to build a pathway-based 

understanding for groups or classes of chemicals.   

 

We demonstrate a carcinogenicity screening approach that uses a large collection 

of HTS assays targeting multiple genes, proteins, pathways and cancer-related processes, 

including targets associated with the cancer hallmarks described by Hanahan and 

Weinberg [6, 7].  These authors described the hallmark traits that most cancers exhibit: 

sustaining proliferative signaling, evading growth suppressors, evading immune 

destruction, enabling replicative immortality, tumor-promoting inflammation, activating 

invasion and metastasis, inducing angiogenesis, genome instability and mutation, 

resisting cell death and deregulating cellular energetics. These traits arise through 

successive mutations resulting in a mature tumor with growth independence and the 

capability to invade and metastasize. Some chemicals induce mutations directly (i.e. 

DNA-reactive mutagenic carcinogens) activating processes supporting cancer initiation 

and progression; however, many chemical carcinogens do not appear to act through this 

direct mechanism (i.e. they are non-genotoxic carcinogens), and instead act as tumor 

promoters [8].  

 

The EPA ToxCast project encompasses a growing data set of in vitro HTS and 

high-content screening (HCS) information for thousands of environmental chemicals [1], 
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many of which also have 2-year regulatory guideline in vivo cancer studies in  rats or 

mice [9]. Analysis of the ToxCast data demonstrates that numerous environmental 

chemicals interact with multiple targets and perturb critical molecular pathways and 

cellular processes, at least in the in vitro assays. In the present study, we tested the 

hypothesis that chemicals that perturb certain cancer-linked targets or processes in human 

in vitro HTS assays will have a significantly higher likelihood of being carcinogens, as 

evidenced by carcinogenicity in the 2-year chronic assays in rodents.  Our approach 

began by using a training set of chemicals with both in vitro assay data and in vivo rodent 

cancer data to derive a measure of the increased likelihood of carcinogenicity when a 

chemical is positive in an in vitro assay. This increased likelihood is quantified as an odds 

ratio. The assays with large cancer-related odds-ratios were then mapped to known 

cancer-related biological pathways and accompanying hallmark processes where 

possible. We also present a prioritization method in which chemicals were scored for 

possible carcinogenic potential based on the number of cancer-associated endpoints 

significantly perturbed in assay screening.  

Methods 
 

A collection of 292 chemicals from ToxCast Phase I was used for this analysis [1] 

as listed in Supplemental Table S1. The majority of these chemicals are food-use, non-

genotoxic pesticide active ingredients for which 2-year chronic cancer bioassay data are 

available in rat and/or mouse from the EPA Toxicity Reference Database (ToxRefDB) 

[9]. ToxRefDB provides classification data, i.e. positive or negative, for each chemical 

(http://actor.epa.gov/toxrefdb/) for preneoplastic or neoplastic lesions in rat and mouse 

for multiple tissues. Most of the test chemicals are pesticides that are applied to food 

crops, which is a registration use category that effectively excludes mutagens [10]. 

Therefore a necessary assumption of this work is that any cancers or lesions caused by 

chemicals in the test set arise through non-genotoxic mechanisms, and predictive assays 

identified in model development correspond to non-genotoxic and non-mutagenic cancer 

processes.  For mouse and rat endpoints, there were 223 and 232 chemicals, respectively, 

with both in vitro and in vivo data. (Of these 200 had both rat and mouse data.) This 
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subset of chemicals was used for our initial analysis to identify significantly associated in 

vitro assays and in vivo lesion endpoints. Cancer-related endpoints were only included if 

at least 20 chemicals out of the 223 or 232 set were positive for the endpoint. For mouse, 

these cancer-related endpoints were: Liver Preneoplastic, Liver Neoplastic, Lung 

Preneoplastic and Spleen Preneoplastic. For rat, these endpoints were: Kidney 

Preneoplastic, Liver Preneoplastic, Liver Neoplastic, Testes Preneoplastic, Testes 

Neoplastic, Thyroid Preneoplastic and Thyroid Neoplastic. In subsequent figures and 

tables, the endpoint severity is indicated as preneoplastic=level 2 and neoplastic=level 3. 

Level 1 classification includes a large set of non-cancer-related pathologies that were not 

examined here. The cancer-related endpoint data are provided in Supplemental Table 

S2.  

 

For each chemical in ToxCast Phase I, 672 in vitro assay measurements were 

generated, including a broad array of biochemical and cellular assays from 7 technology 

platforms. All assays were run in concentration-response format, and from these data, 

either an AC50 value (concentration with 50% of maximal activity) or an LEC value 

(Lowest Effective Concentration, significant difference from averaged controls) was 

calculated for each chemical-assay pair. Much of the assay data has been published 

previously [1, 11-14], and is publicly available [15]. The assay data table used in the 

present analysis is given in Supplemental Table S3. Most of the assays correspond to 

single genes. Assay types include direct protein interaction (binding and activity) and 

mRNA or protein expression level measurements. Assays included were those for which 

at least 10 chemicals across the 292 tested showed a significant response. This removes 

the tendency to bias the results towards a small group of chemicals that were highly 

promiscuous across targets, and were often the only active chemicals in some assays. 

 

 Univariate associations were calculated between the in vitro assays and in vivo 

endpoints. Both were converted to binary values, so a chemical-assay pair was set to 1 if 

there was activity at any concentration, and a chemical-endpoint pair was set to 1 if there 

was activity at any dose. The basic association measure was an odds ratio (OR) 

calculated from the 1/0 (activity/inactivity) vector for an assay and the 1/0 vector for the 



 

6 
 

endpoint. A large OR indicated that a chemical positive for the corresponding assay had 

an increased likelihood of being associated with the specified type of cancer. Assays with 

large ORs were considered risk factors for chemical carcinogenicity, similar to 

epidemiological risk factors for cancer (e.g. smoking and lung cancer). For each assay-

endpoint pair, a 95% confidence interval was calculated. To correct for multiple testing, a 

permutation test was performed for each endpoint by permuting the endpoint and 

calculating the OR values for all assays. Permutation-derived 95% confidence intervals 

for each endpoint were calculated from the OR distribution across all assays. Assay-

endpoint pairs were considered significant if the confidence interval for the pair did not 

include 1 (i.e. an OR of “no evidence of association”), and if the point estimate of the OR 

was outside of the 95% permutation test-derived CI for the endpoint. All analyses were 

performed using R (version 2.13.0), and software and data files are available as 

supplemental information.  

 

 Assays included in this analysis were mapped to cancer hallmarks and other 

biological processes via their corresponding gene targets. For this purpose, the following 

hallmark process designations were used: Angiogenesis (inducing angiogenesis), 

Apoptosis (resisting cell death), Growth Factor (sustaining proliferative signaling and 

evading growth suppressors), Limitless Replication (enabling replicative immortality), 

Metastasis (activating invasion and metastasis), Immune (avoiding immune destruction 

and tumor-promoting inflammation) and Energy Metabolism (deregulating cellular 

energetics) [6, 7]. No assays were directly mapped to the genome instability and mutation 

hallmark processes, but as stated previously, chemicals included in our analysis were 

unlikely to be direct mutagens.  

 

Genes were mapped to hallmark processes using Gene Ontology (GO) [16] 

categories whose name contained a hallmark-associated keyword. These keywords were 

the following: Apoptosis: ("DNA repair", "apopto"); Angiogenesis: ("blood vessel mat", 

"angiogen", "vasculature", "vasculog", “vascula”, "blood vessel dev", "blood vessel 

morph"); GrowthSignal: ("growth factor", "prolifer", "transcription factor activity"); 

Metastasis: ("chemotaxis", "cell adhesion", "differentiation", "migration", "motility"); 
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LimitlessReplication: ("telome"); EnergyMetabolism: ("hypoxia", "energy met", 

"mitochondri"); Immune: ("immun", "inflamm", "sensitization", "T cell"). A number of 

endpoint-associated assays were involved with an additional category, xenobiotic 

metabolizing enzymes (XME). All Phase I, II and III xenobiotic metabolism enzymes and 

related genes were mapped to XME using these keywords: ("monooxygenase", 

"oxidoreductase", "xenobiotic", "transporter", "glucuronosyltransferase activity"). 

Additional mapping of assays / genes to hallmark processes followed a review of the 

literature. A number of assays are not gene-based but instead measure cellular 

phenotypes, for example mitochondrial membrane potential. Where possible, these assays 

were mapped to the hallmark processes manually based on literature information. A 

number of genes mapped to more than one process.  This mapping is provided in 

Supplemental Table S4. 

 

A cancer risk score for each chemical with rat carcinogenicity data (n=232) was 

calculated as the number of assays activated by the chemical that were involved in 

significant assay-endpoint pairs. For the external validation set of chemicals without 

ToxRefDB rat data (n=60), we searched for additional cancer data using the ACToR 

database (http://actor.epa.gov) [17], the EPA document “Chemicals Evaluated for 

Carcinogenic Potential: Office of Pesticide Programs (OPP) August 2010” [18], the 

Carcinogenic Potency Database [19], the National Library of Medicine  TOXNET 

CCRIS (Chemical Carcinogenesis Research Information System) database [20], the 

National Toxicology Program database [21], and ToxRefDB mouse studies. We looked 

for statistical trends among the chemicals with EPA OPP classifications of potential 

carcinogenicity hazard. Chemicals classed as “Group B -- Probable Human Carcinogen” 

or “Likely to be Carcinogenic to Humans”, under the 1986 EPA Cancer Risk Assessment 

Guidelines for pesticides, are those for which the weight of evidence of carcinogenicity 

based on animal studies is “sufficient.” Chemicals classed as “Group C -- Possible 

Human Carcinogens” have limited evidence of carcinogenicity in animals in the absence 

of human data and chemicals classed as “Unlikely to be Human Carcinogens” or “Group 

E -- Evidence of Non-Carcinogenicity in Humans” have evidence of non-carcinogenicity 

in animals or humans respectively. Certain chemicals are still undergoing assessment, or 
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the data obtained were unclear, and these have classifications of “Group D -- Not 

Classifiable as to Human Carcinogenicity”, “Cannot be Determined” or “Data are 

Inadequate for an Assessment of Carcinogenic Potential”. A limited number of 

assessments incorporated exposure estimates, and multiple descriptors were used when 

applicable.  

Results 
 

Summary of Associations between In Vitro Assay Data and In Vivo Rodent 

Carcinogenicity Data: Statistically significant assay-endpoint associations are presented 

in the form of a forest plot in Figure 1, which shows the mean odds ratio (OR) and 

confidence intervals for each association. The majority of gene targets associated with 

cancer endpoints in ToxRefDB are in turn associated with the cancer hallmark processes 

(as described in Methods) or with interactions with xenobiotic metabolizing enzymes 

(XME). The remaining assay targets that correlate with endpoints but could not be 

mapped directly to hallmark or XME-related processes assessed microtubule disruption, 

hepatic steatosis, upregulation of thrombomodulin and increase in nuclear size in rat 

primary hepatocytes. 

 

Figure 1 displays the assay, gene, and the associated hallmark or XME process 

for selected associations that pass the significance criteria.  Processes that map to cancer 

hallmarks are in bold. The highest-OR associations are between the opioid receptor 

OPRL1 (opiate receptor-like 1) and rat thyroid proliferative lesions (rat thyroid 2, 

OR=16.8, 95% CI=[3.25,86.5]); and PDE5A (phosphodiesterase 5A, cGMP-specific) and 

rat liver neoplasia (rat liver 3, OR=11.6, 95% CI=[2.17,61.5]). These are all cell-free, 

protein-ligand binding or activity assays. XME-associated assay responses include 

inhibition of the cytochrome P450 enzymes CYP1A1 (mouse liver 2, mouse liver 3), 

CYP3A4 (rat liver 2, rat thyroid 2, rat thyroid 3), CYP2A2 (mouse liver 2), CYP2J2 

(mouse liver 2), the monoamine oxidase MAO-A (A) (rat kidney 2), and upregulation of 

the membrane transporters ABCB1 (mouse liver 2), ABCG2 (mouse spleen 2, mouse 

liver 2) and SLCO1B1 (rat liver 3, rat kidney 2). Another metabolically relevant assay 

target associated with rodent cancer (rat liver 3, OR=5.68, 95% CI=[1.76,18.3]) is 
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upregulation of HMGCS2 (3-hydroxy-3-methylglutaryl-CoA synthase 2), which is 

regulated by PPARA (peroxisome proliferator-activated receptor alpha). Chemicals 

interacting with PPARA are known to induce or facilitate liver tumors in rodents [22-24]. 

 

Several “negative” associations, i.e. those that are statistically significant with 

OR<1, were identified through the analysis. A negative association indicates that 

chemicals that produce a significant response in the assay have a decreased likelihood of 

causing cancerous lesions in rodent bioassays. One could hypothesize that the biological 

pathway tested by the assay is predictive of a protective effect. Targets with negative 

associations were down-regulation of IL8 (interleukin 8) and PLAUR (human 

plasminogen activator, urokinase receptor) protein levels in BioMAP [11] assays 

conducted using human primary cells in an induced inflammatory state. IL8 expression is 

a marker of inflammation, one of the hallmark processes. Increased expression of 

PLAUR is associated with advanced stages of papillary thyroid cancer [25]. The other 

displayed negative association was with inhibition of CYP2C19.  

 

Hallmark and XME-related assays were somewhat over-represented in the set of 

statistically significant associations relative to assays in other categories. For the hallmark 

and XME linked tests, 2.6% and 2.8% were significant, versus 1.6% for the remainder. 

Chi-squared p-values for these comparisons are 0.21 and 0.17 respectively. However, 

note that the ToxCast assays were not randomly selected across the genome, but showed 

a selection bias to genes in pathways associated with cancer and XME. The gene-

endpoint associations for the hallmark and XME classes are plotted as an interaction map 

in Figure 2. The endpoints are labeled with the species (Rat or Mouse), the organ and the 

severity level. The association map is sparse, indicating that the targets or pathways 

significantly associated with cancer endpoints differ by organ and species. The assays 

associated with the greatest number of endpoints measured perturbation of p53 activity 

(TP53, highlighted in pink), which was positively associated with preneoplastic lesions in 

liver, thyroid and testes and neoplastic lesions in thyroid and testes, all in rats. The 

second most prevalent association was between an androgen receptor (AR, highlighted in 

red) antagonist transactivation assay and mouse liver preneoplastic lesions, rat liver 
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preneoplastic lesions and rat testes neoplastic lesions. There is a clear species difference 

in interactions, with a higher prevalence of XME-related interactions for mouse than for 

rat.  

 

Mapping Genes Associated with Rodent Cancer Endpoints to Pathways and Hallmark 

Processes: All of the statistically significantly associated genes were mapped to curated 

pathways from KEGG [26], REACTOME [27], WikiPathways [28] and Pathway 

Interaction Database [29]. This mapping is summarized in Figure 3. While some of these 

assays measure protein levels or interactions with proteins, the corresponding gene and 

gene symbol is used in the discussion. 

 

In Figure 3 genes annotated in red and green were identified using data from 

BioMAP assays [11, 30], which measure target protein levels in human primary cells 

primed with factors such as TNF-α, IFN-γ and IL-1β to simulate states of vascular 

inflammation or immune activation. A gene highlighted in green indicates that an 

increase in protein levels is associated with the cancer endpoint and red indicates that a 

decrease in protein levels is associated. For many of the chemokines and growth factors 

with significant associations, one can rationalize the sign of the interaction. Suppressing 

the angiostatic actions of CXCL9 and CXCL10 (chemokine (C-X-C motif) ligand 9 and 

10) could contribute to an environment favorable for new blood vessel growth [31]. 

Similarly, up-regulation of CCL2, a pro-angiogenic chemokine associated with spleen 

and liver endpoints, could provide proliferative and migratory signals to endothelial cells 

forming new vessels to feed a tumor [32]. Cellular adhesion molecules such as VCAM1 

and ICAM1, both necessary for new blood vessel growth and stabilization, also show 

significant association with multiple cancer endpoints. Androgen receptor (AR) signaling 

has a number of physiological roles, and from Figure 3, appears to affect apoptosis, 

proliferation, cell invasion, cell migration and angiogenesis. In this case, the chemicals in 

question are directly interacting with AR as antagonists.  

 

Associations with Rodent Liver Endpoints: We previously published a preliminary 

analysis of associations between assays and liver preneoplastic and neoplastic lesions, 
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focusing on AR, PPARs (including HMGCS2), CCL2, THBD, PLAT, CYP3A4 and 

IL1A [10]. Since that analysis, additional data have been generated and reanalyzed to 

yield additional associations between TP53, H2AFX, MMP1, PDE5A, PLAUR and 

SLCO1B1 and either preneoplastic or neoplastic rat liver lesions (see Figure 2). Anti-

TP53 activity disrupts apoptosis machinery, and it is associated with carcinogenicity in 

multiple organs. TP53 is also linked to redox sensitive pathways.  H2AFX is a marker for 

oxidative stress. MMP1, like HMGCS2, is regulated by PPARΑ, and it is well-

documented that perturbation of the PPARΑ pathway may lead to rodent liver 

pathologies. We were not able to identify any published links between PDE5A and liver 

carcinogenicity, but several other cancer-related findings have been reported. The anti-

cancer drug Sulindac inhibits PDE5A and leads to growth inhibition and increased 

apoptosis in breast [33] and colon tumors [34]. On the other hand, down-regulation of 

PDE5A leads to increased cell invasion in melanoma [35]. PDE5A activity is also 

androgen-dependent in certain tissues [36], providing a further possible link back to the 

direct AR association with liver carcinogenicity. The interaction of PLAUR (uPAR) and 

its ligand uPA drive angiogenesis-dependent tumor growth, and antagonism of this 

interaction is a target of liver, lung and colon chemotherapy [37]. Finally, SLCO1B1 is 

regulated by PXR, and sustained PXR activity is associated with rodent liver 

tumorigenicity [38].  

 

Associations with Rodent Thyroid Endpoints: Figure 2 shows that there are significant 

associations between rat thyroid lesion endpoints and assays for the human genes 

CXCL9, CXCL10, ICAM1, IL1A, TP53, H2AFX, OPRL1 and CYP3A4. These genes 

are linked to a variety of cancer hallmark processes (Figure 3), including cancer cell 

adhesion, metastasis, leukocyte endothelial interaction in angiogenesis, apoptosis and 

oxidative stress signaling. Figure 4 shows a heatmap of the chemicals causing rat 

follicular thyroid cancer (FTC, the predominant thyroid endpoint in ToxRefDB) and the 

associated assays. This is typical of the interactions for other endpoints, in that the matrix 

is sparse, indicating that the pattern of markers of risk tends to be chemical specific. 

Additionally, several of the rodent thyroid tumorigens show no activity in any of the 
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assays, indicating a need to expand the set of assays to screen for multiple modes of 

action for thyroid hormone disruption. 

 

The molecular basis for chemical-induced human and rat thyroid tumors is 

thought to differ [39], which needs to be accounted for in our linkage of perturbation of 

human in vitro targets with rat in vivo thyroid cancer. We propose a model, illustrated in 

Figure 5, in which the genes associated with rodent thyroid tumors act as thyroid tumor 

enhancers or promoters in humans. This model includes two major sets of initiating 

events that lead to changes in thyroid biology. The first is disruption of 

immune/inflammatory signaling. The second is disruption of thyroid hormone 

concentrations via one or more modes of action [40].   CYP3A4, while not an enzyme 

responsible for altered thyroid hormone concentrations, is used here as a bioindicator for 

activation of PXR (results in transcriptional upregulation of CYP3A4 as well as 

glucuronyltransferase and sulfotransferase enzymes that catabolize thyroid hormones in 

humans and rats). An assumption inherent to this model is that inhibition of CYP3A4 

might correspond to activation of PXR by the chemical. A necessary condition for rat 

thyroid follicular cell tumors is disruption of thyroid hormones (TH) levels (branch 1), 

but such a disruption in humans is not believed to lead to thyroid tumors, but instead to 

neurodevelopmental toxicity (branch 2) [41]. Interestingly, many of the rat thyroid 

associations seen here also match genetic or pathway associations documented in human 

thyroid tumors and other thyroid disease states (branches 3, 5 and 7). In rodents the 

perturbation of these targets (branches 4 and 6) is likely secondary to thyroid hormone 

disruption, which may be also caused by the chemicals under study but is not necessarily 

captured by any of the available assays.  

 

For most of the in vivo 2-year chronic/cancer ToxRefDB studies used in our 

training set, TH levels were not measured or reported, so direct correlation of hormone 

levels with gene targets is not possible. Rodent FTC is caused by excessive thyroid 

stimulating hormone (TSH) stimulation of the thyroid gland and is not considered 

predictive of human thyroid tumor development, as TSH is thought to be less inducible in 

humans due to a longer systemic half-life and higher concentration of THs in circulation 
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and in the thyroid gland itself [42-44]. However, a chemical that causes thyroid tumors in 

rats is still of concern in humans primarily because it signifies that the chemical may 

decrease TH concentrations across species, or may be related to an uncharacterized 

mechanism for the development of other thyroid disorders in humans.  

 

The most common genetic lesion seen in human thyroid carcinoma is the PAX8-

PPARG rearrangement [45], which presumably disrupts the functioning of both of these 

genes. From Figure 3, one can see that PPARG is associated with regulation of CXCL10, 

the levels of which are associated with thyroid proliferative lesions. CXCL9 and 

CXCL10 responses to IFN-γ are modulated by PPARG agonists in humans [46, 47]. 

NFkB regulation has been shown to be associated with human thyroid carcinoma [48], 

and this gene is downstream from the thyroid carcinoma-associated IL1A and upstream 

of the collection of chemokines CXCL9, CXCL10, CCL2 and the cell-adhesion 

molecules ICAM1 and VCAM1. IL1A, NFkB and IFN-γ regulate levels of TH in 

cultured human cells [49]. Rasmussen [50] and Gerard et al. [51] have demonstrated that 

IL1 / TNFα / IFN-γ disrupt thyroid cell function and TH levels in human thyrocytes, 

mediated through NO signaling. Lu et al. have used a mouse model to show that altered 

TH levels are not in themselves sufficient to cause murine FTC, and find that activity 

associated with p38 / TGFβ is required [52]. These facts indicate a possible association 

between the chemokine dysregulation measured in in vitro assays and TH disruption. 

This would suggest a connection between the cancer-associated assays and the required 

key event of TH disruption in rat follicular cell thyroid tumors. Finally, TP53 mutations 

are often found in advanced human thyroid carcinomas, but not early stage tumors [53].  

 

Predicting Carcinogenicity Potential of Untested Chemicals: We used the cancer-

associated assays in a prioritization model to identify possible carcinogens within the set 

of chemicals with in vitro ToxCast data but without in vivo data in ToxRefDB. This 

model (described in Methods) is based on the hypothesis that the more cancer-risk 

processes perturbed by a chemical, the more likely it is that chemical is carcinogenic. 

This is a simple model that neglects relative impact of different perturbations and 

particular sequences of perturbations that may be required for causing cancer. 
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Nonetheless, we believe that this is a useful approach for prioritizing chemicals for 

further study. There were 60 chemicals tested in the in vitro assays for which there were 

no corresponding rat in vivo cancer data, and these serve as an external validation set. In 

this set, there were 33 chemicals with EPA Office of Pesticide Programs (OPP) human 

carcinogenicity classifications (last column of Table 1, excluding those 8 with 

indeterminate information). These classifications summarize a review of multiple studies. 

Seven of the top scoring 8 chemicals (cancer risk score ≥ 7) with OPP classifications 

were “possible”, “probable” or “likely” human carcinogens. The remaining compound, 

Captan, was classed as “likely” at prolonged, high level exposures. Overall, there were 20 

chemicals with scores ranging from 0 to 23 that were “possible”, “probable” or “likely” 

human carcinogens and 13 chemicals with scores ranging from 0 to 6 that were “not 

likely” or had evidence of non-carcinogenicity in humans. There are still a number of 

false negatives, in particular 2 chemicals (Ethylenethiourea and Pirimicarb) that were 

classed as “probable” or “likely” and that show evidence of causing tumors in a variety of 

organs including thyroid, liver, pituitary, mammary gland and testes but yield a cancer 

risk score of 0 or 1. Performing a Mann-Whitney test showed that the in vitro-derived 

cancer risk score was significantly predictive of OPP carcinogenicity classification 

(p=0.024). 

Discussion 
 

We have demonstrated an approach to identify and test molecular pathways or 

processes that, when perturbed by a chemical, raise the likelihood that the chemical will 

be a carcinogen. These predicted pathways can then in turn be used to prioritize 

environmental chemicals for targeted cancer testing. Our method combines large sets of 

in vitro activity data from HTS assays and in vivo rodent carcinogenicity data. The 

approach starts by finding significant associations between genes, proteins, and cancer 

hallmark processes and in vivo cancer-related endpoints. This step is followed by mining 

the literature for supporting evidence for the statistical associations. The majority of the 

gene and protein targets that were associated with chemical-induced carcinogenicity can 

be mapped to either the cancer hallmark processes, or genes involved with xenobiotic-
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sensing or metabolism. For many of these genes, there is support in the literature for 

involvement in cancer progression or severity, although not always in the same organs for 

which we found associations. A simple scoring function built from these associated genes 

was significantly predictive of cancer hazard classifications for an external test set. 

 

Significant associations were shown between a variety of rodent cancer endpoints 

(preneoplastic and neoplastic lesions) and assay gene targets. The highest OR was for rat 

thyroid lesions and OPRL1, a gene which is primarily expressed in the nervous system. A 

recent study [54] showed that OPRL1 is also associated with immune response, and in 

particular with regulating CCL2 (chemokine (C-C motif) ligand 2), which is significantly 

associated here with rat liver preneoplastic and neoplastic lesions (rat liver 2 and rat liver 

3 in Figure 1) and with mouse spleen preneoplastic lesions (mouse spleen 2). CCL2 

activity has both inflammatory and pro-angiogenic roles [55], and it is associated with 

progression of several tumor types [56]. This association with rat liver endpoints was 

described previously [1]. PDE5A, the gene producing the second highest OR, codes for a 

cGMP-specific phosphodiesterase involved with smooth muscle relaxation in the 

cardiovascular system. Down-regulation of PDE5A may be involved in cell invasion in 

melanoma [35]. The assay used in this analysis measured inhibition of PDE5A activity, 

consistent with what was seen previously and indicating an indirect link with the cancer 

hallmark of tissue invasion or metastasis. MMP1 (matrix metallopeptidase 1), like many 

MMPs, is involved with angiogenesis by controlling the invasive capability of endothelial 

cells [57, 58]. Our analysis demonstrates strong statistical associations between the 

identified genes/proteins and cancer-related endpoints, and in most cases there are 

documented biological linkages between the two. We note that the implicated proteins 

may not mediate direct carcinogenic action, and it is plausible that several intermediate 

steps, not understood or well-characterized, participate in induction of carcinogenicity. 

Other observations, such as higher prevalence of XME-related associations for mouse 

than for rat, point toward the need for additional research to guide the interpretation of 

species-specific cancer outcomes. These correlations provide a variety of testable 

hypotheses for future research.  
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One interesting set of associations, and one that warrants further hypothesis-based 

investigation, is between rodent tumors and differential regulation of a series of 

inflammatory chemokines. Hanahan and Weinberg [7] discuss the conflicting roles of 

immune cells and signals in tumor progression, emphasizing the complex network of 

positive and negative controls. They have noted that the relationship between 

inflammation and immune processes and cancer is unclear; increased inflammation can 

lead to cancer, but inflammation and immune processes can also serve to clear the body 

of cancer cells. In the current study, the pattern of associations with several protein assays 

(increased vs. decreased protein expression) is consistent with the observation that 

carcinogenesis is associated with a pro-angiogenic program facilitated by chemokines 

(CCL2, CXCL10, IL1a, etc.), cellular adhesion molecules (VCAM1, ICAM1, etc.) and 

elements of the plasminogen activating system (PAS) (THBD, MMP1, PLAT, PLAUR) 

involved in extra-cellular matrix interactions, migration and proliferation. A separate 

analysis of this dataset [59] identified a signature for disruption of vascular processes 

correlating with in vivo developmental toxicity data from prenatal guideline studies in 

rats and rabbits. Several components of the vascular disruptive compound (VDC) 

signature, such as CCL2 and CXCL10, are common to the group of cancer-hallmark 

associated genes. However, their directional regulation is exactly opposite, where 

CCL2↑/CXCL0↓ is associated with the cancer signature and CCL2↓/CXCL10↑ with the 

VDC signature, as one might expect. Invasion of endothelial cells into the extracellular 

matrix (ECM) is also a key feature of tumor angiogenesis, and it is regulated in large part 

by endothelial expression of MMP1 and other proteases [60, 61]. Changes in elements of 

the PAS that control vascular growth factor release and ECM interactions may point to a 

shift from a quiescent state to a pro-angiogenic state as lesion progression evolves. The 

directional regulation of certain inflammatory chemokines, when combined with 

perturbation of vascular cell adhesion molecules and proteases controlling the breakdown 

of the ECM and release of critical growth factors, strongly supports the notion that at 

some point in cancer progression, the angiogenic switch is turned “ON”, facilitating 

tumor growth. 
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The cancer hallmark pathway associated genes CXCL9, CXCL10, IL1A, ICAM1, 

OPRL1 and TP53 are also implicated in the literature with thyroid disease in general or 

with thyroid tumors in humans, indicating they are all active in the thyroid axis and are 

important as modulators or indicators of thyroid health and disease. It is plausible that 

they play similar roles in the rat thyroid, but there is insufficient evidence that any of 

these genes directly act in TH disruption. Thus it is unlikely that disruption of these genes 

is the molecular initiating event for rat thyroid tumorigenesis. However, the evidence 

suggests that they may act as enhancers or promoters in the development of rodent 

thyroid tumors, possibly secondary to the necessary TH disruption. One identified marker 

with a plausible connection to TH disruption is inhibition of CYP3A4. The association of 

hepatic CYP3A4 with rat thyroid preneoplastic and neoplastic thyroid lesions may 

signify the importance of a well-known  mode of action for disruption of thyroid 

hormones in rats [40, 43, 62, 63] that is thought to be plausible in humans. Xenobiotics 

that interact with the pregnane X receptor (PXR) and up-regulate CYP3A4 (or Cyp3a1/23 

in rodents) may also transcriptionally upregulate hepatic glucuronyltransferases, 

sulfotransferases, and transporters, leading to an increased rate of catabolism and 

excretion of thyroid hormones and a subsequent decrease in circulating thyroid hormone 

concentrations [40, 62, 64]). While this series of events is known to occur in humans 

based on adverse effects from antiepileptic drugs [65, 66], it is only in the rodent that 

these decreases in circulating thyroid hormones have been shown to lead to neoplastic 

lesions of the thyroid gland [42].  Several rodent thyroid tumorigens had no in vitro 

activity, indicating a dual need to expand the assay set and to critically review the body 

of literature related to findings of thyroid tumors in rats. For instance it would be useful 

to determine whether tumors are being found only at (high) dose ranges that would not be 

reflected in the HTS assays or may not be relevant to human exposures.  

 

For the cancer risk prioritization model, we tested the hypothesis that a chemical 

that perturbs multiple cancer-associated assay targets in vitro will have an increased 

likelihood of being an in vivo carcinogen. This was tested by examining a set of 

chemicals for which in vitro HTS data were available, but for which there were no 

corresponding in vivo data in the model development database. The model performed 
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well, successfully differentiating between expert-derived OPP carcinogenicity 

classifications in the external validation set. There were several false negatives 

(chemicals with a low in vitro test score that are likely or possible human carcinogens – 

see Table 1.) Although not ideal, some false negatives were expected. First, the number 

of chemicals and pathways tested are somewhat limited. We started with a set of fewer 

than 300 chemicals, which are largely pesticide active ingredients tested in rats and mice 

and thus do not adequately represent all environmental chemicals. Given a limited set of 

chemicals, and a limited number of positive examples for most endpoints, our power to 

discover true associations was limited. This means that there will be cases where a 

biological target probed by an assay in the battery is a key event in chemical-induced 

carcinogenesis, but because there are few examples of this link in the available data set, 

the association may not be statistically significant. Next, despite the large number of HTS 

assays (relative to many other studies), the assay battery covers only a small region of the 

genome, although this battery has been enriched for those related to cancer processes. It 

is worth noting that the two aforementioned false negatives (ETU and Pirimicarb) are 

carbamates that have been shown to be weakly genotoxic [67, 68] and would, therefore, 

not necessarily be identified by this approach. 

 

Completion of Phase II of the ToxCast project will extend the chemical collection 

to a total of 960 unique compounds [15] and will also add additional assays. This data set 

will also allow us to further test the present results, and to further refine our models of 

chemical carcinogenesis and other toxicities. We envision using scoring schemes like this 

as a prioritization tool for screening large numbers of untested chemicals in the relevant 

in vitro assays to identify those with increased likelihood of being able to induce 

preneoplastic and neoplastic lesions through the non-genotoxic mechanisms identified 

here. Such prioritized chemicals would be considered for targeted, traditional toxicity 

testing. We have recently published examples of such scoring methods for signatures of 

reproductive [69] and developmental [59, 70] toxicity.  

 

There are two dominant theories of chemical carcinogenesis: genotoxicity / 

mutagenicity and initiation / promotion [8]. Both theories state that acquisition of DNA 
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mutations is required for cells to develop malignant properties and ultimately acquire the 

hallmark traits. In the initiation / promotion model [71], one chemical exposure induces 

DNA mutations [72] and another chemical exposure promotes proliferation, which can in 

turn allow further mutations to occur following increased cell division. The promoter 

chemical exposure could be the sole carcinogen if other sources of mutations (initiation) 

were available, e.g. increasing background level of mutations with age, as described in 

multi-stage models [73-75]. An initiator can itself be a complete carcinogen because it 

can directly kill cells and lead to regenerative proliferation as a mechanism of promotion. 

Initiators that cause mutations in tumor suppressor genes such as TP53 can have a 

multiplicative effect because this makes it more likely that further mutations will survive 

in succeeding cell generations [76-78]. One consequence of these multi-stage cancer 

models is that a chemical can increase the risk of cancer by increasing the probability of a 

mutation in a critical gene during each cell replication and/or by increasing the number of 

replications [8]. This concept is consistent with the proposed exposure-driven functional 

model of carcinogenesis in which chemical exposure is the dynamic force driving 

changes in gene regulation and proliferation rates and yielding functional mutations that 

ultimately may increase genetic mutations [79]. These results add complexity to the 

multi-stage cancer model by suggesting that chemical exposure may drive changes in 

multiple hallmark traits that facilitate cancer progression and provide enhanced 

opportunities for the tumor to acquire critical, heritable mutations. Further, multiple 

pathways can contribute to each of the hallmark processes, and these pathways will be 

chemical, organ, cell-type and life-stage dependent. The current study demonstrates one 

approach, using a large battery of in vitro HTS assays, to incorporate multiple lines of 

evidence about pathways leading to chemical carcinogenesis. 
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Evidence Rat Evidence Mouse 
EPA Carcinogenic Potential  
Classification 

Chlorothalonil 1 6 3 2 1 7 3 23 

CPDB (kidney, 
liver, 
mammary) 

ToxRefDB  
(negative) OPP  
(kidney, stomach) 
NTP  (negative) 

Likely To Be Carcinogenic To 
Humans 

Diniconazole 0 5 3 0 1 5 4 18 No data No data   
Niclosamide 0 4 2 1 1 7 2 17 No data No data   
HPTE (metabolite of 
Methoxychlor, so use this 
data) 0 4 1 1 1 7 3 17 

CPDB 
(negative) 

CPDB (negative) 
CCRIS  (testes)   

Methylene 
bis(thiocyanate) 0 3 2 1 0 8 2 16 

OPP 
(hemangiosarco
mas) 

ToxRefDB 
(negative) 

Likely To Be Carcinogenic To 
Humans --Based on Metam 
Sodium Data 

TCMTB(2-
(Thiocyanomethylthio) 
benzothiazole) 1 3 1 0 1 4 2 12 

 
OPP (testes, 
thyroid) 

ToxRefDB 
(negative) 

Group C‐‐Possible Human 
Carcinogen 

Maneb 0 2 2 0 2 3 1 10 
CPDB 
(positive) 

ToxRefDB (liver) 
OPP (liver) 

Group B‐‐Probable Human 
Carcinogen 

Captafol 0 1 2 0 0 4 2 9 

CPDB (kidney, 
liver, 
mammary) 

CPDB (blood, 
liver, intestines, 
stomach, vascular) 

Group B‐‐Probable Human 
Carcinogen 

Oxyfluorfen 0 2 1 0 1 3 2 9 No data 
ToxRefDB (liver) 
OPP (liver)  

Likely To Be Carcinogenic To 
Humans 

Methoxychlor 0 2 1 0 1 3 1 8 
CPDB 
(negative) 

CPDB (negative) 
CCRIS  (Testes)   
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Captan 0 2 1 0 0 4 1 8 
CPDB (uterus, 
kidney) 

ToxRefDB (small 
intestines, 
stomach) CPDB 
(small intestines) 
NTP (small 
intestines) 

Multiple Descriptors: Likely at 
prolonged, high level 
exposures, but not likely at 
dose levels that do not cause 
cytotoxicity and regenerative 
cell hyperplasia 

Oxytetracycline dihydrate 1 1 3 0 0 1 1 7 No data No data 
Group D‐‐Not Classifiable as to 
Human Carcinogenicity 

Perfluorooctane sulfonic 
acid 1 1 1 0 1 2 1 7 No data No data   
Perfluorooctanoic acid 0 2 1 0 1 2 1 7 No data No data   

Benomyl 0 1 1 1 0 3 1 7 No data 
ToxRefDB (liver), 
CCRIS (liver) 

Group C‐‐Possible Human 
Carcinogen 

Pirimiphos-methyl 1 2 0 0 1 2 1 7 No data 
ToxRefDB 
(negative) Cannot Be Determined 

Naled 0 1 1 0 0 3 1 6 No data No data 

Group E‐‐Evidence of 
Non‐carcinogenicity for 
Humans 

Fluazifop-P-butyl 1 0 2 0 1 1 1 6 No data No data 
Not Likely To Be Carcinogenic 
To Humans 

Thiophanate-methyl 0 1 1 0 0 2 2 6 OPP (thyroid) 
ToxRefDB (liver), 
OPP (liver) 

Likely to be Carcinogenic to 
Humans 

Fluroxypyr-meptyl 0 0 0 0 0 5 0 5 No data No data 

Not Likely To Be Carcinogenic 
To Humans --Based on 
Fluroxypyr Data 

Metam-sodium hydrate 0 0 0 0 1 3 1 5 No data No data 
Likely To Be Carcinogenic To 
Humans  

Tri-allate 0 1 0 0 0 3 1 5 

ToxRefDB 
(kidney) ToxRefDB (liver) 

Group C‐‐Possible Human 
Carcinogen 

Metolachlor 0 1 1 0 0 2 1 5 OPP (Liver) 
ToxRefDB 
(negative) 

Group C‐‐Possible Human 
Carcinogen 

Acifluorfen 1 1 2 0 0 0 0 4   
CPDB (liver, 
stomach) 

Multiple Descriptors: Likely to 
be Carcinogenic to Humans at 
High Doses Not Likely to be 
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Carcinogenic to Humans at 
Low Doses 

Methyl isothiocyanate 0 0 0 0 1 2 1 4 No data No data 
There are insufficient data to 
characterize the cancer risk 

Napropamide 0 1 0 0 0 2 1 4 No data No data 
Not Likely To Be Carcinogenic 
To Humans 

Chlorpyrifos oxon 
(metabolite of 
chlopyrifos) 0 0 1 0 0 3 0 4 

ToxRefDB 
(negative) 
CPDB 
(negative) CCRIS (negative) 

Group E‐‐Evidence of 
Non‐carcinogenicity for 
Humans 

Dibutyl phthalate 0 1 0 0 0 2 1 4 No data No data 

2-Phenylphenol 0 0 1 0 1 1 1 4 CPDB (bladder) ToxRefDB (Liver) 
 Not Likely To Be 
Carcinogenic To Humans 

Benfluralin 0 0 0 0 0 2 2 4 
CCRIS (liver, 
thyroid) ToxRefDB (liver) 

Suggestive Evidence of 
Carcinogenicity, but Not 
Sufficient to Assess Human 
Carcinogenic Potential 

Tetramethrin 0 0 1 0 0 2 1 4 OPP (testes) 
ToxRefDB 
(negative) 

Group C‐‐Possible Human 
Carcinogen 

Butralin 0 1 0 0 0 1 1 3 No data No data   
Phthalic acid, mono-2-
ethylhexyl ester 1 0 1 0 0 1 0 3 No data No data   

Methidathion 1 0 0 0 1 1 0 3 No data 
ToxRefDB (liver) 
CPDB (liver) 

Group C‐‐Possible Human 
Carcinogen 

Terbacil 0 0 1 0 0 1 1 3 No data ToxRefDB (liver) 

Group E‐‐Evidence of 
Non‐carcinogenicity for 
Humans 

Diazoxon (metabolite of 
diazinon) 0 0 0 0 0 2 0 2 

ToxRefDB 
(negative) 
CPDB 
(negative) 
CCRIS 
(negative) CCRIS (negative) 

Not Likely to be Carcinogenic 
to Humans 

Dimethyl phthalate 0 0 0 0 0 2 0 2 No data No data   
Methyl hydrogen 0 0 0 0 0 2 0 2 No data No data   
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phthalate 

Thiobencarb 0 0 0 0 0 1 1 2 No data No data 
Group D‐‐Not Classifiable as to 
Human Carcinogenicity 

EPTC (S-ethyl 
dipropyl(thiocarbamate)) 0 0 0 0 0 2 0 2 No data 

ToxRefDB 
(negative) 

Not Likely to be Carcinogenic 
to Humans 

Norflurazon 0 0 0 0 0 1 1 2 No data 
ToxRefDB (liver) 
OPP (liver) 

Group C‐‐Possible Human 
Carcinogen 

Clopyralid-olamine 0 0 0 0 0 1 0 1 No data No data 
Not Likely to be Carcinogenic 
to Humans 

Cyanazine 0 0 1 0 0 0 0 1 

CPDB 
(mammary 
gland) CCRIS 
(negative) CCRIS (no cancer) 

Group C‐‐Possible Human 
Carcinogen 

Pirimicarb 1 0 0 0 0 0 0 1 No data 

OPP (liver, lung, 
ovary, mammary 
gland) 

Likely to be Carcinogenic to 
Humans 

Symclosene 0 0 0 0 0 1 0 1 No data No data   

Fluometuron 0 0 0 0 0 1 0 1 

CBDB 
(negative) 
CCRIS 
(negative) 

ToxRefDB (lung) 
OPP (lung) CBDB 
(negative) CCRIS 
(negative) 

Group C‐‐Possible Human 
Carcinogen 

Imazapyr 0 0 1 0 0 0 0 1 No data 
ToxRefDB 
(negative) 

Group E‐‐Evidence of 
Non‐carcinogenicity for 
Humans 

Maleic hydrazide 0 0 0 0 1 0 0 1 
CPDB 
(negative) 

ToxRefDB 
(negative) CPDB 
(negative) CCRIS 
(liver) 

Group E‐‐Evidence of 
Non‐carcinogenicity for 
Humans 

6-Deisopropylatrazine 0 0 0 0 0 0 0 0 No data No data   

Chloroneb 0 0 0 0 0 0 0 0 No data No data 

Data Are Inadequate for an 
Assessment of Carcinogenic 
Potential 
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Ethylenethiourea 0 0 0 0 0 0 0 0 

CPDB (thyroid) 
OPP (thyroid) 
CCRIS 
(thyroid, liver, 
pituitary) 

CPDB (liver) OPP 
(thyroid, pituitary, 
liver) CCRIS 
(liver) 

Group B‐‐Probable Human 
Carcinogen 

Etridiazole 0 0 0 0 0 0 0 0 

OPP (liver, bile 
duct, mammary 
gland, thyroid, 
testes) No data 

Methyl cellusolve 0 0 0 0 0 0 0 0 No data No data   
Monocrotophos 0 0 0 0 0 0 0 0 No data No data   
Phenoxyethanol 0 0 0 0 0 0 0 0 No data No data   

Tebuthiuron 0 0 0 0 0 0 0 0 No data No data 
Group D‐‐Not Classifiable as to 
Human Carcinogenicity 

Monobutyl phthalate 0 0 0 0 0 0 0 0 No data No data   
Cloprop 0 0 0 0 0 0 0 0 No data ToxRefDB (liver)   

Imazethapyr 0 0 0 0 0 0 0 0 No data 
ToxRefDB 
(negative) 

Not Likely to be Carcinogenic 
to Humans 

Triclopyr 0 0 0 0 0 0 0 0 No data 
ToxRefDB 
(negative) 

Group D‐‐Not Classifiable as to 
Human Carcinogenicity 
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Table and Figure Legends: 
 
Table 1: Summary of cancer risk model for chemicals not included in the training set for 
rat endpoints. The columns “Kidney 2” through “Thyroid 3” indicate the number of genes 
associated with those tissue-specific preneoplastic (2) or neoplastic (3) lesions in the 
cancer risk model that were perturbed in one of our assays for each chemical. Rat sum is 
the sum of the previous 7 columns. Chemicals are sorted in decreasing value of this 
column. The Evidence Rat column gives any evidence from ToxRefDB (data entered into 
the database after the training data set was extracted), CPDB, NTP or TOXNET CCRIS. 
The Evidence Mouse column is the same for mouse. EPA Carcinogenic Potential 
Classification is provided by the EPA Office of Pesticide Programs. [18] 
 
Figure 1: Forest plot showing the mean odds ratio (OR) and confidence intervals (CI) for 
each significant association between in vitro assay and in vivo endpoint. Only 
associations with 3 or more true positives are shown. The colored circles give the point 
estimate of the OR and whiskers give the 95% CI. The gray bars indicate the endpoint-
specific permutation-test 95% CI. The linkage to types of processes is indicated by the 
color of the OR circle: red is cancer hallmark-related, cyan is XME-related and white is 
other. The assay name is listed at the far left. The associated gene, gene-related process, 
species, cancer type and cancer severity level (2 = preneoplastic lesions and 3 = 
neoplastic lesions) are indicated to the right. A darker line indicates overlap of the assay-
specific and the endpoint confidence intervals. Supplemental Figure S1 is high-resolution 
pdf of this figure. 
 
Figure 2: Interaction map showing links between certain rodent cancer endpoints, gene 
expression changes associated with those endpoints, and in vitro assays. Endpoints are 
shown in white (2=preneoplastic lesions, 3=neoplastic). Assays are shown as small green 
circles connecting to target genes. Each green dot represents a single assay. Hallmark-
associated genes are shown in red and XME-associated genes in cyan. TP53 and its 
associations are highlighted in pink. Lines connect genes and their associated assay(s), 
and assays and their associated endpoints.  
 
Figure 3: Map of carcinogenicity-related genes in the context of canonical pathways. 
Genes associated with increased cancer risk are indicated by bold-underlined text. Green 
indicates that the assay detected an increase in protein levels, red a decrease. Black 
indicates an assay not measuring the direction of protein level changes. Genes surrounded 
by a double box (e.g. AR) are receptors. A bulls-eye indicates transcriptional regulation. 
A red line indicates repression. Linkages were derived from the literature and published 
pathway maps. The numbers correspond to references, provided in Supplemental Table 
S5.  
 
Figure 4: Heatmap illustrating rat thyroid tumorigens and their activity (-log10(AC50)) in 
assays associated with rat thyroid tumors. Darker colors indicate more potent 
interactions. 
 
Figure 5: Conceptual diagram linking pathways to rodent and human thyroid disease 
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