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ABBREVIATIONS AND ACRONYMS 

BHSS Bunker Hill Superfund Site 
CDF cumulative density function 
CDR Coeur d’Alene River 
cfs cubic foot per second 
cy cubic yard 
Eq equation 
FP flood plain sediment 
FS feasibility study 
HELP hydrologic evaluation of landfill performance 
LB lower bound 
lb/d pound per day 
LCL lower confidence limit 
M/T metal mass per unit time 
M/V metal mass per volume of water 
µg/L microgram per liter 
mg/kg milligram per kilogram 
PAT probabilistic analysis tool 
PDF probability density function 
ppm part per million 
PRB permeable reactive barrier 
RI remedial investigation 
RI/FS remedial investigation/feasibility study 
RLP relative loading potential 
SFCDR South Fork Coeur d’Alene River 
TCD typical conceptual design 
tons/cy tons per cubic yard 
UB upper bound 
UCL upper confidence limit 
USGS United States Geological Survey 
V/T volume per unit time 
yr year 
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A.1.0 INTRODUCTION 

This appendix provides a general discussion of uncertainty associated with quantitative estimates 
of physical variables of interest.  For the probabilistic analysis of metal loadings, these variables 
include stream discharges, concentrations, loadings, ratios of loading or concentration to goals 
(such as AWQC) or other targets (e.g., TMDL loading capacities), as well as source volumes, 
relative loading potentials, remediation factors, and the like. The discussion introduces general 
concepts used to characterize and quantify uncertainty as part of the probabilistic analysis.  The 
discussion centers on the need to quantitatively estimate physical variables of interest under 
conditions of uncertainty.  The estimates may relate to current conditions or predictions of 
potential future conditions. 

In practice, physical variables of interest must be estimated by some method.  Depending on the 
situation, estimation methods may be direct or indirect measurements, calculations using 
mathematical models (which may be simple or complex), inferences or interpretations, 
hypotheses, assumptions, or some combination of methods.  These methods, which generally 
include “objective” and “subjective” aspects, are never truly exact. 

All estimates of physical variables are approximations having some degree of potential 
inaccuracy, or “error,” relative to exact, or true, values.  Where the potential estimation error is 
significant, the variables may be characterized as “uncertain variables.”1  Very simply: 

The exact or true value of an uncertain variable cannot be estimated or predicted without 
potential estimation inaccuracy or “error.” 

To deal with this potential error, uncertain variables are treated probabilistically to make 
probabilistic estimates of their inherently uncertain true values.  Equivalent terms used in this 
document (and generally in the literature) for uncertainty and related inaccuracy may include, 
depending on context, “error,” “estimation error,” or “estimation uncertainty.”2 

                                                 
1 “Random variables” is the technically correct term (from  probability theory).  However, the term “random 
variables” can be misleading since it could be erroneously construed to mean that such variables can take on any 
value with equal probability—which is not the general case.  Probability theory allows quantitative predictions of 
“random” phenomena. 
2 The inaccuracy more precisely includes inexactitude, as probability bounds (including exceedance/non-exceedance 
estimates, confidence and tolerance bounds, etc.) can provide estimates that are accurate but not necessarily precise, 
since increasing accuracy usually comes at the cost of decreased precision for a given state of information or data.  
Unfortunately, the semantics can get somewhat confusing and tortured. 
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Uncertainty stems from imperfect information and incomplete knowledge.  Only with perfect 
information and complete knowledge is there no uncertainty or potential error.  For the case of 
metal loadings and concentrations, estimation uncertainty comes from several interrelated 
sources.  These uncertainty sources include: 

• Limited available measurement and observational data 

• Simplifications and approximations used in estimating 

• Natural variability including natural complexity, heterogeneity, and variability in 
space and over time 

• Limited understanding of how the pertinent natural systems interact and behave 
over space and time 

• Incomplete knowledge of how hypothetical or actual remedial actions will 
perform over time 

At least three types of estimation uncertainty exist: natural variability, model uncertainty, and 
parameter uncertainty.  Natural variability over space or time includes the intrinsic complexity of 
the physical phenomenon of interest.  Model uncertainty comes from inaccuracy in the 
deterministic or probabilistic models used to characterize the natural variability of the 
phenomenon of interest.  Parameter uncertainty (also known as statistical uncertainty) comes 
from inaccuracy in the parameters of the deterministic and probability models.  These three types 
of uncertainty overlap to some extent. 

Natural variability is the combination of two effects: (1) the practically irreducible uncertainty 
due to our limited quantitative and predictive knowledge of the fundamental physical 
mechanisms and interactions underlying the phenomenon of interest, and (2) the fundamentally 
probabilistic nature of the phenomenon itself.  In principle, advancements in fundamental 
knowledge could reduce the first effect, at a cost, but not the second.  From a practical 
standpoint, natural variability can be considered “intrinsic, fundamental, irreducible” uncertainty, 
reflecting the inexactitude of available knowledge. 

From a predictive standpoint, model uncertainty reflects the fact that real-world data do not 
exactly and perfectly fit any theoretical probability distribution (this is true for both parametric 
and non-parametric or empirical distributions—e.g., see Hanover 1980, p. 367).  However, 
although the fits are always approximations, they may be quite adequate for practical purposes.  
Parameter uncertainty, reflecting inaccuracy in the model parameters, can be virtually eliminated 
with sufficient data, at least in theory. 
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The combination of model and parameter uncertainty means that probabilities are themselves 
estimates, and not exact specifications of the inexactitude of available knowledge.  In particular, 
probabilities are statements of knowledge that are always conditional on available information 
and its interpretation.  This fundamental fact is implicit in all the probabilities estimated or 
discussed in this document.  Since interpretation is required, so is understanding and sound 
judgment.  Keeping these limitations in mind, for practical purposes, probabilistic estimates can 
provide a useful, quantitative specification of potential outcomes. 

Probabilistic estimates use the concepts and mathematics of probability theory, including random 
variables and random processes (“laws of chance”) and error propagation.  Although the 
fundamental basis of these concepts and mathematics is well established, their practical 
application depends on context.  Background for the approach used to make probabilistic 
estimates is summarized in the following sections. 
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A.2.0 CHARACTERIZING UNCERTAINTY 

This section introduces the basic concepts of probabilistic parameters and probability density 
functions (PDFs).  Probabilistic parameters and PDFs are used to quantitatively characterize 
uncertainty and make probabilistic estimates. 

To simplify presentation and discussion, the symbol X is used to generally represent any 
uncertain variable such as metal loadings, source volumes, or remediation factors.  Also, the 
uncertain variables may or may not be functions of other variables, which may or may not be 
treated probabilistically. 

Probabilistic parameters are similar to statistical measures, such as averages, standard deviations, 
variances, and correlation coefficients.  However—and this is key—probabilistic parameters are 
not limited to measurement data.  They can be used to characterize uncertainty, including natural 
variability or potential estimation error, in any kind of estimate—whether it is measured, 
calculated, inferred, hypothesized, opined, or assumed. 

The PDF of X, PDFX, defines the probability (density) of the true (but uncertain) value X over its 
full range of potential values.  PDFX also determines the cumulative density function (CDF) of 
X, CDFX.  Given PDFX, CDFX defines the probability that any particular estimate of X will not 
be exceeded by the true (but uncertain) value of X.  Where X is restricted to positive values, 
CDFX  is the integral of PDFX from zero to particular estimates of X over the range of possible 
values. 

PDFX  is necessary to make the most useful probabilistic estimates of the true, but uncertain, 
value of X.  These estimates include: 

• the probability that X exceeds a given estimate 

• the estimate that is not exceeded by X with a specified probability  
(e.g., 95 percent) 

• the estimate required to meet a given value of X with some specified probability 

As used here for characterizing the uncertainty in a variable, probabilities, and thus PDFs, are 
used and interpreted in a Bayesian sense, as discussed in Section A.4.  Therefore, over the range 
of potential values of a variable, the PDF weights each potential value (or estimate) by the 
relative degree of information or confidence (or “rational degree of belief”) that the potential 
value (or estimate) is in fact the true value, which is inherently uncertain. 
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Lognormal PDFs are used here, as will be discussed.  Examples of other PDFs commonly used 
for characterizing uncertainty include normal, uniform, Poisson, and beta distributions (e.g., 
Benjamin and Cornell 1970, Harr 1987).  Note that a variable’s PDF implicitly includes its 
probabilistic parameters. 

The probabilistic parameters of X can be analyzed independent of the PDF of X.  Furthermore, 
where X is a function of other (input) variables, the probabilistic parameters of X can be 
mathematically determined or approximated from the parameters of the input variables without 
knowledge of the PDFs of the variables. 

A.2.1 PROBABILISTIC PARAMETERS 

Implicit in the following discussion is that the variables of interest are uncertain spatial and 
temporal averages.  Uncertain variables are characterized by their probabilistic parameters, 
which, for the purpose of this document, include: 

• Expected value of X, E[X] 
• Coefficient of variation of X, CV[X] 

The expected value can be considered a “best estimate” of the true, but uncertain, value.  
Mathematically, the expected value is an average or mean value.3  The coefficient of variation is 
a measure of variability or uncertainty of potential estimates around the expected value.  The 
expected value and coefficient of variation establish the minimum necessary information to 
provide a probabilistic description of a variable. 

The coefficient of variation is related to the expected value through the variance, V[X]. 
Mathematically, the variance is the average squared deviation of the range of potential estimate 
from the expected value.  The variance is the same as the square of the standard deviation, 
SD[X].  Specifically, the coefficient of variation, CV[X], is defined from the variance and 
expected value as follows: 

CV[X] = V[X]1/2 / E[X] (1) 
 = SD[X] / E[X] 

                                                 
3 Since the physical variables of interest are spatial-temporal averages, the expected value is a multi-dimensional 
average, or simply, an “average of an average.”  Vanmarcke (1983) discusses effects of correlation on variability. 
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where: 

V[X] = Variance of X 
 = (E[X]CV[X])2 
SD[X] = Standard deviation of X 
 = V[X]1/2 
 = E[X]CV[X 

For illustration, assume the following.  The average and standard deviation of chemical mass 
loading from a given source (for given conditions and available data) are 10 lb/d and 5 lb/d, 
respectively (this might be reported as 10 + 5 lb/d).  This loading would be characterized as 
having an expected value of 10 lb/d and a coefficient of variation of 0.50 (5 lb/d divided by 
10 lb/d).  Also, from the definition of the coefficient of variation, note the following: 

E[X] + SD[X] = E[X] (1 + CV[X]) 

Where the expected value and coefficient of variation are dependent on multiple variables, it is 
necessary to consider potential correlation between the variables.  Correlation is quantified 
through the covariance or correlation coefficient.  For any two variables X1 and X2, the 
covariance is Cov[X1,X2] and the correlation coefficient is pX1,X2.  The covariance, Cov[X1,X2], 
and correlation coefficient, pX1,X2, are related through the expected values and coefficients of 
variation of X1 and X2 as follows: 

Cov[X1,X2] = pX1,X2E[X1]E[X2]CV[X1]CV[X2] (2a) 
 = pX1,X2(V[X1]V[X2])1/2 

pX1,X2 = Cov[X1,X2] / E[X1]E[X2]CV[X1]CV[X2] (2b) 
 = Cov[X1,X2] / (V[X1]V[X2])1/2 

The correlation coefficient measures the degree of linear correlation between X1 and X2, and 
may range between plus and minus one (-1< pX1,X2<1).  Independent variables are uncorrelated 
and (always) have a correlation coefficient of zero (pX1,X2=0).  The converse, that variables with 
a zero correlation coefficient are independent, is not generally true.  Given a pair of variables, a 
correlation coefficient of zero implies no linear correlation; a correlation coefficient of 1.0 
implies perfect direct linear correlation (i.e., X1 and X2 are directly proportional); a correlation 
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coefficient of -1.0 implies perfect inverse linear correlation (i.e., X1 and X2 are inversely 
proportional). 

In regression analysis, the square of the sample correlation coefficient, r2, measures the strength 
of the relationship between x1 and x2 in the regression x1=mx2+b, where x1 and x2 represent 
sample measurement data of X1 and X2.  The regression parameters m and b are estimated by the 
method of least squares (Natrella 1966).  In this context, r2 may be interpreted as the proportion 
of total variability measured by the regression. The square root of r2 is an estimate of the 
correlation coefficient pX1,X2, as used in the probability equations. 

Correlation may be deterministic (i.e., functional or causal), probabilistic (i.e., stochastic or 
statistical), or a mix of both.  Correlation occurs naturally between variables having the same or 
related causes.  Correlation also occurs between variables that are functions of common 
variables.4  The following section provides an approximation technique for estimating the 
covariance between functions having common uncertain variables. 

A.2.1.1 Covariance of Functions 

Functions of uncertain variables will be correlated whether or not the uncertain variables are 
themselves correlated.  In general, for any two variables, say Y and Z, that are functions of 
common uncertain variables Xi, such that Y=f(X1, X2, …, Xn) and Z=g(X1, X2, …, Xn), will be 
correlated, even if the Xi are themselves independent.  The covariance between Y and Z can be 
approximated using the following relationship based on Taylor Series expansion techniques (e.g., 
Benjamin and Cornell 1970, Meyer 1975, Hahn and Shaprio 1967, and Kaplan 1984); that is:  

Cov[Y,Z] = Ei=1,nEj=1,n {MY/MXi}m{MZ/MXj}m Cov[Xi,Xj] (3) 

The partial derivatives in Eq 3 are evaluated at the mean, m, or expected value, E[Xi], of the 
variables.  For the case that all Xi are independent, Eq 3 reduces to the following: 

Cov[Y,Z] = Ei=1,n{MY/MXi}m{MZ/MXi}m V[Xi] (4) 

                                                 
4 This effect is manifested in so-called “spurious correlation” between independent variables that are multiplied or 
divided by a common variable (e.g., sediment load vs. flow, where sediment load is the product of flow and 
sediment concentration) (Chang 1998, Benjamin and Cornell 1970). 
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The correlation coefficient between functions Y and Z, pY,Z, is calculated from the Cov[Y,Z] 
using Eq 2 in Section A.2.1; that is: 

pY,Z = Cov[Y,Z] / E[Y]E[Z]CV[Y]CV[Z] (5) 
= Cov[Y,Z] / (V[Y]V[Z])1/2 

Estimates for the expected values and coefficients of variation of functions are discussed in the 
following sections.  Note that in the remaining sections X is used to represent any variable 
(including Y and Z) that is a function of other (input) variables, Xi. 

A.2.1.2 Linear Functions of Uncertain Variables 

Sums or differences of uncertain variables are important.  A variable X that is the linear 
combination of “n” other variables Xi (where i=1 to n) is defined as follows where ai represent 
coefficients that are not uncertain: 

X = Σi=1,n aiXi (6) 

Coefficient ai is positive for sums (addition or positive Xi) and negative for differences 
(subtraction or negative Xi).  The following probabilistic parameters for X are based on the 
properties of linear functions of random variables and are mathematically exact (Benjamin and 
Cornell 1970). 

E[X] = E[Σi=1,n aiXi] (7) 
= Σi=1,n aiE[Xi] 

CV[X] = V[X]½ / E[X] (8) 

V[X] = V[Σi=1,n aiXi] 
= Σi=1,n ai

2V[Xi] + 2Σi=1,nΣj=i+1aiajCov[Xi,Xj] 
= Σi=1,n(aiCV[Xi]E[Xi])2 + 

+ 2Σi=1,nΣj=i+1pi,jaiajE[Xi]E[Xj]CV[Xi]CV[Xj] 
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where pi,j is the correlation coefficient between Xi and Xj.  The sign of a given Xi, either positive 
or negative, affects both E[X] and CV[X].  Note the following special cases for the coefficients 
ai: 

• All Xi are positive and sum (i.e., X= X1+X2+…+Xn): all ai=1 
• Xj is subtracted from Xi (i.e., X= Xi-Xj): ai=1 and aj=-1 

Two particularly useful special cases are presented here: the sum of two variables and the 
difference of two variables. 

X = X1 + X2 (9) 

E[X] = E[X1 + X2] (10) 
= E[X1] + E[X2] 

V[X] = V[X1 + X2] (11) 
= V[X1] + V[X2] + 2Cov[X1,X2] 
= (CV[X1]E[X1])2 + (CV[X2]E[X2])2 + 

+ 2pi,jE[X1]E[X2]CV[X1]CV[X2] 

X = X1 – X2 (12) 

E[X] = E[X1 – X2] (13) 
= E[X1] – E[X2] 

V[X] = V[X1 – X2] (14) 
= (12)V[X1] + (-12)V[X2] + 2(1)(-1)Cov[X1,X2] 
= V[X1] + V[X2] – 2Cov[X1,X2] 
= (CV[X1]E[X1])2 + (CV[X2]E[X2])2 –  

– 2pi,jE[X1]E[X2]CV[X1]CV[X2] 
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Note that for the sum, a1=a2=1 and for the difference, a1=1 and a2=–1.  For positive correlation 
between X1 and X2 (p1,2>0), the variance increases for the sum but decreases for the difference; 
and vice versa for negative correlation (p1,2<0). 

Also, for the special case that all pi,j are positive and equal to p, V[X] by Eq 8 reduces to the 
following: 

V[X] = Σi=1,n(CV[Xi]E[Xi])2 + 2pΣi=1,nΣj=i+1E[Xi]E[Xj]CV[Xi]CV[Xj] (15) 
= V[X]p=0 + p(V[X]p=1 – V[X]p=0) 

where: 

V[X]p=1 is the upper bound of V[X] = (Σi=1,nCV[Xi]E[Xi])2 = (Σi=1,nSD[Xi])2 

V[X]p=0 is the lower bound of V[X] = Σi=1,n(CV[Xi]E[Xi])2 = Σi=1,nSD[Xi]2 

For positively correlated variables having uncertain or variable p5, an assumed value of p=½ 
could be argued as representative because it is the maximum entropy estimate of 
uncertain/variable p values equally distributed between 0 and 1.6  For a condition where the 
correlation is unknown and could range with equal probability between –1 and +1, p=0 would be 
the maximum entropy estimate.  A relationship similar to Eq 15 can be easily developed from 
Eq 8 for the special case that all pi,j are negative and equal to p. 

Products of Uncertain Variables 

Products of uncertain variables are also important, where the product is defined as follows:   

X = Ji=1,n Xi (16) 
= X1CX2C…CXn 

                                                 
5 And in the absence of information to the contrary. 
6 The maximum entropy estimate being the midpoint of the range. 
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Unlike linear functions, the functional relationships for products generally depend on whether or 
not the Xi variables are independent (uncorrelated) or dependent (correlated).  The particular case 
that the Xi are independent is discussed first. 

Products of Independent Variables 

For the particular case that the uncertain variables are independent (i.e., not correlated), the 
following expressions for the probabilistic parameters are exact (Benjamin and Cornell 1970): 

E[X] = E[Ji=1,n Xi] (17) 
= Ji=1,n E[Xi] 

CV[X] = V[X]½ / E[X] (18) 
= {Ji=1,n (CV[Xi]2+1) –1}½ 

Eqs 17 and 18 are only mathematically exact if all the correlation coefficient between the Xi are 
zero.  For this case, E[X] and CV[X] do not depend on the PDFs of the Xi. 

Products of Dependent Variables 

Unlike the mathematically exact probabilistic parameters of linear functions of correlated 
uncertain variables, which do not depend on the PDFs of the variables, products, and quotients, 
correlated uncertain variables do generally depend on the PDFs of the individual variables.7  
Mathematically exact probabilistic parameters for products and quotients of uncertain variables, 
as generally used in the analysis, were based on lognormal distributions, as discussed in the 
Section A.2.2. 

Although mathematically exact estimates for products of correlated variables require knowledge 
of the PDFs, general mathematical approximations for products or more complex correlated or 
uncorrelated functions, do not.  Various approximation techniques, such as Taylor Series 
expansions, can be used to approximate the expected values, variances (and therefore 
coefficients of variation), and covariances of any (generally continuous) functions, with or 
without correlation between the variables.  Taylor Series expansion techniques are presented by 
Benjamin and Cornell (1970), Meyer (1975), Hahn and Shaprio (1967), and Kaplan (1984).  
Various other techniques are also available (e.g., Harr 1987). 

                                                 
7 Approximations based on Taylor Series expansions do not require PDFs. 
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A.2.2 USE OF LOGNORMAL PROBABILITY DENSITY FUNCTIONS 

Uncertainties in the physical variables of interest in the analysis are generally represented by 
lognormal PDFs.  Lognormal PDFs are considered reasonable for empirical, practical, and 
theoretical reasons.  Empirically, the lognormal distribution is a pattern commonly found in the 
natural world.  More specifically: 

• Measured discharges and chemical concentrations and calculated loading rates 
observed in the Coeur d’Alene Basin generally appear lognormally distributed, as 
discussed in the RI/FS (USEPA 2000a and 2000b). 

• Measured concentration of trace chemicals in various natural media8 (e.g., Ott 
1995; Gilbert 1987; USEPA 1992a, 1992b, 1989; Jornel and Huijbregts 1978; 
Krumbein and Graybill 1965) and various physical parameters commonly appear 
lognormally distributed (e.g., hydraulic conductivity, particle-size distributions, 
areas or volumes of alluvium). 

Practical reasons for using lognormal distributions include the following: 

• Minimum statistical assumptions are required.9 

• The mathematics of products, quotients, and power series can be handled exactly 
without loss of mathematical rigor or accuracy. 

• Negative values of physical variables, which are impossible, are prevented. 

• Unbounded positive values are allowed (which is generally conservative because 
it tends to overestimate true values). 

• Mixed lognormal PDFs can be treated as piece-wise lognormal PDFs. 

• Any PDF can be conservatively approximated using a lognormal PDF that 
“envelopes” the PDF over the range of interest. 

                                                 
8 Including surface water, groundwater, soil, sediments, rock, and ore bodies. 
9 A lognormal PDF is believed to be a maximum entropy PDF for the log of variables where only the expected value 
and coefficient of variation of the distribution is known or estimated.  Maximum entropy estimates give the “least 
prejudiced, or least biased, assignment of probabilities” (Harr 1987). 
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The theoretical explanation as to why metal concentrations and loadings, in particular, should 
follow lognormal distributions comes from the physics and mathematics of probability and 
random processes, including the theory of successive random dilutions, the law of proportional 
effect, and the central limit theorem (see Ott 1995).  Lognormal PDFs theoretically follow from 
the central limit theorem for phenomena arising from multiplicative mechanisms acting on a 
number of factors (Benjamin and Cornell 1970). 

For practical purposes, sums of correlated variables following lognormal distributions are also 
lognormal, based on quasi-theoretical arguments and empirical evidence.  First, lognormal PDFs 
do not violate the central limit theorem for phenomena arising from the sum of a large number of 
correlated variables that are lognormally distributed.  One important empirical demonstration of 
this effect comes from mining, where (e.g., Jornel and Huijbregts 1978): 

Metal concentrations in ore body samples continue to follow lognormal distributions as 
the spatial scale of the samples increase from drill-core sized to mining-block sized, 
which represent the volumetric sum of hundreds or thousands of core-sized samples10 

The most relevant and compelling empirical demonstration comes directly from basin streams, 
where: 

Metal concentrations and loadings in streams continue to follow lognormal distributions 
as the loadings from successive streams merge and add at downstream locations 

This empirical demonstration for metal concentrations in streams is consistent with relevant 
theory, based on successive random dilutions, the law of proportional effect, and the central limit 
theorem. 

In addition, although, theoretically, the sum of independent lognormal distributions is not 
lognormal,11 it can be demonstrated by simulation that the sum closely approximates a lognormal 
PDF.  Therefore, the sum of independent lognormal distributions can also be approximated as 
lognormal.  This result is consistent with observations that loadings from multiple sources are 
lognormal.  It is concluded for the purpose of the analysis that the sum of correlated or 
uncorrelated variables that are lognormally distributed can be adequately approximated as 
lognormally distributed. 

                                                 
10 This phenomenon goes by the name “conservation of lognormality” in mining geostatistics. 
11 By the central limit theorem, as the number of variables in the sum increases, the sum should approach a normal 
distribution. Note that the difference between a normal PDF and lognormal PDF is proportional to the coefficient of 
variation.  At small values of the coefficient of variation, the difference is minimal. 
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A.2.2.1 Lognormal Probability Functions and Parameters 

The following relationships assume that the uncertainty in the true value of the variable of 
interest, X, is lognormally distributed.  Symbol “x” represents any given specific estimate of 
(true) X.  The relationships are mathematically exact and adapted from Benjamin and Cornell 
(1970). 

The probability density function of X for any given estimate of X, x, is symbolized as PDFX[x] 
and calculated as follows: 

PDFX[x] = PDFU{u} / x ln{CV[X]2 +1}1/2 (1) 

where: 

PDFU{u} = Standard normal probability density function 
for X evaluated at u 

u  = Standard normal variate for a lognormal variable 
= ln{x (CV[X]2+1)1/2/E[X]}ln(CV[X]2+1)-1/2 

= ln{x /M[X]}ln(CV[X]2+1)-1/2 

E[X]  = Expected value of X 
CV[X]  = Coefficient of variation of X 
M[X]  = Median of X 
  = E[X] / (CV[X]2+1)1/2 
x  = Any estimate of X 

The probability that X lies in a region bounded between a lower limit xa and an upper limit xb is 
the integral of PDFX[x]dx from xa to xb.  The cumulative density function of X, CDFX[x], is the 
integral of PDFX[x]dx from xa=0 to xb=x and measures the probability that X is less than or equal 
to the estimate x; that is: 

CDFX[x] = P[X< x] (2) 
= CDFU{u} 

where CDFU{u} is the standard normal cumulative distribution function of X evaluated at u and 
all other parameters are as defined for PDFX[x].  Values of CDFU{u}can be obtained from 
standard statistical tables (e.g., Benjamin and Cornell 1970) or standard spread sheet functions 
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(e.g., function NORMSDIST(u) in MS Excel 97).  Note that for the special case of x=E[X], 
P[X< E[X]] = CDFU{u = (ln{CV[X]2+1})1/2}. 

The complement of CDFX[x] is the probability that X exceeds x; that is: 

1 – CDFX[x] = P[X>x] (3) 
= 1 – CDFU{u} 

The products and quotients of lognormally distributed variables make use of  the expected value 
and variance of the natural log of X, E[lnX] and V[lnX].  These parameters are related to the 
expected value and coefficient of variation of X, E[X] and CV[X], by the following 
relationships: 

E[lnX] = ln{E[X]/(CV[X]2+1)1/2} (4) 

V[lnX] = ln{CV[X]2+1} (5) 

The following section addresses techniques to estimate E[X] and CV[X] from available data. 

A.2.2.2 Lognormal Parameter Estimates From Statistical Data Analysis 

The two probabilistic parameters of a lognormal distribution, E[X] and CV[X], can be estimated 
from available measurement data using a variety of statistical methods.  Two common methods 
are presented here. 

Statistical Moments 

The first method for estimating E[X] and CV[X] is based on statistical “moments” of the data.  
The method of moments can be based on ln-transformed or untransformed data.  For 
untransformed data E[X] and CV[X] are based on the arithmetic mean (mX) and standard 
deviation (sX) or variance (sX

2) of the data (xi, i=1 to n, where n is the total number of data 
points); that is: 

E[X] = (Σi=1,n xi) / n (1) 
= mX 

CV[X] = sX / mX (2) 
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= {sX
2}1/2 / mX 

= {[Σi=1,n (xi - mX)2] / n-1}1/2 / mX 

Statistical Error Associated with Expected Value Estimates 

Statistical (random) error associated with E[X] estimated from n independent measurement data 
can be approximated as follows: 

CV[E[X]] = (sX / mX) / n½ (3) 

Note that (sX / mX) is the same as the estimate of CV[X] computed by Eq 2.  Eq 3 assumes that 
estimate E[X] by Eq 1 is normally distributed.  The validity of this assumption is based on the 
central limit theorem and increases with n, the number of samples used in the estimate.  As 
Natrella (1966) states, “. . . the sampling distribution of E[X]12 is “normal” to a good 
approximation for samples of four or more measurements from almost every population 
distribution likely to be met in practice” (Natrella 1966, pp. 2-9 and 2-10).  This approximation 
is consistent with the common approach for estimating confidence intervals or limits around the 
true mean, or E[X], computed from measurement data.  Specifically, the 1-" two-sided 
confidence interval for the expected value, E[X], is computed as follows: 

mX – (sX/n½)t"/2,n-1  < E[X] <  mX + (sX/n½)t"/2,n-1 (4) 

where t"/2,n-1 is the t-statistic at the 1-"/2 confidence level with n-1 degrees of freedom (Natrella 
1966).13  Based on Eq 4, the 1-"% one-sided upper confidence level (UCL) on the expected 
value would be mX+(sX/n½)t",n-1; similarly, the 1-"% one-sided lower confidence level (LCL) on 
the expected value would be mX– (sX/n½)t",n-1.  Statistical approaches to parameter estimation 
and comparison are found in standard statistical handbooks and texts (e.g., Natrella 1966, 
Benjamin and Cornell 1970, Meyer 1975). 

                                                 
12 Natrella uses X with a bar over it for E[X]. 
13 It is noted that Gilbert (1987, p.170) states that if one is confident that the underlying distribution is lognormal, the 
method of Land is preferred.  However, the method of Land is considered suspect for practical cases because of its 
extreme predictions.  In most practical cases, physical realizations in the extreme tail of a theoretical lognormal 
distribution having large coefficients of variation are not reasonably possible.  These suspect, extreme values can 
control and high-bias the expected value. 
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For X lognormally distributed, lnX follows a normal distribution, as would ln-transformed data.  
E[X] and CV[X] can be estimated from the mean (mlnX) and variance (slnX

2) of the 
ln-transformed data using Eqs 1 and 2 (calculated on the ln-transformed data) and the following 
relationships (Gilbert 1987, Benjamin and Cornell 1970): 

E[X] = exp{mlnX + slnX
2/2} (5) 

CV[X] = V[X]1/2 / E[X]  
= {exp(2mlnX + slnX

2)[exp(slnX
2) –1]}1/2 / E[X] (6) 

Also, the geometric mean or median of X, M[X], is estimated as exp{mlnX}.  Similar to 
computing bounds around E[X], the 1-" two-sided confidence interval for the geometric mean or 
median of X, M[X], can be computed as follows (Gilbert 1987, p.173): 

exp{mlnX – (sXnX/n½)t"/2,n-1}  < M[X] <   exp{mlnX + (slnX/n½)t"/2,n-1} (7) 

Based on Eq 7, the 1-"% one-sided UCL on the geometric mean or median would be exp{mlnX + 
(slnX/n½)t",n-1}; the similar LCL would be exp{mlnX – (slnX/n½)t",n-1}. 

Regression Analysis 

The second method for estimating E[X] and CV[X] is based on linear least-squares regression 
analysis (Ecology 1993).  The normal standard variate (u) is regressed against the natural log of 
the data using the linear model u=b+m*ln{x}, where m and b are the slope and intercept, 
respectively, of the regression line.  Using this method, the data are ranked from lowest to 
highest (i=1 to n) and assigned a “plotting point,” which is an estimate of the cumulative 
frequency or probability of each data (xi or ln{xi}).  The plotting point, PP, (for a normal 
distribution) for each xi is as follows, where i is the rank of xi: 

PPi = (i – 3/8) / (n + 1/4) (8) 

The value of u for each xi is then calculated as the inverse standard normal cumulative 
distribution, CDF-1, evaluated at the plotting point; that is: 
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ui = CDF-1{(i – 3/8) / (n + 1/4)} (9) 
= CDF-1{PPi} 

The ui are regressed against ln{xi}to calculate the least squares (“best fit”) regression line, 
u=b+m*ln{x}.  The square of the correlation coefficient, r2, measures the goodness of fit to a 
straight line, which is indicative of lognormally distributed data (e.g., as a test for lognormality, 
Ecology (1993) assumes the data are lognormally distributed for r2>0.9). 

E[X] and CV[X] are estimated from the slope and intercept of the regression line, u=b+m*ln{x}, 
using the following relationships for a lognormal variate (Ecology 1993, Gilbert 1987): 

E[X] = exp[–b/m + ½m-2] (10) 

CV[X] = {exp[m-2] – 1}1/2 (11) 

The regression method was generally used in the RI to analyze the available historic data to 
estimate the expected value and coefficient of variation of discharge, metal concentration, and 
metal loading at selected stream monitoring locations.  Further discussion is presented in 
Appendix B Section B.3.1. 

Note that E[X] estimated by regression depends on both the slope and intercept of the regression 
line.  Because of this, there appears to be no direct way to estimate confidence intervals for 
statistical uncertainty in E[X] estimated by regression.  However, error bounds can be 
approximated using results from the method of statistical moments; that is, following Eq 4: 

exp[–b/m + 1/2m2] – (sX/n½)t"/2,n-1  < E[X] <  exp[–b/m + 1/2m2] + (sX/n½)t"/2,n-1 (12) 

Based on Eq 12, the 1-"% one-sided UCL on E[X] would be exp[–b/m + 1/2m2] + (sX/n½)t",n-1.  
The similar LCL would be exp[–b/m + 1/2m2] – (sX/n½)t",n-1. 

The following two sections derive relationships for the expected value and coefficient of 
variation of variables that are functions of lognormal variables.  Section A.2.3.2 covers products 
and Section A.2.3.3 covers quotients. 
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A.2.2.3 Probabilistic Parameters for Products of Lognormal Variables 

The product of two lognormally distributed random variables is also lognormally distributed 
(Benjamin and Cornell 1970).  The expressions for the coefficient of variation of the product of 
two lognormally distributed random variables X=YCZ is derived as follows: 

X = YCZ (1) 

lnX = lnY + lnZ (2) 

V[lnX] = V[lnY + lnZ] (3) 
= V[lnY] + V[lnZ] + 2Cov[lnY,lnZ]  
= V[lnY] + V[lnZ] + 2 plnY,lnZ(V[lnY]V[lnZ])1/2  

Note that Eq 3 follows from Eq 7 in Section A2.1.1.  Using “A” as a dummy variable for X, Y, 
or Z, and substituting V[lnA]=ln{CV[A]2+1}for all variables and letting p=plnY,lnZ yields: 

ln(CV[X]2 +1) = ln(CV[Y]2 +1)+ln(CV[Z]2 +1) + 2p(V[lnY]V[lnZ])1/2  (4) 
= ln(CV[Y]2 +1)+ln(CV[Z]2 +1) +  

+ 2p{ln(CV[Y]2 +1)ln(CV[Z]2+1)}1/2  

Taking anti-natural logs and simplifying: 

CV[X]2 +1 = (CV[Y]2+1)(CV[Z]2+1)exp{2p{ln(CV[Y]2+1)ln(CV[Z]2+1)}1/2 } (5) 

CV[X]  = {(CV[Y]2+1)(CV[Z]2+1)exp{2p{ln(CV[Y]2+1)ln(CV[Z]2+1)}1/2}–1}1/2 (6) 

  = {(CV[Y]2+1)(CV[Z]2+1)S2 – 1}1/2 

where: 

S  = exp{2p{ln(CV[Y]2+1)ln(CV[Z]2+1)}1/2 }1/2 

  = exp{p{ln(CV[Y]2+1)ln(CV[Z]2+1)}1/2 } 

p  = Correlation coefficient between the natural log of Y and  
the natural log of Z, plnY,lnZ 
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The expression for expected value of the product of two lognormally distributed random 
variables X=YCZ is derived as follows: 

E[lnX] = E[lnY + lnZ] (7) 
= E[lnY] + E[lnZ] 

Substituting E[lnA]=ln{E[A]/(CV[A]2+1)1/2} for each of the variables (where A is a dummy 
variable for X, Y, or Z), taking antilogs, and algebraically simplifying leads to the following 
expressions: 

ln{E[X]/(CV[X]2+1)1/2} = ln{E[Y]/(CV[Y]2+1)1/2} + ln{E[Z]/(CV[Z]2+1)1/2} (8) 

E[X]/(CV[X]2+1)1/2 = {E[Y]/(CV[Y]2+1)1/2}{E[Z]/(CV[Z]2+1)1/2} (9) 

E[X] = E[Y]E[Z]/{(CV[X]2+1)1/2(CV[Z]2+1)1/2}(CV[X]2+1)1/2 (10) 

Substituting for CV[X] from Eq 6 and algebraically simplifying yields the following, where S is 
as before for CV[X]; that is: 

E[X] = E[Y]E[Z]S (11) 

To summarize, the product X=YCZ of two lognormally distributed random variables is also 
lognormally distributed with expected value and coefficient of variation given by the following 
expressions: 

E[X] = E[Y]E[Z]S (12) 

CV[X] = {(CV[Y]2+1)(CV[Z]2+1)S2 – 1}1/2 (13) 

where: 

S  = exp{2p{ln(CV[Y]2+1)ln(CV[Z]2+1)}1/2 }1/2 
  = exp{p{ln(CV[Y]2+1)ln(CV[Z]2+1)}1/2 } 

p  = Correlation coefficient between the natural log of Y and  
the natural log of Z, plnY,lnZ 
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For X=YCZ, both E[X] and CV[X] increase with the correlation coefficient, from a minimum if 
Y and Z are perfectly negatively correlated, such that plnY,lnZ=–1, to a maximum if Y and Z are 
perfectly positively correlated, such that plnY,lnZ=1.  Note that if plnY,lnZ=0, then  S=1 in Eqs 5 
and 6. 

Generalizing the products of lognormal variables for X = Ji=1,nXi, results in the following: 

E[X] = {Ji=1,n E[Xi]}S (14) 

CV[X] = {{Ji=1,n(CV[Xi]2+1)}S2 –1}1/2 (15) 

where: 

S = exp{2Σi=1,nΣj=i+1pi,j{ln(CV[Xi]2+1)ln(CV[Xj]2+1)}1/2}1/2 

 = exp{Σi=1,nΣj=i+1pi,j{ln(CV[Xi]2+1)ln(CV[Xj]2+1)}1/2} 

p = Correlation coefficient between the natural log of Xi and  
the natural log of Xj, plnXi,lnXj 

If plnXi,lnXj=0 for all i and j, then  S=1 and Eqs 14 and 15 simplify to Eqs 17 and 18 in Section 
A.2.1.3, which are mathematically exact for uncorrelated variables having any PDF, not just 
lognormal. 

A.2.2.4 Probabilistic Parameters for Quotients of Lognormal Variables 

The quotient of two lognormally distributed random variables is also lognormally distributed 
(Benjamin and Cornell 1970).  The expressions for the coefficient of variation of the quotient of 
two lognormally distributed random variables X=Y/Z follows the same general derivation as for 
the product of two random variables, with the following differences: 

X = Y/Z (1) 

lnX = lnY – lnZ (2) 

E[lnX] = E[lnY - lnZ] (3) 
= E[lnY] - E[lnZ] 

V[lnX] = V[lnY - lnZ] (4) 
= V[lnY] + V[lnZ] – 2Cov[lnY,lnZ]  
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 = V[lnY] + V[lnZ] – 2plnY,lnZ(V[lnY]V[lnZ])1/2  

Compared to X=YCZ, for X=Y/Z, lnZ is subtracted from lnY; Eq 4 then follows from Eq 7 in 
Section A.2.1.1.  After substitutions and algebraic simplifications similar to those used for 
X=YCZ in Section A.2.3.1, the following results are obtained for X=Y/Z: 

E[X] = E[Y](1+ CV[Z]2)S / E[Z] (5) 

CV[X] = {(CV[Y]2+1)(CV[Z]2+1)S2 – 1}1/2 (6) 

where: 

S  = exp{–2p{ln(CV[Y]2+1)ln(CV[Z]2+1)}1/2 }1/2 

  = exp{–p{ln(CV[Y]2+1)ln(CV[Z]2+1)}1/2 } 

p  = Correlation coefficient between the natural log of Y and  
the natural log of Z, plnY,lnZ 

Note the differences compared to the product of two uncertain variables.  First, the expected 
value of the quotient depends on the coefficient of variation of the denominator.  Second, the 
correlation coefficient p in S is multiplied by a –1 (i.e., –p).  In contrast to the product of two 
variables, for X=Y/Z, both E[X] and CV[X] decrease with the correlation coefficient, from a 
maximum if Y and Z are perfectly negatively correlated, such that plnY,lnZ = –1, to a minimum if 
Y and Z are perfectly positively correlated, such that plnY,lnZ = 1.  Note that if plnY,lnZ=0, then  
S=1 in Eqs 5 and 6. 

A.2.2.5 Probabilistic Parameters for Power Series of Uncertain Variables 

Generalizing the products and quotients of lognormal variables for a power series, where the 
exponents ai are constants that can be positive (products, ai>0) or negative (quotients, ai<0), 
results in the following: 

X  =  Ji=1,nXi
ai, (1) 

E[X] = {Ji=1,n E[Xi]ai(1+ CV[Xi’]2)ai*ai}S (2) 

CV[X] = {{Ji=1,n(CV[Xi]2+1)ai*ai}S2 –1}1/2 (3) 
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where: 

Xi’ = Xi with negative ai; for positive ai, Xi’= 0 
ai*ai = ai

2 
S = exp{2Σi=1,nΣj=i+1pi,jaiaj{ln(CV[Xi]2+1)ln(CV[Xj]2+1)}1/2}1/2 

 = exp{Σi=1,nΣj=i+1pi,jaiaj{ln(CV[Xi]2+1)ln(CV[Xj]2+1)}1/2} 

p = Correlation coefficient between the natural log of Xi and  
the natural log of Xj, plnXi,lnXj 

Eqs 2 and 3 are not generally mathematically exact for non-lognormal variables (unless all ai=1), 
although the approximation would generally be of high-order, as indicated by comparison with 
the following Taylor series approximation for uncertain variables following any PDF, not 
restricted to lognormal (or any) distribution. 

Unrestricted PDFs 

A second-order Taylor series approximation for a power series composed of uncertain variables 
each having any PDF is as follows (Meyer 1975, Hahn and Shaprio 1976, Benjamin and Cornell 
1970, and Kaplan 1984): 

E[X] = E[∏i=1,n Xi
ai] (4) 

~ ∏i=1,n E[Xi]ai + ½ ∑i=1,n∑j=1,n (∂2X/∂Xi∂Xj|m)Cov[Xi,Xj] 

~ ∏i=1,n E[Xi]ai (1 + ½ ∑i=1,n ai(ai-1)CV[Xi]2 +  

+ ∑i=1,n∑j=i+1,n pXi,Xj aiaj CV[Xi] CV[Xj]) 

V[X] = V[∏i=1,n Xi
ai] (5) 

~ ∑i=1,n∑j=1,n {(∂X/∂Xi|m ∂X/∂Xj|m)Cov[Xi,Xj] + (∂2X/∂Xi∂Xj|m)V[Xi]V[Xj]} 

~ (∏i=1,nE[Xi]ai)2(∑i=1,n ai
2 CV[Xi]2  + 2∑i=1,n∑j=i+1,n pXi,Xj  aiaj CV[Xi]CV[Xj]) + 

  +  {(∏i=1,n E[Xi]ai)∑i=1,n∑j=i+1,n aiaj E[Xi]E[Xj]CV[Xi]CV[Xj]} 
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CV[X] = V[X]1/2 / E[X] (6) 

~ {∏i=1,n(CV[Xi]2 + 1) – 1 + 2∑i=1,n∑j=i+1,n pXi,Xj aiaj CV[Xi]CV[Xj]}1/2 

~ {(CV[X1]2+1)(CV[X2]2+1)...(CV[Xn]2+1) – 1 + 

  + 2∑i=1,n∑j=i+1,n pXi,Xj aiaj CV[Xi]CV[Xj]}1/2 

A.2.2.6 Probabilistic Parameters for a General Function of a Lognormal Variable 

In general, the expected value and coefficient of variation of a function X=f(Y) where Y is 
lognormally distributed can be estimate from the fundamental definitions of expected values and 
variances (Benjamin and Cornell 1970); that is: 

E[X] = m0 to 4 f(y)PDF[Y] dy (1) 

CV[Y] = V[Y]1/2 / E[Y] (2) 

= {m0 to 4 f(y)2 PDF[Y] dy - E[X]2}1/2 / E[X] 

Typically, Eqs 1 and 2 have to be solved numerically. 
 



PREDICTIVE ANALYSIS FOR POST-REMEDIATION METAL LOADING Appendix A 
Coeur d’Alene Basin RI/FS Section A.3.0 
RAC, EPA Region 10 Date10/01/07 
 Page 27 
 
 
 

W:\45504\0709.018\PDF VERSIONS\Appendix A-CDA Final Tech Memo.doc 

A.3.0 PROBABILISTIC ESTIMATES 

This section provides the mathematical relationships required to make probabilistic estimates.  
The probability that X exceeds some given value (e.g., “G”) is covered in Section A.3.1.  The 
non-exceedance value of X, the value of X that is not exceeded with a given probability (e.g., 
95 percent), is covered in Section A.3.2.  The value of X required to meet a given value (e.g., G) 
with some specified probability is covered in Section A.3.3.  As discussed in Section A.2, these 
probabilistic estimates assume that the uncertainty in X follows a lognormal PDF.   

A.3.1 PROBABILITY TRUE VALUE OF X DOES NOT EXCEED GOAL G 

The probability that (the true but uncertain value of) X does not exceed a given target value or 
goal G14 is estimated as follows from the probabilistic parameters of X (Benjamin and Cornell 
1970); that is: 

P[X < G] = CDFX{u} (1) 

where: 

CDFX{u} = Standard normal cumulative distribution  
function of X evaluated at u 

u  = Standard normal variate for a lognormal  
variable 

= ln{G(CV[X]2+1)1/2/E[X]}ln(CV[X]2+1)-1/2 
= ln{G/M[X]}ln(CV[X]2+1)-1/2 

E[X]  = Expected value of X 
CV[X]  = Coefficient of variation of X 
M[X]  = Median of X 
G  = Target value or goal for X  
X  = True (exact but uncertain) value of X 

Eq 1 assumes that the uncertainty in X follows a lognormal PDF (and thus CDF).  Values of 
CDFX{u} can be obtained from statistical tables for standard normal variates (e.g., Benjamin and 
Cornell 1970) or from a standard spreadsheet function (e.g., MS Excel 97).  The probability that 
X exceeds G is the complement of Eq 1; that is: 
                                                 
14 E.g., X may be mass loading and G may be a TMDL loading capacity. 



PREDICTIVE ANALYSIS FOR POST-REMEDIATION METAL LOADING Appendix A 
Coeur d’Alene Basin RI/FS Section A.3.0 
RAC, EPA Region 10 Date10/01/07 
 Page 28 
 
 
 

W:\45504\0709.018\PDF VERSIONS\Appendix A-CDA Final Tech Memo.doc 

P[X > G]  = 1 – CDFX{u} 
= 1 – P[X < G] 

Eq 1 can provide a quantitative answer to the important, practical question:  What is the 
probability of meeting cleanup goal G if X, the quantity used to measure cleanup, has a given 
estimated value and degree of uncertainty?  The answer is illustrated in Figure A-1, which 
quantitatively demonstrates that the practical attainment of a cleanup goal depends on both the 
magnitude and uncertainty in the quantity used to measure cleanup attainment. 

Specifically, using Eq 1, Figure A-1 quantifies how the probability of achieving a cleanup goal, 
G, varies with the expected value, E[X], and degree of uncertainty, measured by the coefficient 
of variation, CV[X], of variable X, used to measure cleanup attainment.  For selected value of 
CV[X], Figure A-1 graphs the relationship between (1) E[X]/G, the ratio of the expected value of 
X and the goal G, and (2) P[X<G], the probability that the true (but uncertain) value of X is 
below goal G.  The ratio E[X]/G is the number of times the expected value of X exceeds goal G 
(e.g., for E[X]/G = 10, E[X] is 10 times G; for E[X]/G = 1, E[X] is equal to G; and so on). 

Figure A-1 also illustrates the classic “two-edged sword” of uncertainty.  For relatively low 
uncertainty (e.g., CV[X]=0.10), the probability that the cleanup goal has been met is negligible 
until the expected value of X is nearly equal to the goal.  On the other hand, for relatively high 
uncertainty (e.g., CV[X]=1.0), there is at least a small probability that the goal is met even if the 
expected value of X is many times the goal.  However, to achieve a relatively high (e.g., 
90 percent) probability that the goal has been met, the expected value of X must be below G, 
with the magnitude of the difference increasing with the degree of uncertainty in X. 

A.3.2 NON-EXCEEDANCE ESTIMATES OF X, XPN 

Estimates having a suitably high probability of being underestimates can also be useful in 
assessing current conditions and potential future conditions.  Estimates having a specified 
probability of being underestimates are known as “non-exceedance estimates.” 

Non-exceedance estimates of X have a given probability, termed the “non-exceedance 
probability,” of not being exceeded by the true but uncertain value of X.  For example, a 
90 percent non-exceedance estimate of X has a 90 percent probability of being an 
underestimate—that is, of not being exceeded by the true value of X. 

Non-exceedance estimates having a relatively high probability of non-exceedance (e.g., 
>90 percent), are “reliable” estimates—reliable in that there is a low probability (e.g, 
<10 percent) that the true (but uncertain) value of X exceeds the estimate.  It is in this sense that 
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a probabilistic analysis can be used to make reliable estimates—by using a suitably high 
probability of non-exceedance.  

Non-exceedance probabilities are denoted “Pn,” with the non-exceedance estimate denoted as 
xPn.  For given non-exceedance probability Pn, xPn is obtained using the lognormal standardized 
normal variate “u” corresponding to Pn: uPn.  As an example, for a 90 percent probability of non-
exceedance, Pn=90 percent , and  uPn=1.28.  The non-exceedance probability Pn is the 
probability that xPn is not an underestimate of the true value of X.  For a lognormally distributed 
X, xPn, is given by the following, derived from Eq 1; that is: 

xPn = E[X] exp{uPn ln(CV[X] 2+1)1/2} / (CV[X] 2+1)1/2 (2) 

= M[X] exp{uPn ln(CV[X] 2+1)1/2} 
= Estimate of x having P[X< xPn]=Pn  

For illustrative convenience, a non-exceedance ratio, xPn/E[X], can be defined from Eq 2.  The 
non-exceedance ratio is the number of times that the non-exceedance estimate, xPn, exceeds the 
expected value, E[X].  This ratio is illustrated and quantified in Figure A-2 for selected levels of 
uncertainty in X, measured by CV[X]. 

Figure A-2 shows that the non-exceedance ratio is less than 1.0 for low values of the non-
exceedance probability, Pn, and grater than 1.0 for high values of Pn; and that the range of ratios 
increases with the uncertainty in X, measured by CV[X].  For high values of Pn (e.g., 
>90 percent) and uncertainty (e.g., CV[X]>0.50), Figure A-2 shows that the non-exceedance 
estimate, xPn, is approximately two to three times the expected value, E[X]. 

In practical terms, Figure A-2 demonstrates the potential for underestimating an uncertain 
quantity, whether predicted or measured.  If there is significant uncertainty, a reliable estimate 
would exceed the expected value (or best estimate) by two to three times.  

Exceedance values can also be estimated.  An exceedance estimate of X has a given probability, 
termed the “exceedance probability” and denoted “Pe,” of being exceeded by the true value of X.  
An exceedance estimate of X, denoted “xPe,” has a probability equal to Pe of being exceeded by 
X.  An exceedance estimate at a given probability level Pe is the non-exceedance estimate at the 
complementary probability level—i.e., Pe=1-Pn.  For example, a 90 percent exceedance estimate 
is also a 10 percent non-exceedance estimate; and vice versa.  That is: 

xPe = E[X] exp{–uPn ln(CV[X] 2+1)1/2} / (CV[X] 2+1)1/2 
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= Estimate having P[X> xPe] = Pe = 1–Pn  
= xPn=1-Pe 

Note that for normal standard variates, u, at given probability level: uPe=–uPn, where, again, 
Pe=1–Pn. 

A.3.3 ESTIMATE OF X REQUIRED TO MEET GOAL G WITH SPECIFIED 
PROBABILITY 

The quantity estimated is the expected value of X required to meet goal G with specified 
probability, Pr, and given uncertainty in X, measured by CV[X].   Symbolized E[XG], this 
quantity is equivalent to the E[X] required for P[X<G]=Pr.  From Eq 1, E[XG] is estimated as 
follows, where uPr is the standard normal variate corresponding to specified probability Pr; that 
is: 

E[XG] = G (CV[X] 2+1)1/2 / exp{uPr ln(CV[X] 2+1)1/2} (3) 

Eq 3 is illustrated by Figure A-3, which (not surprisingly) looks like Figure A-1.  Figure A-3 
graphs the ratio of E[XG]/G against Pr, the specified probability, over the range of 0.50 to 0.99 
for various values of CV[X], which measures the uncertainty in X.  Consistent with the 
implications of Figure A-1, Figure A-3 indicates that E[XG] is less than G at higher values of Pr, 
with the magnitude of the difference proportional to CV[X].  That is, achieving a high 
probability that the true value of X is less than G requires that the expected value of X be less 
than G, with the magnitude of the difference increasing with the uncertainty in X. 
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A.4.0 BAYESIAN ESTIMATES OF EXPECTED VALUES  
AND COEFFICIENTS OF VARIATION 

Expected values and coefficients of variation of variables of interest are estimated from available 
measurement data to the extent data are available.  In particular, estimates for pre-remediation 
metal loadings are based on analysis of available historic stream monitoring data, as discussed 
and presented in the RI/FS (USEPA 2000a and 2000b). 

More generally, and particularly for post-remediation conditions, a Bayesian approach is used to 
estimate probabilistic parameters using weight-of-evidence arguments and professional 
judgment.  A Bayesian approach allows probabilistic parameters (or any variable) to be 
estimated using any relevant and appropriate means, including: 

• Available measurement and other observational data 

• Exact or approximate relationships between X and other variables (i.e., where X 
is a deterministic or probabilistic function of other variables) 

• Information from similar or related situations 

• Professional judgment, including expert opinion 

Professional judgments and interpretations are documented and quantified, as scientifically and 
practically appropriate. 

A Bayesian approach is fundamentally a practical philosophy for estimation and decision making 
that allows the use of all available information, both quantitative and qualitative.  Bayesian 
philosophy, operational theory, and practice are well supported in the mathematical, scientific, 
and engineering literature (e.g., Benjamin and Cornell 1970, Martz and Waller 1982, Raiffa and 
Schlaifer 1961, Ang and Tang 1975 and 1984, Anderson 1998).  Real-world environmental 
applications include U.S. Navy (1997 and 2001).  The scientific method itself is considered 
Bayesian (Martz and Waller 1982), and professional engineering practice is unavoidably 
Bayesian. 

Where measurement data is very limited or non-existent, a Bayesian approach is used to estimate 
probabilistic parameters using professional interpretation and judgment.  In particular, 
relationships based on lognormal PDFs are used to estimate E[X] and CV[X] from estimates of 
X at any two non-exceedance (Pn) or exceedance (Pe) probabilities.   
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The estimates of X are characterized at two non-exceedance or exceedance probabilities using 
the standard normal variate u set at u=uPn for non-exceedance probabilities, Pn, and u=uPn=1-Pe for 
exceedance probabilities, Pe; that is: 

xu1 = Estimate of X at Probability 1 
xu2 = Estimate of X at Probability 2 

where u1 (either uPn or uPn=1-Pe, as appropriate) is the standard normal variate at Probability 1, and 
u2 (either uPn or uPn=1-Pe, as appropriate) is the standard normal variate at Probability 2.  Two 
examples of this are: 

• There is a 95 percent probability that X will not exceed a value of 0.8 and a 
95 percent probability that it will exceed a value of 0.4.  In this case, xu1=0.8 at 
probability Pn=0.95 (u1=uPn=.95) and xu2=0.4 at probability Pe=0.95 (u2=uPn=1-

Pe=.05). 

• There is a 90 percent probability that X will not exceed a value of 1,000 and a 
50 percent probability that it will exceed a value of 100.  In this case, x u1=1,000 
at probability Pn=0.90 (u1=uPn=.90) and x u2=100 at probability Pe=0.50 (u2=uPn=1-

Pe=.50). 

The expected value and coefficient of variation of X are determined from xu1 and u1 and xu2 and 
u2 as follows: 

CV[X] = (exp{[ln{xu1/xu2}/(u1-u2)]2} - 1)1/2 (1) 

E[X] = xu1 (CV[X]2+1)1/2  / exp{u1 (ln{CV[X]2+1})1/2 } (2) 
= xu2 (CV[X]2+1)1/2  / exp{u2 (ln{CV[X]2+1})1/2 } 

The median of X, M[X], can be computed from E[X] and CV[X] as follows: 

M[X]  = E[X] / (CV[X]2+1)1/2  

Consider the useful special case that E[X] and CV[X] are estimated from “practical upper 
bound” (UB[X]) and “practical lower bound” (LB[X]) estimates of the true value of X.  Assume 
that UB[X] is considered to be the 95 percent non-exceedance value and that LB[X] is 
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considered to be the 95 percent exceedance value (such that there is a 90 percent probability that 
true X lies between LB[X] and UB[X]).15  In this case, u1 = –u2 = 1.645 and Eqs 1 and 2 become: 

CV[X] = (exp{[ln{UB[X] / LB[X]}/3.29]2} - 1)1/2 (3) 

E[X] = UB[X] (CV[X]2+1)1/2  / exp{1.645 (ln{CV[X]2+1})1/2 } (4) 
= LB[X] (CV[X]2+1)1/2  / exp{–1.645 (ln{CV[X]2+1})1/2 } 

Figure A-4 shows the ratios UB[X]/E[X], LB[X]/E[X], and M[X]/E[X] for values of CV[X] 
from 0 to 2.0.  Figure A-4 can be compared to Figure A-2. 

An estimate of X for any other exceedance/non-exceedance probability can be determined from 
E[X] and CV[X] as follows, where u is the standard normal variate at the desired probability; 
that is: 

xu = E[X]exp{u (ln{CV[X]2+1})1/2 } / (CV[X]2+1)1/2  (5) 

Derivation of Equations 1 and 2 

Derivation of Eqs 1 and 2 are as follows: 

xu  = E[X]exp{u (ln{CV[X]2+1})1/2 } / (CV[X]2+1)1/2  

xu1 / xu2 = exp{u1 (ln{CV[X]2+1})1/2 } / exp{u2  (ln{CV[X]2+1})1/2 } 
= exp{(u1-u2) (ln{CV[X]2+1})1/2} 

ln{xu1/xu2} = (u1-u2) (ln{CV[X]2+1})1/2 

ln{CV[X]2+1} = [ln{xu1/xu2} / (u1-u2)]2 

CV[X]2 = exp{[ln{xu1/xu2}/(u1-u2)]2} - 1 

                                                 
15 Similar to statistical tolerance limits (e.g., Natrella 1966). 
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CV[X]  = (exp{[ln{xu1/xu2}/(u1-u2)]2} - 1)1/2 

E[X]  = xu1 (CV[X]2+1)1/2  / exp{u1 (ln{CV[X]2+1})1/2 } 
= xu2 (CV[X]2+1)1/2  / exp{u2 (ln{CV[X]2+1})1/2 } 

Martz and Waller (1982) provide detailed discussions of Bayesian methods.  Anderson (1998) 
provides a discussion of Bayesian approaches based on frequency interpretations that may be 
more intuitive to those unfamiliar with probability interpretations. 
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Non-Exceedance Ratio XPn/E[X] v. Non-Exceedance Probability, Pn
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E[X] Required to Meet Goal G, E[XG], with Specified Probability 
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Figure A-4

Ratio UB[X]/E[X] and LB[X]/E[X]
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