U.S. Environmental Protection Agency
EPA Science Advisory Board
Background Information


Document NameTropical storm and hurricane wind effects on water level, salinity, and sediment transport in the river-influenced Atchafalaya-Vermilion Bay system, Louisiana, USA.
Document AuthorWalker, N.D.
Short DescriptionESTUARIES 24 (4): 498-508.
CategorySubgroup 1: Characterization of the Cause(s) of Hypoxia
Publication Year2001
Text:

Abstract: Changes in circulation, water level, salinity, suspended sediments, and sediment flux resulted from Tropical Storm Frances and Hurricane Georges in the Vermilion-Atchafalaya Bay region during September 1998. Tropical Storm Frances made landfall near Port Aransas, Texas, 400 km west of the study area, and yet the strong and long-lived southeasterly winds resulted in the highest water levels and salinity values of the year at one station in West Cote Blanche Bay. Water levels were abnormally high across this coastal bay system, although salinity impacts varied spatially. Over 24 h, salinity increased from 5 to 20 psu at Site 1 on the east side of West Cote Blanche Bay. Abnormally high salinities were recorded in Atchafalaya Bay but not at stations in Vermilion Bay. On September 28, 1998, Hurricane Georges made landfall near Biloxi, Mississippi, 240 km east of the study area. On the west side of the storm, wind stress was from the north and maximum winds locally reached 14 m s(-1). The wind forcing and physical responses of the bay system were analogous to those experienced during a winter cold-front passage. During the strong, north wind stress period, coastal water levels fell, salinity decreased, and sediment-laden bay water was transported onto the inner shelf. As the north wind stress subsided, a pulse of relatively saline water entered Vermilion Bay through Southwest Pass increasing salinity from 5 to 20 psu over a 24-h period. National Oceanic and Atmospheric Administration (NOAA)-14 reflectance imagery revealed the regional impacts of wind-wave resuspension and the bay-shelf exchange of waters. During both storm events, suspended solid concentrations increased by an order of magnitude from 75 to over 750 mg 1 (1). The measurements demonstrated that even remote storm systems can have marked impacts on the physical processes that affect ecological processes in shallow coastal bay systems.