U.S. Environmental Protection Agency
EPA Science Advisory Board
Background Information


Document NameChallenges and opportunities for science in reducing nutrient over-enrichment of coastal ecosystems.
Document AuthorBoesch, D.F.
Short DescriptionEstuaries, 25, 886-900.
CategorySubgroup 3: Scientific Basis for Goals and Management Options
Publication Year2002
Text:

Abstract: Nutrient over-enrichment has resulted in major changes in the coastal ecosystems of developed nations in Europe, North America, Asia, and Oceania, mostly taking place over the narrow period of 1960 to 1980. Many estuaries and embayments are affected, but the effects of this eutrophication have been also felt over large areas of semi-enclosed seas including the Baltic, North, Adriatic, and Black Seas in Europe, the Gulf of Mexico, and the Seto Inland Sea in Japan. Primary production increased, water clarity decreased, food chains were altered, oxygen depletion of bottom waters developed or expanded, seagrass beds were lost, and harmful algal blooms occurred with increased frequency. This period of dramatic alteration of coastal ecosystems, mostly for the worse from a human perspective, coincided with the more than doubling of additions of fixed nitrogen to the biosphere from human activities, driven particularly by a more than 5-fold increase in use of manufactured fertilizers during that 20-year period. Nutrient over-enrichment often interacted synergistically with other human activities, such as overfishing, habitat destruction, and other forms of chemical pollution, in contributing to the widespread degradation of coastal ecosystems that was observed during the last half of the 20th century. Science was effective in documenting the consequences and root causes of nutrient over-enrichment and has provided the basis for extensive efforts to abate it, ranging from national statutes and regulations to multi-jurisdictional compacts under the Helsinki Commission for the Baltic Sea, the Oslo-Paris Commission for the North Sea, and the Chesapeake Bay Program, for example. These efforts have usually been based on a relatively arbitrary goal of reducing nutrient inputs by a certain percentage, without much understanding of how and when this would affect the coastal ecosystem. While some of these efforts have succeeded in achieving reductions of inputs of phosphorus and nitrogen, principally through treatment of point-source discharges, relatively little progress has been made in reducing diffuse sources of nitrogen. Second-generation management goals tend to be based on desired outcomes for the coastal ecosystem and determination of the load reductions needed to attain them, for example the Total Daily Maximum Load approach in the U.S. and the Water Framework Directive in the European Union. Science and technology are now challenged not just to diagnose the degree of eutrophication and its causes, but to contribute to its prognosis and treatment by determining the relative susceptibility of coastal ecosystems to nutrient over-enrichment, defining desirable and achievable outcomes for rehabilitation efforts, reducing nutrient sources, enhancing nutrient sinks, strategically targeting these efforts within watersheds, and predicting and observing responses in an adaptive management framework.