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1. Introduction 

The policy community frequently uses benefit transfer methods because they offer 

a practical and low cost way to provide benefit estimates for benefit-cost analyses, natural 

resource damage assessments, and other natural resource policy and management 

analyses. These methods take and adapt results from existing primary valuation studies and apply 

them to assess the benefits of selected policy changes.  

For the most par, benefit transfer approaches fall into two categories-- “unit value” 

transfers or “value function” transfers—where the key distinction between the two approaches is 

the degree to which differences between the study and policy contexts are formally accounted for 

in the transfer. In unit value transfers, a single value or range of values, such as the value per 

recreation day or per unit change in water quality, is usually transferred with little or no 

adjustment for differences between the two settings. With benefit, or value, function transfers, 

information from existing studies is used to identify a functional relationship between the value 

of interest and the factors that may influence the magnitude of the value (e.g., using meta-

regression analysis).  This functional relationship allows the analyst to account for differences 

between the two settings and adapt the transfer estimates accordingly.   

Although commonly used for policy analysis, these traditional approaches to benefit 

transfer do not explicitly impose consistency with the economic theory that is assumed to 

underlie the value estimates.  Moreover, to the extent that they use existing value estimates based 

on different nonmarket valuation methods, they typically combine them in an ad-hoc manner.  
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To address these limitations, a third kind of benefits transfer – ”structural benefits 

transfer”  (or“preference calibration” )– has been proposed in which the transfer methodology is 

directly tied to utility theory via the preference structure (Smith et al. 2002; Bergstrom and 

Taylor, 2006).  Structural benefits transfer is in essence a form of benefit function transfer; 

where the functional form is specifically derived from an assumed utility function.  Although this 

third approach has the potential to improve and strengthen benefit transfers, it has thus far only 

been applied and evaluated in a limited number of examples. 

This paper further examines and evaluates structural benefits transfer as an alternative 

transfer method by extending existing applications in two main directions.  First, we apply 

preference calibration using several different utility function specifications and compare their 

implications for predicting benefits.  Second, whereas existing applications have focused on use-

related values for environmental improvements, we explicitly include nonuse values in the 

preference specifications.    Through these applications, we examine the generalizability and the 

robustness of the basic logic of structural benefits transfer. 

The paper begins in the next section by providing a background discussion of the 

structural benefits transfer approach.  Section 3 then introduces and describes the preference 

specifications that will be applied, and Section 4 discusses how estimates from different 

nonmarket valuation methods can be directly linked to these preference specifications.   Section 

5 presents a case study application focusing on water quality changes using the five preference 

specifications.  The results and implications of these applications are then discussed in Section 6, 

along with suggested directions for future research. 
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2.  Background 

 The main concept underlying preference calibration is that, if one is willing to make 

explicit assumptions about the functional form of utility with respect to a nonmarket commodity 

(e.g., environmental quality or health), then information from existing empirical valuation 

studies can in principle be used to estimate the parameters of the function.  When both the utility 

function parameters and available benefit estimates are few in number, it is possible to calibrate 

the parameter values such that they produce benefit measures that match the observed empirical 

estimates.  This is the approach used in this paper.  As the number of available benefit estimates 

increases, structural meta-analysis techniques can instead be used to statistically estimate the 

parameter values (Smith and Pattanayak, 2002; Bergstrom and Boyle, 2006).    

 Structural benefit transfer recognizes that the selected preference specification has direct 

implications for both the functional form and the parameters of the corresponding welfare 

functions (i.e., willingness to pay (WTP), quasi-expenditure, or variation functions, as described 

for example by McConnell [1990]) and Whitehead [1995]).  Therefore, it defines a benefit 

transfer function with (1) a functional form that is directly derived from the preference 

specification and (2) parameters that are calibrated from existing empirical estimates.   

 The preference calibration logic was initially presented and illustrated in studies focusing 

on water quality changes using a utility specification with a modified constant elasticity of 

substitution (CES) form (described in more detail below). Using this simple form, which did not, 

not specifically include nonuse values, Smith et al. (2000) combined travel cost estimates from 

Englin et al. (1997) and contingent valuation (CV) estimates from Carson and Mitchell (1993) to 

calibrate preferences.  Smith et al. (2002) expanded this approach by including hedonic property 

value estimates from Boyle et al. (1999), recalibrating the preference parameters, and generating 

illustrative benefit estimates with the calibrated function. More recently, the general approach 
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has been extended to the area of health valuation related to both morbidity and mortality (Van 

Houtven et al., 2004; Smith et al., 2006) and visibility benefits (Smith and Pattanayak, 2002). 

In all of these cases, the process for developing a structural benefit transfer function 

generally involves the following steps:   

1) Specify a “representative” individual’s preference function.   

2) Define explicitly the relationships between the available benefits measures and the 

specified preference function.   

3) Derive the structural benefit function that is implied by the assumed preference structure. 

4) Adapt the available information from existing benefit studies to assure cross-study 

compatibility.   

5) Calibrate or estimate preference function parameters that are as consistent as possible 

with the observed benefit measures. 

6) Insert the calibrated or estimated parameters into the structural benefit function. 

Based on this same general process, in the following sections we apply the preference calibration 

logic using five different preference specifications to a case study application of water quality 

changes. 

 

3.  Specifying Preferences  

 
To characterize the preferences of a representative individual with respect to changes in 

water quality, we specify five alternative indirect utility (V) functions, which we refer to as (1) 

modified constant elasticity of substitution (CES); (2) linear trip demand; (3) semi-log demand ; 

(4) log-linear demand; and (5) Stone-Geary specifications.  Using these alternative specifications 
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allows us to explore the sensitivity of benefit transfer predictions (for changes in water quality) 

with respect to the assumed functional form of utility.   

As shown below, each indirect utility function is specified in terms of income (Y), round-

trip travel cost (P), and water quality level (Q).   
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Equation 1 is similar to the modified CES indirect utility function used in previous 

preference calibration analyses (Smith et al ,2002;  Smith et al., 2000).  Equations 2, 3, and 4 are 

derived respectively from linear, semi-log, and log-linear trip demand specifications, and 

Equation 5 is based on a Stone-Geary utility function (see for example, Larson [1991] and 

Herriges et al. [2004]).1  To capture nonuse values, each specification includes an additively 

                                                 
1 To match the number of parameters used in the other functional forms, an additional parameter, δ, is added to the 
income term in the Stone-Geary model.    
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separable subcomponent (of the form ), which is independent of P and Y. These nonuse 

values will not be manifested in value estimates based on revealed preference methods, but they 

are likely to be included in estimates from stated preference studies.  

ψφQ

All five preference specifications include six parameters.  For each specification, we 

represent the vector of parameters as θj, such that, for example, θA = ),,,,,( AAAAAA ψϕδγβα  is 

the parameter vector for the modified CES preferences.  These are the parameters to be 

calibrated. 

 

4.  Linking Benefit Measures to the Preference Function 

 
In this paper, we calibrate these preference parameters for each specification by 

combining results from a travel cost and a contingent valuation analysis.  The travel cost analysis 

provide estimates of recreation demand (i.e., number of water based recreation trips per year [X]) 

and changes in Marshallian consumer surplus (∆MCS) resulting from changes in water quality.  

The CV method provides estimates of Hicksian compensating surplus (WTP) for changes in 

water quality.   

Tables 1 and 2 report algebraic expressions for X, ∆MCS , and WTP, which are directly 

derived from the preference functions listed in Equations 1 to 5.  The demand functions are 

derived by applying Roy’s Identity to the indirect utility functions, and the ∆MCS functions are 

derived by changing the level of water quality (from Q0 to Q1) in these demand equations.  The 

WTP functions are derived by solving for the compensating surplus that equalizes indirect utility 
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for different levels of Q.  Each expression is a function of the exogenous variables Y, P, and Q, 

and each one also includes parameters from its corresponding preference specification. 

 

5.  Preference Calibration Application 
 

The first objective of this preference calibration application is therefore to identify values 

for the preference parameters that replicate as closely as possible the observed empirical 

estimates of X, WTP, ∆MCS (based on conditions defined by Y, P, and Q).  We can then insert 

these calibrated parameter values in the WTP equations shown in Table 2 and use these 

equations as structural benefit transfer functions.   

The two empirical studies used in this application were conducted in the early 1980’s as 

part of a larger research project for EPA.2   Both studies focused on measuring water quality 

benefits for households living in the vicinity of the Monongahela River in Southwestern 

Pennsylvania.  The two studies also used data from the same 1981 survey of residents living 

within the Monogahela River Valley.  This survey was based on a stratified sample of 393 

households from the five-county area surrounding the Pennsylvania portion of the Monongahela 

River, including the Pittsburgh metropolitan area.  Administration of the survey resulted in 301 

completed interviews. 

 The first study used data from the survey to estimate a recreation demand travel cost 

model ( Smith et al., 1983).  This study identified 13 recreation sites along the Pennsylvania 

portion of the river and 69 respondents who had visited at least one of these sites.  The total 

                                                 

 2 For both an overview and detailed summary of this larger research project, see  Smith and 
Desvousges (1986). 
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number of user-site combinations, each of which represented a single observation, was 94.  

Smith et al. applied a generalized travel cost model to estimate trip demand functions for each 

site.  They then used these demand functions to estimate the increase in consumer surplus per 

household per season that would result from increasing water quality levels from boatable 

conditions to fishable conditions and from boatable to swimmable conditions.   

 The second study was based on responses to a contingent valuation scenario that was 

presented as part of the survey ( Desvousges et al., 1987).  At the time of the survey, the overall 

water quality levels in the Pennsylvania section of the Monongahela were assumed to be 

characterized by boatable conditions.  Respondents were asked to value three water quality 

changes:. (1) raising levels from boatable to fishable conditions, (2) raising levels from fishable 

to swimmable condition, and (3) avoiding a decrease from boatable to nonboatable conditions. 

The survey used different elicitation methods (iterative bidding, open-ended, and payment card) 

for different subsamples.  For this analysis, we use the open-ended responses, which were 

collected from 51 respondents, including both users and nonusers of the Monongahela river sites. 

5.1.2  Defining Consistent Measures Across the Studies 

To define a continuous unit of measure for Q that is consistent across the two studies, we 

use the same Resources for the Future (RFF) water quality ladder/scale (Vaughan, 1986) that 

was presented to respondents in the contingent valuation survey to describe water quality 

changes.  According to this 1-to-10 point scale, nonboatable, boatable, fishable, and swimmable 

water quality levels are assigned values of 0.5, 2.5, 5.1, and 7, respectively.   

 The summary statistics and benefit estimates used in the calibration applications are 

summarized in Table 3.  The travel cost study provides estimates of the average baseline number 

 8



of trips (X = 7.22), average income, and average travel cost for the sample of 94 recreators.  All 

dollar values from these studies have been converted to 2005 dollars using the consumer price 

index (CPI). The baseline demand for trips is assumed to be evaluated at a water quality level 

that is “consistent with supporting boating (the current [1977] recreational use of the river)” 

(Smith et al., 1983) (Q0 = 2.5).  The travel cost study also provides  ∆MCS estimates for two 

water quality improvements -- one to fishable quality  (Q1 = 5.1) and the other to swimmable 

quality (Q1 = 7).  

The contingent valuation study also provides estimates of average income and baseline 

trips for its sample of respondents.  Average income is 10 percent lower than for travel cost study 

sample, and average baseline trips is 67 percent lower, primarily because two thirds of the CV 

sample are nonusers.  Average travel costs (P) are not reported for the CV sample; however, they 

can be derived by inverting the trip demand functions in Table 3 and expressing P as a function 

of Y, X, Q and the preference parameters.  The WTP estimates for the three water quality 

changes range from $26.64 (improving water quality from Q0=5.1 to Q1=7)  to $52.64 (avoiding 

a decrease from Q1=2.5 to Q0=0.5). 

5.1.3  Calibrating Parameters. 

To calibrate parameters for each specification, we define six conditions representing the 

difference between observed values for X, ∆MCS, and WTP (numbers in bold italics in Table 3) 

and their predicted values using the equations in Table 1 and 2.  From the first column of travel 

cost results in Table 3 we define:  

7.22 - X( 18, 2.5, 46,398 ; θ) = ε1*7.22    (6.1) 
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14.56 - M( 18, 2.5, 5.1, 46,398 ; θ) = ε2*14.56   (6.2) 

From the second column of travel cost results we define: 

30.58 - M( 18, 2.5, 7.0, 46,398 ; θ) = ε3*30.58   (6.3) 

From the three columns of CV results we define: 

37.81 - M( P, 2.5, 5.1, 46,398 ; θ) = ε4*37.81   (6.4) 

26.64 - M( P, 5.1, 7.0, 46,398 ; θ) = ε5*26.64   (6.5) 

52.64 - M( P, 0.5, 2.5, 46,398 ; θ) = ε6*52.64   (6.6) 

where P is derived from the inverse demand function  X-1( 2.4  2.5, 46,398 ; θ) 

(see footnote to Table 1) at baseline conditions for the CV sample.. 

Ideally, we would identify solutions for the parameter vector θ that would make each of the six 

equations exactly equal to zero.   However, due to the nonlinearities in this system, no exact 

solution could be found for any of the five preference specifications.  As an alternative, we 

solved for values of  the parameter vector θ that minimize the sum of squared differences (SSD, 

with differences expressed in percentage terms) between observed and predicted values in 

Equations (6.1) to (6.6) --  i.e., minimize Σi(εi)2.  

 The calibrated parameter results are reported in Table 4 for each specification.  Overall, 

the linear demand specification provides the closest fit, with an SSD=0.000143, followed by the 

semi-log demand specification (SSD=0.008). The interpretation of the parameters is often 

different across preference specifications; however, all indirect utility specifications include an 
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additively separable subcomponent of the form  representing nonuse values.  As expected, 

these parameters are always found to have positive values, implying that water quality has a 

positive effect on nonuse related utility. In all but one specification (log-linear), the calibrated 

value for ψ is less than one, implying a declining marginal effect of water quality on nonuse 

values.  Also, in all specifications the γ parameter determines the marginal effect of water quality 

on the use-related component of indirect utility.  Its calibrated value is consistently positive 

across specifications.  Similarly, the δ parameter determines the marginal effect of income on 

utility, and its calibrated value is also consistently positive.   

ψφQ

In the linear, semi-log, and log-linear demand models, the β, δ, and γ parameters can also 

be interpreted as representing the marginal effects of travel cost, income, and water quality on 

trip demand.  When the calibrated value for β has a positive sign, as it does in the three 

specifications, it implies a negative effect of P on trip demand, which is consistent with 

expectations.  The log-linear demand model implies an almost unit elastic trip demand with 

respect to P, and the linear demand implies that each dollar decrease in round trip costs increase 

the annual number of by almost 5.   Similarly, the positive calibrated values for the δ parameter 

imply that trips are a normal good, with an income elasticity between 0.45 and 0.68 in the semi-

log and log-linear models. 

5.1.4  Predicting Values with the Calibrated Parameters. 

To further evaluate the calibrated parameters, we insert them back into the equations in 

Tables 1 and 2, and we predict X, ∆MCS, and WTP for selected combinations of individual 

characteristics (Y and P) and changes in water quality (Q0 and Q1).  The predictions, which are 

shown in Table 4, provide important additional internal validity checks on the calibrated 
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parameters.  For each preference specification, the six numbers in shown in bold italics are the 

predicted values associated with Equations 6.1 to 6.6.  Since these are the equations that were 

used to calibrate the parameters, the predicted values all match closely with the corresponding 

values in Table 3.  The other values reported in Table 4 include (1) predicted average travel cost 

for the CV sample, (2) predicted trips for the two samples under different water quality 

conditions, (3) predicted ∆MCS values for the CV sample, and (4) predicted WTP values for the 

travel cost sample. 

In the linear and log-linear demand models, the predicted average travel cost for the CV 

sample is respectively 1 percent and 15 percent higher than for the travel cost sample, and in the 

Stone-Geary model it is 9 percent lower.  In contrast, the modified CES and log-linear models 

predict average travels costs for the CV sample that are more than double.  Two opposing effects 

make it difficult to form strong priors about the expected sign and magnitude of these 

differences.  On the one hand, the predicted average travel cost for the CV sample should be 

higher than for the travel cost sample because the former includes nonusers who are expected on 

average to live farther from the water resource.  On the other hand, the CV sample’s average 

income is 10 percent lower, which implies a lower opportunity cost for travel. Nevertheless, the 

Stone-Geary results, with 9 percent lower travel costs for the CV sample, do not seem plausible. 

Compared to the linear, semi-log, and Stone-Geary models, the modified CES and log-

linear models also predict that trip demand is much less sensitive to water quality changes.   The 

log-linear model shows virtually no changes in trips even for large changes in water quality, 

whereas the linear and semi-log models predict that trips for the travel cost (user) sample would 

more than double (from 7.22 to almost 19 trips per year) if water quality increased from boatable 

to swimmable.  On the other end of the spectrum, the Stone-Geary specification predicts an 
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almost tenfold increase in trips. The lack of sensitivity of the log-linear model to water quality 

changes and oversensitivity of the Stone-Geary model cast doubt on the validity of these 

calibrated preferences for benefits transfer. 

For similar water quality changes, all models predict lower ∆MCS for the CV sample, 

and higher WTP for the travel cost sample.  These differences occur because the average income 

for the CV sample is lower and because all of the models predict higher travel costs and fewer 

trips for the CV sample.  Again, the smallest differences come from log-linear model.  

The values reported in Table 4 are fundamentally “in-sample” predictions, because they 

are based on observed conditions in the two source studies.  In Figures 1 through 3, we use a 

broader set of conditions to evaluate the calibrated models as transfer functions for predicting 

WTP.  For these figures, we selectively vary water quality changes, income, and travel cost, and 

we compare WTP predictions across the preference specifications. 

Figure 1 shows how predicted WTP for a 1 unit change in water quality (on a 10 point 

scale) varies with respect to baseline water quality (Q0).  Income is held constant at $45,000 and 

travel cost at $18 for all predictions.  In each case, WTP is highest when starting from the lowest 

baseline level (Q0=1), and it decreases as long as Q0 is less than 5 (below fishable).  Above the 

fishable level, however, predicted WTP for a unit change is U-shaped for all specifications, 

except the log-linear and Stone-Geary models which predict monotonically declining WTP.   

None of these WTP predictions are implausible, but the semi-log model is distinctly more 

convex than the other models. 

Figure 2 shows predicted WTP for a change in water quality from fishable (Q0=5.1) to 

swimmable (Q1=7) conditions when average annual household income is varied between 
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$30,000 and $70,000 and average travel cost is held constant at $18 per round trip.  Figure 3 

shows predicted WTP when average travel cost is varied between $16 and $20 and average 

household income is held constant at $45,000.  As expected, all specifications predict increasing 

WTP with respect to income and decreasing WTP with respect to travel costs.  The log-linear 

demand model is least sensitive to both types of variation.  In particular, it shows almost no 

sensitivity to changes in travel cost, which again casts doubt on the validity of this specification 

for representing preferences for water quality changes.  Again, on the other end of the spectrum, 

the Stone-Geary model exhibits extreme sensitivity to both income and travel cost changes.2  In 

contrast, the linear demand model predicts roughly unit elasticity of WTP with respect to income 

variation and declining WTP (from $56 to $30) when travel cost increases by 25 percent from 

$16 to $20.  The WTP predictions from the semi-log demand are only slightly less sensitive to 

income and travel cost changes than the linear demand model.  The modified CES shows similar 

sensitivity to income, but is relatively insensitive to travel cost changes. 

 

5.  Discussion and Conclusions  
This paper demonstrates how the preference calibration method for developing structural 

benefit transfer functions can be generalized to several alternative preference specifications and 

can be expanded to include nonuse values.  In addition to using a modified CES utility 

specification, similar to the one used in previous applications, we calibrated preference 

parameters using four other specifications.  In each case, we combined summary data and 

estimates from a travel cost study with estimates from a contingent valuation study.  Both of 

these source studies estimate nonmarket values for specific improvements in river water quality, 

                                                 
2 Below $45,000 income and above $18 travel cost, which are close to the values where the model was calibrated, 
the Stone-Geary model predicts 0 trips.  As a result, the Stone-Geary curves “flatten out” in these regions and only 
reflect nonuse values. 
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and they also provide information on average use levels (trips), travel costs, and incomes for 

their respective samples.  

For each preference specification, we calibrated six preference parameters.  These 

parameters have somewhat different interpretations and roles in the respective specifications; 

however, their calibrated values all have plausible signs.  For example, the parameters φ, ψ, and 

γ are all directly related to the marginal utility of water quality improvements, and as expected 

they are all calibrated with positive signs. 

To more thoroughly evaluate the parameter estimates and their implications for benefits 

transfer, we apply them to the Hicksian WTP functions derived from each specification.  In 

effect, this gives us a calibrated benefit transfer function for each specification, which we use to 

predict average WTP for selected combinations of water quality levels and changes, income, and 

travel costs.  This process mimics how the functions would be used to estimate benefits for 

selected policy conditions and changes.    

The results show that the structural benefit transfer estimates can be very sensitive to the 

selection of preference specification.  However, they also highlight the strengths and limitations 

of different specifications, by providing plausibility checks on the range of predicted outcomes.  

The linear demand model provides the most consistently plausible results, with (1) 

positive WTP between $15 and $25 for each unit increment in water quality, (2) close to unit 

elasticity of WTP with respect to income variation, and (3) declining WTP with respect to travel 

cost.  The semi-log demand and modified CES specifications also produce sensible estimates of 

WTP; however, the semi-log demand model produces WTP estimates that are notably more 

convex with respect to baseline water quality than other specifications, and the modified CES 
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estimates are relatively insensitive to differences in travel cost.  In contrast, the Stone-Geary 

model produces the least reliable results.  In particular, the WTP estimates are implausibly 

sensitive to both income and travel cost differences.  The results from the log-linear model are 

also somewhat suspect for opposite reasons -- they show virtually no sensitivity to travel cost 

differences and very low sensitivity to income changes. 

In addition to providing structural WTP functions, the preference calibration results can 

also be used to specify functions for predicting trip demand (or travel costs) and Marshallian 

consumer surplus.  These predictions are not only relevant for policy analysis (as measures of 

behavioral changes and use values), but they also provide secondary checks on the plausibility of 

the calibrated results.  These secondary predictions (reported in Table 4) confirm the findings 

from the WTP functions – that the linear demand, semi-log demand, and modified CES 

specifications generate more plausible estimates than the log-linear and , in particular, the Stone-

Geary specifications. 

A main advantage of structural benefits transfer is that it imposes a degree of internal 

validity on the benefit transfer process, by requiring consistency with preferences and economic 

theory.  This paper demonstrates how benefit transfer functions that are internally consistent with 

different preference specifications can be developed.  However, more research is required to 

determine whether these advantages extent to convergent validity.  The existing empirical 

research evaluating the convergent validity of traditional benefit transfer approaches, where “out 

of sample” benefit transfer estimates are compared to benefit estimates using original valuation 

results, has yielded at best mixed results (Shrestha and Loomis, 2003; Downing and Ozuna  

1996; Kirchhoff et al., 1997).  It remains to be seen whether structural benefits transfer can 

improve on these results. 
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An inherent feature of the preference calibration approach described in this paper is that it 

is most applicable when there are a limited number of available benefit estimates from different 

nonmarket valuation studies. In this case we use two ∆MCS estimates from a travel cost study 

and three WTP estimates from a CV study. However, when a large number of such estimates are 

available (e.g., values related to mortality risks) the logic of preference calibration can in 

principle be extended to statistical estimation and meta-regression analysis.  This concept of 

“structural meta-analysis,” as introduced by Smith and Pattanayak (2002) and discussed in more 

detail in Smith et al. (2006) and Bergstrom and Taylor (2006), presents a number of empirical 

challenges, but it continues to be a potentially fruitful area for future research. 
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a The corresponding inverse demand functions can be specified by solving for P: 
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Table 2.  Algebraic Expressions for Hicksian WTP 
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Table 3. Summary Estimates and Data from Water Quality Valuation Studiesa

 

Travel Cost Study 

(Smith et al., 1983)  

Contingent Valuation Study 

(Desvousges et al., 1987)  

 (1) (2) (3) (4) (5) 

Mean Household Incomeb(Y) $46,400 $46,400 $41,977 $41,977 $41,977 

Mean Travel Costb (P) $18 $18 n.r n.r n.r 

Mean Number of Trips (X0) 7.22 7.22 2.41 n.r n.r 

Initial WQ (Q0) 2.5 2.5 2.5 5.1 0.5 

Improved WQ (Q1) 5.1 7.0 5.1 7.0 2.5 

Mean Change in MCSb (∆MCS) $14.57 $30.58    

Mean Willingness to Payb (WTP)   $37.81 $26.64 $52.64 

n.r. = not reported 

a The values in italics define the six conditions used to calibrate the six preference parameters 

b In 2005 dollars 



Table 4. Calibrated Parameters and Predicted Values for Six Preference Specifications 

   Travel Cost Study CV Study

   (1) (2) (3) (4) (5) 

Calibrated Preference Parameters  Predicted Values 

MODIFIED CES P   $44.35 $44.35 $44.35 

αA= 0.001640 δA=0.680081 X0 7.12 7.12 2.41 2.53 2.31 

βA=0.105856 φA=0.000197 X1 8.20 9.16 2.53 2.62 2.41 

γA=0.901721 ψA=0.501745 ∆MCS $15.73 $28.16 $5.09 $3.70 $4.13 

SSE = 0.029351 WTP $55.58 $90.80 $41.41 $24.51 $50.92 

LINEAR DEMAND P   $18.22 $18.22 $18.22 

αB= 50.06902 B δB= 0.000842 B X0 7.22 7.22 2.41 9.12 - 

βB= 4.910293 B φB= 134.65826 B X1 13.93 18.84 9.12 14.03 2.41 

γB= 2.582500 B ψB= 0.229865 B ∆MCS $14.46 $30.84 $7.88 $11.57 $0.59 

SSE = 0.000143 WTP $44.44 $75.74 $37.87 $26.53 $52.73 

SEMI-LOG DEMAND P   $20.76 $20.76 $20.76 

αC= 0.759377 δC= 0.686323 X0 7.19 7.19 2.41 4.19 1.57 

βC= 0.371970 φC= 0.044946 X1 12.52 18.79 4.19 6.29 2.41 

γC= 0.213500 ψC= 0.428440 ∆MCS $14.34 $31.18 $4.80 $5.64 $2.25 

SSE = 0.008004 WTP $52.24 $89.98 $40.19 $25.18 $51.60 

LOG-LINEAR DEMAND P   $51.54 $51.54 $51.54 

αD= 0.000103 δD= 0.453201 X0 7.219 7.219 2.407 2.407 2.406 

βD= 1.000979 φD= 0.0465354 X1 7.220 7.220 2.407 2.407 2.407 

γD= 0.000177 ψD= 1.1985167 ∆MCS $16.78 $24.23 $16.02 $7.11 $36.15 

SSE = 0.069741 WTP $41.31 $68.47 $39.46 $25.96 $50.98 

STONE-GEARY P   $16.43 $16.43 $16.43 

αE= 0.000414 δD= 0.94819 X0 7.18 7.18 2.41 43.73 - 

βE= -1,527.578 φE= 0.003731 X1 48.79 67.25 43.73 62.07 2.41 

γE= 0.042245 ψE= 0.19086 ∆MCS $15.26 $29.37 $11.47 $11.73 $0.03 

SSE = 0.008398 WTP $46.29 $75.20 $39.61 $25.41 $52.00 
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Figure 1.  Predicted WTP for a Unit Change in Water Quality:  Sensitivity to Baseline Water 
Quality 
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Figure 2.  Predicted WTP for a Boatable-to-Fishable Water Quality Change:  Sensitivity to 
Income
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Figure 3.  Predicted WTP for a Boatable-to-Fishable Water Quality Change:  Sensitivity to 
Travel Cost
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ABSTRACT 

Researchers conducting surveys that elicit preferences must decide whether to formally 

include response options that allow respondents to express “no opinion.”  Using a split-sample 

design, we explore the implications of alternative formats for including, or not including, “no 

opinion” response options in an attribute based choice experiment.  We provide evidence that 

using multiple “no opinion” responses may help researchers differentiate between respondents 

who choice a “no opinion” option due to satisficing and respondents that are indifferent between 

alternatives.  Although there is literature suggesting that “no opinion” responses can be recoded 

as “no” responses in the case of referendum-based contingent valuation, in our case recoding “no 

opinion” responses as if they were “no” responses yielded substantially disparate results.   
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I. INTRODUCTION 

In surveys eliciting stated preferences, some respondents do not state a preference, opting 

instead to answer a choice question with a response such as “don’t know”, “not sure”, or “would 

not vote.”  These responses are variants of the “no opinion” responses discussed in more general 

survey research (Krosnick 2002).  Treatment of “no opinion” responses in stated preference 

studies has largely focused on studies that use the contingent valuation method (CVM).  The 

attribute-based method (ABM), also called choice experiments or stated choice, is a 

comparatively new technique that is related to, and has grown out of, CVM (Holmes and 

Adamowicz 2003; Foster and Mourato 2003, Louviere et al, 2000).  The ABM presents 

respondents with a set of attributes of a good, where typically one attribute is price.  The 

attributes and prices are varied across respondents.  This differs from CVM where typically only 

price is varied across respondents.  Thus ABM allows the researcher to value the implicit price 

for each attribute, much like a hedonic price study (Holmes and Adamowicz 2003).  Both CVM 

and ABM often involve discrete choice responses, and as a result random utility models can be 

used in the estimation of both methods.  Indeed, CVM is often considered a special case of ABM 

(Boxall et al. 1996). 

In many ABM-based studies, respondents have been asked to choose between two or 

more attribute-price sets.  This is similar to the referendum style questions commonly used in 

CVM, especially in the case where one attribute-price set is treated as a status quo.  The National 

Oceanic and Atmospheric Administration (NOAA) panel recommended including a “no vote” 

option for binary choice CVM studies (Arrow et al. 1993).  While, this recommendation has 

spawned a growing body of research on how to treat “would not vote” and other types of “no 

opinion” responses in the CVM literature, the issue has received less attention in ABM studies.   
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The literature on ABM does contain a related, but logically distinct, strain of research.  In 

some ABM studies, respondents are presented with a choice set that includes several alternatives 

composed of varied attributes and a “none” alternative (Louviere et al, 2000) or an “opt-out” 

alternative (Boxall et al. 1996).  In the setting of a product choice, the “none” option might be 

treated as a “don’t buy” decision.  In a recreational site choice context, the “none” option might 

represent a no-trip decision or it might represent a trip to a site not included in the choice set 

(Banzhaf et al. 2001).  In other settings, the “none” option may be considered a choice to 

maintain the status quo.  Typically, researchers explicitly model this type of alternative as one of 

the elements in a multinomial choice model.  In contrast, here we consider a distinct issue in the 

ABM, in which a failure of respondents to choose an alternative is not a choice for the status 

quo.  Instead, we examine the instance in which respondents’ failure to choose one of the ABM 

alternatives is akin to a “no opinion” response.    

There is growing evidence in the CVM binary choice literature that “no opinion” 

responses should not be treated as “for” votes (Groothuis and Whitehead 2002; Caudill and 

Groothuis 2005; Carson et al. 1998).  However, there is not yet agreement as to whether “no 

opinon” responses should be treated conservatively as “against” votes (Carson et al. 1998; 

Kronsick 2002), or whether no opinion responses may represent cognitive difficulties, potentially 

resulting from an indifference in utility, and therefore should be treated as a truly unique 

response (Krosnick et al. 2002; Evans et al. 2003; Alberini et al. 2003; Caudill and Groothuis 

2005; Champ et al. 2005).  Furthermore, even those who believe that no opinion responses 

should be treated as unique responses largely base their argument on improving econometric 

efficiency with few arguing that the conservative approach yields inconsistent estimates. 

Groothuis and Whitehead (2003) observe that the appropriateness of treating no opinion 
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responses as unique or "against" votes may depend on whether the study is attempting to 

measure willingness-to-pay (WTP) or willingness-to-accept (WTA).   

Arguments for treating no opinion responses as unique are typically based on Wang’s 

(1997) hypotheses on why a respondent may choose a no opinion response.  Wang (1997) posits 

that there are four general categories of respondents who choose no opinion responses: 1) those 

who reject the CVM scenario, 2) those who know their preference and decline to answer, 3) 

those who make an effort and are truly unsure, and 4) those who do not make an effort and are 

therefore unsure.  

 Kronsnick et al. (2002) also present an analysis of why a respondent may choose a no 

opinion response.  They present evidence that often no opinion responses are the result of 

satisficing, or simply that the “work” involved with answering the question is too great and a no 

opinion response involves the least work or the lowest risk.1  Kronsnick et al. (2002) also discuss 

an alternative hypothesis regarding no opinion responses; the respondent’s optimizing process 

may result in true indifference making the respondent truly unsure when the choices are “close” 

in terms of the associated net benefits or welfare yields.  Therefore, a respondent may reply with 

a no opinion response because they are indifferent in a utility sense.  However, it is unlikely that 

there is a clear line between a no opinion response resulting from optimizing and from satisficing 

since a respondent may begin optimizing, but may “give-up” before reaching true indifference.     

More recent investigations by Alberini et al. (2003), Caudill and Groothuis (2005) and 

Evans et al. (2003) have aimed to improve estimation efficiency through “sorting” no opinion 

responses, especially focusing on identifying and making use of responses that would fall into 

Wang’s (1997) latter two categories or that may be considered to be cases of optimizing as 

asserted by Krosnick et al. (2002).  However, there has been little effort to sort no opinion 
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responses that result from other phenomena; for example, no opinion responses that result from 

respondents being unsure due to utility indifference, and no opinion responses that result from 

respondents that are satisficing.  Moreover, all the work to date has been based on ordinal 

polychotomous-choice and multi-bounded questions, which introduce other types of difficulties 

(Vossler and Poe 2005).    

There also remains some question about the comparability of ABM studies to CVM 

studies (Stevens et al. 2000; Foster and Mourato 2003).  ABM studies may be cognitively more 

difficult than CVM studies and ask respondents to explore their preferences in more detail 

(Stevens et al. 2000).  This may result from the explicit substitutes in the ABM format. 

Furthermore, the multidimensional trade-offs implicit in ABM may result in a larger number of 

respondents who honestly “don’t know” or are closer to indifference relative to CVM.  To date, 

there have been no studies examining whether reclassifying no opinion responses in ABM as 

“against” responses, considered a conservative classification in CVM, yields estimates that are 

consistent with similar surveys where a “no opinion” option is not offered.   

This paper presents an examination of two research questions on no opinion responses in 

ABM studies.  First, does recoding no opinion responses as “against” provide estimates 

consistent with those derived from surveys where there is no option of expressing no opinion?  

Secondly, does offering respondents with two qualitatively different no opinion responses allow 

expressions of welfare indifference to be sorted from those who express no opinion for other 

reasons?  This latter issue may be generalizable to CVM because it attempts to distinguish 

Wang's (1997) third type of response (indifferent or too close to call) from Kronsnick et al.’s 

(2002) satisficing or other variants of “no opinion.”     

 

 6



II. SURVEY INFORMATION 

A binary choice ABM survey was implemented using a web-based method with a split-

sample design.  In addition to the usual experimental design of the attributes, there were four 

unique versions of the ABM survey that differed in the response options respondents faced for 

their choice questions.  The four sets of response formats were:  

(i)   “yes”, “no”, “too close to call” (TCC), and “not sure” (NS) (all options   

 treatment),  

(ii)  “yes” and “no” (yes/no treatment),  

(iii) “yes”, “no”, and NS (NS treatment), and  

(iv) “yes”, “no”, and TCC  (TCC treatment), 

where the last expression in parentheses is what the four treatments will be called.   

The TCC response is intended to reflect situations close to indifference.  Collectively the 

NS and TCC responses are referred to as “no-opinion” responses as a shorthand to refer to 

respondents that did not explicitly choose yes or no in the choice scenario.  The surveys that 

were distributed across the four groups of response categories all utilized the same experimental 

design for the ABM attributes. 

The web-based ABM survey elicited preferences for inland, freshwater wetland 

mitigation.  The questionnaire was developed using a series of focus groups and pretest 

interviews (Kaplowitz et al. 2004), and the policy setting and choice questions follow that of the 

paper instrument discussed in Lupi et al. (2002).  Each respondent was presented with the 

characteristics of a common wetland that had already been approved for drainage (“drained 

wetland”) and the characteristics of a wetland being proposed as compensation (“restored 

wetland”) for the wetland to be drained.  The attributes of the wetlands presented to respondents 
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were wetland type (wooded, marsh, mixed), size (acres), public access attributes, and habitat 

attributes (see Appendix for sample choice question).  The respondents were then asked, “In your 

opinion, is the restored wetland good enough to offset the loss of the drained wetland?”  Each 

respondent was asked to make up to five comparisons, but each respondent was only exposed to 

one response option format.  Details of web survey design, administration, and general results 

are reported in Hoehn et al. (2004).   

 

III. RESPONSE FREQUENCY ANALYSIS 

As mentioned above, the survey design incorporated four different sets of response 

options.  Response category statistics for the completed choice questions are presented in 

Table 1.2  As expected, the response treatment including all options (“all options”) resulted in the 

highest proportion of “no opinion” responses (25%).  Chi-square tests where used to compare the 

probability of a “no opinion” response across the four different survey response treatments and 

results are presented in Table 2.3  Table 2, section A, shows that the proportion of “no opinion” 

responses is significantly different when all four response options are presented to respondents as 

compared to instances in which one type of “no opinion” response is available to respondents.  

This is true at all common significance levels.  It seems clear from these results that respondents 

are more likely to choose a “no opinion” response option when both the TCC and NS options are 

available to them as part of their response choice set.  A chi-square test comparing the TCC 

survey treatment and the NS survey treatment yielded a low p-value (< 0.016).  This result 

suggests that the TCC and NS response options are not viewed as equivalent response options by 

respondents, and indicates that the wording of the “no opinion” options may matter. 
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Carson et al. (1997) used chi-square tests to determine the effect of no opinion responses 

on the proportion of “yes” and “no” responses in a CVM study.  A similar analysis was 

conducted for the ABM data, and the results are displayed in Table 2 section B.  The proportion 

of “yes” to “no” responses was significantly different, at the 95% confidence level, between 

surveys that did not allow respondents to express “no opinion” and surveys that offered either 

TCC or NS as response options.  The chi-square analysis of the proportion of responses when 

both “no opinion” responses were offered (the all options version) against the instances when 

only “yes” and “no” responses were offered yielded a p-value of 0.07.  This p-value implies that 

the null hypothesis of no significant difference between these two proportions should not be 

rejected at the 95% confidence level, but may be rejected at the 90% confidence-level. This 

difference may not be significant at the traditional 95% confidence level but may yield different 

economic results. That is, the yes’s and no’s from these two groups may produce different 

estimates of WTA. 

Further examining the response categories, “no opinion” responses were pooled with 

“no” responses, and retested against the yes-no ratio from the survey treatment that only allowed 

“yes” or “no” responses (Table 2 section C).  All chi-square tests for all of these comparisons 

yielded p-values < 0.05.  This result implies that pooling “no opinion” responses with “no” 

responses, as suggested by Carson et al. (1998), results in significantly different yes-no ratios, in 

contrast to the findings of Carson et al. (1998) for CVM.  It remains unclear in the “all options” 

case, where both TCC and NS were presented as response options, whether both TCC and NS 

pulled equally from “yes” and “no” responses. 

The distribution of yes-no ratios across response formats that allowed for a “no opinion” 

response was also tested (Table 2 section D).  The ratio of “yes” to “no” responses did not 
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change significantly when TCC or NS was offered as the “no opinion” response option.  The 

distribution of yes and no responses when both NS and TCC response options where available as 

response choices was compared to the distribution of yes and no responses when only one “no 

opinion” response option was presented and were found to be significantly different at the 95% 

confidence level.  That is, when more than one “no opinion” option was presented to 

respondents, the proportion of yes and no responses differed significantly. 

These results indicate that survey participants may respond to the phrasing, language, or 

number of “no opinion” response items lending evidence to the hypothesis that various no 

opinion responses may represent unique types of responses.  Further, these results suggest that 

“no opinion” responses do not pull evenly from “yes” and “no” responses and that, unlike Carson 

et al.’s (1998) CVM study, these responses do not consistently pull from “no” responses. It 

appears in this instance that no opinion responses pull more heavily from “no” responses– see 

Table 1.  Moreover, “no opinion” responses seem to pull more evenly from “yes” and “no” 

responses when both TCC and NS are presented as options as opposed to when only one type of 

no opinion response is available (Tables 1 and 2).  It appears that the marginal impact of adding 

a second “no opinion” response option is to pull more from “yes” than “no”, even when the first 

“no opinion” response option pulled more from “no” than “yes”.     

There are three potential explanations for the apparent divergence in results between this 

ABM study and previous CVM studies.  First, the underlying ABM study focuses on 

respondents’ WTA compensation (Groothuis and Whitehead 2003) as measured by in-kind 

trade-offs.  Second, there may be something unique to the ABM response format that is different 

from CVM studies.  Thirdly, it is possible that the additional “no opinion” response option 

causes responses to pull more evenly from both “yes” and “no.”  Based on response ratios, TCC 
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and NS responses seem to be good substitute responses when only one of the response options is 

available to respondents.  When both TCC and NS are present, it may be presumed that a TCC 

response may involve, perhaps, an attempt by respondents to optimize, especially if it is assumed 

that this response is indeed qualitatively different from a more general NS response.4  Next, we 

explore possible response category effects of welfare estimates. 

 

IV. EFFECTS ON WELFARE 

 The wetlands mitigation survey used in this study asked respondents to make an in-kind 

tradeoff between acres of drained and restored wetlands.  In essence, respondents were asked if 

restoration of a larger wetland would compensate for the loss of an existing wetland.  This makes 

acres of wetlands the unit of currency for this study.  Various quality attributes for the wetlands 

were also included in choice sets, and these act to shift demand for wetland acres.  Responses 

were coded into 11 response variables.  These variables included change in wetland acreage 

(effectively price), dummy variables for capturing changes in wetlands’ general vegetative 

structure, public access, and habitat conditions for amphibians, songbirds, wading birds, and 

wildlife flowers (changes could be poor to good or good to excellent).  Changes in wetland acres 

where recorded as the change in the total number of acres.  Dummy variables where coded as 

one for a positive change, zero for no change, and -1 for a negative change.  Changes from poor 

to excellent where indicated by both the poor to good and good to excellent dummy variables 

being coded as one (other coding followed this pattern).  A change from no access to access was 

coded as one (-1 for the other direction), while changes in wetland type where coded as one if 

there was a change.   
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 In-kind welfare measures can be estimated using random utility theory (Holmes and 

Adamowicz 2003).  A random effects logit model that addresses the panel data was estimated for 

each of the four survey response format versions, and parameter ratios were used to calculate the 

minimum WTA in acres of restored wetland per acre of drained wetland (Table 3, first row).  

Specifically, WTA ceteris paribus was found by dividing the constant parameter by the negative 

of the marginal utility of acres.  All models fit the data, with log-likelihood ratio tests against a 

model with a single choice dummy being significant at all common significance levels.   

 Each model included all variables, though not all coefficients estimated where significant 

at the 90% or 95% confidence level.  In all models, estimates for the parameter associated with 

improving wild flower habitat from poor to good where not significant at that 95% confidence 

level (Table 3).  The parameters associated with other variables that were not significant are 

indicated in Table 3.  The parameter associated with wetland acres was significant at the 95% 

confidence level for all models.   

 Estimation results can be interpreted as the marginal implicit prices, in kind, associated 

with the change defined by the variable.  For the constant term, the marginal implicit price is the 

change in acres required to maintain the same level of utility. That is, if the WTA estimate were 

zero then one acre restored wetland would be adequate compensation for one acre of drained 

wetland.  In cases in which only “yes” and “no” options were presented to respondents, a 

restored wetland could have up to eight fewer acres for each acre of the drained wetland, ceteris 

paribus, before respondents would prefer the drained wetland (Table 3, first row).  This may 

reflect a preference toward getting something out of a restoration project as opposed to not 

getting any restoration.  In cases in which there were “no opinion” responses, dropping the “no 

opinion” responses from the analysis yielded WTA estimates that were closest to those derived 
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from the yes/no format.  The WTA estimates, ceteris paribus, varied greatly across response 

treatments.  The WTA estimates showed that more than three times less compensation was 

demanded by respondents when “no opinion” responses were dropped as opposed to pooled with 

no’s.  Recoding the “no opinion” responses as “no” responses in the all response options format 

makes the ratio of “yes” to “no” less than one (Table 1) and causes the WTA to be positive, i.e., 

one acre drained required more than one acre to offset the loss.5   

 An important aspect of the ABM is that allows the relative importance of the attributes to 

be ranked.  From above we saw that recoding the data changed the yes to no ratio, and therefore, 

we affected the constants, as expected.  However, recoding the data to address the alternative 

approaches for treating the no opinion responses should not affect the ranking of attributes if “no 

opinion” responses represent satisficing.  To investigate if recoding affected the relative 

importance of attributes, the marginal implicit prices associated with each attribute variable 

(Table 3) where ranked from the largest marginal impact to lowest marginal impact (Table 4).  

Changing wildflower habitat from poor to good had the lowest maximum difference in rank 

(excluding a change in wetland type which has a negative value), though these marginal implicit 

prices where calculated based on parameters that were not significant at that 95% confidence 

level.  Improving wading bird habitat from poor to good consistently ranked as having a high 

marginal implicit price ranging (median rank of 2 a maximum difference in ranks of 3).  Changes 

in song bird habitat from poor to good also had a high median rank, 2, but had a maximum 

difference in ranks of 5.  This difference is driven by the ranks associated with the TCC and all 

options format when the “no opinion” response are pooled with “no.”  This provides some 

evidence that TCC response may not represent satisficing.  The attribute ranks for the NS format 

are identical for all attributes regardless of whether the NS was pooled with “no” or dropped.  
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This provides some evidence that NS by itself acts more like a “no” response due to satificing 

than an expression of indifference. 

 Rank correlations between treatments provide further evidence that TCC and NS 

responses are not used interchangeably (Table 5).  The ordering of marginal implicit prices 

between TCC treatments (TCC responses pooled with no and dropped) showed a correlation 

with the ranking of the marginal implicit prices across all treatments.  However, there is a decline 

in the strength of the correlation across formats in the order of NS, all options, and TCC.  

Moreover, all formats and treatments, except TCC pooled with no demonstrated a rank 

correlation with the yes/no format.  The attribute ranks from the TCC format with TCC pooled 

with “no” did not correlate well with either NS treatment (this approach had the three lowest 

correlations in the table).  That said, some of the approaches gave marginal implicit prices that 

ranked the attributes in a manner that was highly correlated across the modeling strategies, which 

would be reassuring for benefits transfer of the attribute valuations.6  The strong correlations 

among the yes/no format and the NS format (either treatment) indicate that NS response may 

represent satisficing.  However, the impact of recoding TCC as “no” on the ranks of the 

attributes indicates that TCC responses may not simply be satisficing.     

   

V. UNDERSTANDING NO OPINION RESPONSES 

 The evidence presented in the preceding sections of this paper indicates that whether or 

not to treat “no opinion” responses as “no” responses is not straight forward.  Treating “no 

opinions” as “no” lead to non-positive WTA estimates because of the effect of the recoding on 

the constant term, and in the case of TCC greatly affect the ranks of the wetland attributes. 

Therefore, we do not advocate simply treating “no opinion” response as “no” in the attribute-
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based choice models. It is also unlikely that “no opinion” responses should be treated as “yes” 

responses.  However, “no opinion” responses can make up a substantial portion of survey 

responses when a no opinion response category is present.  In this studies’ survey treatment 

where all response options were available, 25% of the responses were either TCC or NS, and this 

leads to two important questions.  First, is there evidence that some preference information may 

be recovered from “no opinion” responses?  Second, is there a discernable difference between 

the responses with a change in wording of “no opinion” responses (i.e., “too close to call” versus 

“not sure”), aside from the previously discussed effect on attribute ranks?   

To address these questions, we used parameter estimates derived from the simple yes/no 

model to predict “yes” responses for the data that was held aside or reserved for model 

assessments (see footnote 2).  The 1,865 unused (reserved) responses served as a set of “true” 

responses for testing purposes and were all from the treatment containing all four response 

options (all options treatment).  The model parameters were used to predict the probability of a 

yes response for the reserved data.  If the model has the ability to discern yes from no votes, then 

for respondents that actually answered yes, we would expect the mean predicted probability of a 

yes to be larger than the mean predicted probability of a yes for those respondents that actually 

chose no.  Further, if respondents chose either TCC or NS as a result of an attempt to optimize 

but found the welfare yield to be “close” to their level of indifference, then we would expect the 

mean predicted value associated with TCC and NS responses to be between the mean predicted 

value associated with “yes” and “no” responses.7  This is indeed the case as shown in Table 6.   

To test if these means are significantly different from one another, a single factor 

ANOVA was used.  The group mean square is 7.94 and the error mean square is 0.03 yielding an 

F-statistic = 90.36 with 3 and 1,823 degrees of freedom, which yields a p-value that is essentially 
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zero.  This implies that the mean associated with at least one response type is significantly 

different from the mean associated with at least one other response type.  If the model has 

predictive power, then it should be expected, that at least “no” and “yes” responses were 

significantly different.   

The Tukey test, also known as “the honestly significant difference test” and “wholly 

significant difference test,” was used to identify the response options that had significantly 

different means in a set of post hoc, pair-wise comparisons (Zar 1996).  Tukey tests allow one to 

determine if there are pairs of means such that the null hypothesis of no difference would not be 

rejected if just those two means where tested alone.  Results are presented in Table 7.  The 

critical value for the Tukey test with error degrees of freedom of 1,823, and four categories at the 

95% confidence level is 3.633.  All comparisons yielded a Tukey q-statistic greater than the 

critical value except the NS-TCC comparison (q = 2.954).  This result supports the hypothesized 

expectation that the predicted mean associated with “yes” and “no” responses are indeed 

different.  It is also interesting to note, that these results indicate that both “no opinion” responses 

are significantly different from both “yes” and “no” responses – implying the model has 

predictive power.  This indicates that “no opinion” responses may indeed reflect that “no-

opinion” respondents are near their utility indifference.   

An alternative explanation for the means associated with “no opinion” responses lying 

between the means of “yes” and “no” responses is that the predicted variance associated with “no 

opinion” responses is significantly large.  However, the ANOVA results show that the means are 

indeed significantly different.  In light of these results, in future analyses it may be possible to 

gleam extra information by treating the “no opinion” responses as a unique answer.  It is also 
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possible that by including multiple “no opinion” responses, respondents that would otherwise 

satisfice are forced to examine their preferences, at least enough to choose between TCC and NS.   

 

VI. CONCLUSION 

 To our knowledge, this is the first paper to explore the treatment of “no opinion” 

responses in an ABM setting that tries to differentiate between alternative types of no opinion 

responses.  The differences and similarities between ABM and CVM are well documented 

(Boxall et al. 1996; Holmes and Adamowicz 2003).  Research on how to treat no opinion 

responses in the CVM literature has been advancing since the NOAA commission made its 

recommendation to include a "no-vote" option.  The work presented in this paper provides 

contrary evidence regarding conventional wisdom that “no opinion” responses should be treated 

as “no” responses as in the CVM literature (Carson et al.  1998).   

 There are two alternative hypotheses that may be used to explain the results presented 

here.  First, the ABM response format may be different enough so that no opinion responses 

represent optimizing and not satisficing.  This may be because the tabular form lessens the 

cognitive work asked of the respondent (Viscusi and Magat 1987) and facilitates making 

tradeoffs (Hoehn et al, 2004).  However, it may be that the results presented here have more to 

do with the WTA framing of our choice question, supporting Groothuis' and Whitehead's (2002) 

findings.   

 Dropping “no opinion” responses appears to yield results most consistent with surveys 

that do not offer no opinion response options.  As the number of no opinion options increased so 

too did respondents’ use of those responses.  It does seem likely that the inclusion of two no 

opinion responses eliminate many respondents that may be leaning in a given direction, and 
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potentially would have answered "yes" or "no."  It is also likely that by adding a second no 

opinion response option a disproportionate number of would-be "yes" voters switch to one of the 

no opinion responses (this may be true even if a disproportionate number of would-be "no" 

voters would choose “no opinion” when only one no opinion option is available).  This result 

seems to present a tradeoff for researchers.  If there is a way to recover information from some 

no opinion responses, then adding an additional response option may be beneficial.  However, if 

no such tool exists then sample size may be greatly reduced.   

 In this paper, we present evidence that when two no opinion response options are offered 

respondents may have used these options differently, to express indifference that may have 

resulted from optimizing (“too close to call”) as opposed to uncertainty that may have resulted 

from satisficing (“not sure”).  The effect that TCC had on attribute ranks indicates that this 

option is affecting the decision making process in ways consistent with indifference.    

 Understanding how to treat response options that allow respondents to express “no 

opinion” is important to the future development and refinement of attribute-based stated 

preference techniques.  These techniques are increasingly contributing to our ability to measure 

preferences for goods and services that have non-use values or potential attributes that extend 

beyond current conditions.  This paper provides a first step in understanding how to treat “no 

opinion” responses in the ABM format, but more work in this area is still needed.  Specific areas 

of future study include investigating if estimating the probability of a “too close to call” response 

can be used to estimate indifference and improve the ability to predict choices.  However more 

than anything else, more case studies need to be examined, especially cases involving WTP. 
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VII. APPENDIX I.  SAMPLE SURVEY. 
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Endnotes 
1 The work requirements may range from physically reading the survey to understanding the question to actually 

evaluating preferences.   

2 A total of 4,865 responses where received for the “all options” treatment, (i).  However 1,865 of these observations 

where randomly selected and reserved for later use in assessing the model predictions.  

3 All chi-square tests use the Yates correction for variables coming from a binomial distribution (Zar 1996).  

4 It could be argued that one effect of including no opinion options would be to lower item non-response rates.  The 

item non-response rates were as follows:  all options (0.8%), Yes/No (0.7%), NS (0.4%), and TCC (1.5%).  These 

differences are statistically significant (p-value < 0.0001).  Interestingly, the TCC rate stands out as being higher 

than the NS rate which provides some further evidence that TCC is being used by respondents differently than NS.  

Overall though, none of the treatments had substantial levels of item non-response. 

5 Recall under MLE in the logit model, the estimated constant parameter will ensure that the average of the predicted 

probabilities of yes answers will match the sample share of yes answers.  To the extent that the “no opinion” 

answers are not being explained by the other parameters of the models, then under the recoding of responses the new 

estimated constant must adjust to match the new sample shares.  Thus, recoding of “no opinion” responses as “no” 

responses has the clear effect of lowering the constant and hence lowering the marginal implicit prices. 
6 Clearly the latter did not apply to the valuations for the constant term where use in benefits transfer would be 

warrant caution. 

7 Indeed, in a model that had perfect ability to discriminate the choices in accord with the theory, we would expect 

the predicted yes probabilities to be > 0.5 (<0.5) for the yes answers (for the no answers).  For those that selected 

TCC, we’d expect predicted yes probabilities to be about equal to 0.5 – they point of indifference implied by RUM 

theory.  Hypotheses for the NS option expectations are less clear.  Suppose the NS represent saticficing, then really 

easy choices would get answered and the easiest to answer are the choices where they are clearly yes or clearly no.  

In this case, we’d expect that NS tends to act like TCC but does so with larger variance. 
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Table 1.  Responses data, TCC = too close to call, NS = not sure .  

Survey version/ 
Response treatment 

Total  
responses Proportion of     

  of Yes of No of 
TCC of NS 

Proportion 
“no opinion” 
(NS + TCC) 

Ratio of 
"yes" to 

"no"  

Ratio of "yes" to 
"no pooled with 

no opinion” 

All options 
 
i 3000 0.467 0.287 0.164 0.082 0.25 1.63 0.88 

Yes/No ii 1586 0.590 0.410 - - 0.00 1.44 - 
NS iii 1619 0.553 0.288 - 0.159 0.16 1.92 1.24 
TCC iv 1683 0.537 0.272 0.191 - 0.19 1.97 1.16 
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Table 2.  Chi-square test results. 

A. Probability of an “no opinion” response 

comparison  NS v. 
TCC 

All options  
v. 

NS 

All options 
v. 

TCC 
χ2 statistic 5.8360 47.1749 18.3050 

p-value 0.0157 0.0000 0.0000 
B. The ratio of Yes to No for “no opinion” formats 

compared to Yes/No treatement 

comparison  
YES/NO 

and  
All options 

YES/NO  
and  
NS 

YES/NO  
and  
TCC 

χ2 statistic 3.2734 13.6764 16.4712 
p-value 0.0704 0.0002 0.0000 
C. The ratio of Yes to No  when “no opinion” are 

pooled with "no" 

comparison  
YES/NO 

and  
All options 

YES/NO  
and  
NS 

YES/NO  
and  
TCC 

χ2 statistic 62.4845 4.4130 9.3238 
p-value 0.0000 0.0357 0.0023 

D. The ratio of Yes to No with “no opinion” 
responses compared among “no opinion” formats 

comparison  
TCC  
and  
NS 

NS and  
All options 

TCC  
and  

All options 
χ2 statistic 0.0961 4.9850 6.8678 

p-value 0.7566 0.0256 0.0088 
 



Table 3.  Marginal implicit prices of attributes associated with the WTA in-kind acres 
compensation for drained wetlands.* 

Survey 
type 

Yes/
No 

TCC 
pooled 
with 
No 

TCC 
discarded 

 NS 
pooled 

with No 

NS 
discarded 

All 
options 
pooled 
with 
No 

All 
options 

discarded 

WTA 
,ceteris 
paribus 

-8.42 -2.54b -11.96 -3.55b -11.56 4.81 -5.16 

change of 
wetland 

type 
5.86 5.79 7.76 4.80 4.45 2.75 2.66a

access -6.65 -4.89 -5.53 -7.48 -7.03 -5.64 -7.37 
amphibian  

p → g -7.40 -3.25a -4.02 -8.78 -9.44 -7.32 -6.74 

song bird  
p → g -10.70 -3.36 -4.84 -10.24 -11.02 -4.97 -6.96 

wading 
bird  

p → g 
-7.69 -7.68 -7.56 -9.50 -10.20 -5.99 -6.72 

wild 
flower  
p → g 

-3.79b -3.16a -2.44b -3.66a -3.44b -2.23a -1.55b

amphibian  
g → e -5.49 -4.39 -3.95 -6.92 -6.79 -5.24 -5.37 

song bird  
g → e -5.47 -3.41 -2.19a -1.89b -2.90 -5.24 -5.30 

wading 
bird g → e -5.49 -2.75 -3.57 -4.53 -4.98 -3.37 -3.50 

wild 
flower  
g → e 

-2.27b -4.12 -4.52 -4.26 -3.81 -1.53a -1.59a

* Values in this table represent the parameter estimate associated with the listed variable 
divided by the parameter on percent changes in areas.  p → g = poor to good, and g → e 
= good to excellent.  a and b indicate ratios using parameter estimates that were NOT 
significant at the 95 and 90%confidence levels respectively. 
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Table 4. Ranking of the absolute value of the marginal implicit prices and the maximum difference in ranking across models.  
Rankings of one had the largest marginal effect and 10 had the lowest marginal effect.   

Answer 
coding 

YES/ 
NO 

TCC 
pooled 
with 
No 

TCC 
dropped 

NS 
pooled 
with 
No 

NS 
dropped 

No 
opinions 
pooled 

with No 

No 
opinions 
dropped 

Median 
rank 

Maximum 
difference 

change of 
wetland type 10 10 10 10 10 10 10 10 0 

access 4 2 2 4 4 3 1 3 3 

amphibian  
p → g 

3 7 5 3 3 1 3 3 6 

song bird 
p→ g 

1 6 3 1 1 6 2 2 5 

wading bird 
p → g 

2 1 1 2 2 2 4 2 3 

wild flower 
p → g 

8 8 8 8 8 8 9 8 1 

Amphibian 
g → e 6 3 6 5 5 4 5 5 3 

song bird  
g → e 7 5 9 9 9 5 6 7 4 

wading bird 
g → e 5 9 7 6 6 7 7 7 4 

wild flower 
g → e 9 4 4 7 7 9 8 7 5 

 

 28



Table 5.  Rank correlation results between treatments (TCC = too close to call, NS = not 
sure).  

 

 

YES/
NO 

TCC 
pooled 
with 
No 

TCC 
discarded 

NS 
pooled 
with 
No 

NS 
discarded 

No 
opinions 
pooled 

with No 

No 
opinions 
discarded 

YES/NO 1.00 0.39 0.72 0.94 0.94 0.75 0.87 

TCC 
pooled 
with No 

0.39 1.00 0.75 0.49 0.49 0.59 0.59 

TCC 
discarded 0.72 0.75 1.00 0.85 0.85 0.56 0.75 

NS pooled 
with No 

0.94 0.49 0.85 1.00 1.00 0.68 0.84 

NS 
discarded 0.94 0.49 0.85 1.00 1.00 0.68 0.84 

no 
opinions 
pooled 
with No 

0.75 0.59 0.56 0.68 0.68 1.00 0.81 

no 
opinions 
discarded 

0.87 0.59 0.75 0.84 0.84 0.81 1.00 
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Table 6.  Summary statistics for predicted probability of yes by actual response in the 
reserved data. 
 
 Actual Response 
  YES  NO  TCC  NS 

Mean 0.669 0.514 0.585 0.602 
Standard 
deviation 0.162 0.187 0.165 0.185 

Total responses 916 490 303 118 
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Table 7. Tukey test results.  The critical value at the 95% confidence level is 3.633. 

Comparison NO - 
YES 

NO - 
NS 

NO - 
TCC 

YES - 
TCC 

YES - 
NS 

NS -
TCC 

Difference of 
means 0.155 0.088 0.070 0.085 0.068 0.017 

Standard Error 0.003 0.005 0.004 0.003 0.004 0.006 
Tukey q-statistic 48.107 17.872 16.356 24.515 17.948 2.954 

 
 

 31



 

 
 

Meta-Regression and Benefit Transfer:  
Data Space, Model Space, and the Quest for ‘Optimal Scope’ 

 
 
 
 
 
 
 
 

Klaus Moeltner 
Department of Resource Economics, 

University of Nevada, Reno 

Randall S. Rosenberger 
Department of Forest Resources,  

Oregon State University 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Draft March 13, 2007 

 
 

* Contact Information: 
 

Klaus Moeltner 
Department of Resource Economics / MS 204 

University of Nevada, Reno 
Reno, NV 89557-0105 
phone: (775) 784-4803 

fax: (775) 784-1342 
e-mail: moeltner@cabnr.unr.edu 



 

Meta-Regression and Benefit Transfer:  
Data Space, Model Space, and the Quest for ‘Optimal Scope’ 

 
 
 

 

Abstract: 
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available source studies and related small sample problems.  A broadening of scope of the Meta-
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issues, but may not necessarily enhance the efficiency of transfer functions if the different contexts do not 

share policy-relevant parameters.  We illustrate how different combinations of contexts can be interpreted 
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averaged benefit predictions can be more efficient than those flowing from the baseline context and data. 
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I) Introduction 

 Benefit Transfer, i.e. the synthesis of existing resource valuation results and the transfer of these 

findings to a new policy site or context continues to grow in popularity with policy makers and resource 

managing agencies.  For example, in a recent insiders’ assessment of the role of Benefit Transfer (BT) at 

the U.S. Environmental Protection Agency (EPA), Iovanna and Griffiths [1] illustrate how BT has been 

employed in recent years on numerous occasions in the agency’s enforcement of the Clean Water Act.  

The authors further predict that due to the triple constraints of expediency, financial strains, and 

administrative hurdles “original assessment studies will remain a rare exception” in future EPA valuation 

efforts.   

 It is not surprising, therefore, that the concept of BT has stirred increasing interest amongst 

resource economists in the U.S. and abroad, and spurred research efforts on both the theoretical 

underpinnings of BT (e.g. [2, 3]) and its econometric and computational implementation (e.g. [4-6]). This 

study focuses on the latter aspect of BT.  Specifically, we examine the issue of ‘optimal scope’, i.e. the 

optimal size and composition of a meta-dataset when BT estimates are to be produced via a meta-

regression approach. 

 In most situations that call for BT some information on the policy context, such as basic site 

characteristics or aggregate demographics for the underlying population of interest, will be available to 

the analyst.  In that case, empirical findings generally support the use of functional BT over point 

(“value”) transfers or simple aggregation of existing estimates (e.g. [7, 8]).  If there exists a study for 

which the physical and temporal context and the composition of underlying stakeholders are very similar 

to those for the targeted policy application, parameter estimates from this single source can in theory be 

combined with policy site attributes to form the transfer function.  In practice, however, a close 

correspondence across multiple dimensions for a study site and policy site is unlikely.  Therefore, 

researchers have increasingly resorted to meta-analytical approaches to derive parameter estimates for 

function transfer. 
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 The primary rationale for combining information from multiple existing sources in a meta-dataset 

and using a Meta-Regression Model (MRM) to derive parameter estimates for BT is that each source 

context will likely overlap with the policy scenario in one or several dimensions of site or population 

characteristics.  In essence, the MRM produces parameters that apply to the “prototypical” context or site, 

and this prototypical context can be expected to more closely correspond to the policy setting than any 

single context alone.  In addition, MRMs allow disentangling the effects of site attributes, user 

characteristics, and study-methodological factors on welfare estimates from underlying source studies. 

 As can be expected, this approach is not without flaws or pitfalls.  Common shortcomings of the 

MRM-BT approach range from weak links with underlying economic theory ([2, 9]), difficulties in 

identifying appropriate source studies and collecting sufficient and adequate data ([10]), and econometric 

challenges related to data gaps and small sample issues ([6]). 

 Perhaps one of the most important, yet least analyzed challenges in meta-analytical BT is the 

question of ‘optimal scope’ of the MRM, given a specific target policy application.  For example, if 

welfare measures associated with the reduction in sulfur dioxide are sought, could or should the MRM 

also include values corresponding to a reduction in, say, nitrogen oxides or carbon monoxide?  If the 

value of a day of trout fishing is of primary interest, should the meta-model also include data on bass or 

salmon fishing?  In econometric terms, the question of optimal scope can be interpreted as the exact 

definition of the dependent variable in the MRM, which, in turn, defines the set of source studies to be 

considered for inclusion in the meta-dataset.  This issue has been briefly raised at various points in time in 

the literature (e.g. [9, 11, 12])1, but has not yet been examined in depth in existing contributions. 

 This study aims to fill this gap.  We discuss the exact nature of the optimal scope problem and 

illustrate the associated econometric dilemmas (next Section), develop an econometric framework that 

can aid in the determination of optimal scope (Section III), and apply this framework to simulated and 

actual meta-data (Section IV).  Section V summarizes our findings and offers concluding remarks. 
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II) Optimal Scope: Conceptual and Econometric Considerations 

Optimal Scope, Data Space, and Model Space 

 The question of optimal scope is best illustrated with a brief example:  Imagine a resource planner 

that is considering improving habitat and access along a specific river segment and managing it as a 

recreational coldwater fishery2.  The costs of the project are relatively clear, but, as usual, expected 

economic benefits to potential users are more difficult to assess.  Time and funding considerations call for 

a BT approach.  For simplicity, assume that the only relevant and well-predictable characteristic of the 

new fishery, other than the basic identifiers “coldwater fishery” and  “running water”, is the expected 

daily catch rate, xp (“p” stands for “policy site”).  A thorough literature search reveals a set of S0 studies 

comprising n0 observations that report welfare results for coldwater fishing at running water3.  This 

suggests the following simple MRM: 

0 1js jsy x jsβ β ε= + +   (1) 

where yjs is a welfare measure for a day of coldwater / river fishing at site j reported in study s, xjs is the 

catch rate for that site, jsε is an i.i.d. distributed normal error term with zero mean, and the β -terms are 

meta-regression coefficients to be estimated by the MRM.  For simplicity, we will abstract for the 

moment from econometric considerations such as study-specific unobservables and heteroskedasticity, as 

well as from the potential effect of study-methodological characteristics on reported welfare estimates.  A 

Benefit Transfer measure for the policy site could then be computed as 

0 1
ˆ ˆˆ py pxβ β= + ,  (2) 

i.e. by combining MRM parameter estimates with known attributes of the policy site, in this case simply 

the expected catch rate xp.  

 However, the analyst may have reservations taking this approach due to the following possible 

(and, in practice, commonly observed) reasons: (i) The sample size n0 may be too small to estimate the 

parameters in (1) with any degree of precision, and / or (ii) the studies included in set S0 have a narrow 

geographic distribution, a narrow definition of underlying visitor populations, or are in other ways too 
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context specific to allow for the construction of a robust BT function.  To attenuate these problems the 

analyst may want to combine the original set of studies with another available set S1, comprising n1 

observations, that report welfare results and catch rates associated with warmwater / running water 

fisheries4.  A natural rationale for combining the two data sets would be the hopeful anticipation that the 

regression intercept and the marginal effect of catch rates may be similar for both fishery types (reflecting 

similarity in underlying angler preferences), and that in that case a pooled MRM of the form (1), but with 

sample size  can be expected to generate more efficient parameter estimates, and thus a more 

efficient BT function.  

0n n n= + 1

The added studies deviate in one identifying dimension (“type of fishery”) from the policy 

context.  In other words, the scope of the MRM has been broadened to include both coldwater and 

warmwater fisheries, and the definition of the dependent variable has changed from, say, “WTP for a day 

of coldwater fishing at a river” to “WTP for a day of fishing (cold- or warmwater) at a river”.  In our 

terminology, this constitutes a re-definition (and augmentation) of the data space underlying the MRM.  

For notational convenience we will label the original (“baseline”) dataset as d0 , the added dataset as d1 , 

the original data space as D0 , and the augmented data space as D1.  Thus, we have { }0 0D d=  and 

{ }1 0 1,D d d= .   

 Naturally, imposing any pooling constraints on the augmented MRM a priori would be risky.  If 

the two activity types do not pool on the intercept, catch rate, or both, using (1) would amount to a model 

mis-specification, producing biased parameter estimates and misleading BT predictions for the policy 

context.  A more prudent approach would be to start with the most general specification, i.e. 

0, 1, 0, 1,js c c js w js w js js jsy x W W xβ β β β= + + + + ε   (3) 

where Wjs is a 0/1 indicator for observations associated with the warmwater sub-set, 0,wβ captures the 

deviation in intercept for warmwater observations, and 1,wβ measures the differentiated marginal effect of 
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catch rate on WTP for warmwater cases compared to the baseline effect for coldwater observations (now 

indexed by subscript c).   

In the terminology of this study, equation (3) implicitly defines the model space for data space 

D1.  Specifically, the augmentation of scope of the MRM has ex ante added two additional regressors to 

the MRM – Wjs and Wjsxjs.  This implies 22 = 4 possible models, since each new regressor can either 

emerge as significant (and should thus be included in the augmented model) or not (and could thus be 

dropped from the augmented model).  Indexing inclusion by “1”, and exclusion by “0”, the model space 

corresponding to data space D1 can then be described as  

1,1

1,2
1

1,3

1,4

0 0
0 1

Μ
1 0
1 1

M
M
M
M

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢= =
⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

⎥
⎥

  (4) 

 
In a classical framework, statistical insignificance of estimates for both 0,wβ  and 1,wβ would lend 

support for the [ ]1,1 0 0M =  case, leading to the pooled model (1), with augmented sample size n.  This 

model would then be a logical candidate to generate the BT function.  Decision rules for cases M1,2 – M1,4 

are less clear-cut.  Since the BT function will always be solely based on estimates of the baseline 

parameters (here 0,cβ and 1,cβ ), the added model coefficients constitute de facto nuisance terms which 

will add noise to the estimation of the parameters that are actually needed to construct the Benefit 

Transfer.  In this case, broadening the scope of the MRM will only improve the efficiency of the BT 

function if the gain in sample size offsets the loss in degrees of freedom and estimation noise associated 

with the introduction of the nuisance terms. 

Econometric theory provides only limited guidance as to these countervailing effects.  In most 

cases the analyst will have to take an empirical approach to identify the optimal scope of the MRM.  For 

example, a reasonable strategy would be to estimate both model (1) with original data space D0 and the 

applicable version of model (3) for data space D1, and to compute BT predictions and confidence 
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intervals for both cases.  The prediction with the tighter confidence interval could then be chosen to guide 

policy decisions for the new context. 

Finally, assume another dataset d2 exists for a second related activity that deviates in a different 

single dimension from the baseline context, say “coldwater fishing at stillwaters” (lakes, ponds, etc).  This 

enables the analyst to define two additional data spaces, { }2 0 2,D d d= and { }3 0 1 2, ,D d d d= .  The model 

selection procedure outlined above has to be repeated for each new space, as the trade-off between 

increase in sample size and efficiency loss due to nuisance parameters will be different in each case.  Note 

that D3 yields the MRM with the broadest scope, i.e. “WTP for a day of coldwater or warmwater fishing 

at rivers or stillwaters”. 

 

Classical Challenges and Bayesian Approaches 

As conveyed in the above example, the classical strategy to determine the optimal scope of the 

MRM is conceptually straightforward: (i) Compile a baseline meta-dataset D0 that corresponds exactly to 

the policy context, (ii) specify a baseline MRM that includes explanatory variables with known values for 

the policy site, (iii) identify “related, but different” activities or resource amenities and collect 

corresponding meta-data, (iv) specify the most general MRM for the resulting augmented data space, (v) 

through a series of specification tests, determine which activities share common parameters with the 

baseline context and impose the corresponding equality constraints on the augmented model, (vi) compute 

BT predictions for the baseline model and the augmented model, (vii) repeat steps (iii) – (vi) for other 

related activities and resulting data spaces, and (viii) choose the data space and MRM that produces the 

most efficient BT predictions. 

However, there are several problematic issues with this approach.  As can be imagined, the 

number of additional indicators and interaction terms (which become nuisance parameters if found 

significant in the augmented model) proliferates rapidly with both the number of initial regressors for 

which policy site information is available, and the related activities or amenities considered.  To illustrate, 
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given the availability of  additional data sets corresponding to “related” activities or 

amenities, the number of possible additional data spaces , amounts to 

 , i.e. the number of all single data sets that can be combined 

with the baseline data, all possible combinations of pairs of data sets that can be combined with d

, 1ad a A= " ,

)

, 1tD t T= "

1

1

1
2 3 1

A

j

A A A A
T A

A j

−

=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + + + + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑"

0, all 

possible combinations of triplets, etc., until the final space that combines all available data.  The last 

column in Table 1 shows the number of data spaces resulting from adding up to five activities to the 

baseline model.   

Each data space requires the specification of a separate MRM and a corresponding series of 

specification tests to identify pooling restrictions.  For each added activity, the MRM must ex ante 

include a deviation term for the intercept and interaction terms with all other baseline regressors, as 

shown in (3).  For example, for k1 original regressors, and a added activities, the resulting augmented 

MRM will include  additional covariates1k a⋅ 5.  The upper half of Table 1 depicts this product for up to 

five added activities and baseline regressors.  While these figures appear manageable, the associated 

model spaces will comprise elements, i.e. all possible combination of included and excluded terms.  

Thus, model spaces and therefore the number of possible pooling restrictions can quickly take on 

formidable dimensions, even for a modest number of baseline regressors and added activities, as shown in 

the lower half of Table 1. 

( 12 k a⋅

In a classical estimation framework, this poses the dilemma of either (i) embarking on a time-

consuming battery of specification tests with the usual risks of propagating decision errors and other 

problems related to ‘pretest estimators’ (e.g. [13]), (ii) ex ante imposing pooling constraints, thus risking 

model mis-specification, or (iii) facing small sample problems by falling back on the baseline model or an 

MRM with reduced data space.  Furthermore, with increasing data fragmentation, some cell counts for 

specific interaction terms may become too small for specification test to provide any meaningful 

guidance. 
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A related problem in a classical estimation framework arises through its reliance on asymptotic 

theory.  Regardless of scope, a realistically specified MRM will at the very least have to control for intra-

study error correlation and heteroskedastic error variances (e.g. [4], [6], [14]) This departure from the 

basic linear regression model and thus from well understood small sample properties requires invoking 

asymptotic theory in the interpretation of model and test results.  However, for augmented MRMs with 

lower dimensional scope sample sizes may still be too small to have much confidence in asymptotic test 

results.  This further complicates the model selection process within a given data space and thus the 

search for optimal scope. 

We therefore propose a Bayesian approach to model search in this study.  The general rationale of 

Bayesian Model Search (BMS) techniques is to assign a posterior model probability to each possible 

specification as part of the overall estimation process.  Rather than assessing the superiority of one model 

over another through pair-wise hypothesis tests, the Bayesian approach either selects the model with the 

highest posterior probability, or, more frequently, creates a weighted average of model results for 

inference purposes.  The latter strategy is labeled Bayesian Model Averaging (BMA).  Hoeting et al [15], 

Chipman et al. [16], and Koop [17], Ch. 11, provide a good overview of these concepts and techniques.  

 The BMA approach controls for model uncertainty, i.e. the notion that even with extensive 

theoretical guidance the researcher can never be completely certain which of a set of competing model 

specifications best describes the underlying data.  Rather than selecting a potentially inferior model, the 

researcher may then prefer to base any econometric inference on a weighted average over all models.  

This will naturally give more weight to “more likely” models, and low weight to models with low 

posterior probabilities.  Not surprisingly, a common application of BMS and BMA is within the context 

of identifying the best set of explanatory variables in large regression models (e.g. ,[18, 19], [20, 21]) 

which, in essence, is also the problem at hand for this study. 

Based on the exact computational strategy to generate posterior model probabilities BMS 

techniques can be grouped into two broad categories: (i) Strategies that require the computation of the 

marginal likelihood for each model to generate model weights (e.g. [22],[19]), and (ii) Strategies that 
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assign mixture priors to each coefficients, and base model selection and weights on the posterior 

probabilities that a given coefficient should be included in the model (e.g. [23, 24]). 

Since the derivation of the marginal likelihood is computationally burdensome for specifications 

other than the basic linear regression model6, we will follow the second strategy to examine the model 

space for each MRM within a given data space, and, ultimately, to identify the MRM that generates the 

most efficient BT predictions.  Specifically, we will employ George and McCulloch’s [23] Stochastic 

Search Variable Selection (SSVS) algorithm to examine the plausibility of pooling restrictions in a given 

augmented MRM.  We use the search results to assign posterior weights to each model in the MRM’s 

model space, and illustrate how these results can be used to either select a single specification to generate 

the BT function, or to produce model-averaged BT predictions in cases where no single model receives 

overwhelming posterior support.  The details of this approach are described in the next Section. 

 

III) Econometric Framework 

The baseline MRM 

 As point of departure we specify a baseline MRM that relates welfare measures for the activity or 

amenity of primary interest reported in study s for site j, yis, to site and population characteristics for 

which information is also available for the policy context, xjs, and study-methodological indicators ms.  

The importance of including these methodological indicators to avoid omitted variables problems has 

been acknowledged numerous times in meta-analytical research related to resource valuation.  For a 

recent discussion see Johnston et al. [26] and Moeltner et al. [6].7  The baseline model is thus given as   

( ) ( ) ( )2
2 2

with

~ 0, ~ 0, , where  ~ ,

js s js

v v
s js js js

y

n V n igα .

α ε

α ε σ ω ω

′ ′= + + +js x s mx β m β
 (5) 

As indicated in (5) the baseline model also includes a normally distributed study-specific random effect 

term sα with a mean of zero and variance Vα , and an observation-specific stochastic error term jsε .  Since 

most source studies report multiple welfare measures reflecting several sites or applications, the random 
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effect term will capture study-specific unobservables and intra-study correlation.  To control for 

heteroskedasticity, we specify jsε  to have observation-specific variance 2
jsσ ω , with jsω drawn from an 

inverse-gamma distribution with shape and scale equal to v/2.8  In essence, this stochastic structure 

corresponds to Geweke’s [27] Student-t linear model with the added feature of a random effects term.  As 

shown in that study the hierarchical specification of the variance of jsε is exactly equivalent to drawing 

jsε from a t-distribution with mean zero, scale 2σ and v degrees of freedom.  This allows for higher 

probabilities of large error variances than would be expected for a basic normal model, a likely 

occurrence in a meta-regression context.  To be specific, for any given 2σ  a small value of  v (say 5 to 

10) implies a heavy-tailed distribution, while, as is well known, the t-distribution approaches normality 

for larger values of v.  As discussed in Koop [17], Ch. 6, for v>100 the t-distribution becomes virtually 

indistinguishable from the normal (0, 2σ ) density.   

 Allowing for heteroskedasticity and the possibility of large differences in error variances across 

observations and studies is of integral importance for our application.  Specifically, it may well be 

possible that a given activity shares common marginal effects of regressors with the baseline context, yet 

differs substantially in the mix and magnitude of unobservables that enter the reported welfare measures.  

This may further improve the efficiency of data-augmented BT functions if variance terms for the added 

activity are generally smaller than those for the baseline model, but could also introduce additional noise 

into the MRM and thus the transfer function if error variances are larger than those for the baseline case.  

These effects and trade-offs become clearly visible in our empirical application.  At the same time, our 

specification of heteroskedasticity follows the paradigm of parameter sparseness – it only requires the 

estimation of a single additional parameter, v.  This is important given our objective of searching model 

space rapidly and efficiently, and the corresponding requirement to keep run-times for individual models 

as short as possible. 

At the panel (= study) level, the baseline model can be written as  
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( )2
1 2 ,

with

~ , and
s

s

s s n smvn diag ,

α

σ ω ω

= + + +

⎡ ⎤= ⎣ ⎦

ss s x s m n s

s s s

y x β m β i ε

ε 0 Ω Ω " ω
 (6) 

where is a vector of ones with length n
sni s, i.e. the total number of observations furnished by study s.  It 

should be noted that conditional on sα and , ysΩ s remains multivariate-normally distributed with 

expectation  ( )sα+ +
ss x s m nx β m β i  and variance-covariance matrix ( )2σ sΩ .   

 

Scope augmentation and the SSVS algorithm 

 Let us now combine the baseline data d0 with meta-data for a related activity, d1, as discussed in 

the previous Section.  This adds a deviation indicator and a set of interaction terms to the original model, 

yielding 

( ) ( ) ( ) ( )
11 1 1, 1 2, 1 , ,

js s js

js js k js

y with

I js d I js d x I js d x I js d x

α ε′ ′ ′= + + + +

′⎡ ⎤= ∈ ∈ ∈ ∈⎣ ⎦

js x s m js

js

x β m β z δ

z "
 (7) 

where I(.) is an indicator function taking a value of one if observation js belongs to the added data set.9  

The objective at hand is now to examine which of the elements in jsz  are “close enough” to zero to call 

for a pooling restriction.   

 This is precisely the intuition behind the SSVS algorithm ([23, 24]).  The basic idea of this 

approach is to assign a mixture prior to model parameters with uncertain explanatory importance, i.e. the 

elements of vector δ  in our case.  Specifically, we model each coefficient in  to have a prior probability 

p of coming from a “well behaved” normal distribution with mean zero and “large” variance, and 

probability (1-p) of following a close-to-degenerate normal distribution with mean zero and a “very 

small” variance.  The resulting mixture prior for, say, element 

δ

kδ  can then be expressed as 

( ) ( ) ( ) ( )
( ) ( )

2 2 20, 1 0, with

,
k k k k k k

k

pr n c n

pr bern p

δ γ τ γ τ

γ

= ⋅ + − ⋅

=
 (8) 
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where kγ  is a Bernoulli-distributed indicator term taking a value of one with probability p, and a value of 

zero with probability (1-p).  We follow standard SSVS notation by labeling the “small” variance as 2
kτ  

and the “large” variance as 2 2
k kc τ  10.   

 As indicated in (8) and discussed in [24], each element of δ  could in theory be assigned its own 

variance priors, perhaps based on “thresholds of practical significance”.  In other words,  and 2
kc 2

kτ  could 

be chosen such that kδ  is assigned to the degenerate distribution with high probability whenever its 

absolute value falls below a threshold beyond which it no longer affects the dependent variable for all 

practical purposes.  While such coefficient-specific thresholds are meaningful in the medical field and 

related sciences, they are ex ante difficult to assess in our application.  We thus follow a common 

alternative strategy by setting , , ,k kc c kτ τ= = ∀  and standardizing all regressors in (7) to allow model 

coefficients to have the common interpretation of “marginal effect on yjs due to a 1-standard deviation 

movement away from the mean” for a given regressor (e.g. [17], Ch. 11).  We will discuss the exact 

choice of  and c τ  in the empirical Section below. 

 The likelihood function for our full Bayesian specification for a scope-augmented MRM thus 

emerges as 

( )

( ) ( ) ( ) ( ) ( )

[ ] [ ] [ ] [

1/ 2 12 2 21
2

1

1 2

1 2

| , ,

2 exp

with , , , and

s

S

S
n

s

s s n S

pr V

V V

diag

α

α απ σ σ

ω ω ω

− −−

=

=

⎧ ⎫⎛ ⎞′′ ′+ − − − + − −⎜ ⎟⎨ ⎬
⎝ ⎠⎩ ⎭

′ ′′′ ′ ′ ′ ′ ′ ′ ′= = = =

⎡ ⎤= ⎣ ⎦

∏ s s s sn n s s s s n n s s s s

s s s x m S 1 2 S

y X,Z θ,δ, ω

i i Ω y X θ z δ i i Ω y X θ z δ

X x m θ β β X X X X Z z z z

ω

" "

"

]

⋅
 (9) 

where S is the total number of studies included in the MRM.  For notational convenience we have 

collected original regressors xs and study-methodological indicators ms into a common panel matrix Xs, 

with corresponding combined coefficient vector θ .  It should be noted that SSVS vector does not enter 

the likelihood function.  This will facilitate the posterior updating for this vector as shown in Appendix A. 

The full set of priors for the augmented Bayesian MRM is given as 

γ
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( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

0

0 0

2
0 0

1
2 2

2 2 2

a ,

b | 0, , ,

c ,

d | , , 1,

f | 0, 1 0, ,

, ,

s

v v
vjs

k k k k z

k

pr mvn

pr V mvn V s pr V ig

pr ig

pr v ig js p v g

1pr n c n k

pr bern p k

α α αα ϕ

σ η κ

ω

δ γ γ τ γ τ

γ

=

= ∀ =

=

= ∀ =

= ⋅ + − ⋅ =

= ∀

0θ 0 V

"k

γ

 (10) 

where kz indicates the total number of regressors in zs.  Equation (a) indicates that the prior for all 

coefficients not subjected to SSVS scrutiny is multivariate normal with mean vector 0 and variance-

covariance matrix V0.  Equation (b) re-states the hierarchical distribution of random effect sα shown 

above, with the common variance Vα following an inverse gamma distribution with shape 0ϕ  and scale 

0γ .  The same prior distribution, albeit with potentially different shape and scale parameters, holds for 

2σ , the common variance component of jsε , as shown in equation (c).  As discussed above, the 

heteroskedastic variance component of jsε follows an inverse-gamma distribution with identical shape 

and scale parameter v/2, with the hyper-prior distribution of v given as gamma with shape 1 and inverse 

scale 1/v0.  In our parameterization, this corresponds directly to the exponential distribution with inverse 

scale 1/v0.  As discussed in Koop [17], Ch. 6, this choice of hyper-prior distribution for v is 

computationally convenient and assures the required condition of v > 0.  Finally, equation (f) reiterates 

the hierarchical prior distribution for kγ as discussed above.  The likelihood in (9) and the priors in (10) 

also apply to variants of our model that do not call for the SSVS algorithm (see below).  Naturally, a 

standardization of regressors and use of prior (f) are no longer needed in that case.  

 The Bayesian framework then combines likelihood function and priors to derive marginal 

posterior distributions for all parameters.  We use a Gibbs Sampler (GS) along the lines suggested in 

Koop [17], Ch. 6, to simulate these distributions.  The details of this algorithm are given in Appendix A. 

 

Model weights and BT predictions 
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 For each element of and for each draw rδ  = 1…R  of the GS, the posterior simulator produces a 

binary draw of kγ  based on its posterior probability, ( )| , ,kpr γ y X Z , as outlined in detail in Appendix 

A.  This draw will take the value of one if there is posterior support that kδ  belongs to the large-variance 

distribution and should thus be included in the augmented model, and a value of zero otherwise.  For 

example, if and thus  have three elements, a GS sequence of 20 consecutive posterior draws of δ γ kγ , 

k=1…3, could look like this: 

1

2

3

0 1 1 1 0 1 0 0 1 1 0 0 0 0 1 1 0 1 1 1
0 0 0 1 0 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0

γ
γ
γ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 (11) 

In the first round of this hypothetical GS sequence none of the coefficients in δ , and thus none of the 

variables in zjs were chosen for inclusion in the model, in the second and third round only the first 

element of zjs was selected, in the fourth round the first two elements were selected, and so forth.   

This information can then be used to examine how often, out of R repetitions, a given element of 

is set to “1”, i.e. how often the underlying explanatory variable is selected for inclusion in the model.  

In our simple example above, these empirical shares are 11/

γ

20 0.55=  for 1γ , 20 28/ 0.4= for γ , and 5/20 

= 0.25 for 3γ .  This provides a quick first look at the relative importance of each ex ante questionable 

regressor.  However, as shown e.g. in George and McCulloch [23] and Chipman [18] a more thorough 

examination of this sequence is needed to draw conclusions on model weights and model selection.  As 

illustrated in the previous Section (equ. (4)), the number of elements in γ de facto determine e model 

space t

th

M for the added regres s in data space Dsor t.  Thus, sequence (11) also contains information on the 

empirical probabilities for each possible model in tM .  In our simple example above there are 23 = 8 

possible models.  For example, model [0,0,0] was selected 4/20 times and would thus receive model 

weight 0.2.  Model [0 0 1] was selected only once, yielding a model weight of 1/20 = 0.05, and so on.  

 The researcher can then select a single model as the “most promising specification” if model 

weights are distributed such that a specific model receives overwhelming support.  Alternatively, if these 



 15

posterior weights are more uniformly distributed and thus less discriminating, the analyst may want to use 

these weights to form model-averaged posterior inferences.  Since the latter scenario is more likely in the 

context of MRM and BT, and since the selection of a single model is a trivial special case of forming 

model-averaged predictions, we will focus on the model-averaging approach in this analysis. 

 Thus, our generation of BT predictions associated with a given data space Dt proceeds in two 

steps: First, we standardize all regressors and implement the SSVS algorithm to derive individual model 

weights as described above.  Second, after recording these weights, we re-run all models in model space 

tM with non-standardized regressors, using the modified Geweke [27] model without the SSVS 

ponent.  For each model, we then derive a posterior distribution of BT predictions, and then average 

these predictions over models using the model weights collected from Step 1.  Analytically, this posterior 

distribution of BT prediction py given policy site descriptors x

com

p is given as 

M H⎧ ⎡ ⎤( ) ( ) ( ) ( ) ( ) ( )
1 1

| | , , , | , , , |p p m h h m m
m h

pr y pr y M m pr m pr M d pr M
= =

⎫⎪ ⎪= ⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

∑ ∑∫p p
Γ

x x Γ Γ y X Z Γ y  (12) 

where subscript m indexes a specific model in tM , M denotes the total number of models in Mt, mh labels 

ne

) indicates that the posterior predictive distribution of , conditional only on policy 

me

im

e base

applications in the next Section. 

a specific combination of methodological indicators, H is the total number of such combinations, and 

Γ comprises all model parameters as introduced in (10), with the exception of γ , which is no longer 

eded for Step 2.   

 Equation (12 py

descriptors xp is derived by marginalizing conditional draws of y over (i) thodological indicators, (ii) 

model parameters, and (iii) all models in M

p

t.  The practical plementation of (12) is described in 

Appendix B.  The statistical properties of the model-averaged posterior distribution of p py | x can then be 

examined for each available data space and compared to analogous predictions for th line model.  

We will illustrate this final step in selecting a transfer function within the context of our empirical 
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IV) Empirical Implementation 

Simulated application 

pproach using simulated data.  To examine the performance of the SSVS 

nt sample sizes and error distributions we generate eight simulated data sets with 

planatory variables, yielding an initial baseline sample size n0.  

For ease

 We first illustrate our a

algorithm under differe

degrees-of-freedom parameter v set to either 40 or 10 for each of four sample sizes, 2000, 1000, 600, and 

300.  These scenarios are captured in the first column of Table 2.  We ex ante hypothesize that the ability 

of the SSVS algorithm to discern “true” models will diminish with smaller sample size and heavier tails 

of the error distribution (i.e. a smaller value of v).  The n = 300, v = 10 scenario is designed to mimic 

some key aspects of typical meta-data traditionally employed for BT purposes, i.e. small to moderate 

sample size and considerable error noise. 

For each simulation scenario we first create a baseline data set d0 composed of S0 “studies” with 

ns0  observations on “WTP” and three ex

 of communication and close correspondence with the empirical application below we label these 

variables “catch rate”, “income” and “travel cost”.  Catch rate is computed as the log of a uniform (0.8, 

20) variate, income is generated as ( )( )1
1000log uniform 30000,200000 , and travel cost is derived as 

( )( )1

ion, and an error term drawn from a t-distribution with mean 0, scale 1, and v 

degrees of freedom.  A dependent variable y

10log uniform 10,200 .  We then add a constant term and combine these regressors with the 

coefficients given in the first row of Table 2.  We further add a random effects term drawn from the 

standard normal distribut

and error terms drawn from the exact same distributions as hold for the 

0 is then computed following equation (5) (without 

methodological indicators).  

 Next, we create a second data set d1 of same panel structure and sample size as the baseline, with 

regressors, random effects, 

baseline data.  However, we specify regression coefficients that deviate from those stipulated for the 

baseline model in the slope coefficients for “catch rate” and “travel cost”, as shown in the second row of 



 17

Table 2.  This yields dependent variable y1. We then combine the two data sets in an augmented model 

with sample size n by stacking vectors ya , a = 1,2, and the two sets of explanatory variables, adding an 

indicator for the d1- set, and its interactions with the three explanatory variables.  This yields the 

specification given in equation (7) (without methodological indicators). 

 For each n / v scenario, we standardize these regressors and apply the SSVS algorithm to derive 

model weights for the 24 = 16 individual models contained in the augmented model space M1.  We use the 

following prior values: 2 2 1 1
0 0 0 0 02 20.03, 100, , 9 , , 10, andc c v pτ τ ϕ γ η κ= = = = = = = = = =

1 10 k kV I I . 

As discussed in George and McCulloch ([23], [24]), a larger value of c and a lower value of τ  implies a 

sharper distinction between s 

recommend keeping the ratio of the two variances, i.e. c

 the two normal densities in the mixture prior for   However e authorδ . , th

2, at or below 10,000 to avoid convergence 

problems.  Such problems will also arise if τ is located “too close to zero”.  Our hoice of  c τ and c reflects 

these conflicting concerns.  The variance terms for the prior distribution of the baseline coefficients xβ , 

i.e. the diagonal elements of V0, are chosen to correspond to the variance of the non-degenerate 

distribution of δ .  The shape and scale parameters for the inverse-gamma priors imply diffuse 

distributions for 2σ , and Vα .  Given our parameterization of the gamma prior for v in (10), the inverse 

scale v  also constitutes the expectation for this distribution, and 2 denotes the variance.  A value of 10 

for v  implies that is a pri o take this value, leading to a moderately heavy-tailed t-prior for 

the regression errors.  At the same time, a variance of 2
0v =100 keeps the prior distribution for v 

sufficiently diffuse to assign adequate weight to the data in posterior updating.  Finally, the choice of 0.5 

for the Bernoulli parameter p implies an equal prior weight o

0

0 ri expected t

0v

v o

f ( )1
2

zk
for each possible model contained in 

a given data space.  For each scenario, the standard deviation of the proposal density for v in the 

Metropolis Hastings algorithm contained in the GS (denoted a in Appendix A) is set to achieve an 

optimal acceptance rate of 44-50% (see e.g. [28] Ch. 11).  All models are estimated using 15000 burn-in 

s sv 
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draws and 10000 retained draws in the Gibbs Sampler.  The decision on the appropriate amount of burn-

ins was guided by  Geweke’s [29] convergence diagnostic (CD). 

 The lower half of Table 2 shows the SSVS acceptance shares for each coefficient associated with 

 is evident from the last four rows of the Table, the SSVS routine essentially loses its ability to 

entify

irical model weights flowing from the SSVS analysis 

r the 

the added regressors.  A perfectly discriminating GS run would always select the interacted coefficients 

for “catch rate” and “travel cost”, and never select the deviation from the constant term and the interacted 

coefficient for “income”.  As can be seen from Table 2, our simulated models with large sample sizes 

come close to this ideal notion of “perfect discrimination”.  For both the n = 2000 and n = 1000 cases 

acceptance shares are at 100% for “catch rate”, and close to 90% for “travel cost”, while the coefficients 

of deviation for the constant term and “income” are only selected in 5-8% of draws.  The lower share of 

“hits” for “travel cost” compared to “catch rate” may be a result of the somewhat more subtle absolute 

difference between baseline and added data with respect to the travel cost coefficient, or it may simply be 

a manifestation of the relative lower information content for this variable in the generated data.  It is also 

clear from the Table that a lower value for v, i.e. a more diffuse distribution of the regression error, results 

in a subtle but systematic further reduction in acceptance shares for “travel cost” for the two large-sample 

scenarios. 

 As

id  the difference in coefficients between baseline and added data for “travel cost”,  while acceptance 

shares for “catch rate” remain fairly high even for the n = 300, v =10 scenario.  Overall, this first 

examination of simulation results suggests that the ability of the SSVS algorithm to correctly identify 

regressors that should be included in a given model (i) generally diminishes with sample size, (ii) slightly 

diminishes with lower values of v, and (iii) can be variable-specific, depending on how informative the 

underlying data are for each individual regressor.   

 Data space, model combinations, and emp

fo n = 300, v = 10 case are given in Table 3.  The first row simply lists the baseline model, which, by 

definition, does not include any added regression terms.  The last column depicts the empirical model 

weights assigned by the SSVS routine to each of the 16 possible models in data space D1.  Clearly, no 
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single model receives overwhelming posterior support.  The highest weight (0.48) is assigned to the 

partially correct model M5, which stipulates a difference in coefficients for “catch rate”, but a shared 

coefficient for “travel cost”.  The second largest share (0.267) is allocated to the null model M1 while the 

correct model M11 only receives a very small posterior weight of 0.007.  In our simulated context high 

weights for the null model and low weights for the correct augmented model simply imply that the 

underlying data lack sufficient information to identify structural parameter differences. 

Overall, given our empirical context these results convey two important messages regarding the 

interpre

ion 

 o

irst row in gives the results for the baseline model.  For our purposes the key 

tation of model weights flowing from the SSVS algorithm:  (i) A high weight for the null model, 

which a hopeful analyst may interpret as “perfect poolability” of two activities or contexts, may simply be 

indicative of noise in the underlying data, and (ii) the most appropriate model may not receive 

considerable posterior weight.  This suggests a model averaging approach to generate BT predictions. 

 The results for the second step of our analysis are provided in Table 4.  For ease of interpretat

the first three columns reiterate data space, model labels, and model weights, respectively.  The next four 

columns show the posterior means for the BT-relevant coefficients, i.e. the elements of xβ in equation (7).  

The last six columns depict key statistical features of the posterior predictive distribution f BT prediction 

yp.  We follow the steps outlined in Appendix B to generate these predictions. For each of the R = 10,000 

parameter draws from the original GS, we draw a set of rp = 100 predicted values for policy outcome yp.  

We then keep every 20th of these draws to reduce autocorrelation in our sequence.  Thus, we retain 50,000 

posterior predictive draws for our analysis11.  To mimic our sport fishing application below and derive 

“realistic” WTP figures the statistics in Table 4 refer to the exponentiated version of this predictive 

distribution. 

 The f Table 4 

fe  of these results are a mean predicted benefit of 32.5, with a numerical standard error (nse) of 

0.5.

atures

12  The last three columns show the lower bound, upper bound, and width of the corresponding 95% 

numerical confidence interval.  As can be seen from the Table, the posterior means for BT-relevant 
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coefficients generated by models in the D1 space differ from those for the baseline model primarily in the 

estimated intercept.  Given our random effects specification, this intercept is somewhat more difficult to 

estimate under small sample sizes.  The baseline model grossly under-predicts the true value of -2.5 (see 

Table 2). The D1 models, while still considerably off-target, are closer to the true values.  Also, the added 

data reduces posterior noise in the BT predictions, as evidenced by the substantially smaller posterior 

standard deviation for all D1 models compared to the baseline specification.  Given the known 

shortcomings of the baseline model and the noticeably reduced posterior variability in the scope 

augmented models, the model averaged predictive distribution, given in the bottom row of the Table, 

would clearly be a more robust choice to form BT predictions than the baseline model.  It also generates 

more efficient predictions than the baseline specification, as evident from the smaller nse and 

corresponding interval width. 

 

Sport fishing  application 

ethodology with actual meta-data, we selected a baseline set of studies that 

ple: 

 To illustrate our m

report aggregate estimates of consumer surplus for a day of coldwater fishing in a running water 

environment.  All welfare observations are associated with all-or-nothing site values to allow for a clear 

association of WTP estimates with status quo site characteristics.  The studies are drawn from two 

sources: an updated outdoor recreation meta-data set described in Rosenberger and Loomis [30], and the 

sport fishing meta-data collected by Boyle et al. [31].  These two sources combined constitute arguably 

the largest collection of recreational meta-information currently available.  Yet, as shown in Table 5, we 

could only identify 15 studies comprising a total of 73 observations that satisfy our “policy context” 

criteria.  This creates a realistic setting for the desire to augment the data with related activities. 

 We consider a scope augmentation along the dimensions used in our introductory exam

warmwater fisheries, and stillwater environments. This yields four possible data spaces, as summarized in 

Table 5.  As can be seen from the table, augmenting the scope of the data produces a marked increase in 

sample size, especially for the saturated data space D4, which comprises 37 studies and 229 observations.  
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Our methodological indicators are “journal” (1 = journal article), “report” (1 = government report), “dc” 

(1 = dichotomous choice framework), “oe” (1 = open ended, iterative bidding, or payment card 

framework), “substitute” (1 = study addressed or incorporates substitute sites), and “sample 200” (1 = 

underlying sample size ≥  200).  The implicit baseline categories for publication source and elicitation 

format are “technical report, thesis, or dissertation”, and “travel cost method”, respectively.  All data 

spaces have reasonable cell counts for these methodological categories, as shown in the second half of 

Table 5.  To assure a positive value for WTP we model the dependent variable in log form. 

 For an illustrative implementation of our approach we require continuous baseline variables that – 

eally 

s for the standardized model with the SSVS components are 

e sam

id - are reported for all observations.  Given the data gaps traditionally encountered in meta-sets (see  

[6]) this proved to be a major challenge.  We ultimately chose daily catch rate and annual household 

income (both in log form) to represent site attributes and population characteristics, respectively.  We 

replaced missing observations for income (approximately 70% of cases) with State-level census 

information, and missing observations on catch rates (approximately 50% of cases) with predicted values 

flowing from an auxiliary regression model relating available catch rates to regional indicators, water 

types, and fish species.  The derivation of daily catch rates was further complicated by the fact that many 

studies reported this attribute in units other than “per-day”, which required additional conversion steps 

reliant on aggregate information.  Despite these shortcomings our meta-dataset is still suitable to illustrate 

our conceptual and estimation framework. 

 The priors and number of GS draw

th e as for the simulated case, except for the value of τ , which is increased to 0.3 to improve the 

convergence properties of the Gibbs Sampler .  The standard deviation for the proposal density in the MH 

component varies from 110 n  to 145 n  to yield a uniform acceptance rate of 45-50% for all data spaces.  

Table 6 shows the com dividual models for each data space.  The one-dimensionally 

augmented data spaces D

position of in

1 and D2 each include eight models, while this number increases sharply to 64 

for the saturated space D3.  For the latter, only models with empirical weights ≥ 1% are listed in the Table 
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6 for ease of exposition.  For each augmented data space, the first model (M1) denotes the “null” model, 

i.e. the fully pooled specification. 

 The last column of Table 

 

6 shows the posterior weights for each model produced by the first-

nly est

t for Table 7

ciated with stillwater environments carry more error noise than 

stage SSVS analysis.  For each data space, the null model carries by far the largest weight, with all other 

specifications receiving relatively minor weight shares.  At this stage it might be tempting to embrace the 

null model and ignore all other specifications for BT purposes.  However, this would be risky for two 

reasons: (i) The weight shares for the fully pooled version, while substantial, are far from overwhelming, 

and (ii) as seen from the simulated example, a large weight for the null model may simply indicate a lack 

of explanatory power in the underlying data.  Overall, thus, there still exists a considerable degree of 

model uncertainty for all augmented data spaces, which again suggests a model-averaging approach.    

 Therefore, we subject all data spaces and models to the second step of our analysis.  For D3, we 

o imate the models with probability weight of 1% or higher to conserve on computing time13. As 

for the simulated data we set 100= ⋅
10 kV I for this step.  The results from this second stage analysis are 

captured in Table 7.  The layou  is the same as for Table 4.  As can be seen from the first row 

the baseline model generates a posterior distribution of WTP with a mean $67.13, a standard deviation of 

94.14, and numerical standard error of 0.42.  Augmenting the baseline scope of the MRM with 

observations on warmwater fishing reduces posterior noise as evidenced by a significantly smaller 

posterior standard deviation for all models in D1.  In contrast, posterior noise increases compared to the 

baseline model for models in D2 and D3.   

 Clearly, thus, WTP estimates asso

estimates corresponding to warmwater fishing, ceteris paribus.  Also, the point estimates for the posterior 

mean of yp are systematically higher than the baseline result for all models in D2 and most models in D3.  

Therefore, the overall picture that emerges is that the context of warmwater fishing in a running water 

environment is more compatible with the baseline scenario than the context of coldwater fishing in a 

stillwater environment.  Even the substantial gain in sample size for the fully saturated space D3 cannot 
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compensate for this lack of affinity with the baseline context and the added noise through larger 

regression errors.  This is also evidenced by the larger standard deviation and nse for the model-averaged 

distribution for D2 and D3 compared to the baseline result.   

In contrast, and this is perhaps the most important finding flowing from this analysis, the model-

average

) Conclusion

d predictive distribution for data space D1 has slightly more efficient properties than the baseline 

posterior, as indicated by a smaller posterior standard deviation (79.9 vs. 94.1) and nse (0.36 vs. 0.42).  

We can thus conclude that a more efficient BT function is derived if the scope of the baseline data is 

augmented along the dimension “warmwater fishing”, but not along the dimension of “stillwater”. 

 

V  

strate in this study how Bayesian Model Search and Model Averaging techniques can be 

While our meta-data are based on aggregate estimates of welfare and aggregate values for site 

 We illu

used to better utilize existing information on resource values for BT predictions.  Specifically, we employ 

George and McCulloch’s [23] SSVS algorithm to assign posterior probability weights to different model 

versions in a scope-augmented Meta-Regression.  We show how these weights can then be used to derive 

model-averaged BT predictions for the augmented data space.  Our approach circumvents typical classical 

challenges that arise when combining different data sets, such as the reliance on asymptotic theory for the 

interpretation of test results in a small-sample environment, the risk of compounding Type I or Type II 

decision errors in series of specification tests, and small cell counts for different context combinations.  

Our empirical findings indicate that for some augmented MRMs resulting model-averaged BT functions 

can be more efficient than those flowing from a baseline model with a narrower scope and smaller sample 

size. 

 

and user characteristics, it should be noted that our methodology is also applicable to individual-level 

source data.  In that case small sample problems may be less pressing.  However, the general question of 

‘optimal scope’ remains, and with it the classical challenges associated with rapidly proliferating model 
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spaces in augmented data.  The application of our approach to such refined and richer meta-data will be 

subject to future research. 
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APPENDIX A

This Appendix outlines the detailed steps of the Gibbs Sampler (GS) for the random effects 

regression model with t-distributed errors and an embedded SSVS routine for a subset of coefficients.  It 

is convenient to apply Tanner and Wong’s [32] concept of data augmentation and treat draws of 

[ ]1 2 Sα α α=α " and  as additional data.  As in the main text, we label 

the regression coefficients subjected to SSVS scrutiny as δ and the remaining coefficients as θ .  This 

yields the augmented joint posterior 

11 21 Sn Sω ω ω⎡= ⎣ω " ⎤⎦

( )2, , , , , |pr V vσ αθ δ γ,α,ω y, X,Z , which the GS breaks down into 

consecutive draws of conditional components. 

Step 1:  Draw , δ  θ

It is convenient to stack θ and  into a single coefficient vector  and to conformably combine 

data X and Z into common matrix XZ, with panel (= study) specific component Xz

δ ξ

s.  The prior variance 

of  can then be compactly written as , where ξ [ ,diag=ξ 0 δV V ]V

( ) ( ) ( )2 2 20, 1 0, , 1 zdiag n c n k kγ τ γ τ ⎤= ⋅ + ⋅ = ⎦δV "k k
⎡ −⎣ .  To avoid highly correlated draws and to 

expedite convergence we will draw ξ unconditional on the random effects α , along the lines suggested in 

Chib and Carlin [33].  This leads to the following conditional posterior: 

( ) ( )

( ) ( )

2

1
1 12 2

1 1

| , , , , , where

and .
S S

s s

pr V mvn

V V

α

α α

σ

σ σ
−

− −

= =

=

⎛ ⎞ ⎛
′ ′ ′ ′= + + = +⎜ ⎟ ⎜

⎝ ⎠ ⎝
∑ ∑s s s s

1 1

-1
1

⎞
⎟
⎠

ξ s n n s s 1 1 s n n s s

ξ y X Z ω μ ,V

V V Xz i i Ω Xz μ V Xz i i Ω y
 

Step 2: Draw  α

Defining the conceptual regression model sα= − = +
ss s s ny y Xz ξ i ε� s

2 .⎞⎟
⎠

and applying standard 

results for posterior moments for Gaussian regressions (e.g. [34]), we obtain 

( ) ( ) ( ) ( )
11 12 2| , , , , where andspr mvnα σ σ σ

−− −⎛ ⎞ ⎛′ ′= = + =⎜ ⎟ ⎜
⎝ ⎠ ⎝s s s

-1
s s 1 1 1 α n s n 1 1 n s sy Xz ξ ω μ ,V V V i Ω i μ V i Ω y�
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Step 3: Draw Vα  

Given the vector of random effects, the conditional posterior distribution for Vα can be derived in 

straightforward fashion as ( ) ( ) ( ) ( )1 1 1 0 1 0| , with 2 / 2 and 2pr V ig Sα ϕ γ ϕ ϕ γ γ′= = + =α α / 2+α . 

Step 4: Draw 2σ  

Expressing the vector of random effects for the full sample as and applying standard results for 

generalized regression models, we obtain 

α�

( ) ( ) ( )

( ) ( )

2
1 1 1 0

1 0

| , with 2 /

1 2 .
2

pr ig nσ η κ η η

κ κ

= = +

⎛ ⎞′= +⎜ ⎟
⎝ ⎠

-1

y, X,Z,ξ,ω

y - XZξ -α Ω y - XZξ -α� �

2 and
 

Step 5: Draw v 

 The relevant kernel for draws of v is its prior times the segment of the likelihood in (9) that 

includes this parameter, i.e. ( ) ( ) ( )
( )

( ) ( )
2

2

0 0

121
2

1 1 2

| exp exp

v
s v

js

n vS
v v

jsv v v
s js

pr v ωω− +

= =

= − ⋅ −
Γ∏∏ω .  This is a non-

standard density, and we use a random walk Metropolis-Hastings algorithm (MH, [35], [36] ) to take 

draws from this kernel.  Specifically, we draw a candidate value of in the rcv th round of the GS from a 

truncated-at-zero normal proposal density with mean 1rv − , i.e. the current value of v, and standard 

deviation sv, and accept the draw as the new current value with probability 
( )
( )1

|
min ,1

|
c

v
r

pr v
pr v

α
−

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

ω
ω

.  

The standard deviation of sv is chosen (after some trial and error in preliminary runs) to yield an 

acceptance probability in the 45-50% range, as suggested  by Gelman et al. [28], Ch. 11.   

Step 6: Draw  ω

 For this step we note that (~ 0,js
jsn )ε

ω
σ

.  We can then use again standard results for the 

Gaussian regression model to obtain ( ) ( ) ( )2| , , , , , , with 1 / 2js js spr y v ig vω σ α ψ ζ ψ= =jsxz ξ +  and  
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( )( )2 21 / .
2 js sy vζ α′= − − +jsxz ξ σ  

Step 7: Draw  γ

 As shown in Koop et al [37], Ch. 16, conditional on kδ , the conditional posterior of kγ remains 

Bernoulli with an updated success probability (i.e. ( )1|kpr kγ δ= ) of  

( )
( ) ( ) ( )

2 2

2 2 2

;0,

;0, 1 ;0,
j

j j

p c

p c p

φ δ τ

φ δ τ φ δ τ+ −
, where φ denotes the normal density.  In practice, draws from this 

updated Bernoulli are obtained by comparing this expression to a random draw u form the uniform [0,1] 

distribution.  If ( )1|kpr kγ δ= > u, kγ is set to one, and it is set to zero otherwise. 
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APENDIX B: 

To derive the posterior predictive distribution of yp | xp we proceed as follows:  

Step 1:  The methodological indicators comprised in ms delineate a set of H possible methodological 

combinations.  We follow [6] and assign equal probabilities 1h Hπ π= = to each combination.   

Step 2:  For a given draw of parameters within model Mm in the rth round of the original GS we first draw 

a random effect ,p rα from ( ),0, rn Vα , then an error term ,p rε from ( )20, ,r rt vσ , and compute 

, , , , , 1p r h p r p ry h Hα ε′ ′= + + + =p x,r h m,rx β m β … , where mh represents a specific mix of methodological 

indicators.  We then compute the weighted average over methodologies to obtain 

( ), , ,
1 1

H H

p r p r p r p r p r
h h

y , ,α ε π π α ε
= =

′ ′ ′ ′= + + + = + + +∑ ∑p x,r l m,r p x,r l m,rx β m β x β m β .   

Step 3:  We repeat Step 2 rp times to obtain multiple draws of yp,r for each set of parameters.  While this is 

optional, it is computationally inexpensive and improves the efficiency of the predictive distribution. 

Step 4:  Repeat Steps 2 and 3 for each set of original parameter draws, i.e. for each .  The 

resulting sequence of  draws of y

, 1r rΓ = …R

pr R⋅ p,r can then be examined to assess the properties of BT predictions 

associated with model Mm.   

Step 5:  To generate a model-averaged posterior predictive distribution of yp | xp , we repeat Steps 2- 4 for 

each model Mm in the model space Mt of data space Dt , multiply each model-specific sequence by the 

model-specific weight flowing from the SSVS analysis as shown in Section III, and sum over sequences.
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Notes: 

 
 

 

1 Bergstrom and Taylor [9] deem this issue alternatively “commodity consistency” across source studies. 

2 Coldwater fisheries traditionally include species such as trout, steelhead, salmon, mountain whitefish, 

and grayling. 

3 For simplicity and ease of exposition we will abstract in this example and in the remainder of this study 

from data gap issues and resulting “N vs. K” dilemmas as discussed in Moeltner et al. [6].  In other 

words, we assume that all source studies include information on all policy-relevant explanatory variables.  

It would be straightforward to incorporate  “N vs. K” corrections into the econometric framework 

outlined in this analysis. 

4 In the U.S., common warmwater fish are crappies, small and largemouth bass, sunfish, yellow perch, 

and catfish. 

5 For simplicity and without loss in generality, we abstract from any higher order interactions in this 

study.  Naturally, the proliferation of regressors and required specification tests would further accelerate 

with the consideration of such terms. 

6 As described in Raftery [25] there exist a variety of mathematical approximations for the marginal 

likelihood that can be used to ease computational requirements in posterior simulators.  However, these 

approximations all rely on asymptotic theory for consistency.  As mentioned in Chipman et al. [16], such 

approximations can become unreliable in small sample-cases.  Since small-sample issues are important in 

this study, we refrain from using BMS methods based on approximated marginal likelihoods. 

7 Naturally, the baseline model could also include other regressors than methodological indicators for 

which no information is available for the policy context, but which may be important for model stability.  

Just like the elements of xjs these additional covariates would then have to be interacted with activity 

indicators as new data sets are added to avoid mis-specification errors.  Furthermore, since there are no 

known values for the policy site to insert for these covariates when generating BT predictions, BT 
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predictions would have to be marginalized over these regressors, in analogy of our treatment of 

methodological indicators (see also [6]).  To avoid these straightforward but tedious computational  

additions we will abstract from such variables in this analysis. 

8 In our parameterization, this implies an expectation of ( )( ) 1
2 2 21 vv v

v
−

−− = , and ( )22 1 1v v+ = +

k

 degrees 

of freedom. 

9 To avoid a proliferation of interaction terms and added computational complexity in generating BT 

predictions we assume that the effect of methodological covariates does not change significantly across 

activities.  For most “related activities” that one would traditionally consider in a data-augmented model 

this is likely a relatively robust assumption. 

10 While seemingly adding notational clutter, the introduction of the γ -term and the resulting 

hierarchical setup for the mixture distribution of  kδ  corresponds well to the Bayesian notion of 

“hierarchical priors”, i.e. the prior of kδ  depends on another model parameter kγ , which, in turn has a 

hyper-prior distribution with parameter p.  It is also a natural and logical setup to allow for the derivation 

of a posterior probability for the event 1kγ = , which is of crucial importance in our case. 

11 To guard against dramatic outliers, we further truncate this distribution at the 99.9th percentile, i.e. we 

discard the 50 largest observations.  This final adjustment is implemented in identical fashion for all 

models.  Intuitively, this correction could be interpreted as “imposing income constraints” on the 

predicted WTP values.   

12 The nse is computed as ( )/ pstd R

1.96 nse± ⋅

 

 where std is the standard deviation of the predicted distribution 

and Rp is the length of the series.  A numerical 95% confidence interval is obtained as  (posterior mean 

). 
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13 The 13 models in D3 listed in Tables 6 and 7 have a combined model weight of 0.85.  For model-

averaging purposes we calibrate each individual model weight by this total to preserve the adding-up 

condition for the posterior probability mass function of these weights. 
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Table 1: Proliferation of Data Space and Model Space 

 

   number of  baseline regressors  

      1 2 3 4 5 number of 
data spaces 

    number of additional terms in the MRM   
1  1 2 3 4 5 1 
2  2 4 6 8 10 3 
3  3 6 9 12 15 7 
4  4 8 12 16 20 15 

number of 
added 

activities 
("data sets") 

5  5 10 15 20 25 31 
         
   number of possible models  

1  2 4 8 16 32   
2  4 16 64 256 1,024   
3  8 64 512 4,096 32,768   
4  16 256 4,096 65,536 1,048,576   

number of 
added 

activities 
("data sets") 

5  32 1,024 32,768 1,048,576 33,554,432   
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Table 2: Coefficients and SSVS Acceptance Shares for Simulated Data 

 

  constant catch income travel cost 
     

true coefficients for baseline data -2.500 1.000 0.600 -0.400 
true coefficients for added data -2.500 1.400 0.600 -0.200 

     
simulation scenario acceptance shares 

     
n = 2000, v = 40 0.052 1.000 0.047 0.889 
n = 2000, v = 10 0.065 1.000 0.047 0.850 

     
n = 1000, v = 40 0.079 1.000 0.072 0.857 
n = 1000, v = 10 0.073 1.000 0.076 0.693 

     
n = 600, v = 40 0.143 0.998 0.087 0.058 
n = 600, v = 10 0.182 0.993 0.098 0.069 

     
n = 300, v = 40 0.105 0.620 0.092 0.074 
n = 300, v = 10 0.106 0.597 0.100 0.079 
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Table 3: Data Space, Model Space and Empirical Model Weights for Simulated Data 

  interaction terms (1 = included)   
data space model d1 d1*catch d1*inc d1*tc n model weight 

        
D0 M1 - - - - 150 N/A 

        
M1 0 0 0 0 300 0.267 
M2 0 0 0 1 300 0.036 
M3 0 0 1 0 300 0.045 
M4 0 0 1 1 300 0.005 
M5 0 1 0 0 300 0.479 
M6 0 1 0 1 300 0.028 
M7 0 1 1 0 300 0.033 
M8 0 1 1 1 300 0.002 
M9 1 0 0 0 300 0.039 

M10 1 0 0 1 300 0.004 
M11 1 0 1 0 300 0.007 
M12 1 0 1 1 300 0.000 
M13 1 1 0 0 300 0.045 
M14 1 1 0 1 300 0.004 
M15 1 1 1 0 300 0.007 

D1

M16 1 1 1 1 300 0.001 
                

d1 = indicator for added data 
catch = catch rate 
inc = income 
tc = travel cost 
“correct model” shown in boldface 
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Table 4: Estimated Coefficients and Predictions for Simulated Data 

   relevant coeff's for prediction exponentiated distribution of predictions  
Data  

Space Model weight const. catch inc tc mean std nse low up width
             

D0 
(n=150) M1 - -0.593 0.979 0.314 -0.395 32.500 110.803 0.496 31.528 33.472 1.944

             
M1 0.267 -1.055 1.150 0.380 -0.355 29.469 67.062 0.300 28.881 30.057 1.176
M2 0.036 -1.050 1.149 0.379 -0.432 25.096 56.402 0.252 24.602 25.591 0.989
M3 0.045 -1.061 1.148 0.321 -0.356 21.941 50.697 0.227 21.496 22.385 0.889
M4 0.005 -1.068 1.152 0.328 -0.374 21.916 49.394 0.221 21.483 22.349 0.866
M5 0.479 -1.157 1.007 0.392 -0.360 19.786 42.485 0.190 19.414 20.159 0.745
M6 0.028 -1.164 1.007 0.393 -0.361 20.327 47.280 0.212 19.912 20.742 0.830
M7 0.033 -1.148 0.997 0.401 -0.361 21.183 48.234 0.216 20.760 21.606 0.846
M8 0.002 -1.184 1.003 0.410 -0.371 20.819 46.345 0.207 20.413 21.226 0.813
M9 0.039 -1.341 1.147 0.384 -0.356 22.589 52.436 0.235 22.129 23.049 0.920

M10 0.004 -1.298 1.147 0.383 -0.376 22.745 53.107 0.238 22.279 23.210 0.931
M11 0.007 -0.982 1.152 0.305 -0.360 22.021 49.699 0.222 21.585 22.457 0.872
M12 0.000 - - - - - - - - -  
M13 0.045 -1.063 0.989 0.394 -0.360 22.572 52.329 0.234 22.114 23.031 0.917
M14 0.004 -0.968 0.986 0.391 -0.393 22.078 49.731 0.223 21.642 22.514 0.872
M15 0.007 -0.724 0.992 0.321 -0.362 22.267 50.384 0.225 21.825 22.709 0.884

D1 
(n=300) 

M16 0.001 -0.626 0.989 0.318 -0.397 22.161 51.172 0.229 21.712 22.610 0.898
             

D1, 
weighted 
average - - - - - - 23.017 51.239 0.229 22.569 23.466 0.897

             
catch = catch rate 
inc = income 
tc = travel cost 
mean = posterior mean / std = standard deviation / nse = numerical standard error / low (up) = lower (upper) bound of numerical 
95% confidence interval for the mean / width = (up – low) 
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Table 5: Data Space Composition and Methodological Indicators for Sport Fishing Data 

 

 data space composition 
 fishery water type   

data space cold warm river still studies obs. 
       

D0 x  x  15 73 
D1 x x x  21 94 
D2 x  x x 28 112 
D3 x x x x 37 229 

       
 cell counts for methodological indicators 
 journal report dc oe subst samp200 
       

D0 13 23 38 5 22 35 
D1 16 41 40 10 23 35 
D2 37 27 39 8 47 41 
D3 51 105 52 21 49 53 
              
       

dc = dichotomous choice method  
oe = open ended, iterative bidding, payment cards 
subst = substitute sites are addressed or included  
samp200 = sample size ≥ 200 
 



 41

Table 6: Data Space, Model Space and Empirical Model Weights for Sport Fishing Data 
 

  interaction terms (0 = excluded, 1 = included)   
data space model warm  warm*catch warm*inc still still*catch still*inc n model weight

          
D0 M1 - - - - - - 73 N/A 

          
M1 0 0 0 - - - 94 0.589 
M2 0 0 1 - - - 94 0.116 
M3 0 1 0 - - - 94 0.066 
M4 0 1 1 - - - 94 0.013 
M5 1 0 0 - - - 94 0.109 
M6 1 0 1 - - - 94 0.085 
M7 1 1 0 - - - 94 0.013 

D1

M8 1 1 1 - - - 94 0.009 
          

M1 - - - 0 0 0 112 0.519 
M2 - - - 0 0 1 112 0.116 
M3 - - - 0 1 0 112 0.098 
M4 - - - 0 1 1 112 0.034 
M5 - - - 1 0 0 112 0.104 
M6 - - - 1 0 1 112 0.082 
M7 - - - 1 1 0 112 0.027 

D2

M8 - - - 1 1 1 112 0.021 
          

M1 0 0 0 0 0 0 229 0.373 
M2 0 0 0 0 0 1 229 0.051 
M3 0 0 0 0 1 0 229 0.041 
M5 0 0 0 1 0 0 229 0.053 
M6 0 0 0 1 0 1 229 0.037 
M9 0 0 1 0 0 0 229 0.075 

M10 0 0 1 0 0 1 229 0.010 
M13 0 0 1 1 0 0 229 0.013 
M17 0 1 0 0 0 0 229 0.045 
M33 1 0 0 0 0 0 229 0.073 
M34 1 0 0 0 0 1 229 0.010 
M35 1 0 0 0 1 0 229 0.011 

D3 (all 
models with 

weight 
>=0.01) 

M41 1 0 1 0 0 0 229 0.060 
          
warm =  indicator for warmwater fishery 
still = indicator for stillwater environment 
catch = catch rate 
inc = income 
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Table 7: Estimated Coefficients and Predictions for Sport Fishing Data

   model 
relevant coeff's for 

prediction exponentiated distribution of predictions 
Data Space Model n weight const ln(catch) ln(inc) mean std nse low up width 

             
D0 M1 73 - 2.101 -0.091 0.116 67.127 94.143 0.421 66.302 67.953 1.651 

             
M1 94 0.589 1.278 -0.070 0.198 75.260 89.731 0.401 74.473 76.047 1.574 
M2 94 0.116 1.814 -0.036 0.133 58.446 64.415 0.288 57.881 59.011 1.130 
M3 94 0.066 0.301 -0.189 0.302 67.063 74.234 0.332 66.412 67.714 1.302 
M4 94 0.013 1.016 -0.095 0.214 58.540 65.788 0.294 57.963 59.117 1.154 
M5 94 0.109 1.503 -0.031 0.160 58.437 64.237 0.287 57.873 59.000 1.127 
M6 94 0.085 2.117 -0.034 0.104 58.431 63.823 0.286 57.872 58.991 1.119 
M7 94 0.013 0.886 -0.095 0.226 58.816 65.485 0.293 58.242 59.390 1.148 

D1

M8 94 0.009 1.444 -0.097 0.175 57.883 64.508 0.289 57.317 58.448 1.131 
             

D1, weighted average - 112 - - - - 68.925 79.923 0.358 68.224 69.626 1.402 
             

M1 112 0.519 3.711 0.066 -0.050 76.073 141.499 0.633 74.832 77.314 2.482 
M2 112 0.116 3.982 0.060 -0.070 79.788 141.514 0.633 78.547 81.030 2.483 
M3 112 0.098 3.738 0.061 -0.057 75.880 139.043 0.622 74.661 77.100 2.439 
M4 112 0.034 4.331 -0.106 -0.085 86.487 140.202 0.627 85.257 87.716 2.459 
M5 112 0.104 4.113 0.060 -0.081 81.361 148.390 0.664 80.060 82.662 2.602 
M6 112 0.082 3.552 0.056 -0.028 81.897 139.779 0.625 80.671 83.122 2.451 
M7 112 0.027 4.218 -0.103 -0.074 87.100 148.214 0.663 85.800 88.400 2.600 

D2

M8 112 0.021 4.044 -0.099 -0.058 89.162 153.572 0.687 87.815 90.509 2.694 
             

D2, weighted average - 112 - - - - 78.440 142.073 0.636 77.194 79.687 2.493 
             

M1 229 0.373 0.827 -0.072 0.231 80.799 120.148 0.538 79.746 81.853 2.107 
M2 229 0.052 0.98 -0.057 0.219 83.936 127.849 0.572 82.815 85.057 2.242 
M3 229 0.041 1.305 -0.021 0.186 85.828 130.985 0.586 84.679 86.977 2.298 
M5 229 0.054 1.131 -0.059 0.205 83.622 124.39 0.557 82.532 84.713 2.181 
M6 229 0.037 0.757 -0.054 0.239 82.748 122.661 0.549 81.672 83.824 2.152 
M9 229 0.075 -0.154 -0.082 0.307 66.299 93.872 0.42 65.476 67.122 1.646 

M10 229 0.010 -0.022 -0.07 0.296 68.065 96.538 0.432 67.218 68.912 1.694 
M13 229 0.013 0.001 -0.069 0.294 68.135 98.28 0.44 67.273 68.997 1.724 
M17 229 0.045 1.132 -0.046 0.201 83.019 127.803 0.572 81.898 84.14 2.242 
M33 229 0.074 -0.47 -0.08 0.335 65.914 91.694 0.41 65.11 66.718 1.608 
M34 229 0.010 -0.275 -0.067 0.319 68.08 97.649 0.437 67.224 68.936 1.712 
M35 229 0.011 0.142 -0.018 0.277 70.804 104.73 0.469 69.886 71.723 1.837 

D3 (all models with 
weight >=0.01) 

M41 229 0.060 0.903 -0.08 0.21 66.723 93.643 0.419 65.902 67.544 1.642 
             

D3, weighted average* - 229 - - - - 77.448 114.190 0.511 76.446 78.450 2.004 
             

mean = posterior mean / std = standard deviation / nse = numerical standard error / low (up) = lower (upper) bound of numerical 
95% confidence interval for the mean / width = (up – low) 
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Benefit Transfer

• Both VHPPD and MR investigate ways to 
conduct benefit transfers in situations where 
there are only a small number of “appropriate”
studies (and a potentially larger number of 
“related” studies”)

• In some ways, the strength of each study is the 
weakness of the other



Benefit Transfer

• Both Studies start by:

1. Choosing a specific form for the utility or welfare 
function

2. Then collect all appropriate studies

• Then the methods start to diverge



Structural BT

3. Starting from the utility function specified in Step 1, 
expressions for the results reported in the studies from 
Step 2 are derived (i.e. WTP, number of trips, …)

4. The reported results from the studies in Step 2 are 
then plugged into the expression from Step 3 and the 
expressions are then solved for the coefficient values 
that return the reported results

5. The coefficient values from step 4 are then used in the 
utility function specified in Step 1 and used to solve for 
the desired welfare effects



Structural BT

• Strengths
– Utility theoretic
– Can deal with small (and large) sample sizes 
– Relatively quick and easy to do

• Weaknesses
– No specific guidance on how to select the 

appropriate model



Bayesian Model Search 
3. Add “related activity” studies to the dataset and re-

specify the model to include the necessary new 
variables

4. Use SSVS algorithm to assign prior probabilities to all 
model parameters with uncertain explanatory 
importance

5. The priors from Step 4 are then combined with the 
likelihood function to derive posterior distributions for 
all parameters

6. For each element in the model, the posterior 
distributions from Step 5 are used to predict whether or 
not a variable belongs in the model

7. Step 6 is repeated for multiple draws and the 
percentage of times a variable is predicted to be 
included in the model can then be used to either 
identify a dominant model or to create a weights for 
each model specification



Bayesian Model Search

8. Next all model specifications are then rerun without the 
SSVS component.

9. For each model then derive posterior distributions of 
BT predictions

10. Average the predictions from Step 10 using the model 
weights collected in Step 7



Bayesian Model Search

• Strengths
– Provides specific guidance on how to select 

the appropriate model
– Can help to augment small sample sizes by 

determining what “related” information can 
help improve estimation

• Weaknesses
– Relatively complicated and hard to do
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